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Objective Quality Assessment of MPEG-2 Video
Streams by Using CBP Neural Networks

Paolo Gastaldo, Stefano Rovetta, and Rodolfo Zunino, Member, IEEE

Abstract—The increasing use of compression standards in
broadcasting digital TV has raised the need for established cri-
teria to measure perceived quality. Novel methods must take into
account the specific artifacts introduced by digital compression
techniques. This paper presents a methodology using circular
backpropagation (CBP) neural networks for the objective quality
assessment of motion picture expert group (MPEG) video streams.
Objective features are continuously extracted from compressed
video streams on a frame-by-frame basis; they feed the CBP
network estimating the corresponding perceived quality. The
resulting adaptive modeling of subjective perception supports
a real-time system for monitoring displayed video quality. The
overall system mimics perception but does not require an analyt-
ical model of the underlying physical phenomenon. The ability to
process compressed video streams represents a crucial advantage
over existing approaches, as avoiding the decoding process greatly
enhances the system’s real-time performance. Experimental
evidence confirmed the approach validity. The system was tested
on real test videos; they included different contents ranging from
fiction to sport. The neural model provided a satisfactory, con-
tinuous-time approximation for actual scoring curves, which was
validated statistically in terms of confidence analysis. As expected,
videos with slow-varying contents such as fiction featured the best
performances.

Index Terms—Circular backpropagation (CBP), compressed
video, digital TV, objective quality assessment.

I. INTRODUCTION

T HE recent increasing success of digital TV has stimulated
the research for objective automated methods to assess the

user-end perception of broadcasting. The underlying technical
problem is to estimate the effects of the visual artifacts brought
about by digital encoding. In this sense, traditional techniques
for analog data processing often prove ineffective in measuring
the perceived quality of a digital compressed video.

Up to now subjective measurements [1] have been a funda-
mental instrument to characterize video quality, despite their
complexity and variability of results. Subjective assessment
methods attempt to evaluate the perceived quality by asking
human assessors to score the quality of a series of test scenes.
Objective quality assessment aims to emulate human response
to perceived quality by extracting numerical quantities from
video streams. As a result, this technique no longer requires
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inputs from human operators, as opposed to conventional
subjective tests. The need for objective quality measures in
digital TV has a commercial rationale, too, as quality may bias
a customer’s choices of advanced pay-on-demand services. In
addition, the number of coders on the market will increase in
the next years, hence both manufacturers and broadcasters will
invariably face the problem of comparing the user-level quality
of video.

A variety of methods for objective quality assessment of dig-
ital TV have been proposed in the literature [2], [3]. “No refer-
ence” approaches to objective assessment aim to estimate per-
ceived quality by processing data extracted from video streams
only. By contrast, “full reference” or “reduced reference” ap-
proaches involve both the encoded signal and the video source in
the evaluation. Most methods are based on decompressed video:
objective parameters are worked out by comparing pictures at
the receiver end with original scenes. The comparison is made
either in the feature space or in the picture domain by using dif-
ferencing methods [4].

An attempt to relate objective measures to subjective assess-
ments is described in [5]–[7], where linear mathematical models
single out clusters of objective features that best fit subjective as-
sessment results. Other approaches aim to emulate human per-
ception explicitly: perceptual models process objective parame-
ters from image segmentation [8]; in a structured approach, ob-
jective assessments stem from a three-layered picture structure
(object, texture, and noise layers) supporting the human visual
process [9]. Metric-based approaches to the emulation of human
perception measure spatio-temporal distortion [10] as well as
blurring and blockiness in decoded pictures [11]. A method that
does not involve the original video is described in [12], where
an algorithm extracts data from decoded frames to detect block-
iness artifacts.

Most of the above papers implied somea priori simplifying
hypotheses about the underlying mathematical model, which
somehow affected the practical validity of most results. From
a scientific perspective, those research works approached the
problem of human perception of quality as a modeling one. A
neural-based approach to motion picture expert group (MPEG)
quality evaluation is described in [13]; that method operated at
a granular level and employed conventional multilayer percep-
trons (MLPs) [14] for a “full reference” evaluation schema.

As compared with those approaches, this work presents a
method using the circular backpropagation (CBP) neural net-
work (NN) [15] for automatic evaluation of subjective assess-
ment in a “no reference” environment. The network operates
on compressed data only; this removes the need for any infor-
mation about either the original video or the decoding process.

1045-9227/02$17.00 © 2002 IEEE
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From an engineering standpoint, the adaptive neural framework
decouples the evaluation task from the specific video source and
from decoder issues as well.

The present approach partly disregards the objective of
gaining a deeper insight into some aspects of quality percep-
tion. Rather, the aim is to produce a method to mimic such
perception. As an immediate consequence, many simplifying
assumptions, useful to enable one to understand the perception
mechanism, are discarded in that the resulting model is not
sufficiently powerful. This in turn requires that a potentially
complex mathematical model be used.

Section II briefly summarizes the neural model (CBP)
adopted, highlighting the advantages in using this network for
the specific multimedia application. Section III describes the
neural-based system for video-quality evaluation, showing the
criteria driving feature selection, the experimental setup, and
neural training. Section IV reports on experimental results,
demonstrating the method operation under different conditions
and for different input sources. Some concluding remarks are
made in Section V.

II. FEEDFORWARDCBP ARCHITECTURES

Feedforward NNs provide a straightforward paradigm to map
feature vectors (describing video frames) into the corresponding
quality assessments. Such a problem setting treats the quality
scorings used for training as an ordered discrete set of labels,
whereas any intermediate values in the associate network output
are allowed. In this sense, efficiency requirements as well as
generalization issues ultimately lead to the problem of properly
sizing the number of neurons in the NN.

MLPs can efficiently tackle problems in which the target-
mapping function can be supported by few units with global
scope; in MLPs, those elements are encoded by the sigmoid
functions within hidden units. Conversely, if the target mapping
can be best expressed as a superposition of locally tuned compo-
nents, radial basis function (RBF) networks will typically per-
form much more efficiently. As a result, the unknown character-
istics of the problem-related target mapping further complicate
the problem of selecting the nature and the number of hidden
units.

A solution to this specific problem has been proposed in
[15]. The CBP network extends the multilayer perceptron by
including one additional input with its associated weight. Such
an input just sums the squared values of all the other network
inputs. As proved by CBP theory, the additional unit allows
the overall network to adopt the standard, sigmoidal behavior,
or to drift smoothly to a bell-shaped radial function, which
approximates—but is not—a Gaussian. At the same time, the
limited increase in the network parameters does not affect its
expected generalization performance, as it has been proved
that the Vapnik–Chervonenkis dimension (VC-dim) [16] of the
augmented circular perceptron increases by one unit [15].

The CBP model adopted for this research can be formally
described as follows. An MLP architecture combines two func-
tional layers (Fig. 1) including and units, respectively.
The conventional sigmoidal function is denoted by

.

Fig. 1. The CBP model includes one additional input to the standard MLP.

The input layer connects the input values to each unit of the
hidden layer. The-th “hidden” neuron performs the following
transformations on the input values:

(1)

where . The input features com-
bine with the associated weights and
feed the th hidden unit. The terms and denote the neuron
stimulusandactivation, respectively. The last term in expres-
sion (1) actually augments the conventional MLP up to the CBP
model.

Theoutput layer provides the actual network responses,,
by the following transformations:

(2)

Theory proves [15] that this model is the most efficient poly-
nomial extension of MLPs with linear stimulus, and formally
encompasses the RBF network model as well. The strict re-
lationship of CBP to vector quantization (VQ) networks has
been analyzed in [17], showing that the model ensures a no-
table representation effectiveness with a very small increase in
the number of parameters. Previous experimental verifications
on real testbeds always confirmed that such theoretical proper-
ties actually witness a satisfactory practical effectiveness.

The crucial feature that makes the CBP model suitable
for the video quality-assessment task is its ability to switch
autonomously between the different representation paradigms
(MLP or RBF), as conventional backpropagation algorithms
[18] can be adopted for weight adjustment. The resulting weight
configuration ultimately sets the most suitable representation
setting for the mapping problem, and is only driven by training
data, independently of anya priori assumption on the observed
domain.

III. N EURAL–NETWORK–BASED ASSESSMENT OFVIDEO

QUALITY

Avoiding inputs from human subjects can lead to determin-
istic models, yet objective systems should keep human scores
as references to ensure consistency with subjective results.
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The present approach applies CBP feedforward networks
to the automated quality evaluation of MPEG-2 [19] video
streams; the single-ended no-reference paradigm need not
know uncompressed original videos.

Fig. 2 shows a schematic representation of the overall system.
Objective features are worked out directly from MPEG-2 bit-
streams (i.e., without any decoding), and feed the NN to obtain
quality ratings. The system operates on a frame-by-frame basis
and yields a continuous output; as such, it provides a real-time
monitoring tool for displayed video quality. Thus, the NN is
entrusted to mimic the subjective, single-stimulus continuous
quality evaluation (SSCQE) method [20], recording continuous
assessments of picture quality provided by human observers.

The crucial advantage of the approach lies in generating
quality ratings without decoding the video stream. Indeed, the
objective metric supported by the neural system relies entirely
on a representation format—the compressed bitstream—that
bypasses the need for human assessors’ rating process al-
together. This greatly improves the method’s effectiveness
especially in terms of real-time performance, as one can get an
estimate of perceived quality at transmission time.

For the reader’s convenience, we recall that MPEG-2 attains
still-image quality by standard discrete cosine transform (DCT)
compression; motion information is treated by dividing each
frame (picture) into several macroblocks (holding 1616
pixels each), and by encoding the apparent movement of
macroblocks within time-consecutive frames.

A. Features for Objective Quality Assessment

The set of processed features play a crucial role for the effec-
tiveness of the overall methodology. A single-ended paradigm
avoidinga priori assumptions requires quite a large set of pa-
rameters to be extracted from video streams, for the purpose
of collecting as much information as possible. Truly significant
features are then sorted out by a conventional statistical anal-
ysis. Appendix A lists the objective features worked out from
the MPEG-2 compressed stream.

In principle, one expects that a considerable number of all
the above features will be discarded, either because they do not
carry significant information or because they are mutually cor-
related. Since the present approach does not imply anya priori
assumption on the significance of the encoding parameters, an
a posterioristatistical analysis drives the feature-selection cri-
terion.

First of all, a percentile-basis analysis is required to remove
outliers from input data. To this end, for each feature, an ele-
mentary preprocessing phase set a 0.05 percentile threshold to
each tail of the distribution of empirical values. The specific
threshold value was determined empirically, but does not affect
the method generality thanks to the quite narrow distribution
of measured samples, which appear concentrated around their
mean values.

Secondly, the statistical analysis assumes that nonnormally
distributed features carry most information. The method adopts
third- and fourth-order moments of the distributions of values
as normality indicators.Skewness(i.e., a measure of the de-
gree of symmetry in a variable distribution) andkurtosis(i.e.,

Fig. 2. The proposed single-ended system for automated quality assessment.

a measure of the relativepeakedness/flatnessof a distribution)
are used to characterize the statistical activity of each feature.
Only features having skewness and kurtosis significantly dif-
ferent from normality are considered for the neural-network
modeling. A threshold scheme drives that selection process;
specific threshold values have been set by averaging over several
samples in different contexts. The following basic quantities are
defined:

— is a library of test streams, com-
posed of frames each;

— is the set of objective features ;
— is the value measured by for the th frame of

the th stream .
The feature-selection algorithm can be outlined as follows:

0. (Input) —sets of features, , asso-
ciated with each sequence frame

.

(3)

1. (Rescaling)
For :
—compute the 0.05 and the 0.95 per-
centiles, , , respectively, for
the values in ;
—build up a set by rescaling each ele-
ment of into the range :

(4)
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Fig. 3. Feature run-time sampling process according to perceptual mechanism.

where

(5)

Rescaling by using and as
its lower and upper bound, respectively,
supports the outlier-removal process pre-
viously anticipated.
2. (Descriptive statistics)
Create two sets:
— where

;
— where

.
3. (Threshold setting)
Compute the threshold values, and

, as:
— is the 0.5 percentile of ;
— is the 0.5 percentile of .
4. (Feature selection)
Compile the feature set, , holding the
objective features that satisfy (for

):

AND
(6)

As a result of the above procedure, the setincludes the fea-
tures that, due to their asymmetrical distribution, are unlikely
to stem from a Gaussian distribution. The purpose is to single
out the statistically significant objective descriptors, under the
(practically reasonable) assumption that noninformative quan-
tities most often exhibit a Gaussian distribution.

The described algorithm has been preferred to alternative ap-
proaches such as the principal component analysis (PCA) [21]
mainly because of the high data dimensionality involved. The
complexity of working out eigenvectors due to numerical preci-
sion issues may sometimes affect the performance of PCA when
applied to huge multidimensional data. Conversely, exploratory
projection pursuit (EPP) [22], [23] represents a method that fol-
lows the same paradigm of the proposed algorithm. EPP is a
powerful methodology to derive a feature set to describe the
original data set; it seeks for a coordinate system such that the
resulting distribution of values along each axis is as much dis-
tant from a Gaussian curve as possible. EPP, on the other hand,

is a computation-intensive method, which might prove difficult
to tune in nonlinear domains.

B. Feature Run-Time Sampling

The objective assessment system should generate contin-
uous-time quality ratings. In principle, one might feed the CBP
network with the feature values continuously extracted from
each sequence frame. In fact, the mechanism generating the
input features must take into account known mechanisms
specific for human perception.

In more detail, one has to consider that: 1) assessor’s re-
action times are subject to delays [24]–[26]; 2) time-consecu-
tive frames tend to interfere with one another [27], and 3) the
most recent segments of a sequence have a greater effect on the
overall quality rating [3], [28]. In the literature, such peculiari-
ties are known as “the assessor’s response time,” “masking phe-
nomenon,” and “recency effect,” respectively.

The following quantities are used to parameterize these set-
tings (Fig. 3). To compensate for temporal averaging, a set of
frames contribute to generating a single score. Within this set,
groups of consecutive frames yield a single feature vector,
according to the masking phenomenon. The input vectorin-

cludes features defined as follows:

(7)

where is a family of operators, with , and
, respectively, the highest, the smallest and the mean values

over the interval. The parameter refers to the delay between
the subjective judgment and the last frame that has influenced
it.

C. The Neural-Network Approach

Several features characterizing video streams jointly affect
subjective judgments; possibly nonlinear relationships and
partly unknown mechanisms may complicate the process
modeling. These effects actually seem to have sometimes
been underevaluated in the literature, and the major advantage
of a neural-network approach lies in the ability to deal with
multidimensional data representing complex relationships. By
decoupling the feature-selection task from the design of an ex-
plicit mathematical model, one obtains the crucial advantage of
avoidinga priori assumptions on the significance of objective
measures.
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In the present approach, CBP networks map feature vectors
into quality ratings. The mapping function is learned from ex-
amples by means of an iterative training algorithm, and a single
output neuron in the NN yields the quality assessment for a
given input vector. The network configuration (i.e., the number
of hidden units) has been designed by using a specific initializa-
tion technique that exploits the equivalence of the CBP model to
VQ paradigms [17]. In particular, a VQ preliminary phase using
the plastic neural gas algorithm [29]–[31] made it possible to
assess the proper number of prototype vectors to represent the
available sample distribution. In the subsequent network setup
phase, the number and the space positions of those prototypes
were mapped directly into the specific CBP network configu-
ration according to the formalism described in [17]. Thus the
initial setting of the network weights proved most effective in
accelerating the convergence of the overall training process, as
compared with a conventional random setting.

The CBP network training uses an accelerated variant [18]
of the classical backpropagation algorithm. The possibility of
using conventional techniques to train an advanced network
structure is the major advantage of the CBP model. The network
cost function is expressed as

(8)

where is the number of training patterns and is the ac-
tual quality assessment derived experimentally from the human
scoring panel. An alternative to (8) is thethreshold costfunction

:

(9)

where the network cost is expressed as the percentage of outputs
that differ from the expected score in more than a fixed

threshold .

IV. EXPERIMENTAL RESULTS

The effectiveness of the CBP model for objective quality
assessment was verified experimentally by using a library of
MPEG-2 videos provided by the Research Center of the Italian
Radio and Television Corporation (RAI). The testbed included
twelve frame-coded sequences, each 70 s long; the picture
size was 720 576 pixels. The sequence contents varied from
fiction to sport and were encoded at different bit rates in the
range [4], [8] Mbits/s.

The assessments for each sequence were collected from
nonexpert viewers; the subjective tests were performed with an
SSCQE technique at a sampling rate of two scores per second.
The quality ratings were represented by a continuous scale
ranging in [ 1, 1].

A. Experimental Setup

The neural-network training process involved the set of fea-
tures that the statistical analysis selected from the global fea-

TABLE I
TEST RESULTS

TABLE II
FEATURESWORKED OUT FROM MPEG STREAM

ture set listed in Appendix A. The resulting feature space (a
subset of ) included the quantities highlighted in bold face
in Table II. The training patterns were generated by the run-time
sampling process presented in Section III, with ,
and .

In order to enhance the CBP network generalization perfor-
mance, the dimensionality of the input data space was further
reduced with the feature-selection technique described in
[32]. The eventual four-dimensional feature space covered the
quantities: , , , and

. The plastic VQ algorithm processed the
training samples to design the neural-network configuration;
the resulting value set the number of hidden units in
the feedforward structure.
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(a) (b)

Fig. 4. Test results obtained with the four-dimensional space covered by the selected features. (a) Neural-network outputs compared with human quality ratings.
(b) The associated error distribution.

B. Results

Fig. 4 shows test results obtained for the selected feature set.
Fig. 4(a) compares the quality ratings by human assessors with
the corresponding outputs of the NN; for display clarity, the ac-
tual ratings are sorted in increasing order, each point on the
axis representing a single evaluation event. The graph shows an
asymmetric distribution of subjective scores, as 44% of the orig-
inal scores exceed 0.5. Since the lower scores appear subsam-
pled, they are subject to greater errors due to the lower statistical
confidence. Nevertheless, the CPB NN attained an average error

on the test set.
Fig. 4(b) plots the error distribution together with the related

best-fitting Gaussian approximation .
A chi-square test verifying the correctness of the Gaussian as-
sumption did not detect a satisfactory match, mainly due to the
apparent undersampling phenomenon. However, a more robust
Kolmogorov-Smirnov (KS) normality test satisfied the null hy-
pothesis to a high degree of confidence .

Figs. 5 and 6 present the results obtained by letting the
CBP network evaluate two subsets of the original data set not
used for training. The two subsets (“sport” and “no-sport” ,
respectively) differed in their video contents. A comparison of
Fig. 5(a) with Fig. 6(a) points out that human quality ratings
show a higher variance for videos including sport contents
only; in addition, sequences with sport contents are a small
subset (27%) of the test library, hence the NN suffered from
larger errors due to the lower statistical confidence.

Figs. 5(b) and 6(b) confirm these achievements by fitting
error distributions with the associated best-approximating Gaus-
sians. The Gaussian parameters are for
no-sportand for sport. The overall numer-
ical results are summarized in Table I, also giving the costs
and derived from the neural-network test.

The graph in Fig. 7 plots the estimated confidence interval for
the sample average error , and confirms the method effec-
tiveness. Theory states [34] that, for large sample sizes, the

(a)

(b)

Fig. 5. Test results obtained for videos included inno-sport. (a) Neural
network outputs compared with human quality ratings. (b) The associated error
distribution.
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(a)

(b)

Fig. 6. Test results obtained for videos included insport. (a) Neural-network
outputs compared with human quality ratings. (b) The associated error
distribution.

confidence interval for a distribution having expectationand
variance (both unknown) can be computed as

(10)

where is the confidence level, andis defined as

(11)

In (11), is the sample standard deviation -unbiased estimator
of —and is the percentile of . The curve
in Fig. 7 plots (10) for thecomplete settest results
and shows that the neural-network system achieved
with confidence .

V. CONCLUSION

Feedforward NNs can effectively support objective quality
assessment of MPEG-2 videos. In this respect, the major
result of the presented research is the possibility of reproducing
human perception consistently by using quantitative data-driven
models. The neural-network model is specifically tuned to

Fig. 7. Plot of" versus the confidencep(= 1� �).

learn the perceptual phenomenon from examples, and exploits
a known effective augmentation of standard BP networks.

A crucial advantage of the proposed methodology is the
system ability to handle compressed video streams. Avoiding
the need for decompressed pictures enhances the method’s
effectiveness in real-time production applications.

The experimental setup involved a training phase with ob-
servations collected from evaluation panels, and generalization
testing using sequences and the associated quality assessments
not included in the training sets. Experimental evidence
confirmed the validity of the approach, as the system always
provided a satisfactory continuous-time approximation for the
actual scoring curves related to test videos. A comparison with
related works is complicated by the lack of a consolidated
standard allowing reliable comparison among quality-evalua-
tion methods; more importantly, this is even more true when
considering that the approach presented in this paper treats
no-reference objective quality assessment, which is new in the
literature to the best of our knowledge.

APPENDIX

OBJECTIVE FEATURES

The following quantities are defined:

—

(12)

where are the DCT coefficients of a or
macroblock. This quantity gives the energy of the

correction to the predicted macroblock.
—

(13)

where is the quantiser-scale factor in a mac-
roblock, and is the mean amplitude value of
motion vectors in the same macroblock.
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—

(14)

where is defined as the weighted energy of a
macroblock.

An MPEG-2 bitstream has a hierarchical structure that al-
lows one to get information at multiple levels: sequence, group
of pictures, picture, slice, macroblock and block. Objective fea-
tures have been designed to characterize the stream at the pic-
ture level. Table II lists the objective features worked out from
the coded bitstream. Four classes of measures can be identified:

— Percentage of macroblocks—Features are defined as
follows:

(15)

where is the number of macroblocks of the type
specified in the second column of Table II, and
is the total number of macroblocks in the picture.

— Percentage of blocks—Features are defined as follows:

(16)

where is the number of blocks of the type specified
in Table II, and is the total number of blocks in the
picture.

— Statistic features are defined as follows:

mean
st. deviation
variance

(17)

where is a vector of values computed on each
macroblock of the picture; is given in Table II.

— Percentiles—features are defined as follows:

(18)

where is the percentile of .
The last feature included in the objective set is Nbits, i.e., the

number of bits per picture.
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