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Abstract

The theoretical model of Distributed Associative Memories (DAMs) is reformulated by simple algebraic
derivations that make the memory device practically applicable to high-dimensional, visual data processing. In
particular, the analysis shows that the weight of both the computational cost for retrieval and the physical
memory occupation can be reduced from N4 to N2, where N is the data dimensionality.  The presented research
extends previous results on the model implementation on parallel machinery, whose ultimate efficiency is now
characterized from a theoretical point of view, too.

1. INTRODUCTION

Associative Memories (AMs) provide a connectionist storage system with content addressability and
robustness [1]. AMs are typically used for high-dimensional data-processing tasks, for which data dimensionality
hinders a direct application of classical Neural Networks. Application domains for AMs include robust image
recognition and understanding.

This paper reconsiders Kohonen’s classical Distributed Associative Memories (DAMs) [2]. Previous research
has shown the effectiveness of DAMs for image recognition purposes [3,4], even though the original model has a
limited practical impact, due to the physical sizes of the data structures involved.   From this standpoint, the paper
extends to a higher degree of formalism and a wider general validity a study presented in [5]. That research
mainly addressed implementation features on parallel machinery to stress overall performance.

With respect to those preliminary results, the paper generalizes a reformulation of the basic model that
reduces both physical memory occupation and recall computational timing. In particular, the analysis shows from
a theoretical point of view that the relative weights of these quantities are reduced from N4 to N2, N being the
image size. As an obvious confirmation of early results, the new model maintains those specific features that make
memory implementation on parallel hardware very efficient. Therefore, in the paper, the robustness, efficiency
and performance of a parallel implementation are also discussed, as they make the method applicable to real-time
domains.  An abstract model of the parallel implementation also makes it possible to derive a theoretical
expression of the resulting efficiency of the supporting architecture; experimental results point out the validity of
theoretical predictions by matching predicted values with remarkable accuracy.

2. THEORETICAL FRAMEWORK FOR ASSOCIATIVE MEMORY

2.1 - Kohonen’s basic model of DAMs

An associative device couples each stored datum with related information (key), which is used for both
storage and retrieval. The present context assumes an auto-associative schema, in which a datum and a key
coincide; autoassociativity has been proved to contribute to increasing the noise insensitivity of classification
schemata for quite different memory models [5-7].  This section summarizes for the reader’s convenience the
basics of the DAM  model.

Although the original model (DAMs) relates to biological issues, both writing and reading can be expressed
in terms of matrix multiplications. For simplicity and without loss of generality, square images holding N x N
pixels are assumed. In the following, p[N2] denotes a vector holding a stored image (pixel rows are arranged
sequentially).  If I images are stored in the memory, S[N2 ⋅ I] denotes the “data” matrix whose columns contain all
vectors p. Finally, M indicates the actual memory device.

Training - The analytical expression  [2] for a memory matrix, M, holding a data set, S, is given by:

M = S(St S)-1 
St [ N2 ⋅ N2 ] (1)
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where the numbers in brackets indicate the resulting dimension of the memory matrix (proportional to N 4).

Recall - Memory reading simply involves the multiplication of the addressing vector (row-scanned image), k, by
the memory matrix, M, thus yielding the recall vector, r:

M k = r [ N 2 ⋅ N 2 ] ⋅ [ N 2 ] = [ N 2 ] (2)

Analysis - As already pointed out in [5], memory size represents a crucial issue of Kohonen’s model because,
especially for normal-size images, physical memory occupation is proportional to N 4. The computational load

(time) of the reading process is Tc(Kohonen) = N 4⋅ (T* + T+) – N 2⋅T+, where T* and T+ represent the times needed
for one floating-point multiplication and sum, respectively. For example, an application involving images with
128x128-pixel images yields a memory with 256M elements. It should be stressed that these values depend on the
actual data dimensionality and not on the number of stored prototypes.

2.2 - Reformulation to a Practical Model

The issues defined in the previous Section make the implementation of Kohonen’s algorithm difficult or
impossible on most types of machinery. However, the theoretical model allows a reformulation of the matrix M,
which is split into two partial matrixes, M1 and M2. The analysis shows that this procedure preserves the basic
memory functioning.

Training - The two matrixes, M1 and M2, are computed (off line) during training, as follows:

M2 = St  [ I ⋅ N 2 ] (3)

M1 = S (St S)-1 [ N 2 ⋅ I ] (4)

Recall- Memory reading is split into two subprocesses: first, multiplying the key vector, k, by M2 gives the
intermediate vector, v; secondly, the product of v by M1 yields the actual recall:

a) M2 k = v [ I ⋅ N 2 ]⋅[ N 2 ] = [ I ] (5)

b) M1 v = r [ N 2 ⋅ I ]⋅[ I ] = [ N 2 ] (6)

Proof of memory functioning - The verification of the consistency of the reformulated model is a straightforward
consequence of simple marix-algebra properties:

r(new) = M1(M2 k) = S(St S)-1 
(St k) = [S(St S)-1 

St] k (7)

r(Kohonen) = M k = [S(St S)-1 
St] k (8)

The equivalence of expressions (7) and (8) shows that the recall vectors for the two models coincide, thus proving
algebraic consistency.

Analysis - As far as physical memory occupation is concerned, M1 and M2 have an identical number of

elements that is equal to I �  N2, hence the total number of stored physical elements is 2 � I � N 2 elements. This makes
the total memory occupation depend on the number of stored images, and might appear as a theoretical drawback
in terms of generality. On the other hand, the advantage over the original model (requiring N 4 elements) is
notable, if one (reasonably) assumes I to be much smaller than the number of pixels in an image. For example, if I
< 1000, we obtain a saving in memory of at least one order of magnitude, which represents a good threshold for
the method’s usefulness.

A similar conclusion can be drawn when considering the computational timings required by the reformulated
model. The timings for the two individual recall steps and the total recall step are given by:

Tc(a) = (I ⋅ N 2)⋅T* + [I ⋅(N 2 – 1)] ⋅ T+ (9)

Tc(b) = (I ⋅ N 2)⋅T* + [(I –1)⋅ N 2] ⋅ T+ (10)

Tc(tot) = Tc(a) + Tc(b)  =   N 2 ⋅ (2⋅I⋅T* + 2⋅I⋅T+ – T+) – T+ (11)
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The corresponding quantity for the original model amounts to:

Tc(Kohonen) =  N 4 ⋅ (T* + T+) – N 2 ⋅ T+ (12)

A comparison of expressions (11) and (12) shows that the model reformulation results in a substantial saving in
computational load.  Indeed, the most relevant factor is proportional to 2N 2 instead of N 4, which represent an
impressive improvement for very large value of N (as is the case with image recognition).

In summary, the main conclusion from this analysis is that the new model provides a system designer with
the possibility of massive reduction in complexity and storage requirements. In both cases, as shown in Table I,
the improvement is of the order of a power of two of the image size, N.

Table I - Comparisons of complexity and storage between the original and reformulated models

Memory occupation Computational Cost

     Original DAM model ∝ N 4 ∝ N 4

Reformulated model ∝ N 2 ∝ N 2

With respect to the research presented in [5], which dealt only with preliminary issues on parallel
implementations, the above derivations confirm the overall validity of the model reformulation to a wider extent.
Quite interestingly, the analysis shows that the model reformulation does not require the tradeoff between memory
occupation and computational cost that is usually brought about when porting theoretical models to practical
applications.

3. THEORETICAL ANALYSIS OF PARALLEL IMPLEMENTATION

The possibility of efficient implementation is crucial for an associative model's effectiveness in practical
applications, especially when coping with real-time domains.  The research here presented maintains the basic
approach adopted in [5,8]. Transputers still provide inexpensive and flexible support for development, but the
present analysis yields a general model valid for other and possibly more effective HW machinery.

The implementation methodology follows a slice-oriented approach for the data-allocation strategy, and is
supported by a hierarchical processor configuration, whose topology is arranged as a tree. The method used to
download the memory recall process is independent of the tree depth and is based on a uniform distribution of

matrix multiplications among processors. This
strategy consists in splitting all memory matrixes
into as many slices as the number of processors.
The basic algorithm for run-time recall and
subsequent image classification is detailed in [5],
and entrusts each processor with the
computation of partial slice-matrix products.
Top-down and bottom-up communications
support data dispatching and result recollection
accordingly.

In the following, we derive an expression of
the efficiency of the overall parallel systems for
the recall process. Intermediate steps leading to
the eventual expression are omitted for brevity.
In the formula, M denotes the number of
processors, τsum, τmul, τpixel, the elementary
timings for summing a pair, floating-point

Fig.1 - Data allocation and processor organization
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multiplying a pair, and transmitting one pixels value(s), respectively, whereas F (b) and F (d) are constant,
topology-dependent factors. The predicted value of efficiency, η, is:
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(13)

The analytical derivation (13) allows one to compare predicted values with experimental evidence both for the
tests presented in [5] and other experiments run successively.  Table II summarizes measured timings, obtained
efficiency values and matches them against theoretical predictions.

Table II - Recall timings and efficiency values

(M = 8) Timings Efficiency

Tseq Tpar Measured Predicted

I = 8 1.777 0.411 0.54 0.575

I = 16 3.488 0.586 0.74 0.733
Tseq , Tpar= recall timings for the sequential and parallel algorithm, respectively

The data shown in the table confirm the validiy of the theoretical model of the parallel process. An important
property of this schema is that the system’s efficiency increases with the number of stored prototypes; this
confirms theory (13) which predicts:

lim
N →∞

=η 1 (14)

The asymptotic behaviour (14) witnesses the robustness of the implementation schema; this result is a direct
consequence both of the specific memory model, allowing a slice-oriented data allocation, and of the topological
processor arrangement.

5. CONCLUSIONS

The present paper did not address the problem of recognition performance. This intentional omission is
motivated by the fact that the properties of associative classifiers are well known [6-8], and, in the specific case of
DAMs, accuracy at image classification has been already studied and analyzed in [2,5].  Conversely, the presented
research aimed to clarify general properties of the basic associative model, which may enhance its implementation
on practical application from a mostly general point of view.
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