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I. INTRODUCTION 

Digital image and video compression has become an 
increasingly important and active field. Progress in com- 
pression algorithms, (Mohamed and Fahmy, 1995; 
Eskicioglu and Fisher, 1995; Li and Salari, 1995; Ngan et 
al., 1996), VLSI technology, (Bourbakis et al., 1995; Boo et 
al., 1997; Wang and Chen, 1996; Fowler et al., 1995) and 
coding standards has made digital video an enabling and 
penetrating technology for many applications. These appli- 
cations often require a very high computational power. For 
this reason, parallel architectures are often considered to fit 
the characteristics of these algorithms (Allen, 1985; Seitz, 
1984; Bourbakis et al., 1989). This design approach is even 
more useful for the image processing based on neural 
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techniques, as the latter involve a massive computational 
load for their neural training process. The field of neural 
networks for image compression also includes methods 
based on vector quantization (VQ), thanks to their high 
compression ratio and image quality (Jain, 1981; Gray, 
1990; Gersho, 1982; Gray, 1984; Linde et al., 1980). The 
fact that VQ is a very good compression technique also lies 
in its very simple decoder, which is much less complex than 
its coder. Thus, VQ algorithms can be implemented with 
easy structures; however, they require a high computational 
cost, involved in repeating the same computation for each 
vector of the codebook. This is the ideal condition for an 
implementation using special-purpose VLSI processors 
with a high degree of modularity and local interconnections 
for data transfer. To this end, the use of INMOS transputers 
of the T800 family (Inmos Ltd., 1989) are particularly 
appropriate because they make it possible to realize both 
concurrent computations and asynchronous communica- 
tions by parallel languages, such as the Occam language 
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(Inmos Ltd., 1984). Transputers can be considered as VLSI 
building blocks to implement massively concurrent archi- 
tectures. 

The paper describes a methodology to implement a neural 
algorithm for vector quantization on a parallel multi- 
processor system. In particular, the proposed design 
methodology has been developed and evaluated using a 
toroidal mesh of transputers as a convenient case study of 
concurrent host architectures. The final application goal is a 
lossy compression of high-dimensional data for low bit-rate 
communication. The high computational load of the neural 
training process and the technical importance of the specific 
application motivate the search for a highly efficient parallel 
implementation of the quantization method. To this end, the 
neural model that was chosen (Plastic Vector Quantization) 
exhibits remarkable properties in terms of both consistency 
(quality of the quantization process) and easy implementa- 
tion. This model can be considered as a modified version of 
the Neural Gas (NG) algorithm, (Martinez et al., 1993) 
whose original formulation exhibits the crucial drawback of 
an advance setting of the number of prototypes. This 
algorithm makes it possible to add and prune neurons 
dynamically, and guarantees a finite-time convergence. As 
the plastic model involves the interaction of several NG 
networks using different vocabularies, the parallel imple- 
mentation is most effective in reducing the computational 
cost of the process. The overall parallel approach is 
supported by a theoretical analysis of the system perform- 
ance. This analysis makes it possible to derive an analytical 
expression for the prediction of the system's efficiency. 
Preliminary experimental results on an image-compression 
testbed and the fitting between measured and predicted 
values confirm the validity of the overall approach. 

Section 2 presents the neural model based on vector 
quantization. Section 3 describes the parallel implementa- 
tion of the algorithm, showing its notable scaling properties, 
and a theoretical analysis of the system's efficiency. In 
Section 4, experimental results are reported, and some 
concluding remarks are made in Section 5. 

2. THE NEURAL MODEL FOR VECTOR 
QUANTIZATION 

2.1. The neural gas algorithm 

Vector quantization is the process of approximating a 
large data set of multidimensional data (e.g. image blocks 
for image compression) by a limited number of prototype 
vectors (neurons), obtained by clustering several similar 
data. This approximation resembles that used in scalar 
quantization, and proceeds by minimizing some error 
function (usually, the mean square error). 

The NG algorithm, developed by Martinez et al., 1993 is 
an iterative algorithm to train a set of prototypes. At each 
iteration, a training pattern is presented and prototype 
vectors are ordered according to their Euclidean distances 
from the input sample. Prototypes are then adjusted 
according to their positions on the ordered list: closer 
vectors undergo larger modifications. The intensities of the 

adaptation steps and the width of each vector's neighbour- 
hood decrease during training, thus providing a stabilization 
mechanism, also present in other similar algorithms (includ- 
ing Kohonen's SOMs (Kohonen, 1982). The NG training 
algorithm can be outlined as follows: 

(1) Set W=a set of randomly initialized prototypes; set I=a 
fixed number of iterations. 

(2) Repeat for i = 1 to I: 
(2.1) Input a sample vector x. 
(2.2) Compute the distance dk=llX-Wk[[ from each 

prototype wk. 
(2.3) Sort the list of prototypes according to dk. 
(2.4) Compute the adaptation step Awk for each 

prototype wk. 
(2.5) Apply adaptations to each prototype. 

(3) Output the set of prototypes W. 

This procedure exhibits interesting properties that can be 
exploited in an HW realization. A specific feature of this 
algorithm guarantees the existence of an initialization such 
that prototypes always lie in a bounded region, provided 
that input values are themselves bounded (which is always 
the case in practice). This is very important when one needs 
to assess the dynamic range of a stored quantity a priori. 

The training algorithm involves a number of independent 
operations, and the absence of a fixed interneuron con- 
nectivity simplifies a parallel implementation. The 
relatively large amount of computation at the local level 
allows one to achieve a high degree of parallelism; 
moreover, the alternation of the computation and commu- 
nication phases makes synchronization easier. 

2.2. The plastic neural gas model 

In comparison with the basic NG algorithm, the basic 
feature of the plastic model is the ability to add and prune 
neurons dynamically. The Plastic Neural Gas (PGAS) 
algorithm was first proposed in Ridella et aL, 1995. Each 
neuron is provided with a local analog cost (typically, the 
mean square error) that measures the quality of the neuron 
placement. This quantity can eventually control the algo- 
rithm's computational overhead: prototypes showing 
satisfactory placements are deactivated and take no further 
part in the training process. 

Training proceeds by iteratively adding neurons to those 
regions of the data space that appear to be insufficiently 
covered with available prototypes (network growing); an 
opposite network pruning mechanism removes insignificant 
units (dead vectors); finally, cost-checking leaves out of the 
next training iterations those neurons whose analog costs 
are smaller than a fixed threshold. All these phases are 
controlled locally by monitoring each neuron's analog cost. 
The plastic model can be outlined as follows: 

(1) Input: a training data set, a test data set, a cost 
threshold. 

(2) Initialize the set of (at least one) prototypes. 



F. ANCONA et al.: AN EFFICIENT TECHNIQUE 575 

(3) Repeat until stop: 
(3.1) Train the active nodes in the current vocabulary 

by the standard NG algorithm. 
(3.2) Remove insignificant neurons that do not cover 

any training sample. 
(3.3) Deactivate nodes showing satisfactory local 

costs. 
(3.4) Compute the overall analog cost on the test data 

set. 
(3.5) If the test cost has not improved significantly, as 

compared with the previous iteration, 
Stop the algorithm 
Else 
Add one neuron in proximity to the prototype 
with the highest cost. 

(4) Output the set of prototypes W. 

The plastic method can be shown to have a finite-time 
convergence; more importantly, a network's generalization 
ability can be easily assessed, as well. In particular, one can 
control the growing process by a sort of cross-validation 
procedure: available data are split into a training set and a 
test set, and the cost of test data operates as a stopping 
criterion for the overall plastic process. This empirical 
mechanism aims to estimate the smallest number of 
prototypes required to achieve a given accuracy of the 
overall data distribution. 

In summary, plasticity increases the performance of a 
neural structure from both a computational and a general- 
ization perspective. From a computational point of view, 
through neuron deactivation one can remove entire sub- 
regions of the data space from the training process, and limit 
the training overhead accordingly. At the same time, 
generalization is enhanced by avoiding the introduction of 
insignificant vectors, which might ultimately give rise to 
overfitting phenomena. 

3. PARALLEL IMPLEMENTATION 

The computational load in signal and image processing 
can also be reduced to some basic matrix operations when 
they are based on neural models. These basic operations are 
related to linear algebra algorithms, which are characterized 
by a local and regular data flow, and a simple control flow. 
These properties allow a natural parallel implementation of 
these algorithms on computational arrays, (Seitz, 1984) 
such as systolic arrays, (Kung, 1982) which achieve a high 
degree of concurrency from both parallel processing and 
regular pipeline computation (Kung et al., 1987). These 
arrays can be implemented by using special-purpose VLSI 
processors with a high degree of modularity and local 
intereormections for data transfer, which allow recurrent and 
simple operations with a regular localized data flow. The use 
of these architectures must be supported by a concurrent 
environment. A concurrent algorithm is structured as a 
network of distributed computational tasks (processes) that 
must be allocated to the available processors. The basic 
feature of this type of application is a proper communication 

synchronization among processes in order to ensure both the 
consistency and the best efficiency of the overall system. 

The Plastic Neural Gas model fits an SIMD implementa- 
tion, as its features make it possible to distribute data 
resources on the network, and a parallel approach becomes 
useful in increasing the effectiveness of the overall system. 
In addition, it is easy to verify systolic properties in the 
parallel-implementation strategy adopted, which is shown 
in the next subsection. These properties can be usefully 
exploited by implementing the proposed application on a 
systolic array, that is, on a special-purpose parallel device 
composed of several processing elements whose inter- 
connections have the properties of regularity and locality. 
Systolic architectures are very suitable for VLSI imple- 
mentations. From this perspective, INMOS T800 
transputers (Inmos Ltd., 1989) are particularly appropriate 
because they make it possible to realize both concurrent 
computations and asynchronous communications by using 
parallel languages (i.e. the Occam language (Inmos Ltd., 
1984)), and can be considered VLSI blocks in concurrent 
architectures. For these reasons, the PGAS algorithm has 
been developed and evaluated on toroidal meshes of 
transputers (Fig. 1). In addition, this choice has also been 
driven by transputers' high structural flexibility, which 
allows one to design systems in compliance with target 
applications. It is worth noting that both the choice of the 
data-allocation strategy and the processor organization play 
crucial roles for the system's efficiency (Pagano et al., 
1993). 

3.1. Data allocation and algori thm implementat ion  

A straightforward and effective data-allocation method is 
to split the data set into N subsets, and to map them into the 
mesh rows (Fig. 1). As a result, each row is entrusted with 
the training of one Nth of the entire training data set. 
Conversely, the mutual topological independence of neu- 
rons makes it possible to partition the prototype set into as 
many subsets as the mesh columns. The row and column 
numbers are not fixed, and can be changed according to the 
number of processors available. 

D Training data 

Transputer 

D/N -'~ 

D/N -~ 

~D/N 

K Prototypes 

iiiiiii  
Fig. 1. The mesh architecture and the related data-allocation strategy. 
N=number of mesh rows; M=number of mesh columns; D=number of 

training samples; K-- number of prototypes. 
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The above allocation approach has important conse- 
quences on the actual algorithm implementation and its 
efficiency. In particular, the system’s run-time kernel is 
arranged in a state machine (in the following discussion, the 
terms neuron and prototype will be used as synonyms): 

( 1) Compute locally the distances between the current 
sample and local prototypes by the Euclidean distance. 

(2) Sort prototypes by adopting the following parallel 

strategy: 
- each mesh row works out the overall sorting phase; 
- each processor sorts its local neuron portion (KIN 

neurons); 
- the central column of the mesh manages the overall 
sorting: row-wise communications are involved for 
merging the M local neuron portions; 

Receive the adjustment steps d~:“l’~““, that is, the 
adaptation steps computed by the processor of the 
previous row and corresponding to the same column. 

Update prototypes locally as follows: w~=w~+ 

(Aw, (““““)+ Aw f”p’r’), where Aw :I”““) is the local adapta- 
tion step. 

Send adjustment steps Anti ~““““’ to the next row; in this 

way, the local training contribution is propagated 
through the network. 

This approach has several specific features enhancing a 
parallel performance. The computation-intensive phase. 
namely the working out of distances, is performed entirely 
at the local level, thus yielding the maximum efficiency. 
Likewise, the vector-adjustment step does not involve any 
inter-processor communication. As to the communication 
overhead, the sorting phase involves row-wise communica- 
tions; as a result, the sorting process proceeds independently 
along each row for one Nth of the allocated data. In 
addition, the amount of transmitted information (vector 
index + scalar distance values) is small, as compared with 
the large amount of data stored for each datum and each 
neuron. Conversely, the communication of adjustment 

displacements (steps 3,5) involves a larger amount of 
information, but its parallelism spreads over columns. 

whose number is unbounded. This property allows the 
critical part of communication costs to be reduced by 
increasing the number of processors: hence efficiency is 
made virtually independent of the problem scale. 

3.2. Theoretical analysis of the system performance 

This subsection presents a theoretical analysis of the 
performance of the NGAS-algorithm training. This analysis 
makes it possible to derive an analytical expression for the 
prediction of the system’s efficiency. The following nota- 
tions will be used: 

- N=number of mesh rows; 
- M=number of mesh columns; 
- K=number of prototypes; 
- P=number of processors; 

- r=time required to transmit a data block (4 bytes); 

- T”,” =time to perform a floating-point sum; 

Communication overhead: At run time, two different 
communication types are involved: 

- horizontal-data transfer during the sorting phase (step 
2), Ty’; 

- vertical-data transfer in the receive and send adjustment 
steps (steps 3 5) T?‘. 3 3 < 

The expressions below show theoretical derivations on 

communication overheads, taking into account that trans- 
puters can only logically arrange link-communications as 
parallel processes; in fact, current transputer devices handle 
communications sequentially, because of the impossibility 
of processors performing a parallel memory access. 

In order to simplify the theoretical computations, the real 
transmission time involved in the sort phase has been upper 

bounded by TIT’. As a matter of fact, one assumes that the 
first column manages the overall sorting (instead of the 
central one); this simplification increases the real commu- 
nication overhead, as the horizontal data flow is single and 
no longer split into two flows, both flows converging from 
the most external columns toward the central column at the 
same time. This approximation generates an affordable 
error, which, however, allows one to maintain the con- 
sistency of the overall theoretical analysis. The term ~~,,~,=2r 
is the time to transmit values of the vector index and the 
scalar distance (each of them is composed of 4 bytes). The 
operator 2 points to data-flow increases, from the Mth 
column toward the first column: this increase is proportional 
for each column crossing, and is equal to the term 

K 
. Td 

K 

ti M 
1s the neuron-set portion allocated on each 

processor). Number 2 takes into account the double wave of 
the data flow (forwards and backwards), as the final vector 

position must be returned to each processor. The term i is 

the pattern portion allocated on each processor: it indicates 
the number of data flows involved during the training phase 
of the neural network. 

mod 2)] , 

where m is the vector size (2) 

If N is even, then the vertical transmissions are parallel 
and are performed in two steps: 
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Step 1: data transfer between the 1st and 2nd rows, 
between the 3rd and 4th rows, and so on, until between 
the (N-1)th and Nth rows, at the same time; 

Step 2: data transfer between the 2nd and 3rd rows, 
between the 4th and 5th rows, and so on, until the Nth 
and 1 st rows, simultaneously. 

Otherwise, if N is odd, these transmissions require three 
steps: the 1st and 2nd steps are analogous to the previous 
case (for the first N-1 rows), whereas the 3rd step involves 
a data transmission between the Nth and 1st rows. 

As the receive adjustment step corresponds to the send 
adjustment of the previous row, timings of the run-time 
process on each node do not take it into account. 

Computational timings: At run time, each processor 
performs three different computations, involving the fol- 
lowing three times: 

distance phase: Tpa.td). 
- sorting phase: T °)" - - p a r ~  

- adjustment phase: T taw) 
- - p a r  

The above times can be expressed as follows: 

D 
(~ - (3) i) Tpa r- MN.re 

D 
where ~ is the size of the pattern portion and w d is the time 

to work out distance computations between a pattern and K 
prototypes: this value is divided by M, as only the local 
prototype contribution is considered. 

T ~ = D (  K M  ) ii) p~r N r~l~ + l)rm ( J. - (4) 

local , ~ \  global 

The timing involved in the sorting phase is composed of 
two contributions: the time to sort the local neuron portion, 
r") and the time to merge the M sorted neuron portions s , 

(global sorting). The term rm is the time involved in merging 
a vector into the global neuron list of the central column. 
The first contribution is equal for each processor, whereas 
the second one has a bigger computational load for the 
processor of  the manager column. For this reason, the above 
expression considers the computational cost involved in the 
manager processors, thus forcing an approximation to the 
system's final efficiency expression, shown as follows: 

D 
iii) -p~rT(aW)-- MN (r4w+mKr,,,,) (5) 

where rZw is the time to compute the vector adjustment step 
for K prototypes, that is, Wk=Wk+AW~ I°cal), for k= 1 K In 
the above expression, r4w is divided into M, though only the 
contribution of the local prototype portion must be con- 

sidered; this computational cost increases by the codevector 
mK 

number linearly. The other expression term, ~ -  r,.,., is the 

time to add the adjustment step obtained in the previous 
row, AwC, "p~r) 

Architecture efficiency: The efficiency of a parallel 
architecture is defined as the system's speedup over the 
number of processors used in the network, that is, 

1 
Ts,q, where T~e q and Tpar are timings for the 

rl= P Tpo~ 
sequential and parallel executions, respectively 

The timing of the sequential algorithm can be expressed 
as follows: 

" sTeq~" Tta~ 4 T (s) 4- T (aw)-  
- -  s e q  - -  - -  s e q  - -  - -  s e q  - -  (6) 

=D.rd+ (distance phase) 

+ D~'s + (sort phase) 

+ Draw = (adaptation phase) 

=D(Ta+ Ts+ %w) 

where rd, rs and Taw are the timings for performing the 
distance, the sorting and the adaptation steps of the NGAS 
algorithm, respectively 

By combining the communication overheads (1)-(2) and 
the computational timings (3)-(4)-(5), one obtains the 
timing of the proposed concurrent process: 

Tp - T (s) 4- T (Aw) 4- T (a) 4- T (s) 4- T (aw) 
a r - -  - - c  - -  - - c  - -  - - p a r - -  - - p a r - -  - - p a r  

- N r+ ~ .  ~I.m.r.[2+(Nmod2)l 

D D ( ~'~t) + M ) + ~ r~+ ( M -  1)r,. 

D 
+ ~-~ (ra~+mKw~.m) 

The system's efficiency expression is obtained by com- 
bining (6) and (7): 

Column-wis( 
updating 

[ 
Row-wise [ - - - 7  

] ~ sorting ~ D [ 

Fig. 2, Communication structure. 
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l D(ra+r~+Ta.) 
rI= MN " 2KD(M- I ) D ~ m ~ l  } D 

. . . . . . . .  N 7"+ N" [2+(Nmod 2)] + MN ~'a 

+ D K ) +  D 
( r!/'+ (M- 1 ) ~'o, M-N(ra.+mK'6,~) N \  M 

~- 
I+ 

l + [2M(M- I )+m(2+N mod 2)]K~+Mr(/)+K(M - ] )T~+mK~I,~ 
(ra+ r.,.,) 

4. EXPERIMENTAL RESULTS 

The overall approach (Parallel PGAS) was evaluated 
using an application testbed consisting of an image- 
compression task, in which a low bit-rate coding was 
achieved by VQ encoding. A toroidal-mesh architecture 
composed of 6 transputers (2 columns and 3 rows) of the 
T800 family was used, using inter-transputer links operating 
at 20 Mbit/sec. The compression system processed standard 
(grey-level) images (8bpp) with 5 1 2 × 5 1 2  pixels. All 
pictures were split into 4096 blocks including 8 × 8 pixels 

0 .018  

0 .016  

0 .014  

0 .012  

0.01 

0 .008  

0 .006  

0 .004  l 

7I 
1 

I ~ I I I 

11 21 31 41 61 

I P I I I I I I I I I I I I I t I I 
61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 

[ ~  Trg - -  Lena 

- :::i!!~:.?::: ~' • " L "  ! 

:ii%i: :~'" 

.::.:::s:#p~,. 

i 

Fig. 3. Plastic neural gas for image compression.(a) Analog-cost curves (x axis = number of neurons) (b) Validation performance 
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m "E 

.~ 0.3' 

O. 

16 32 64 128 

Codevector number 

vector size 

+ m = 1 6  

--ff i-- m=64 

I 
190 230 

Fig. 4. The efficiency of the system versus the number of neurons and the vector size. 

each. In the experiments, a set of classical pictures was used 
for the network training, and a different image set for the 
generalization-based algorithm control (Fig. 2). 

In the graph in Fig. 3a, the training and test (the Lena 
picture) costs are plotted versus the number of prototypes 
used. The curves show that the relative improvement in test 
data decreases progressively; the fact that the test-cost curve 
becomes flat, while the training one keeps decreasing, 
marks an incipient overfitting, and triggers the general- 
ization-based stopping condition. This situation indicates 
the estimated best number of neurons which balances the 
representation accuracy with the size of the vocabulary. In 
the case considered, the estimated optimal cardinality of the 
prototype set lies in the range [190, 230]. Figure 3b presents 
the network's performance on a validation picture not used 
for training or for cross-validation. Results attained a 
compression ratio of 42.7, with a PSNR of 28.26 
(SNR=22.71, MSE=97.90), indicating the method's nota- 
ble performance as compared with classical compression 
techniques (e.g. JPEG). 

Figure 4 shows the system's efficiency for the NGAS- 
training algorithm: efficiency curves are plotted versus the 
number of neurons and versus the vector size. The training 
phase has been set for a number of patterns D (training data) 
equal to 100, and for a number of global iterations equal to 
100 (1 iteration involves the training for the overall pattern 
set). Experiments involve 16- and 64-vector sizes, as they 
are considered the most significant in the image-compres- 
sion domain. Better performances are obtained by a 
16-vector size and by increasing the number of neurons, and 

Table 1. Efficiency results 

T, eq [sec.] Tmr[sec . ]  Measured W Predicted 

K= 190 3637.8 1265.9 0.478 0.456 
K=210 4255.9 1416.2 0.483 0.500 
K--230 4920.2 1570.4 0.509 0.522 

this is due to the higher ratio between the computational 
cost and the communication one. 

From a theoretical point of view, the results obtained in 
estimating the system's effÉciency always gained confirma- 
tion from the experimental results. In particular, the 
comparison involved only the 64-size vectors, as it is the 
typical vector size in the VQ-based image-compression 
domain, and the most significant cardinalities of the 
prototype set (K= 190, 210, and 230). The measured times 
were: 1"=7.98 ~sec (including both fixed and variable 
communication costs), ~'sum =4.29 ptsec, ~'m = 750/.*sec. Table 
1 shows a comparison between predicted and measured 
values; the fit between experimental and expected values 
demonstrates the validity of the theoretical model. 

5. CONCLUDING REMARKS 

Vector Quantization can provide an image-coding schema 
with a remarkable compression ability, thanks to the 
codebook-indexing mechanism intrinsic to the quantization 
process. This advantage is often obtained at the cost of some 
coarseness and "blockness" affecting the reconstruction 
quality. In this sense, an adaptive technique to improve the 
overall generalization ability is described in Anguita et al., 
1995. A crucial issue inherent in all these methodologies is 
the computational cost of the training process. 

For this reason, a method for a parallel implementation 
with high efficiency appears very interesting and useful 
from a practical perspective. In this regard, the paper has 
presented a general methodology that combines a low-cost 
machinery with a scalable and effective implementation of 
the neural model. This represents the basic advantage and 
the main novel point of the described method. In particular, 
an application testbed consisting of an image-compression 
task for low bit-rate coding was implemented on a toroidal- 
mesh architecture, and remarkable results were obtained. 
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The  cur ren t  l ines o f  research  in this  area concern  the 

d e v e l o p m e n t  o f  more  com pl ex  archi tec tures ,  in tegra t ing  

several  p rocessors  for a r ea l -doma in  ut i l izat ion.  
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