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Abstract—The design and prototypal realization of a visual
tracking system is presented. The approach to target identifica-
tion is nonconventional, in that it relies on an architecture com-
posed of multiple standard neural networks (multilayer percep-
trons) and exploits the information contained in simple features
extracted from images, performing a small number of operations.
Therefore, the tracking functions are learned by examples, rather
than implemented directly. The system demonstrates that a quite
complex task such as visual target tracking can be easily obtained
by a suitable neural architecture. The fast tracking algorithm and
the parallel structure allow a true real-time operation. The system
exploits a two-level neural-network hierarchy with a number of
parallel networks and an “arbiter.” The training set consists
of various geometrical shapes, preprocessed to yield the data
vectors. The experimental hardware implementation is based on
multiple processing units, implementing the neural architecture,
and serves as a prototype for the analysis of the system in
practice. A small-sized realization can also be obtained.

Index Terms—Machine vision, multilayer perceptrons, multi-
processing, neural network applications, neurocontrollers, track-
ing.

I. INTRODUCTION

V ISUAL tracking of moving objects is often required in
the fields of robotics, industrial automation, and auto-

mated vehicle guidance. The problem has been addressed in
the past within the disciplines of pattern analysis, artificial
intelligence, and neuromimetic systems. Many methods have,
therefore, been developed to attain specific goals, such as
biological plausibility, generality, and integration with higher
level analysis systems [1]–[4]. Unfortunately, these methods
are often computationally expensive or complicated, which
may be an obstacle to their utilization in real-time applications.

On the other hand, in simplified situations (e.g., a small
number of specific sensors instead of whole images) there
are many available approaches based on control theory, either
classical or using neural networks and fuzzy systems. These
methods often allow an in-depth theoretical analysis and are
adequate for these situations where a small input pattern, with
a well-known behavior for each individual signal, is available
[5]–[7].

We address the realization of an in-between solution ca-
pable of attaining good real-time performance and, at the
same time, of exploiting a neural approach. We present the
design and a prototypal hardware realization of a visual
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target tracking system, based on a neural algorithm and
on a parallel processor architecture. Our approach to target
identification is substantially simplified by imposing realistic
constraints on the problem. This allows the use of simple
and inexpensive processors to implement the control system.
The resulting tracking system, although appropriate for simple
tasks involving few objects, can also be successfully utilized
in many situations in which real-time performance is needed.

The tracking mechanism is composed of different mod-
ules exploiting bio-inspired concepts to achieve a robust
performance, such as example-based learning, parallel and dis-
tributed processing, and redundant architectures. The tracking
function is not hard-wired into the algorithm, but is learned
from a training set. This allows the user to easily tailor the
system to the requirements for a specific application. The
drawback of the neural approach is that a sound analytical
treatment of stability issues is not readily available. Therefore,
our approach is to experimentally verify the system’s proper-
ties first with simulations, and then with actual experiments
on the prototype.

The scheme is very straightforward, therefore, it can be
applied to real-time operation with a limited effort, since it is
based on very simple parallel procedures. This allows the de-
signer to select from among a wide variety of implementations
ranging from application-specific integrated circuits (ASIC’s)
to digital-signal-processor (DSP)-based software simulations.
The first hardware implementation, described in this paper, is
based on a Motorola workstation based on the real-time indus-
trial standard Versa Module Europa (VME) bus architecture.
Other possible realizations are considered in this paper.

The simulation of the tracking system has been introduced in
[8] and [9]. In this paper, we present the actual implementation
of the system. This also includes training with images acquired
with a camera, rather than artificially generated. Part of this
material has been presented in [10].

In the remainder of this paper, the neural system is de-
scribed from the theoretical point of view (Sections II and III).
The hardware implementation is then presented (Section IV).
Section V contains some results from experimental verifica-
tions of the system, and Section VI compares the perfor-
mance of the method presented with other approaches. Finally,
Section VII draws some conclusions and presents future lines
of research.

II. TRACKING PROBLEM

A. Statement of the Problem

The system under consideration addresses a generic tracking
problem, stated in terms of the following hypotheses. There
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is a single object moving in a plane. The mass of the object
is concentrated, but the shape is not required to be strictly
compact. The body is not necessarily rigid; the possible
changes in the object shape, however, are not too fast. The
motion is arbitrary, again with some limitations on its speed,
in such a way that the object never escapes the viewing area.

The mass of the object should be concentrated because
of the mechanism used for motion estimation (differential
messages, to be explained further), which can be confused by
odd mass distributions. This is also the reason for requiring
slow shape modifications. Finally, the object should stay
within the viewing area because the system described here
does not include a search mechanism to scan the scene,
although it would be possible and easy to add it.

These constraints are not strict. The resulting system fea-
tures a “graceful degradation” that allows it to work with a
very small error when the object and the scene are not exactly
as required. For instance, the motion can be three dimensional
without affecting the performance at all, provided that its
component in the third dimension (depth) is not too fast.

B. Existing Techniques

Apart from the simple tracking techniques based on limited
sensors, the available techniques to approach this problem are
usually based onfeature extractionand onoptical flow.

Feature extraction techniques [1], [2] belong to the class of
“image understanding” algorithms, in which the main target is
to provide a symbolic interpretation of an image (to recognize
a particular object or event in the scene). This class of
algorithms can then be adapted to estimate the current object
position moving in the scene. Essentially, feature extraction
methods consist of the following:

• change detection (where the difference frame background
is computed);

• focus of attention, that is, inscription of changed regions
into minimum bounding rectangle;

• feature extraction from each rectangle (such as points,
lines, edges, etc.).

A subsequent evaluation of these features yields a match
of these regions and the subsequent tracking; the segments
corresponding to the shape that has to be tracked, which should
be known, are identified by comparing the features extracted
from different frames and used to estimate the current object
position. At a higher level, there are image understanding
operations such as data abstraction and pattern recognition for
the global interpretation of the observed scene.

This method applies to fixed shapes (rigid-body hypothesis)
and requires a large number of computations to find the
solution of a set of nonlinear equations (usually obtained with
iterative methods).

Optical flow methods [3], [4] are based on the observation
of the trajectory of all points of the image; in particular, if

is a function representing the brightness of the point
at time , the algorithm determines thedisplacement

vector indicating the shift of between and
. Considering the displacement vector for all points of

the image, we can track each object moving in the scene; to

do this, we must hypothesize that is the same in each
image for all objects. Obviously, this is a very restrictive
assumption, which could be removed, for instance, by adding a
parameterized distortion on . However, this could be done
only at the expense of further computational load.

The vector is determined by solving

(1)

Since in an image there are many points with the
same brightness, an optimization of the algorithm searches

in a neighborhood of the point

(2)

where

(An alternative approach is to take into account contrast or
entropy operators rather than pixel values.) This method is
usually named sum of square difference (SSD) and is used
because it allows the computation of optical flow, that is, the
space of displacement vectors

(3)

By evaluating the last formula, we can then estimate the
current position of the object with another computation.

Both methods can be enhanced by addressing also the issue
of scale and rotation invariance. This introduces the need
for matrix computations, bringing about a further level of
complexity. The methods described are fairly complicated,
therefore, real-time performance is not attainable in nonsimu-
lated situations in which the object is moving at a very high
speed.

III. A N EURAL APPROACH

We observe that, to model aperceptionphenomenon, such
as object localization and tracking, a faithfulrestitutionsystem
is not required. Therefore, the shape, size, mass, or other
features of the tracked object should not be fully described,
as long as we retain the minimum information needed to
implement the required function of tracking. As opposed to the
techniques briefly illustrated, and according to this philosophy,
the presented method is straightforward and does not even
require an accurate model of the problem.

The structure of the whole system is outlined in Fig. 1. The
tracking function is learned by a multilayer perceptron that
is fed with simple features extracted from the images. The
system is represented by a standard feedback control scheme.
Its peculiarities are the realizations of the feature extractor
(here termed “message generator”) and of the tracker.
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Fig. 1. Block diagram of the tracking system.

Fig. 2. Message generation.

A. Feature Extraction

Feature extraction is based on simple row-wise and column-
wise averages. This solution has been chosen because the
selected approach is aimed at the maximum simplicity, but
other, more sensitive feature-extraction methods could easily
be plugged into the system without structural modifications.
The proposed solution imposes a very small computational
load, while retaining the required performance level, therefore,
it is a good candidate for real-time implementation.

As a remark, we note that other, well-established pat-
tern recognition techniques adopt similar or related methods
for feature extraction. Examples are found in the automated
document processing context, where run-length coding [11],
moments [12], and projection profiles [13] are all based
on measuring the “mass” (weighted count of black pixels)
along given directions. The widely used Hough transform [14]
may be viewed as belonging to this class of preprocessing
techniques.

The procedure is sketched in Fig. 2. The image coming from
the video camera is an array of 128 128 greyscale
pixels. The resulting square matrix is summed row wise and
column wise, and the resulting values are adjoined to form
two 128-element vectors, one for the horizontal axis and one

for the vertical axis

(4)

These two vectors are further mapped into two reduced vectors
of 32 elements each by summing neighboring components in
groups of four

(5)

Therefore, a message contains the spatial distribution of the
volume of an object, projected on each of the two coordinate
directions. Its graphical representation is a histogram, which
does not uniquely determine the source image, but is, however,
sufficiently characteristic.

This reduction in dimensionality is appropriate for two
reasons. First, it constitutes a subsampling, producing a low-
pass filtering effect. The net result of this filtering is to smooth
unavoidable noise components and minor variations in the
object position, which might be due to small movements of
the camera.

Second, it helps keep the data dimensionality low in the
subsequent neural-network training phase. Indeed, it is known
[15] that the number of data samples needed to train a learning
machine, with a given generalization error probability, grows
with the number of parameters (in a multilayer perceptron, the
number of weights). Therefore, if we increase the number of
input units of a network, we should also increase the number
of patterns in the training set.

The subsampling ratio of 1 : 4, assessed through experi-
ments, is a compromise between a moderate-sized training
set and a sufficient sensitivity to the horizontal and vertical
components of the displacement of the tracked object.

The motion estimation parameters, too, are very simple. For
each coordinate, pairs of messages extracted from successive
images (at time stepsand ) are subtracted, obtaining a
“differential message” used to detect motion information:

(6)

(for ). As a remark, we observe that this motion
estimation method is much simpler (and faster) than those
found, for instance, in videocompression algorithms [16].
The reason for this is that, to identify the motion vector (a
perceptiontask), an accurate representation is not needed, as
it would in the case of image reconstruction (decompression
phase)—arestitution task.

B. Neural Tracking

The neural system acts as a position and motion estimator
for the target. The actual positional compensation on the cam-
era is performed by a simple proportional integral derivative
(PID) algorithm, on the basis of the estimated position. Here,
we describe the neural estimator design and structure.

A set of differential messages, taken from a number of
sequences, is used as a training set for a multilayer perceptron.
The training patterns are, therefore, composed of the messages,



ROVETTA AND ZUNINO: A MULTIPROCESSOR-ORIENTED VISUAL TRACKING SYSTEM 845

as the input vector, and of the motion vector components, as
the target. Since messages are computed separately for the
and components, respectively, there are correspondingly two
networks, one to learn the component of the motion vector,
and the other to learn the component.

The training procedure is an accelerated version of the
error backpropagation algorithm (using an adaptive step size).
The training of a multilayer perceptron is long and requires
attention to avoid the well-known problems arising from
overtraining and imbalanced training sets. These problems
need a sufficient number of training patterns to be selected and
early-stopping, cross-validation, or regularization techniques
to be adopted for training.

On the other hand, the training phase is performed once
and for all off-line; in the actual system operation, the only
computations needed are those of the forward pass, which is
very fast. The number of computations involved in the forward
propagation of activations is readily obtained; if we denote
the hidden layer dimension by , neuron activations are
required for the hidden layer, and 1 for the output layer. Each
hidden neuron computes 32 1 multiply-and-add operations
(32 inputs and 1 bias term) plus one call to the sigmoid
function, while the output neuron computes multiply-
and-add operations. If we now assume that , an
average value in our case, we can estimate the number of
operations to be of the order of 700 elementary operations
20 sigmoid function calls, which is a very small computational
load. Achieving real-time operation is, therefore, very simple,
since no expensive hardware is needed.

Using a module trained by examples allows an extreme flex-
ibility in the resulting system. If one hasa priori information
on the nature of the problem, its exploitation amounts only to
choosing appropriate examples. For instance, if the class of
typical object shapes is known, the training set can include a
majority of shapes belonging to that class.

C. Combination of Multiple Neural Networks

To increase the robustness of the system behavior and the
reliability of the neural stage of the tracker, a team of different
networks trained on the same problem is used instead of a
single network.

The rationale underlying this procedure is the following.
Since the network is trained on a statistical sample, it can
be viewed as an estimator of the true motion vector, subject
to statistical fluctuations. Such a problem can be stated as
follows: “Find the best estimate based on a finite sample of
data from a signal with noise added.” The error of the estimate,
with respect to the sample, can be described by a bias/variance
decomposition [17]

The bias component is the part of the error due to an
imperfect estimation mechanism, and represents a fixed offset;
as such, it can be compensated for. The varianceis the part
of the error due to the noise in the training set, and has to be
minimized in some way.

It is known [18] that the variance of an estimator can be
reduced by simply taking its average over many realizations.
Therefore, the use of many independent networks in parallel
helps reduce the variance of the learned mapping. In other
words, for each input pattern, the output is obtained by
averaging over the outputs of many networks for the same
pattern. In [19], this simple technique has been studied and
experimentally verified, outperforming other approaches. The
problem of training such a neural structure lies often in
designing a set of truly independent networks.

In our case, we decided to select different starting points and
different numbers of hidden units for different networks, but
not to change the training set. This results in a set of networks
that are different, but not completely independent (there is a
correlation between the outputs of pairs of networks, although
they are not exactly equal).

Obtaining different networks from different starting points
is a process which requires attention, since the final result of
training is related in a complex manner to initial conditions.
This is due to the many basins of attractions featured by
the network cost-function profile. Therefore, a test should be
performed prior to selecting the networks to be combined.
Points that belong to the same basin of attraction feature
similar cost bias and variance values, typical of the local profile
of the cost function. The simplest test consists in verifying
these values at the end of each training. If two networks
feature different errors, they are almost certainly trained to
different final points (provided a reasonably good optimization
procedure is applied). Conversely, if they feature similar error
mean and variance, they are not necessarily similar; however,
more accurate tests should be performed, or another training
can be run.

Following this approach, the resulting team ofnetworks,
as expected, does not reduce the variance to . It turns out,
however, that the error is reduced by a satisfactory amount.
In the experimental section, this is demonstrated in the case
of .

Finally, the output of the team of networks is used as an
input signal to the control system of the video camera.

Real-time constraints are not included in the tracking sys-
tem. However, for the time scales of many industrial and
automation applications, the response is fast enough to allow
real-time operation (as experimentally verified with random
motion tracking). A possible stability problem, due to the lack
of an explicit output delay compensation, is taken into account
by the training procedure, which adopts image sequences. Due
to the modularity of the system, an explicit look-ahead function
could easily be added; however, our main aim is to keep the
system fast and simple. The generality of the tracker would
also be reduced if we took into account the specific mechanical
properties of the prototype.

IV. I MPLEMENTATION OF THE SYSTEM

The prototype of the system has been implemented by using
VME boards hosted by a Motorola DELTA workstation, a
VME machine. The VME architecture has been designed for
the implementation of real-time, parallel systems. As such, it is



846 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 4, AUGUST 1999

Fig. 3. Schematics of the implementation of VME bus.

typically composed of a Unix-based host and several processor
and I/O boards, interfaced to the VME bus. It also includes
the software environment, called VMEexec, used to allocate
and control processes on the peripheral processor boards.

This realization should be considered as a prototype for
the analysis of the system in practice, whereas the final
goal is a small-sized realization. This can be obtained with
custom VLSI integrated circuits, for a specific application
with nonchangeable network functions. Another realization,
currently under development, is based on standard, low-cost
processor and I/O boards for the ISA or the PCI standard bus
architectures. The resulting prototype will be a very flexible
and powerful, yet inexpensive tracking system.

The VME host is equipped with a processor of the 68 or
88K family, in our specific case, a Motorola 68030. However,
the main processor does not take part in the actual real-
time operation, leaving it up to the boards. Fig. 3 shows the
functional structure of the implementation.

The acquisition step is implemented with a small video
camera connected to a digitizer board (DIGIMAX); the image
is then stored on an image buffer board (ROISTORE).

An MVME 188-2P board equipped with 8 8-Mb RAM
and two 88100 processors (which we denote by 188-1 and 188-
2) takes care of simulation tasks. The message extractor and
the neural ensemble are implemented on the 188-1 processor.
A TVM 745 I/O board provides the desired voltage to the
actuator motors through two servo amplifiers, imposing the po-
sition and reading the feedback signals provided by differential
encoders. These feedback signals are a digital representation
of the radial position of the motor with respect to the initial
position. The angular position is mapped onto Cartesian co-
ordinates by a converter implemented on the 188-2 processor.
The camera position is then controlled by a discrete regulator,
implemented in software on an MVME 187-33 board.

The video camera is mounted on the mechanics of a
plotter (two degrees of freedom); a metallic frame supports
the two axes carrying the camera. The motion takes place
in a horizontal plane, about 1 m above the ground. This is
a cheap and efficient method to make the camera move in
a plane parallel to the motion of the object. However, this
implementation could be useful, for instance, if the tracker
had to be used to control the manufacturing process on an
assembly line.

V. EXPERIMENTAL RESULTS

The behavior of the tracking algorithm and of the complete
system were experimentally assessed. Tests were performed
on the preprocessing phase, on the basic motion estimation by
neural networks, on the performance of the multiple network
structure (team), on the stability with a long trajectory, on the
ability to track an object with a background, and, finally, on
the system as a whole.

There are no widely accepted parameters to assess the
behavior of a tracking system. This is the subject of current re-
search. Therefore, in this section, some quantitative parameters
will be proposed and evaluated for the tracking experiments.

Let an image sequence be frames long, from
instant (start time) to instant (end time). Let

be the position of a point of the target
object at time step. We assume that the motion is the same
for all such points; where this is not the case, a representative
point such as the barycenter will be used. Let and
be the image horizontal and vertical pixel sizes, respectively.
Since in our case they are the same, they will be indicated
with (and ). (Of course, if the image
vertical and horizontal resolutions are not the same, the aspect
ratio can be introduced in the formulas below to compensate
for different vertical and horizontal dimensions of pixel.)

Let be the normalized displacement vector of the target
at time step

(7)

The ability to track changes in the position of the target
can be measured by the average magnitude of the normalized
displacement vector

(8)

This is an estimate of the instantaneous ability to keep the
subject in the center of the viewing area. A good behavior is
indicated, for instance, by (in the ideal case ).

To obtain information about the tracking stability, we can
evaluate the quantity , defined as

(9)

This is an estimate of the ability to reduce tracking errors over
time. A good behavior is indicated by .
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A. Position Estimation

The feature extraction step has been validated by a simple
set of experiments with static images. A set of geometric
shapes at different scale factors has been acquired with the
camera, and the resulting messages have been used to train
two 32-input networks to estimate the object position relative
to the viewing area. Then, a test set has been drawn from the
same class of images, but shapes, positions, and scale factors
have been varied to obtain a test set different from the training
set. With this setup, position estimation error was constantly
observed to stay within 10 pixels, but, most often, it was much
less. This experiment aimed to establish the correctness of the
message generation procedure.

B. Vector Estimation with Single Networks and with a Team

The networks implementing the mapping from differential
messages into estimated target position are trained using dif-
ferent shapes at different scale factors, with varying positions.
This is a simple approach to achieving a shift-invariant and
scale-invariant behavior. As previously remarked, different
training seeds are used for different networks, and the out-
put arbiter is an averaging operator taking into account the
responses of each network in the team. In the presented
experimental results, the team was composed of five net-
works.

As in the previous experiment, a test set was used to assess
the accuracy of the learned mapping. The test set featured
geometrical shapes not present in the training set. The scale
factors and motion vectors were also different.

The procedure was performed first on synthetic images and
then on real images, acquired with the video camera. These
images were simple geometrical shapes without background,
as in the previous case. Figs. 4 and 5 show instances of the
acquired images. Table I presents some test results obtained for
a car silhouette. The test patterns were displacements ranging
from 1.5 to 4.5 cm, with the origins at different locations in
the visual field of the camera. The second and third columns
are the average errors and their variances, respectively, for
the five individual networks in the team, and for the en-
semble.

The parameters are indicated as absolute values. It is pos-
sible to observe that the individual network obtaining the best
average output error is also the one with the largest output error
variance. The output of the ensemble, computed by averaging,
obtains an average error that is better than that of almost each
network in the team, and has the best (lowest) variance.

C. Tracking a Random Trajectory

A test for stability was performed by tracking a simulated
random walk, with varying speed and direction, and with the
addition of some scale variations to simulate motion in the
third dimension. Motion vectors components ranged from 2
to 30 pixels. The tracked object was a square silhouette. The
trajectory was developed in a 10241024-pixel squared area,
while the viewing area was, as usual, 128128 pixels.

Stability was satisfactorily verified on quite a long trajectory
(500 steps). The evaluation parameters were

Fig. 4. A sample from the training set and the corresponding message.

and . The stability parameter is negative, as
expected.

D. Object Moving on a Background

Verifications have also been performed in a more com-
plicated situation, in which the car silhouette moved in a
background. The tracker was trained on the same geometrical
shapes as before, hence, it was not tailored to the specific
problem. The car silhouette was animated with a horizontal
motion and some random vertical shifts. The background also
shifted horizontally. The frame size was 256 256 pixels.
The section of the viewing area falling outside the frame was
filled with the background color. The tracker was initialized
with its viewing area centered on the car. The sequence was
30 frames long (a sample is presented in Fig. 6).

The evaluation parameters were and
. The tracking precision parameter is smaller than in

the previous experiment (probably due to the more regular
motion). The stability parameter is correctly negative, although
smaller in magnitude than in the previous experiment, probably
due to the good initial conditions imposed.

E. Verifications on the Physical System

These tests were performed on parts of the system. Sim-
ilar experiments were also performed on the whole physical
system. Small silhouettes were moved under the camera, in
varying experimental conditions. The first test was performed
using a silhouette taken from the training set; the second,
with a new silhouette (not in the training set); the third, with
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Fig. 5. A sequence of two images and the corresponding differential mes-
sage.

motion in three dimensions (also along the vertical axis); and
the fourth, with three-dimensional motion and a background.
The evaluation parameters are displayed in Table II. The point

is here the barycenter of the target in the image

TABLE I
PERFORMANCE RESULTS ON TEST OBJECTS, SINGLE NETWORKS VERSUSTEAM

Fig. 6. An object moving on a background.

TABLE II
TESTS ON THEPHYSICAL SYSTEM, PRECISION AND STABILITY PARAMETERS

In all cases, the simulated results were confirmed. This
indicates that the system is quite robust and insensitive to
environmental conditions; the images acquired with the camera
were corrupted by shadows present in the laboratory, the
motion was very unpredictable since it was obtained (literally)
by hand, and the focus of the camera was not perfect when
motion was in the vertical direction. The main limitation on
the system is due to the mechanics, since the maximum speed
obtainable is limited.

VI. COMPARISON WITH OTHER APPROACHES

Most approaches described in the literature try to formulate
a model for scene analysis and motion identification. Therefore
(as already mentioned), they generally require many compu-
tation steps. In contrast, the proposed method is based on a
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low-level mechanism, without explicit formation of a position
estimate, but with direct generation of the control signals. This
implies lower quality requirements on the image acquired by
the camera.

We can note that many tracking algorithms are focused
on tracking with a fixed camera position. This requires a
wide viewing area, with subsequent redundancy in image data
acquired. When the camera position is actively controlled
(active vision[20]), as in our case, the frames can be much
smaller and background data overhead is less. There are
approaches integrating wide-area scenes with target tracking
with mobile camera [21]. These require, of course, more than
one camera and more computing resources.

Several interesting approaches, based on particular features
of images containing moving objects, such as motion smear
[22], can be computationally heavy when applied to a system
with both target and camera in motion (due to the so-called
problem of “egomotion estimation”).

In [23], computational complexity is reduced by quantizing
the possible states of the camera to a finite (and low) number.
Target identification and tracking are performed on a limited
set of situations, represented in a prerecorded image database.
The method proposed here is more general, in that its training
procedure allows the selection at the user level the class
of situations to be approached. Moreover, the multineural-
network structure features a graceful degradation property,
enhancing the robustness with respect to unusual situations.

Reference [24] points out the problem of “temporal
aliasing,” consisting in the ambiguity which arises from the
discrete-time image acquisition process (exemplified by the
perception of wheels rotating backward in movies). The low-
level, distributed structure of the presented approach, along
with its inherent simplicity, allows very fast operation. This
helps in alleviating the problem, since its Nyquist frequency
can be higher than in other, more computation-intensive
systems.

To achieve the required simplicity, we have restricted the
tracking problem to the case of a target that is always vis-
ible. There are methods allowing target ambiguity (multiple
hypothesis) or discontinuous trajectory, due, for instance, to
target occlusion. The main problem with these more general
approaches is its computational complexity, since solution
methods such as statistical optimization must be used. For
instance, in [25], an algorithm to find the-best hypotheses in
polynomial time is implemented and applied to visual tracking
problems. In [26], a robust model including regularization is
fitted to the image data to estimate discontinuous optical flow.
It can be noted that ambiguities in the trajectory are, in general,
greatly reduced when the frame rate is high and the nearest
neighbor criterion is applicable (the target in the next frame
is the nearest object to the current position). Again, in the
proposed system, many of these problems are alleviated simply
by increasing the computing speed.

VII. CONCLUSIONS AND FUTURE RESEARCH

In this paper, a neural system for visual target tracking has
been presented. The algorithm is based on neural networks

working in a team, for better estimation of the target position,
and is very simple to implement and to modify for different
applications. The hardware requirements for the realization are
also relaxed.

The simple structure of the tracking algorithm helps keep
the computation time short enough for real-time applications.
However, as the experimental results show, the performance of
the overall system is satisfactory. This good tradeoff between
power and speed is achieved essentially by the neural structure
of the tracker. Another desirable side effect of the training by
examples is the remarkable flexibility obtained.

The future development of this model will be focused on
integration of the control functions on a dedicated IC or on
a small single board. Two applications are currently under
investigation, namely, control of an atomic force microscope
and tracking the plates of cars exiting highway gates. Another
promising area of development is short-range on-board driving
systems for autonomous vehicles. The integration with a
distributed traffic control system [27] could be exploited for
complete automation of traffic in a limited environment.
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