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Circular Backpropagation Networks
Embed Vector Quantization

Sandro Ridella, Stefano Rovetta, and Rodolfo Zunino

Abstract—This letter proves the equivalence between vector quanti-
zation (VQ) classifiers and circular backpropagation (CBP) networks.
The calibrated prototypes for a VQ schema can be plugged in a CBP
feedforward structure having the same number of hidden neurons and
featuring the same mapping. The letter describes how to exploit such
equivalence by using VQ prototypes to perform a meaningful initialization
for BP optimization. The approach effectiveness was tested considering a
real classification problem (NIST handwritten digits).

Index Terms—Feedforward neural networks, optical character recog-
nition, vector quantization.

I. INTRODUCTION

Adding a quadratic term to the activation function of linear neurons
can greatly enhance the representation ability of multilayer percep-
trons (MLP’s) without inflating their VC dimension [1]. Circular
backpropagation (CBP) networks support both surface-based and
prototype-based representations in classification problems; it has
been shown that CBP is a unifying model for MLP’s and radial
basis function (RBF) networks [1]. This letter proves that CBP
encompasses vector quantization (VQ) paradigms as well. Thus one
can plug VQ prototypes in a CBP network, with the same number
of neurons and supporting the same mapping. The fact that CBP
structures can repeat the winner-takes-all (WTA) behavior enables
one to switch safely from one representation to the other, while
preserving a network’s mapping function. This property is exploited
here to initialize BP training.

The general problem can be stated as follows: a setX of input
samples are drawn from ad-dimensional space and belong to one
of Nc classes

C = fC1; � � � ; CNcg:

X = f(xxx(l); c(l)); l = 1; � � � ; Np; xxx
(l) 2 R

d
; c
(l) 2 Cg:

A mapping networkT (W )(xxx) is instantiated by a set of parameters
W which includes elements from both scalar and functional spaces.

A CBP network is a nonrecursive MLP with three layers of neurons
(the input, hidden, and output layers). The hidden layer includesNh

nonlinear units; the output one hasNc units (one per class) that are
made mutually exclusive by a WTA or Soft-Max operation. The CBP
model augments the basic MLP by an additional input, computed as
the sum of the squares of the other input values. A CBP network’s
mapping can be expressed [1] as

T
(f;W )
CBP (xxx) = max

k=1;���;N
fok(xxx; f;W )g;

ok(xxx;W ) = vk0 +

N

j=1

vkjf(�gj � kxxx�wwwjk
2 + �j) (1)

wheref( ) is a nonlinear function—for example,�-CBP networks
use a sigmoidal activation, whereas�-CBP networks involve Gauss-
ian RBF’s. The weightswwwj ; �j ; andgj set the centroid coordinates,
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the extent, and the slope of thejth unit’s region of influence,
respectively.

In the VQ paradigm, each neuronwwwj 2 Rd is calibrated by
a local class information,f�(c)j ; c = 1; � � � ; Ncg; representing the

distribution of class shares for thejth neuron:
c
�
(c)
j = 1: A WTA

mapping schema classifies input samples according to a minimum-
distance criterion, and associates to each sample the most likely class,
c(wwwj) � maxcf�

(c)
j g: The VQ mapping schema is defined as

T
(W )
VQ (xxx) = c(arg min

www 2W
fkxxx�wwwjk

2g): (2)

Section II proves analytically the equivalence between VQ and
two classes of CBP models. Section III describes the application of
the overall framework to speed up BP convergence. Conclusions are
drawn in Section IV.

II. EQUIVALENCE FRAMEWORK

Stating that CBP encompasses VQ means that, for each set of VQ
prototypes, there exists a CBP network whose neurons coincide with
VQ units and that classifies each input sample accordingly. To verify
this statement, first one builds up a CBP network with as many hidden
units as the number of VQ prototypes and with as many output units
as the number of classes. The weights in the input-hidden layer are
initialized directly with the VQ prototypes’ centroids

wwwj = www
(VQ)
j ; �j = 0; 8j = 1; � � � ; Nh: (3)

To initialize the upper layer of weights, set

v0 =0

vkj = [�1 + 2 � �(k; c(wwwj))] � �
(k)
j ;

j = 1; � � � ; Nh; k = 1; � � � ; Nc (4)

where�(a; b) = 1, if a = b, and equal to0, otherwise. The above
initialization mirrors VQ calibration: hidden neurons stimulate the
output unit associated with the prototype class and inhibit the other
ones. The last parameter to be fitted for consistent mapping is the gain
gj of each neuron; for simplicity, a common gain value is assumed
for all the neurons:gj = g 8j = 1; � � � ; Nh: Such initializations set
up the framework for the equivalence theorems.

Theorem 1 (�-CBP’s Embed VQ Networks.):Let X be a sample
set andT (W )

VQ (X) be the VQ-based mapping schema (2) overX:

For each choice ofW , there exists a CBP network parametrization,
according to (3) and (4),W 0 such that

T
(W )
VQ (X) = T

(f;W )
CBP (X)

with f( ) = Gaussian RBF.
Proof: The proof of Theorem 1 is constructive. Conditions (3)

imply immediately thatW �W 0: The RBF activation of each hidden
unit can be written asfj(xxx) = exp (�g � �2

j (xxx)); j = 1; � � � ; Nh;

where �2
j (xxx) = kxxx � wwwjk

2: After initializing the CBP network
according to (4) and using the above activation function, the mapping
model (1) in the output layer is equivalent to a VQ-based WTA
mapping if and only if

�
(c(www )) exp(�g ��2

j (xxx))

> 2
h6=j

�
(c(www )) � exp (�g ��2

h(xxx)); 8xxx 2 X (5)
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wherej� indicates the best matching neuron, i.e., the unit for which
�2

j (xxx) � �2

h(xxx); 8h = 1; � � � ; Nh: Let us now define�2

II(xxx) as

�2

II(xxx) = min
h6=j

f�2
h(xxx)g:

Considering that�(u)h � 0, a consistent bound to condition (5) is
given by

exp (�g ��2
j (xxx))>

2(Nh � 1)

�(c(www ))
exp (�g ��2

II(xxx)); 8xxx 2 X

(6)
Solving (6) gives the gain value that ensures a correct WTA mapping
in the output layer for samplexxx: Finally, the correct mapping for all
the samples inX can be attained by choosing

g = max
xxx2X

ln[2(Nh � 1)]� ln(�(c(www )))

�2
II(xxx��2

j (xxx)
: (7)

Expression (7) demonstrates that there exists a�-CBP network (using
only VQ centroids) that performs the same classification of all the
samples, hence the equivalence of the two mappings is proved.Q.E.D.

Theorem 2 (�-CBP’s Embed VQ Networks):Let X be a sample
set, and letT (W )

VQ (X) be a VQ-based mapping schema (2) overX:

For each choice ofW , there exists a�-CBP network parametrization,
according to (3) and (4),W 0 such thatT (W )

VQ (X) = T
(f;W )
CBP (X),

with f( ) = sigmoidal function.
Proof: By using the same conventions as above, a neuron’s

sigmoidal activation function is expressed asfj(xxx) = [1+exp (�g �
�2
j (xxx))]

�1; j = 1; � � � ; Nh: The sigmoid supports a consistent
mapping of distances wheng < 0, hence the notationjgj will be used
in the function’s argument for simplicity. A correct WTA behavior
in the output layer is attained when an input samplexxx activates the
proper hidden unit in such a way that

�
(c(www )) � [1 + exp (jgj ��2

j (xxx))]�1

> 2
h6=j

�
(c(www )) � [1 + exp (jgj ��2

h(xxx)]
�1
; 8xxx 2 X (8)

Let us now define

�2
II(xxx) = min

h6=j
f�2

h(xxx)g:

Similarly to Theorem 1, one bounds the right term in condition (8)
accordingly and uses the propertiesexp (jgj ��2)> 1 and�(u)h � 0:
Simple transformations give the eventual gain value

jgj = max
xxx2X

ln[4(Nh � 1)]� ln (�(c(www )))

�2
II(xxx)��2

j (xxx)
(9)

which guarantees a correct sample mapping and completes the proof.
The equivalence property of�-CBP networks holds for�-CBP ones:
this is not surprising, as the latter have been proved to be a superset
of RBF networks [1]. Q.E.D.

Theorems 1 and 2 prove that CBP supports VQ mapping on a finite
sample setX; one might wonder whether the equivalence holds for
an arbitrarily large cardinality of the sample set. Consider a “critical”
point xxx lying at distance" from the boundary of the space partition
pertaining to a VQ prototype. When applying Theorems 1 and 2, the
limit condition " ! 0 implies jgj ! 1 in (7) or (9). Thus a finite
gain is associated with a distance threshold, marking a “neutral” stripe
running along partition boundaries. When dealing with large sample
sets, one first imposes a tolerance on the number of “undecided”
samples; then one determines the smallest distance"� that satifies
the constraint, and designs the CBP gain accordingly using the above
theorems.

Fig. 1. NIST digit testbed: calibration results for validating VQ-based ini-
tialization.

III. PRACTICAL EXPLOITATION OF THE

CBP-VQ MAPPING EQUIVALENCE

A. Practical Network Initialization

In principle, the mapping equivalence between CBP and VQ can
operate in two ways. In other words, first one may perform BP
training, then one may use weight-reversal expressions [1] to inspect
the positions of VQ prototypes. This approach, however, requires
careful interpretations of the final gain values and of the interactions
among prototypes. Conversely, a possibly easier exploitation of the
equivalence is to let VQ neurons initialize the weights of a CBP
network. This process is theoretically admitted by the theorems
proved in the previous section, and can be justified by pattern-
recognition purposes. In VQ classification (2), each Voronoi region
Vj has a prototypewwwj and is labeled by the predominant class
among the samples contained in the region itself. WTA-based class
assignment does not depend on the specific position of a sample in
Vj ; thus VQ calibration can be regarded as a uniform approximation
at the local level for the class probability. Supervised VQ-training
algorithms (e.g., the LVQ [4] family) can be adopted to best fit
the underlying classification task. Otherwise, first one may follow
an unsupervised strategy to approximate the overall sample dis-
tribution [2]–[5], and then one may calibrate VQ partitions using
class information. In fact, the observation of class sharesf�

(c)
j g

in each regionVj can give some hint about how homogeneous
class distributions are within the VQ-derived partitions. Calibration
proceeds locally at the partition level, and does not take into account
neighboring partitions. In principle, unsupervised training does not
allow any prediction about the classification performance. In fact,
a prediction of the classification performance is possible if one
can detect “peaks” in the sample density (“clusters”) and use the
“valleys,” separating these peaks, for defining the cluster boundaries
[6]. Nevertheless, the analysis of local estimatesf�

(c)
j g can give the

opportunity to inspect the distribution of classes within each region.
This provides a useful tool for assessing the overall quality of the
initialization process; therefore, one might entirely reject VQ-based
initialization should local approximations prove unsatisfactory (e.g.,
if the overall classification error resulting from VQ is too large).
The initialization procedure applies independently of the specific
VQ-training algorithm, and can be outlined as follows.

1) Train a set ofNh prototypes by using a VQ algorithm.
2) Calibrate VQ prototypes by evaluating the class distributions

on the training set:f�(c)j g; j = 1; � � � ; Nh:
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Fig. 2. NIST digit testbed: convergence of VQ-based and random initializations for all class pairs.

TABLE I
VQ CALIBRATION RESULTS

Class Number of
Prototypes

0
1
2
3
4
5
6
7
8
9

15
9

26
19
25
25
17
17
28
19

3) If the calibration result is not satisfactory,
RejectVQ-based weights andAbort the initialization.

4) Build a feedforward CBP network by using initializations (3)
and (4).

Such initialization methodology raises several issues. First, the the-
orems proved in Section II guarantee that the error rate resulting
from BP training will not exceed that obtained by VQ calibration (as
the initial classification errors of the two models coincide). If such
a rate is low, in practice this property increases the probability of
placing the BP starting point in a “good” basin. In this respect, it is
worth recalling that the theorems follow a worst case analysis and, for
example, do not imply the possibility that several hidden units may
contribute to a correct classification. Therefore, in practice the pro-
posed initialization proves too strict, and the BP algorithm implicitly
relaxes the WTA constraint by letting hidden units cooperate.

Another crucial issue concerns the shapes of the neurons’ activation
regions. CBP supports hyperspherical surfaces, hence the result of
BP training also includes radii and gains; the latter express boundary
sharpness, and the former convey the extent of a neuron’s spherical
region. By contrast, the shapes of VQ-derived Voronoi regions are
arbitrary, hence CBP may not seem the most effective model to
exploit VQ-based initialization. This issue can be taken into account
in various ways. For instance, one may use a VQ-training algorithm
that intrinsically leads to hyperspherical regions (e.g., the method
described in [2] and [6]), thus making the equivalence with CBP also
hold from a topological perspective. Conversely, the representation
ability of the circular model can be augmented by additional second-
order terms, yielding hyperelliptical boundaries [7]. The enhancement
would best fit the natural convexity of Voronoi regions; on the other
hand, the more complex solution might compromise the model’s
limited VC-dim.

The present research adopted the Plastic Neural Gas algorithm
[5] at Step 1. This VQ method, which minimizes the mean-square

error over training samples and leads to classical Voronoi structures,
has been chosen because it estimates both the proper numberNh of
prototypes and their positions at the same time. As a result, in this
case, the CBP-VQ equivalence also gives indirectly a hint about the
number of hidden neurons in the feedforward network. In the simple
generalized-XOR testbed, experimental evidence indicates that, on
average, using VQ prototypes speeds up the convergence of CBP
optimization by one order of magnitude.

B. Real Domain Test: The NIST Digit Database

In the case of handwritten digits drawn from the NIST database, the
original pictures, after normalization and orientation, were mapped
into a 140-dimensional feature space. Such a feature-extraction
process was obtained through the courtesy of Elsag Bailey SpA
[8]. Thus the 60 000 training samples, belonging toR140 were first
processed by the Plastic VQ algorithm [4], which yieldedNh = 200
prototypes; their class distribution after calibration is given in Table I.
The graph in Fig. 1 shows the sorted values of the “reliability,”�j ,
of each prototype’s label, defined as�j = maxcf�

(c)
j g: Most of

neurons exhibit singular local distributions�j � 0:8; the overall
classification error resulting from VQ (about 1.79%) seems quite
interesting, considering the unsupervised training and the multiclass
problem nature. This result gave the operational basis for applying
the VQ-based initialization.

The convergence rate and speed provided by random initialization
were so low that a direct comparison with the VQ-based initialization
performance is unfeasible; in fact, the random networks never suc-
ceeded in attaining a smaller classification error than that associated
with the CBP-VQ MLP before 10 000 epochs. A quantitative eval-
uation of the initialization method was obtained by a set of simpler
tests, also in view of the huge computational effort involved. For
each possible pair of classes, the related samples were extracted
from the database and formed a limited training set; the results
yielded by the VQ-based initialization (Table I) were compared with
those obtained by a set of ten random networks trained on the same
data subsets. Training runs stopped when attaining correct classi-
fication of all samples, or when reaching a limit on the number of
epochs. The algorithm used for BP optimization (AMBP) is presented
in [9].

Fig. 2 gives the best case number of epochs at convergence for
the random networks and the corresponding performance of the VQ-
initialized network. The�marks indicate either failure or convergence
beyond 1000 epochs; the grayed cells point out the unsuccessful cases
in which random initialization prevailed. VQ-based initialization
performed better than the best random case in about 69% of cases.
This represents a satisfactory result also given the complexity of the
problem involved. In practice, the proposed initialization allows one
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Fig. 3. Comparison of generalization errors (y axis) for various pairs of
digits (x axis).

to refine the basic VQ training process even to a zero training error
by a standard BP optimization at a limited cost.

A crucial issue about the practical relevance of the results concerns
the generalization performance of the trained networks. In fact, the
VQ-based initialization does not affect the classifier’s VC-dim, hence
theory does not predict a difference in generalization ability with
respect to the randomly initialized networks. On the other hand, as the
VQ classifierper sedelivered a rather high expressive power (>98%),
one might concern that further training just stimulated overfitting
phenomena. Therefore, a different “test” set of 60 000 handwritten
digits was used to compare the overall classification errors for the
various initializations empirically. The comparison considered the
performances of the VQ (alone), of the VQ+ CBP, and of the
randomly initialized network, respectively.

Fig. 3 presents graphically a sample of the generalization results;
similar achievements were observed for all possible pairs of digits
and are not reported for brevity. Empirical evidence pointed out a
significant reduction in generalization error when enhancing the basic
VQ classifier by means of CBP training; the increase in performance
appears quite satisfactory when considering the application domain,
in which enhancing overall generalization accuracy beyond 97%
often proves very difficult. Finally, the entire digit test set (10-
class problem) was processed by the huge networks including the
200 prototypes and involving all training samples; the measured
generalization errors (VQ alone: 1.83%, random-init CBP: 0.79%,
VQ-init CBP: 0.785%) confirm the results obtained in the dual-class
subproblems.

Thus experimental data validate the proposed initialization method,
as its ultimate effect is to speed up convergence without affecting
generalization ability. In order to explain intuitively such a result,
we conjecture that VQ-based initialization is not merely effective in
decreasing the initial training error, but also provides the optimization
process with a “reasonable” starting point that ultimately enhances
generalization performance.

IV. CONCLUSIONS

The unifying view of the MLP and VQ fields opens new and
interesting vistas for integrated neural models, in particular, for
training algorithms. This letter has described an analytical technique
to initialize MLP weights with VQ prototypes; the method’s validity
was confirmed experimentally in a complex domain. Clearly, as is
the case with any initialization technique, it cannot be guaranteed
that the proposed procedure will apply to any classification problem.
Nevertheless, a specific advantage of the methodology lies in the
possibility to evaluate the quality of a particular initialization phase
in advance and possibly to reject it altogether. It is worth noting,

however, that in practice the method operates successfully in most
domains featuring “reasonable” sample distributions.
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New Stability Conditions for Hopfield Networks
in Partial Simultaneous Update Mode

Donq-Liang Lee

Abstract—Cernuschi-Frı́as has proposed a partial simultaneous up-
dating (PSU) mode for Hopfield networks. He also derived sufficient
conditions to ensure global stability. In this letter, a counter-example
is given to illustrate that the PSU sequence may converge to limited
cycles even if one uses a connection matrix satisfying the Cernuschi-Fr´ıas
conditions. Then, new sufficient conditions ensuring global convergence of
a Hopfield network in PSU mode are derived. Compared with the result
of fully parallel mode case, the new result permits a little relaxation on
the lower bound of the main diagonal elements of the connection matrix.

Index Terms—Global stability, Hopfield network.

I. INTRODUCTION

The Hopfield network [1], [2] is one of the famous neural networks
with a wide range of applications, such as content addressable
memory [2], pattern recognition [1], and combinatorial optimization
[10]. In the synthesis of such a network, ensuring a convergence of
the state trajectories starting from arbitrary initial state to a fixed
point is of particular importance. Such a convergence property is
the basis for the potential applications of the network. Afterwards
many researchers have focused on the following two distinct update
modes: 1) asynchronous (or serial) mode, in which a neuron is chosen
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