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Circular Backpropagation Networks the extent, and the slope of thgh unit's region of influence,
Embed Vector Quantization respectively.

In the VQ paradigm, each neurom; € R? is calibrated by

Sandro Ridella, Stefano Rovetta, and Rodolfo Zunino a local class information{aag.");c = 1,---,N.}, representing the

distribution of class shares for thjéh neuronz}’ a’gc) =1L AWTA
mapping schema classifies input samples according to a minimum-

Abstract—This letter proves the equivalence between vector quanti- . o . .
zation (VQ) classifiers and circular backpropagation (CBP) networks. distance crlterlon(, and associates to each sample the most likely class,

The calibrated prototypes for a VQ schema can be plugged in a CBP c(w;) = Inaxc{af)}- The VQ mapping schema is defined as
feedforward structure having the same number of hidden neurons and )

featuring the same mapping. The letter describes how to exploit such ’T\(7g)(m) = c(arg min {||z — m]-||2})_ @)
equivalence by using VQ prototypes to perform a meaningful initialization ) w;EW ’ '

for BP optimization. The approach effectiveness was tested considering a ) . .

real classification problem (NIST handwritten digits). Section Il proves analytically the equivalence between VQ and
two classes of CBP models. Section Ill describes the application of
the overall framework to speed up BP convergence. Conclusions are

drawn in Section IV.

Index Terms—Feedforward neural networks, optical character recog-
nition, vector guantization.

|. INTRODUCTION Il. EQUIVALENCE FRAMEWORK

Adding a quadratic term to the activation function of linear neurons Stating that CBP encompasses VQ means that, for each set of VQ
can greatly enha_nce th_e representgtion ab_ility Of_ multilaye_r percepprbtotypes, there exists a CBP network whose ne'urons coincide with
tbrons (MLP S). wnhc(:);tplnﬂatmg ‘t(helr Ve dlnl:enhsmn f[l]' (t:)lrculc?rv units and that classifies each input sample accordingly. To verify

ackpropagation ( ) netv_vor s_support__ Ot. surtace- a§e_ il statement, first one builds up a CBP network with as many hidden
prototype-based represgntaﬂon; n classification problems; it . ghits as the number of VQ prototypes and with as many output units
bee_n show_n that CBP is a unifying mpdel for MLP’s and radi s the number of classes. The weights in the input-hidden layer are
basis function (RBF) networks [1]. This letter proves that CBinitiaIized directly with the VQ prototypes’ centroids
encompasses vector quantization (VQ) paradigms as well. Thus one
can plug VQ prototypes in a CBP network, with the same number w; = ,,,;"'Q)_/ $; =0, Vj=1,---,Np. 3)
of neurons and supporting the same mapping. The fact that CBP
structures can repeat the winner-takes-all (WTA) behavior enabl& initialize the upper layer of weights, set

one to switch safely from one representation to the other, while

preserving a network’s mapping function. This property is exploited vo =0
here to initialize BP training. vp; =[-142-6(k, c(w;))] - ozgvk),
The general problem can be stated as follows: aXef input j=1,---,Nn, k=1,---,N. (4)
samples are drawn from &dimensional space and belong to one
of N. classes whereé(a,b) = 1, if « = b, and equal td), otherwise. The above

initialization mirrors VQ calibration: hidden neurons stimulate the

C={Cr,, Cnel: output unit associated with the prototype class and inhibit the other

X={="c"i1=1,- N,z e B e C}. ones. The last parameter to be fitted for consistent mapping is the gain
_ WY rx e _ g; of each neuron; for simplicity, a common gain value is assumed
A mapping network"/(z) is instantiated by a set of parametersor || the neuronsy; = ¢ Vj = 1,---, Ns. Such initializations set

W which includes elements from both scalar and functional spaceg the framework for the equivalence theorems.

A CBP network is a nonrecursive MLP with three layers of neurons ,
(the input, hidden, and output layers). The hidden layer includes Theorergv},q-CBP s Embed VQ Networks.)tet X' be a sample
nonlinear units; the output one haé. units (one per class) that areSét andIyq " (X) be the VQ-based mapping schema (2) over
made mutually exclusive by a WTA or Soft-Max operation. The CBPOr each choice ofV’, there exists a CBP network parametrization,
model augments the basic MLP by an additional input, computed &gcording to (3) and (4)”" such that
the sum of the squares of the other input values. A CBP network’s T(W)(X) B T(f’W,)(X)
mapping can be expressed [1] as v W) = fegp

Téfgl‘f/)(r) = max {ox(z. £, W)} with f( ) = Gaussian RBF. _ _ N
k=1, Ne Proof: The proof of Theorem 1 is constructive. Conditions (3)
Ny ‘ imply immediately thatV C W'. The RBF activation of each hidden
ok(z, W) =vko + Z'Ukjf(_gj Nl = wjl* + ¢5) (1) unit can be written ag;(z) = exp (=g - A2(x)), j = 1,---, Np,
7=l where A%(z) = ||z — w,||*>. After initializing the CBP network

where £( ) is a nonlinear function—for example;-CBP networks according to (4) and using the above activation function, the mapping

use a sigmoidal activation, whereasCBP networks involve Gauss- Mdel (1) in the output layer is equivalent to a VQ-based WTA
ian RBF’s. The weightsu; ., 6;, andg; set the centroid coordinates, M@PPing if and only if
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wherej™ indicates the best matching neuron, i.e., the unit for Whicrheliability

A% (z) < Aj(z). Yh =1,---,N,. Let us now defineA7, (z) as ]

A% () = min {Af (). 0.9 \

h 5 0.8 \
Considering thah/g“) > 0, a consistent bound to condition (5) is 0.7
given by 0.6
0.5

. 2(Np —1 .

exp (=g AZ(z)) > ((#))) exp(—g-Aff(x)), VzeX 0.4
ar=d ®) 0.3

Solving (6) gives the gain value that ensures a correct WTA mappind-2
in the output layer for sample. Finally, the correct mapping for all 91

the samples inX' can be attained by choosing o
() 1 51 101 151
n[2(Np — 1)] — In(a'=t*i* )
= 1mu . 7 Neurons
g 215?‘{ AZ,(z — AZ () 0

) . ) Fig. 1. NIST digit testbed: calibration results for validating VQ-based ini-
Expression (7) demonstrates that there exigt€CBP network (using tialization.

only VQ centroids) that performs the same classification of all the

samples, hence the equivalence of the two mappings is proved.Q.E.D.
Ill. PRACTICAL EXPLOITATION OF THE
Theorem 2 £-CBP’s Embed VQ Networks):Let X be a sample CBP-VQ MAPPING EQUIVALENCE

set, and IetT\(,g)(X) be a VQ-based mapping schema (2) ovér
For each choice off, there exists a-CBP network parametrization
according to (3) and (4)lW' such thatT. \(,g)(X) = Té’;’gﬂ)(X),

with f( ) = sigmoidal function.

" A. Practical Network Initialization

In principle, the mapping equivalence between CBP and VQ can
Proof: By using the same conventions as above, a neuro ogerate in two ways. In other words, first one may perform BP
’ ' Qraining, then one may use weight-reversal expressions [1] to inspect

sigmoidal activation function is expressedfgé$z) = [1 +exp (—g- - . :
Al(z)] !, j = 1.---.N,. The sigmoid supports a Consistentthe positions of VQ prototypes. This approach, however, requires

magin o dstances whn . hnc he i wil b used | 1) DOrelons of e fal gan e a0 of U lracions
in the function’s argument for simplicity. A correct WTA behavior 9p ypes. Y, ap y n

. : . ; . equivalence is to let VQ neurons initialize the weights of a CBP
in the output layer s attained when an input samplactivates the network. This process is theoretically admitted by the theorems
proper hidden unit in such a way that ) P y y

proved in the previous section, and can be justified by pattern-
aletws=)) [1+ exp(|g|- A']?*(I))]—l ;ec%gnition purposes. In VdQ cleltssif:cgtict))n (i), eacz Voronoi rtlagion
. o(w 9, -1 . /; has a prototypew; and is labeled by the predominant class

> 212 ol D L pexp(lg]- AR(@)] Y, VEEX (8) among the samples contained in the region itself. WTA-based class

# assignment does not depend on the specific position of a sample in

Let us now define V;; thus VQ calibration can be regarded as a uniform approximation
at the local level for the class probability. Supervised VQ-training
algorithms (e.g., the LVQ [4] family) can be adopted to best fit
o ) ) N the underlying classification task. Otherwise, first one may follow

Similarly to Theorem 1, one bounds the rlght term in condition (8), unsupervised strategy to approximate the overall sample dis-
accordingly and uses the properties (|g| - A?) > 1 andaj” > 0. tribution [2]-[5], and then one may calibrate VQ partitions using

A? = min {A? }
11(x) ,1351]1}{ n(z)}

Simple transformations give the eventual gain value class information. In fact, the observation of class shdre$’}
I[4(Np, = 1)] = In (a(0w5+)) in each regionV; can give some hint about how homogeneous
lgl = mg;g{ A2 (z) — AL (z) } (9) class distributions are within the VQ-derived partitions. Calibration

proceeds locally at the partition level, and does not take into account
which guarantees a correct sample mapping and completes the proeifghboring partitions. In principle, unsupervised training does not
The equivalence property ECBP networks holds for-CBP ones: allow any prediction about the classification performance. In fact,
this is not surprising, as the latter have been proved to be a supeesgirediction of the classification performance is possible if one
of RBF networks [1]. Q.E.D. can detect “peaks” in the sample density (“clusters”) and use the

) _“valleys,” separating these peaks, for defining the cluster boundaries
Theorems 1 and 2 prove that CBP supports VQ mapping on a fin

. . . Jfﬁ Nevertheless, the analysis of local estima{ta#c)} can give the
samplg se_LY, one mlght W_onder whether the equwalgnce holds f pportunity to inspect the distribution of classes within each region.
an arbitrarily large cardinality of the sample set. Consider a “critica

. : ) _._“This provides a useful tool for assessing the overall quality of the
point z lying at distance: from the boundary of the space partition; P g a y

> ) nitialization process; therefore, one might entirely reject VQ-based
per.talnlng_ t_o avQ pr(_)toty_pe. When applymg Theorems 1 an_d_2, Yitialization should local approximations prove unsatisfactory (e.g.,
limit condition e — 0 implies |g| — oo in (7) or (9). Thus a finite

if the overall classification error resulting from VQ is too large).

galn_ls associated \_N_lthadlstanc_e threshold,ma_rkmg_a neutral” stri fie initialization procedure applies independently of the specific
running along partition boundaries. When dealing with large sameQ

2 E : -training algorithm, and can be outlined as follows.
sets, one first imposes a tolerance on the number of “undecided
samples; then one determines the smallest distahciat satifies 1) Train a set of N, prototypes by using a VQ algorithm.
the constraint, and designs the CBP gain accordingly using the abov@) Calibrate VQ prototypes by evaluating the class distributions
theorems. on the training set{aé-c)},i =1,--,Np.
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0 VQ faster than random: 31 cases

Rnd  Cbp 1 VQ slower than random: 14 cases
1 * 441 Rnd Cbp 2 Average success rate:  68.89%
2 302 497 * 467 PBnd Cbp 3
3 565 514 273 457 475 437 Rnd Cbp 4
4 313 470 * 491 230 457 267 114 PRnd Cbp 5
5 401 372 304 412 489 477 * 426 445 187 And Cbp 6
6 272 444 161 433 2oy ABO 135 96 Y 457 * 421 Rnd Cbp 7
7 197 386 210 487 @ 22y 478 * 238 * 495 311 148 94 104 Rnd Cbp 8
8 * 489 * 490 * 500 * 430 * 494 * 378 * 317 * 503 Rnd Cbp
9 247 500 156 416 336 254 * 430 * 433 * 38 21 403 447 118 * 447

Fig. 2. NIST digit testbed: convergence of VQ-based and random initializations for all class pairs.

TABLE | error over training samples and leads to classical Voronoi structures,

VQ CALIBRATION RESULTS has been chosen because it estimates both the proper niNnhbar
Class Number of prototypes and their positions at the same time. As a result, in this
Prototypes case, the CBP-VQ equivalence also gives indirectly a hint about the

number of hidden neurons in the feedforward network. In the simple

(1) 13 generalized-XOR testbed, experimental evidence indicates that, on

5 26 average, using VQ prototypes speeds up the convergence of CBP

3 19 optimization by one order of magnitude.

4 25

5 25

? g B. Real Domain Test: The NIST Digit Database

g 22 In the case of handwritten digits drawn from the NIST database, the
1

original pictures, after normalization and orientation, were mapped
into a 140-dimensional feature space. Such a feature-extraction
process was obtained through the courtesy of Elsag Bailey SpA

RejectVQ-based weights andbort the initialization, [8]. Thus the 60000 training samples, belongingR&*® were first

4) Build a feedforward CBP network by using initializations (3)processed.by the Plast|_c V.Q a_Igorlthm [4].‘ Wh'.Ch yleldﬁgj - 200
and (4) prototypes; their class distribution after calibration is given in Table I.

The graph in Fig. 1 shows the sorted values of the “reliability;;

Such initialization methodology raises several issues. First, the tlud-each prototype’s label, defined as = maxc{ag“)}. Most of
orems proved in Section Il guarantee that the error rate resultingurons exhibit singular local distributions; > 0.8; the overall
from BP training will not exceed that obtained by VQ calibration (aslassification error resulting from VQ (about 1.79%) seems quite
the initial classification errors of the two models coincide). If suchteresting, considering the unsupervised training and the multiclass
a rate is low, in practice this property increases the probability pfoblem nature. This result gave the operational basis for applying
placing the BP starting point in a “good” basin. In this respect, it e VQ-based initialization.
worth recalling that the theorems follow a worst case analysis and, forThe convergence rate and speed provided by random initialization
example, do not imply the possibility that several hidden units mayere so low that a direct comparison with the VQ-based initialization
contribute to a correct classification. Therefore, in practice the prperformance is unfeasible; in fact, the random networks never suc-
posed initialization proves too strict, and the BP algorithm implicitlgeeded in attaining a smaller classification error than that associated
relaxes the WTA constraint by letting hidden units cooperate. with the CBP-VQ MLP before 10000 epochs. A quantitative eval-

Another crucial issue concerns the shapes of the neurons’ activatiation of the initialization method was obtained by a set of simpler
regions. CBP supports hyperspherical surfaces, hence the resultests, also in view of the huge computational effort involved. For
BP training also includes radii and gains; the latter express boundagch possible pair of classes, the related samples were extracted
sharpness, and the former convey the extent of a neuron’s spherfoain the database and formed a limited training set; the results
region. By contrast, the shapes of VQ-derived Voronoi regions ayeelded by the VQ-based initialization (Table 1) were compared with
arbitrary, hence CBP may not seem the most effective model tttose obtained by a set of ten random networks trained on the same
exploit VQ-based initialization. This issue can be taken into accoudata subsets. Training runs stopped when attaining correct classi-
in various ways. For instance, one may use a VQ-training algorithiication of all samples, or when reaching a limit on the number of
that intrinsically leads to hyperspherical regions (e.g., the methegochs. The algorithm used for BP optimization (AMBP) is presented
described in [2] and [6]), thus making the equivalence with CBP also [9].
hold from a topological perspective. Conversely, the representatiorFig. 2 gives the best case number of epochs at convergence for
ability of the circular model can be augmented by additional seconithe random networks and the corresponding performance of the VQ-
order terms, yielding hyperelliptical boundaries [7]. The enhancemaentitialized network. The: marks indicate either failure or convergence
would best fit the natural convexity of Voronoi regions; on the othdreyond 1000 epochs; the grayed cells point out the unsuccessful cases
hand, the more complex solution might compromise the modelis which random initialization prevailed. VQ-based initialization
limited VC-dim. performed better than the best random case in about 69% of cases.

The present research adopted the Plastic Neural Gas algoritfiis represents a satisfactory result also given the complexity of the
[5] at Step 1. This VQ method, which minimizes the mean-squapgoblem involved. In practice, the proposed initialization allows one

3) If the calibration result is not satisfactory,
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however, that in practice the method operates successfully in most
domains featuring “reasonable” sample distributions.
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_ F_ig. 3 prgsents graphically a sample of the generalizqtion res_u!ts; New Stability Conditions for Hopfield Networks
similar achievements were ob_served f_o_r all p953|ble pairs of digits in Partial Simultaneous Update Mode
and are not reported for brevity. Empirical evidence pointed out a
significant reduction in generalization error when enhancing the basic Dong-Liang Lee
VQ classifier by means of CBP training; the increase in performance
appears quite satisfactory when considering the application domain,
in which enhancing overall generalization accuracy beyond 97%Abstract—Cernuschi-Frias has proposed a partial simultaneous up-
often proves very difficult. Finally, the entire digit test set (10dating (PSU) mode for Hopfield networks. He also derived sufficient

class problem) was processed by the huge networks including figditions to ensure global stability. In this letter, a counter-example
200 tot di Vi I traini les: th IS, given to illustrate that the PSU sequence may converge to limited
prototypes and involving all raining samples, the measur%gcles even if one uses a connection matrix satisfying the Cernuschiibs

generalization errors (VQ alone: 1.83%, random-init CBP: 0.79%nditions. Then, new sufficient conditions ensuring global convergence of
VQ-init CBP: 0.785%) confirm the results obtained in the dual-classHopfield network in PSU mode are derived. Compared with the result
subproblems. of fully parallel mode case, the new result permits a little relaxation on
Thus experimental data validate the proposed initialization meth&ﬂ? lower bound of the main diagonal elements of the connection matrix.
as its ultimate effect is to speed up convergence without affectingindex Terms—Global stability, Hopfield network.
generalization ability. In order to explain intuitively such a result,
we conjecture that VQ-based initialization is not merely effective in
decreasing the initial training error, but also provides the optimization
process with a “reasonable” starting point that ultimately enhancesThe Hopfield network [1], [2] is one of the famous neural networks
generalization performance. with a wide range of applications, such as content addressable
memory [2], pattern recognition [1], and combinatorial optimization
[10]. In the synthesis of such a network, ensuring a convergence of
the state trajectories starting from arbitrary initial state to a fixed
The unifying view of the MLP and VQ fields opens new anchoint is of particular importance. Such a convergence property is
interesting vistas for integrated neural models, in particular, fefe basis for the potential applications of the network. Afterwards
training algorithms. This letter has described an analytical technighginy researchers have focused on the following two distinct update

to initialize MLP weights with VQ prototypes; the method’s validitymodes: 1) asynchronous (or serial) mode, in which a neuron is chosen
was confirmed experimentally in a complex domain. Clearly, as is
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