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Efficient Training of Neural Gas Vector Quantizers
with Analog Circuit Implementation
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Abstract—This paper presents an algorithm for training vector
quantizers with an improved version of the Neural Gas model,
and its implementation in analog circuitry. Theoretical properties
of the algorithm are proven that clarify the performance of the
method in terms of quantization quality, and motivate design
aspects of the hardware implementation. The architecture for
vector quantization training includes two chips, one for Euclidean
distance computation, the other for programmable sorting of
codevectors. Experimental results obtained in a real application
(image coding) support both the algorithm’s effectiveness and the
hardware performance, which can speed up the training process
by up to two orders of magnitude.

I. INTRODUCTION

T HE LITERATURE provides a large amount of training
algorithms for vector quantization (VQ) [1] systems:

conventional [2] and neural-network [3]–[9] algorithms wit-
ness the interest in VQ as an effective paradigm for domain
analysis, signal processing, and information coding. As to
hardware implementations of VQ, most efforts have been
spent in supporting the winner-take-all (WTA) function in both
analog and digital technology [10]–[16]. Other approaches
optimize codebook search for real-time applications [17].
Visual information coding [18] is usually the target applica-
tion. VQ performs effectively at very low bit rates, and its
notable computational cost justifies the effort for hardware
implementations.

Comparatively, less work seems to have been done on hard-
ware support for VQ training algorithms, despite codebook
training is usually the computation-intensive part in a VQ
system setup. In addition to the direct modeling of Kohonen’s
Self-Organizing Maps (SOM’s) [19], [20], very large scale
integration (VLSI) training architectures have been described
in [21], [22] and, more recently, [23]–[25]. The complexity of
mapping theory into architectures is possibly the major issue
hindering the hardware (HW) support of training algorithms. A
dynamic adjustment of codevectors can involve a wide-spread
circulation of information, thus demanding complex wiring
and coordination. It is, therefore, no surprise that the latest
trainable encoder implements a nearest-neighbor model [24],
which does not require any interprototype connectivity.

This paper tackles the problem of HW support for VQ
training in high-dimensional domains requiring huge computa-
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tional cost (typically video coding). The proposed VQ training
algorithm performs effectively in terms of distortion noise, and
has HW-amenable features; hence, the related implementation
in VLSI circuitry is also illustrated. Codevector positioning is
driven by an improved version of the Neural Gas (NG) model
[4], whose simple topology makes it possible to minimize
interneuron connectivity.

This latter property makes NG appealing with respect to
other VQ-training methods such as SOM’s [5], which in-
volve a fixed grid of neuron interconnections and can notably
complicate HW implementation. Moreover, the NG model
seems computationally more efficient than affine topology-free
approaches [8], [9], as the latter ones require global com-
putation of frequencies and probabilities, and may therefore
pay an increased computational cost. As far as representation
quality is concerned, the performance of NG training has also
been proved experimentally [4] to overcome standard VQ
algorithms in the literature, such as SOM’s or the-means
algorithm [2].

Previous research showed that NG can yield impressive
efficiency even on conventional architectures [26], and that
a plastic algorithm [17] ensures convergence and can mini-
mize codebook size. NG is appealing as prototypes mostly
operate independently of one another; the only information-
exchanging step of the algorithm involves codevector sorting
(DSD).

This paper improves the NG algorithm by giving both
analytical and computational support for partial sorting, which
speeds up computation and simplifies the HW, especially in
the presence of large codebooks. The circuitry implements the
critical steps of VQ training, namely, distance computation
(DCD) and DSD. The design strategy integrates multiple chips;
splitting the overall schema into components simplifies the
designer’s configuration. This connects the present algorithm
to previous work, which led to an analog chip for full-search
codebook scanning [27]; moreover, a circuit for sorting was
drafted in [28].

The result of the presented research is a novel frame-
work for effective VQ training, where theory drives HW
implementation. Experimental verifications include: 1) tests
to validate theoretical expectations and 2) measurements of
the performance of the supporting HW architecture. Empirical
evidence shows that the approach can reduce training time by
up to two orders of magnitude, without affecting performance
quality. Section II presents the theoretical framework, compre-
hending the algorithm formulation and the theory for partial
sorting. Section III describes the implementation circuitry, and
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Section IV reports experimental results. Concluding remarks
are made in Section V.

II. THEORETICAL ASPECTS OFVQ TRAINING

A. The VQ-Training Algorithm

The VQ training algorithm is based on the NG model
for neural network training. NG places a set of codevectors
in a data space according to the empirical distribution of a
training set, and aims to minimize average distortion. Theory
shows that the asymptotical positions of codevectors span a
uniform coverage over training data [4]. Empirical evidence
indicates that, on average, NG results in a smaller distortion, as
compared with other VQ algorithms; moreover, convergence
typically requires fewer iterations.

The model does not assume any topology for neuron con-
nectivity. During training, codevectors are sorted in terms of
their Euclidean distances from input samples; each codeword
is adjusted according to its rank. Codewords are denoted by

and lie in a -dimensional domain space,
. The algorithm can be outlined as follows.
For iterations to :

1) draw a training sample, ;
2) codevector, computethe Euclidean distance

(1)

3) partial sort: extract the first codewords in order of
increasing ;
let denote the index of theth codeword on the
sorted list;

4) adjustthe subset of codevectors according to their ranks
on the partial list

(2)

The rewarding function supports a decreasing learning rate
and balances the distribution of weight updates during training.
An implementation of the scheduling functions is given in [4]

(3)

According to (3), training evolves from a distributed-
activation pattern, in which several codevectors are adjusted
at the same time, to a true WTA schema, in which only one
codeword is affected by a training sample. The NG model
is computationally interesting, as most of a codevector’s
activity proceeds locally: 1) DCD and 2) weight adjustments
exploit local information, thus enabling the use of codeword-
embedded circuitry [27]. Sorting is the only process requiring
a network-wide circulation of information to evaluate list
ranks .

When considering the computational costs of the sorting
operation, one could think of other VQ algorithms of the
type (2) which update all codewords every training cycle, and

where is not a function of the rank but of the distance
itself. This would remove the need for WTA circuitry

and codeword sorting altogether. In fact, sorting in codeword
scoring provides the training strategy with mechanisms related
to robust statistics. This mainly deals with the practical well-
known problem of dead vectors: if weight adjustment depends
on the risk is high that the annealing mechanism implied
by (3) fails to recover “distant” codevectors that might have
been moved away occasionally or badly initialized. Making
codevector displacements dependent on their ranks ensures
that even the farthest codewords are significantly influenced by
every training sample. The theoretical justification of sorting
finds a thorough confirmation in experimental practice [4],
[17], showing the extremely low rate of dead vectors derived
from an NG training, as compared with other methods.

However, a downright implementation of the original NG
algorithm would imply complete sorting and network-wide
communications. In large codebooks for real applications,
however, a complete sorting would complicate connectivity
and layout design [12], [29]. This motivates partial sorting
from an architectural perspective; the theoretical validity of
the approach is proved in the following.

B. Theoretical Support for Partial Sorting

Considering a subset of the sorted list should not affect train-
ing results, as compared with those yielded by the original NG.
This is possible as NG implements stochastic optimization,
whose progress can be modeled by two additive quantities,
i.e., cost and noise. The former depends on the distortion
brought about by quantization, the latter results from random
fluctuations during the minimum-search process.

The theoretical baseline for the presented algorithm is fairly
simple: for a complete sorting, the gain in distortion for
the last codevectors on the list becomes comparable with
the loss due to random fluctuations. As a result, a complete
sorting is practically insignificant to optimization. To prove
this property, the sensitivity of training to the sorting process
is analyzed and a novel interpretation of the codevector-
adjustment strategy is provided.

In order to simplify the analysis and without loss of gen-
erality, one can assume a continuous-time training process
(involving an infinite number of training samples) and a
continuous-size codebook (reflecting a very large number of
codevectors). Actually, such idealization is a good model of
practically interesting problems; that is, VQ training in high-
dimensional applications with large codebooks (e.g., image
coding). Under these assumptions, normalized sensitivity de-
rives from the weight-update rule (3), and is formally defined
as

(4)

where the normalization factor has been introduced,
without loss of generality, to simplify notation in the following
math derivations.

When regarded as a function of time for a fixed ranksen-
sitivity shows how the importance of rank evolves during
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training. The properties of sensitivity can clarify the overall
operation of the VQ training algorithm. The sensitivity for the
highest rank (which relates to the best-matching neuron)
increases exponentially during training; therefore, identifying
the winning neuron becomes more and more important as
training progresses. Conversely, the sensitivity for any other
rank decreases, hence the importance of each nonwinning
position decreases, too.

This behavior matches the originally described features of
the NG algorithm [4], and derives from the shape of the
rewarding function . From a practical perspective, one
should consider that the algorithm’s robustness relates strictly
to the accuracy of the sorting process. Thus, the robustness of
partial sorting increases in time, as can be easily proven

(5)

The first limit holds if meaning that the top
rank becomes more and more important as training progresses.
In theory, one might also set the annealing process in such a
way that the importance decreases for previous research
[4] and experimental practice indicate that privileging the
winner position strongly improves training quality. The second
limit is always true and confirms the decreasing importance
of minor list ranks while training progresses. The importance

of the th list position throughout the entire training
process is measured by

(6)

The integrals (6) must be worked out numerically. Importance
becomes insignificant for large values of k; more importantly, a
few top positions convey most of the overall importance. This
behavior is justified analytically by the following Theorems.

Theorem 1: (Importance decreases with list rank)

(7)

Proof: The condition reflects the meaning of
as a rank on a list. The inequality can be easily proved by
rewriting importance:

(8)

If one uses (8) to reformulate (7), after simple rearrangement,
condition (7) can be rewritten as

(9)

The integrand function is positive if

which is always true because .

Theorem 2: The series tends to zero exponentially

(10)

Proof: Clearly, ; one can prove convergence by
upper bounding the integrand function

(11)

Inequality (11) implies that the series is bounded within
two series converging to zero, hence

Since the bounding series tends to zero exponentially, the
series itself must converge to zero with the same rate,
which completes the proof.

Theorem 3: (Convergence of total importance)

(12)

Proof: This property is a corollary of the previous one,
as the exponential convergence rate of is a sufficient
condition for the convergence of the sum in the assertion.

Theorem 3 represents the actual theoretical support for
partial sorting. One can set a list depth and limit the
sorting process to the initial positions, with an arbitrarily
small effect on training results. Remarkably, can be set
once and for all as property (12) is independent of the specific
quantization problem. This holds because the theorems follow
from the implementations of the scheduling functions (3).

Sample results for a few top ranks are given in Fig. 1,
showing sensitivity curves (a) and relative importance values,
defined as (b). The graph confirms the expo-
nential rate of convergence of the series. The sensitivity graph
in Fig. 1(a) witnesses the different importance trend for the
top list position with respect to the others: identifying
correctly the winning neuron is much more important than any
other position on the list. This might indirectly motivate the
success of most WTA-based VQ training algorithms such as
means; conversely, taking into account the residual importance
justifies the superior performance of NG in representation
quality mean-square error (MSE). More importantly, as a
positive support for partial sorting, the cumulative distribution
of points out that more than 95% of the total importance is
conveyed by the 15 top ranks on the list.

III. CIRCUIT IMPLEMENTATION OF VQ TRAINING

A. Overall Architecture

The architecture described in this paper uses dedicated
circuitry to perform the computation-intensive steps of the
training algorithm. The narrow dynamic range of the involved
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(a)

(b)

Fig. 1. Sensitivity analysis of the VQ training process. (a) Normalized
sensitivities versus time(k > 0): (b) Relative importanceik versus rank.

quantities (typically less than 10 bits) allows analog implemen-
tations; at the same time, by analog circuitry, the architecture
attains maximum parallelism in a limited silicon area, thus
effectively supporting the large bandwidth required by VQ
[30], [31].

The training architecture is sketched in Fig. 2 and imple-
ments the algorithm’s steps 1) and 2), involving DCD and
DSD, respectively. A full HW implementation of the algorithm
is feasible, as step 3) is performed locally at the codevector
level, too. In the present setup, however, conventional digital
processors accomplish this task, for both a structural and
practical reason. First, this choice makes it possible to modify
the codevector-rewarding function . Secondly, weight
update is computationally much lighter than the previous steps;
by contrast, an accurate HW implementation of the exponential
functions may prove quite complicated.

The choice of using separate devices for DCD and DSD
aims at a practical goal as well. Sorting is only required

Fig. 2. The VQ training system architecture.

during training, whereas a distance-computation device can
also be used at run time for information coding with trained
codebooks. The two devices will therefore be considered
separately.

B. DCD

Computing the distance of each codevector from the current-
input vector is a time-consuming task. Many solutions have
been proposed, based on both HW accelerators and on al-
gorithm optimization. In the relevant literature, fully digital
approaches are usually employed for distance-computation
circuits [32]. Analog realizations can be found especially in
the neural network field [33], [34]. Optimizing DCD from an
algorithmic point of view, on the other hand, is useful in the
case of a single winner. In this situations, many techniques can
be applied [32], [35]. Such techniques aim to reduce codebook
search time.

The solution proposed here relies on a complete paral-
lelization, in terms of DCD (all vector components enter the
computation in parallel) and codebook access (all codevec-
tors are accessed simultaneously). This architectural setup is
consistent with several approaches described in the literature
[25], [31]. Electronic implementation of a completely parallel
architecture is possible, with a reasonable area efficiency, only
if one resorts to analog circuitry.

In the presented research, a DCD with the above features has
been suitably designed and fabricated. A detailed description
of the internal chip architecture [27] is beyond the scope of
this paper, which mainly focuses on the overall architectural
aspects of the VQ training algorithm. The DCD processes
analog vectors (represented as an array of input voltages),
stores the codebook in local analog memories (capacitors)
and in an external digital memory, and outputs three types
of information: the index of the best-matching codevector, en-
coded as a digital word; the distance value of the best-matching
codevector; and the distance values of all the codevectors.

This enables the circuit to act as both the required distance-
computing device and a stand-alone VQ encoder, while pro-
viding remarkable flexibility for a modular connection of many
such circuits. The chip is illustrated by the block diagram
in Fig. 3 (a photograph is presented in Fig. 4). The circuit
accepts input voltages in the range 0–1 V. The best-matching
codevector is evaluated in terms of squared Euclidean distance,
expressed as . Each term of this
summation (the output of a squaring block) is a current signal;
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Fig. 3. Block diagram of the DCD.

Fig. 4. Chip photograph of the DCD.

hence, the summation itself is greatly simplified. Then, the
distance is input to the WTA block, a modified and enhanced
version of the well-known circuit designed by Lazzaroet al.
[13]. This block produces the output signals described above.
Other components of the circuit are the refresh circuitry, based
on external D/A converters, and the polarization/reference sub-
system, implemented with the resistive interpolation biasing
technique [36].

C. DSD

The literature offers a variety of HW circuits for sorting. The
complexity of rank extraction mainly lies in the need for circu-
lating information among the components of a system, whose

interconnections might be difficult to implement by VLSI
circuits [29]. A study of the structural aspects involving sorting
time and the number of components is presented in [37].
Neural-network approaches use SOM’s [38] or Hopfield net-
works [39]. VLSI circuits tackle the communication-exchange
problem by limiting connections with pairwise comparisons;
they then set up a hierarchy of progressive selections [10],
[40]. Thanks to a better matching, local comparisons enhance
robustness by higher accuracy [30]; on the other hand, the
system area complexity tends to increase. In fact, the simplest
architecture for HW sorting requires only one wire connecting
several elementary cells. This approach is followed in [41],
[42], where a reduction in corner and offset errors is also taken
into account. For such structural features, a similar single-wire
connection approach is adopted by the DSD of the VQ-training
architecture.

The novel sorting circuitry described in the following best
fits the overall external architecture and minimizes intercon-
nections. The schema is based on Lazzaro’s well-known WTA
structure; the modular approach makes it possible to include
different schemata from the literature that, for instance, might
turn out to improve accuracy or speed (as presented in [41]).
The DSD circuit operates iteratively: the length of the list

can be preset and sorting completes in time. Each
iteration includes two steps: 1) the current largest input value
is detected by WTA competition; such a value is linearly
represented at the output voltage, and 2) the “winner” is
removed from the list of competitors. For each output value,
the circuit yields an analog representation of the value itself,
a digital encoding of its rank on the sorted list, and a digital
indexing of its position in the original set.

Each input current is handled by an associate elementary cell
[Fig. 5(a)]; each cell integrates analog circuitry and a-type
positive-edge triggered flip-flop. A single wire connects
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(a)

(b)

Fig. 5. The architecture of the sorting circuitry. (a) The elementary cell. (b)
Cell-interconnection structure.

the gates of transistors of all the cells [Fig. 5(b)] and is
biased by a constant current. At startup, a “low” PRESET

pulse forces status to be high in all the cells.
Step 1:The identification of the largest input value at each

iteration is supported by Lazzaro’s WTA circuit [13], which
has been chosen from several alternatives [43] mainly for
its simplicity. The sets of transistor pairs of all
the cells constitutes the basic WTA subcircuit. Thanks to the
negative feedback with global competition on line the
entire current flows in transistor of the cell with the
largest input current. If the input currents in transistors
are suitably biased [44], also yields an analog, linear,
representation of the winning value.

Step 2:The sorting circuit exploits the consequent nonuni-
form distribution of bias current . As long as switch is
kept “on” by a high signal (default condition), the matched
pair and the load transistor drive voltage . If
the cell is not the winner, no current is mirrored into and

is low; becomes high when the cell wins a competition.
The logic circuitry exploits this information to remove the
winner from the competition. At the next rising edge ofCLOCK,
the flip-flop status in the winning cell becomes low, and
informs external circuitry about the current winner. Feeding
back (low) to the flip-flop input inhibits further changes
in the flip-flop status; this prevents the cell from re-entering
competitions in the next iterations. At the same time,
is turned off and virtually disconnects the WTA subcircuit

from line . As a result, the cell is removed from
further competitions, and this condition holds until aPRESET

pulse drives back on.
To sum up, the highest input value is mapped at

at the first iteration; as soon as the winning cell exits the
competition, the second highest value is enabled to show
up, and so forth; iterations are timed by clock strikes. As
a result, the sorted list is represented by the sequence of
potentials at consecutive clock cycles. Programmable
sorting is accomplished by presetting the
counter to issue aPRESETpulse after clock cycles.

D. Architectural Reasons for HW Implementation
and Partial Sorting

The following analysis shows that the described architecture
improves the efficiency of the training process substantially.
To this end, we compare the timings of the analog architecture
with the corresponding performance of an (ideal) architecture
using serial digital circuitry. The analysis considers the phases
significant to comparison, i.e., DCD and sorting.

In a standard implementation of the NG algorithm, the time
taken by one iteration of the algorithm results from the sum
of two terms

(13)

where and indicate the times required to compute
one term of summation (1) and to make a pairwise distance
comparison, respectively. In order to evaluate we shall
make an optimality assumption, involving a DSP-like architec-
ture, running at clock period and able to best exploit the
sequence of computation. Each term in summation (1) requires
a difference, a product, and a sum; if the HW can execute a
multiplication and a sum in a single clock strike, we obtain

. Moreover, we shall assume that the serial
architecture can execute a comparison of two distances in one
clock cycle, hence . Expression (13) involves a
simplified model as, for example, it does not take into account
the time required to swap two elements on the sorted list.

The performance attained by the analog architecture with
partial sorting is expressed as

(14)

where the terms and have the same meanings as
above. The first term in expression (14) takes advantage of
the on-chip parallelism as all sample-codevector distances are
computed simultaneously, hence likewise, the
sorting circuitry can yield a sorted quantity per clock cycle,
hence . Experiments indicate a good setting
for the partial sorted list: .

Standard values for low-rate VQ image coding are
and . The maximum operating speed of the analog
circuitry is 2 MHz, hence ns. If the digital
implementation supports a DSP bus running at 100 MHz,

ns. Substituting these values into (13) and (14)
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allows one to evaluate a lower bound to the architectural
speed-up

(15)

It is worth stressing that the above value allows quite
optimistic assumptions about the serial implementation (for
example, the whole architecture should run at the processor
speed, no codevector swapping is accounted for in the sorting
process, etc.). Therefore, the estimated bound (15) is substan-
tially pessimistic, as measures obtained by various experiments
with commercial DSP’s yielded empirical values of the speed-
up (15) always greater than 100. Anyway, the result obtained
must be considered satisfactory, especially in view of the
lower clock speed and of the lower complexitty of the overall
architecture.

IV. EXPERIMENTAL RESULTS

This section provides experimental support for both the
theoretical derivations and the circuital implementations of the
VQ-training algorithm. First, the method is compared with the
NG algorithm, under the assumption that the latter behaves
ideally; the overall distortion on the data set measures each
model’s effectiveness. Then, VLSI circuits are considered and
evaluated.

A. Experimental Support for Partial Sorting

This section considers the quantization performance of
the training algorithm. The goal of the experiments is to
evaluate the specific effect of partial sorting to the overall VQ
performance. Therefore, the algorithm results are compared
with those obtained by the NG model, which requires a
complete and exact sorting of codevectors. The comparison
refers to both synthetic and real-world testbeds.

In the experiments, the length of the partially sorted list
was progressively increased and ranged from to

; in Section II, theory predicted that using larger values of
would be useless. The distortions conveyed by the resulting

codebooks were related to the average distortion of NG, acting
as the “reference” model. In order to remove statistical bias,
thirty independent training runs were performed for each value
of and for the original NG algorithm . Thus, the
NG reference performance is represented by a range of values
rather than by a single datum; likewise, results from the the
partial-sorting method are summarized by their average, min,
and max values. The comparison in performance between the
proposed method and the ideal NG model can be expressed
quantitavely by a percentage deviationdefined as

(16)

where and denote the average distorion of the partial-
sort algorithm (with list length ) and of the NG model,
respectively.

The synthetic data distribution proposed by Fritzke makes it
possible to visually evaluate codevector positions [6], [7], and

(a)

(b)

Fig. 6. Artificial-testbed results for partial sorting. (a) Fritzke’s synthetic
testbed for evaluation of clustering ability [6]. (b) Deviation from NG
performance; the grey area marks the distribution of ideal NG. Small values
of K (e.g.,K = 5) provide good approximations for the ideal performance.

allows comparisons with previous results in the literature. The
testbed included 4483 two-dimensional samples, whose spatial
distribution is shown in Fig. 6(a); a plastic algorithm [17]
evaluated the appropriate number of codevectors .
Fig. 6(b) displays averaged results in terms of percent devia-
tion from the reference distribution. The graph clearly shows
that, if increases, distortion converges to that obtained by
NG; at the same time, the distribution of results shrinks.
This confirms theoretical expectations, i.e., partial sorting
approximates ideal NG fairly well, even for small values of

; moreover, the confidence in such approximation increases
accordingly.

The validation of the VQ-training algorithm eventually
tackled a real testbed, i.e., image coding. This application is
technically significant as VQ methods can attain remarkable
compression ratios and yet maintain a satisfactory picture
quality, especially at very low bit rates [18]. In a VQ-based
image-coding system, a picture is split into elementary sub-
blocks, playing as samples in the quantized space. Typical
block sizes cover 4 4 or 8 8 pixel grids. In the
experiments, standard, gray level (8 bpp) images of size 512
512 were used, and blocks of both sizes (44 and 8 8) were
tested. In all cases, codebooks included 256 codevectors, and
this setting was worked out again by specific plastic-network
models [17].

The present analysis only focuses on a distortion comparison
with the NG model; hence, we refer the reader to [17] for both
a qualitative assessment of the image-coding methodology
and an extensive treatment of generalization performance. The
latter issue is a crucial problem in VQ algorithm testing:
after completing a training phase and creating a codebook,
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(a)

(b)

Fig. 7. Image-coding results for partial sorting. The greyed area marks the
distribution of ideal NG. (a) MSE results for 8� 8 pixel blocks. (b) MSE
results for 4� 4 pixel blocks.

the distortion performance must be evaluated on codevectors
outside the training set. This is especially true in image coding,
and represents a true test of a robust codebook. In fact, the
codeword positions determined by the partial-sorting method
and by the NG are very close; hence, the two approaches
exhibited equivalent generalization performance.

Fig. 7(a) and (b) display results for the block sizes 44 and
8 8, respectively. Due to the applicative nature of the image-
coding testbed, the direct metric of performance is reported on
the axis. Therefore, the graphs compare reconstruction MSE
for the experiment; this indicates the tradeoff in performance
for different values of . The reference (NG) distribution
is wider for the 4 4 blocks than for the 8 8 ones, as
the 4 4 block space is sampled much more intensely. The
very narrow gray band in Fig. 7(a) indicates that NG results
deviated from their average value by at most 0.15%; in other
words, the NG algorithm virtually found one minimum point
of the distortion cost. Partial-sorting results slightly exceeded
the NG distribution boundaries never more than 0.1% for

negative deviations suggest that partial sorting is
less sensitive to the annealing process. The average, min, and

Fig. 8. Output of the square-of-difference circuit for a triangular input signal.

max MSE values for the 8 8 block space, however, always
lay within the NG range for . To summarize, in the
image-coding experiments, empirical evidence again confirms
theoretical predictions: the distributions of distortion always
converge to those of ideal NG when increases, whereas the
associate confidence intervals shrink progressively.

It is worth noting that, in all testbeds, the upper bound to
was always seta priori to 15, yielding satisfactory results (i.e.,
fairly good approximations for the NG performance) anyway.
In other words, the length of the partially sorted list appears
invariant to the specific quantization problem. This property
seems the best experimental confirmation of the importance
analysis made in Section II.

B. DCD Results

Experimental verifications on the DCD chip have been
performed to assess proper implementation of the distance-
computing circuitry and overall performance.

The distance-computing block, a square-of-difference cir-
cuit, has been separately tested and compared with the required
behavior. To this purpose, a stand-alone block has been added
to the chip. The squaring function reveals good symmetry and
little overall error versus the theoretical characteristic. We can
observe that a symmetric behavior (polynomial characteristic
with even degree) is more important than exact quadratic
behavior in this specific application, namely, DCD. The output
current ranges from 3.39 to 3.52 mA for an input voltage
ranging from 2 to 2.95 V (slightly less than that of the
theoretical model). The best matching quadratic characteristic
is approximated with an average square error of about 5%, and
maximum deviation of 0.01 mA. Fig. 8 illustrates the response
of the circuit to a triangular waveform test signal.

The overall performance of the chip has been assessed,
with the aid of a dedicated test board, to enable evaluation of
the single-chip properties. Experiments have been performed
with 512 512-pixel images and 40-vector codebooks. The
throughput of the DCD chip is constrained mainly by the
on-chip decision circuitry (WTA), so that, when used as
distance-computation block only, its speed performances can
be fully exploited. Experimental verifications result in an
estimated throughput of about input vectors/s. We remark



696 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 6, JUNE 1999

Fig. 9. Simulation results of a sorting circuit with four input lines: Clock CK (top);PRESET(middle); Vout (bottom).

that internal operation is fully parallel, so that the required
clock signal can work at relatively low frequencies, since a
whole pattern is processed in a single clock cycle.

C. Experimental Evaluation of DSD

The DSD was simulated at the layout level by using
HSPICE lev.13 with 0.8-m technology by Austria Mikro
Systeme (AMS); power supply was 5 V. The circuit was
tested under stressing conditions (up to 64 input lines) and
always proved effective and accurate. The aspect ratios for
the analogue subcircuit were

The digital subcircuitry used standard CMOS configura-
tions. Input currents were in the range A to ensure
compatibility with the outputs of the DCD circuitry; the bias
current was A; the chip clock frequency was 2
MHz. An appealing feature of the presented circuit is a relative
insensitivity to design parameters, thanks to the integration of
analog and digital subcircuits. Conversely, power consumption
represents a drawback; this mainly relates to the current-mode
WTA mechanism, especially when its above-threshold biasing
[27], [44], is considered. In the present implementation, power
requirement varies in the range 1–3 mW/cell.

For simplicity of notation and interpretation, Fig. 9 presents
a demonstration involving four cells with a clock at 1 MHz;
the associate input currents (inA) are

. The input
exhibits a high-frequency component that has been introduced

only for demonstration purposes for the reader’s convenience.
It allows the reader to have an immediate visual perception of
the system-correct sorting; the sequence of analog outputs at

witnesses the correct functioning of the circuit and the
linear mapping of input/output values.

The device is currently being fabricated with the same
technology as used for the DCD device, and the apparent
limitation on the number of elementary cells can be easily
overcome by including multiple devices in a common architec-
ture [45]. However, other schemata for the WTA subnetwork
are being examined, especially in order to improve accuracy
by multistage WTA subcircuits.

V. DISCUSSION AND CONCLUSION

The technical interest in VQ models stems from their
remarkable performances in difficult applications with high-
dimensional data representations and oversampled data spaces.
Image coding at very low bit rates is a prototype for such
applications. At the same time, these very domains make VQ
quite demanding in terms of computational costs of training
and real-time performance. If this fact poses a basis for
supporting VQ training in HW, not all theoretical models
are equally prone to a circuit implementation. The amount
of involved computation and the interconnection structure
among codewords (or neurons, in neural-network terminology)
sometimes hinder critically a direct porting of algorithms to
circuits.

Architectural parallelism and distributed management of
information provide a viable approach to overcoming those
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issues. In HW, the former calls for several, independent
units entrusted with specific computational ability; the latter
confines data to the local level and minimizes the circulation of
information by reducing the number of interconnecting wires.

The research presented in this paper accounts for such
aspects with a VQ-training algorithm specifically aimed at HW
implementation. Specific features of the method are codeword-
level local computation and minimal circulation of information
by partial sorting. The theoretical analysis made in Section II
primarily serves to prove the method consistency in terms of
quantization quality, as compared with a similar algorithm
(NG) that is known to provide a notable improvement in
performance.

Thus, the overall approach matches the above guidelines for
effective porting: using analog technology for the distance-
computation device optimizes silicon area by reducing the
occupation of single cells. Likewise, an elementary schema
implements partial sorting and minimizes interconnection
circuitry down to one wire. The two devices operate
in conjunction with external digital circuitry for weight
storage/adjustment to permit flexible training strategies. The
integrated approach makes it possible to best exploit analog
components to reduce bandwidth bottlenecks and, at the same
time, to benefit from digital circuitry in permanent storage
and from programming facility.

From a qualitative perspective, the theoretical analysis and
the related experimental results appear complementary. The
algorithm’s effectiveness in optimizing quantization noise has
been attested substantially by showing the method equivalence
to a “reference” model described in the literature. More
importantly, a crucial theoretical result lies in proving that
partial sorting operates independently of a specific application,
hence no on-field tuning is required.

These results justify the HW-implementation effort, which
has led first to the design and realization of the DCD. This
device supports the core of the overall quantization process as
its internal parallel architecture boosts the timing performance
by reducing the bandwidth required for computation. The
testing process of the first production run of the VLSI chip
has confirmed the robustness and accuracy of the original
design, and has opened stimulating prospects for the next
engineering step. This redesign phase will mainly aim to
upgrade production by using a better technology (AMS 0.7m)
in order both to incorporate a larger number of codevectors
and to increase operating speed.
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