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Abstract. The increasing use of video compression standards in
broadcasting television systems has required, in recent years, the
development of video quality measurements that take into account
artifacts specifically caused by digital compression techniques. In
this paper we present a methodology for the objective quality as-
sessment of MPEG video streams by using circular back-
propagation feedforward neural networks. Mapping neural networks
can render nonlinear relationships between objective features and
subjective judgments, thus avoiding any simplifying assumption on
the complexity of the model. The neural network processes an in-
stantaneous set of input values, and yields an associated estimate
of perceived quality. Therefore, the neural-network approach turns
objective quality assessment into adaptive modeling of subjective
perception. The objective features used for the estimate are chosen
according to the assessed relevance to perceived quality and are
continuously extracted in real time from compressed video streams.
The overall system mimics perception but does not require any ana-
lytical model of the underlying physical phenomenon. The capability
to process compressed video streams represents an important ad-
vantage over existing approaches, like avoiding the stream-
decoding process greatly enhances real-time performance. Experi-
mental results confirm that the system provides satisfactory,
continuous-time approximations for actual scoring curves concern-
ing real test videos. © 2002 SPIE and IS&T.
[DOI: 10.1117/1.1479703]

1 Introduction

The shift from analog to digital techniques has allowed T
broadcasters to offer new advanced services. Neverthe
the technical quality of the video displayed may still com
promise the success of digital TV production. The cruc
issue is that digital encoding brings about specific vis
artifacts; hence, traditional techniques for evaluating ana
signals often prove ineffective in measuring the perceiv
quality of a digitally compressed video.
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There exist several techniques for assessing the qu
perceived by viewers. Subjective methods1 simply ask hu-
man assessors to score the quality of a series of test sc
Up to now subjective tests have been the basic tools w
which to characterize video quality, despite the complex
cost, and varying results of such tests.

From a different perspective, objective quality asse
ment aims to emulate human response to perceived qu
by processing numerical quantities that describe vid
streams. As a result, this technique no longer requires
puts from human operators. Thus, objective assessm
leads to deterministic models and makes real-time moni
ing of perceived quality feasible. The need for objecti
measures in the area of digital TV has a commercial ra
nale, too: the number of coders on the market will increa
in the next years, hence both manufacturers and broadc
ers will necessarily face the problem of comparing vid
quality at the user’s level. Several objective methods h
been proposed in the literature.2–11 Most approaches are
based on decompressed video: objective parameters ar
rived by comparing pictures with original scenes at the
ceiver end. The comparison is made either in feature sp
or in the picture domain, and typically applies differencin
methods.12 Other recent approaches measure blocking a
facts without using reference images;13–15in addition, com-
mercial tools have already been issued that can measur
quality of MPEG-2 video streams without referring
original sequences.16

From a scientific perspective, most of the above a
proaches aim at modeling perceived quality and im
somea priori assumptions of the underlying mathematic
model. These simplifying hypotheses may somehow aff
the general validity of results; in this respect, one sho
also consider that no valid model of human percept
seems to have been developed yet, due to the highly n
linear nature of the phenomena involved.

In this paper we present a method that uses ne
networks17 for automated evaluation of subjective asse

c-
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Gastaldo, Zunino, and Rovetta
ment. Previous neural-based approaches to MPEG qu
evaluation mainly addressed video coding control, and
ploited neural networks to implement quality/ra
strategies.18,19 Those works used conventional, specifica
tuned neural models~either multilayer perceptrons o
radial-basis function networks!, which entered the contro
process at the input~encoder! end. The research presente
in this paper, instead, focuses on real-time monitoring
perceived quality at the decoder end, and exploits an
vanced, flexible neural model. The network operates
compressed data only: it processes numerical features
tracted continuously from the video stream, and gener
the associated quality rating. This mode of operation
moves the need for any information about either the or
nal video or the decoding process. From an enginee
standpoint, the adaptive neural framework decouples
evaluation task from both the specific video source a
decoder issues.

The present approach bypasses the objective of a de
insight into the mechanism of quality perception; indeed
aims to mimic such a perception. This goal is attained
using circular back-propagation~CBP! neural networks.17

These networks support a general paradigm to deal w
complex mathematical models, and remove the need
any a priori assumption aimed at simplifying an analytic
model.

The paper is organized as follows. In Sec. 2 we desc
the architecture of the neural-network-based system
video-quality evaluation, and the criteria for feature sel
tion and feature run-time sampling. In Sec. 3 we outline
neural model adopted and the advantages of using this
work in the multimedia application considered. In Sec
are the experimental results, demonstrating the meth
validity under different conditions and for different inpu
sources. Some concluding remarks are made in Sec. 5

2 Objective Assessment of Video Quality

The proposed approach aims at an automated quality ev
ation of MPEG-2 bit streams.20 The method can be re
garded as being ‘‘objective’’ since it operates on numeri
quantities ~features! that are worked out directly from
MPEG-2 bit streams and feed a neural network to obt
quality ratings. Figure 1 shows a schematic representa
of the overall system.

The model operates on a frame-by-frame basis
yields a continuous output; as such, it provides a real-t
monitoring tool for displayed video quality. Therefore, th
objective system lies within the single-stimulus continuo
quality evaluation~SSCQE! paradigm,21 requiring that as-
sessments of picture quality be continuously recorded~in
standard cases, by human observers!. The technical frame-
work for the evaluation schema adopted is a single-end
‘‘No-Reference’’ paradigm. The system does not requ
uncompressed original videos, unlike ‘‘Full Reference’’
‘‘Reduced Reference’’ approaches, which also involve c
sidering the source of the video in the evaluation proce

In the design of objective-assessment systems,
should take into account that~1! several features that cha
acterize video streams jointly affect subjective judgmen
and ~2! nonlinear relationships and unknown mechanis
may complicate the modeling process. The CBP netw
provides a paradigm by which to deal with multidime
sional data characterized by complex relationships. The
366 / Journal of Electronic Imaging / July 2002 / Vol. 11(3)
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fectiveness of the neural-network approach lies in its ca
bility to decouple the problem of feature selection from t
design of an explicit mathematical model. The neural n
work directly yields the quality assessments associated w
input vectors of extracted features; the function that m
feature vectors into quality ratings is learned from e
amples by use of an iterative training algorithm. Therefo
the design of the objective metric set is not involved in t
setup of the mapping function.

The implicit neural metrics rely entirely on a represe
tation support—the compressed bit stream—that bypa
the need for human assessors’ ratings altogether. T
greatly improves the method’s real-time performance,
cause the broadcaster can monitor perceived quality
transmission time. Handling compressed video privileg
the relevance of blocking effects; this actually supports
basic model’s performance, since blockiness represents
most significant visual impairment. Nevertheless, the
stream carries complete information about the coded vi
~including detail-related quantities such as quantization m
trices!, hence the neural quality-evaluation system can
produce perceived quality assessments quite accurately
pecially since it can manage all the information available
the end user.

For the reader’s convenience, recall that MPEG-2 atta
still-image quality by standard discrete cosine transfo
~DCT! compression. Information on motion is treated
dividing each frame~picture! into several macroblocks~of
16316 pixels each! and by encoding the apparent mov
ment of the macroblocks within time-consecutive frame

2.1 Feature Selection for Objective Quality
Assessment

The set of processed features plays a crucial role for
effectiveness of the overall methodology. A single-end
paradigm requires that quite a large set of parameters
extracteda priori from video streams. Examples of suc
quantities are the number of bits per picture and the m

Fig. 1 Single-ended system for automated quality assessment. The
neural network yields a continuous-time evaluation of perceived
quality.
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Objective assessment of MPEG-2 . . .
value over a picture of motion vector absolute values. T
Appendix lists the complete feature set worked out fro
MPEG-2 compressed streams.

A subsequent statistical analysis, therefore, must sort
truly significant features. As expected, a considerable p
tion of all the features could be discarded because t
either do not carry important information or are mutua
correlated. Anyway, the present approach does not im
anya priori assumption of the significance of the encodi
parameters, and only ana posteriori statistical analysis
drives the feature-selection criterion. To this end, the f
lowing quantities are defined:

C is a library $c1 ,...,cL% of L test streams, compose
of P frames each;

f k
( j )(c i) is the value assumed by thekth feature for the

j th frame in thei th stream,c i .
The feature-selection algorithm can be outlined as

lows:
0. ~input!: a set of measured values,Fk , for each objective
feature:

Fk5$ f k
~ j !~c i !,i 51,...,L, j 51,...,P%, k51,...,Nf . ~1!

1. ~Rescaling!: For k51,...,Nf :
1.a compute the 0.05 and 0.95 percentiles,x0.05

(k) and
x0.95

(k) , respectively, for the values inFk ;
1.b build up a normalized setFI k by rescaling each ele

ment ofFk into the range@21, 1#:

FI k5$ fI i jk ; i 51,...,L; j 51,...,P%, ~2!

where

fI i jk5
def

2
@ f k

~ j !~c i !2x0.05
~k! #

~x0.95
~k! 2x0.05

~k! !
21. ~3!

2. ~Descriptive statistics!: Compute the two sets and th
associated threshold values:

S5$skewk ;k51,...,Nf% where skewk5skewness(FI k);
skewthr50.5 percentile ofS;

K5$kurtk ;k51,...,Nf% where kurtk5kurtosis(FI k);
kurtthr50.5 percentile ofK.
3. ~Feature selection!: Compile the feature set,Z, keeping
the objective features that satisfy

f kPZ⇔~skewk.skewthr! and ~kurtk.kurtthr!;
~4!

k51,...,Nf .

As a result, setZ includes the features that, due to the
asymmetrical distribution, are unlikely to stem from
Gaussian distribution; this selection criterion can be ju
fied as follows.

The main goal of the above procedure is to drive sel
tion of the neural-network input vector. In principle, on
might feed the neural network with the whole set of obje
tive features; in fact, such a large number of inputs~1!
would increase the complexity of the neural network a
t
-
y

-

~2! might cause poor generalization due to overfitting pro
lems. Thus, an empirical criterion that supports the featu
selection process is needed.

The present procedure uses skewness and kurtos
paradigms to characterize the statistical activity of the f
tures. The underlying hypothesis is that quantities with
non-normal distribution are most likely to be informativ
of course, one must be aware that, in principle, norma
distributed features can provide useful information as w
Therefore, ultimate validation of the antinormal selecti
will only stem from testing the empirical performance
the quality-evaluation system on the tentative feature s

In this respect, the algorithm described has been p
ferred to alternative approaches@e.g., principal componen
analysis~PCA!22#, mainly for the high data dimensionalit
involved in such methods. Numerical precision issues
working out eigenvectors, in particular, the presence
possible outliers, sometimes may affect the performanc
PCA in high-dimensional domains. By contrast, the expl
atory projection pursuit23 is a method that uses the sam
paradigm as the proposed algorithm.

2.2 Feature Run-Time Sampling

The objective-assessment system generates continu
time quality ratings. In principle, one can feed the CB
network with the feature values continuously extract
from each sequence frame. In fact, some specific mec
nisms of human perception should be taken into acco
~1! the assessor’s reaction times are subject to delays,24–26

~2! the most recent segment of a sequence has a gre
effect on the instantaneous quality rating,24,27 and~3! time-
consecutive frames tend to interfere with one another.28 In
the literature, such phenomena are known as ‘‘the as
sor’s response time,’’ ‘‘time-weighted averaging,’’ and ‘‘th
masking phenomenon,’’ respectively.

All of these aspects have been parametrized in
feature-extraction process~Fig. 2!. The parameterD refers
to the delay between the subjective judgment and the
frame that has influenced it. To compensate for tim
weighted averaging, a set ofN frames generates a sing
score. Within this set, groups ofW consecutive frames
make up a single feature vector, thus accounting for
masking phenomenon. In order to preserve informat
about the perceived quality over each interval ofW pic-
tures, the eventual input vector,x, to the neural network
includes, for each feature selected by the above-descr
analysis, one of the three values worked out as follows

f&kL
~ j !~c i !5max$ f k

~ j !~c i !,...,f k
~ j 1W21!~c i !%,

f&kS
~ j !~c i !5min$ f k

~ j !~c i !,...,f k
~ j 1W21!~c i !%, ~5!

f&kA
~ j !~c i !5avg$ f k

~ j !~c i !,...,f k
~ j 1W21!~c i !%.

For instance, with the feature ‘‘number of bits per pi
ture,’’ interest is in the smallest value over a set ofW
frames, because it is expected that the smaller the num
of bits, the larger the degradation of the picture.

3 Neural Networks for Quality Estimation

Feedforward neural networks~NNs! map the feature vec
tors that describe video frames into the associated qua
assessments. This problem formulation treats the qua
Journal of Electronic Imaging / July 2002 / Vol. 11(3) / 367
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Fig. 2 Feature run-time sampling process according to perceptual mechanisms.
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scores used for training as a discrete set of scalar lab
and network outputs are reported as scalar quantities
this sense, efficiency requirements~i.e., the storage size o
the parameters! and generalization issues~i.e., NN perfor-
mance over data not used for training! ultimately result in
the problem of properly sizing the number of neurons in
NN.

3.1 CBP Architecture

Neural-network research has shown that multilayer perc
trons~MLPs!29 can efficiently tackle problems in which th
target-mapping function can be supported by few para
eters with a global scope. Instead, if the target-mapp
process can be best expressed as a superposition of lo
tuned contributions, radial-basis-function~RBF! networks29

typically perform better. This implies that the unknow
characteristics of the specific mapping problem furth
complicate the choice of the nature and size of the NN. T
basic advantage of the circular back-propagation mode
that it has been proved17 to encompass both MLP and RB
paradigms; the choice of the more appropriate represe
tion is implicit because it is performed during the trainin
process and depends on the empirical problem at hand

A CBP network includes a two-layer architecture~Fig.
3!. The input layer connects theni input values~features! to
each neuron of the ‘‘hidden layer.’’ Theuth ‘‘hidden’’ neu-
ron first computes a linear combination of input value
which are weighted by coefficients$wu,k ;u51,...,nh ;k
51,...,ni%:

r u5wu,01 (
k51

ni

wu,kxk1wu,ni11(
k51

ni

xk
2; u51,...,nh .

~6a!

Then each neuron performs a nonlinear, sigmoidal tra
formation of the result:

au5s~r u!; u51,...,nh , ~6b!
ctronic Imaging / July 2002 / Vol. 11(3)
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wheres(x)5(11e2x)21. The termsr u andau are usually
called the neuronstimulusandactivation, respectively. The
output layer provides the actual network responses,yv , by
a similar transformation:

r v5wv,01 (
u51

nh

wv,uau ; v51,...,no . ~7a!

yv5s~r v!; v51,...,no . ~7b!

A quadratic cost function measures the distortion b
tween the actual network output~s! and the expected refer
ence output~s! on a sample of training patterns. The cost
expressed as

E5
1

nonp
(
l 51

np

(
v51

no

~ tv
~ l !2yv

~ l !!2, ~8!

Fig. 3 Schematic representation of a CBP architecture. The CBP
model includes one additional input to the standard MLP.
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Objective assessment of MPEG-2 . . .
wherenp is the number of training patterns, andtv are the
desired training outputs. In the present application,no51
and the expected output is given by the quality assessm
~score! measured experimentally from a human panel.
alternative to Eq.~8! is the threshold costfunction ET(g):

ET~g!5
1

nonP
(
l 51

nP

(
v51

no

g~ utv
~ l !2yv

~ l !u!;

g~x!5 H0⇔x<g,
1⇔x.g J , ~9!

where the distortion cost is expressed as the percentag
outputsyv that differ from the expected scoretv in more
than a fixed thresholdg.

Training algorithms usually aim to minimize Eq.~8!
mainly because, for that cost formulation, one can deriv
gradient expression and use conventional gradient-des
techniques. The back-propagation algorithm17 is by far the
most widely used and most effective method for weig
optimization in feedforward neural networks, and
adopted for CBP training as well.

From a structural perspective, the quadratic term in
pression~6a! sets the difference between the CBP mo
and a conventional MLP. Such augmentation is attained
simply including one additional input~Fig. 3!, which just
sums the squared values of all the other network inp
The additional unit allows the overall network to exhib
standard, sigmoidal behavior, or to drift smoothly to a be
shaped, Gaussian-like radial function; this makes the C
model able to choose autonomously from MLP and R
representation paradigms. At the same time, the limited
crease in the network parameters does not affect the
pected generalization performance of the model.17 The
weight configuration resulting from the network-trainin
process ultimately fixes the most suitable representa
setting for the mapping problem.

The effectiveness of a neural network-based appro
may not be intuitively obvious, especially when consid
ing its degree of correspondence with human visual perc
tion. The connection between the CBP architecture and
sual perception mainly lies in the capability of th
empirically trained network to catch some of the nonl
earities inherent in human perception. The resulting mo
is implicitly buried in the network parameters, hence m
likely it proves difficult to interpret. As a natural feature o
any empirical model, system effectiveness will strongly d
pend on the adequacy and completeness of training da

3.2 Neural Network Setup

The network configuration~i.e., the number of hidden
units! has been designed by use of a specific initializat
technique that exploits the equivalence of the CBP mode
vector-quantization~VQ! paradigms.30 In particular, a VQ
preliminary phase using the plastic neural gas algorith31

assessed the proper number of reference vectors to re
sent the available sample distribution. The subsequent
figuration phase directly plugged the number and space
sitions of the VQ vectors in the CBP network.30 That
weight initialization proved most effective in acceleratin
nt

of

nt

-

y
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-

n

h

-
-

l

e-
-
-

the convergence of the overall training process, compa
with conventional random initialization methods.

The CBP network training applies an accelerat
variant32 of the back-propagation algorithm. The possibili
of using conventional techniques to train an advanced
work structure is the major advantage of the CBP mode

4 Experimental Results

The effectiveness of the neural approach to objective q
ity assessment was verified experimentally by a library
MPEG-2 videos provided by the Research Center of
Italian Radio and Television Corporation~RAI!. The test-
bed included 12 frame-coded MP@ML sequences, each
s long; the picture size was 7203576 pixels. The sequenc
contents varied from fiction to sport, and were encoded
different bit rates in the range of 4–8 Mbits/s.

Assessments of all the sequences were collected by
expert viewers; the subjective tests were carried out wit
SSCQE technique at a sampling rate of two scores per
ond. Quality ratings were represented by a continuous s
ranging in@21, 1#.

4.1 Experimental Setup

The neural-network training process involved the Z set
features that the statistical analysis had selected from
global feature set listed in the Appendix. In order to e
hance the CBP network’s generalization performance,
dimensionality of the input data space was further redu
with a feature-selection technique.33 The eventual four-
dimensional feature space covered the quantitiesN bits,
Xq–scale(1), Xmv(1),and Smv–dev–std. The objective
metric handles information about intracoding~quantization
factors, number of bits per picture! and intercoding~motion
vectors! properties of the video stream; therefore, as ant
pated in Sec. 2, the quality-evaluation system can man
global characteristics of the video.

The data set included 1320 patterns generated by
run-time sampling process presented in Sec. 2, withN
524, W56 andD517. The numerical values of these p
rameters were determined by using standard values
posed in the literature.24–28 The training and test sets wer
obtained by dividing the data set into two subsets of 8
and 500 patterns, respectively.

In order to avoid overfitting problems, the number
nodes in the hidden layer was chosen by using the pla
VQ algorithm, which processed the training samples to
sign the neural network configuration. The resulting va
nh514 set the number of hidden units in the feedforwa
structure.

4.2 Results

Figure 4 shows the test results obtained for the selec
feature set. Figures 4~a! and 4~b! compare the quality rat-
ings by human assessors with the corresponding outpu
the neural network. For display clarity, the human ratin
were sorted in increasing order, each point on thex axis
representing a single evaluation event. Figure 4~a! shows
the plot of the numerical results obtained for the who
library of test videos, that is, the 12 MPEG-2 vide
streams. It also presents an asymmetric distribution of s
jective scores, 44% of the original scores exceed 0.5. S
Journal of Electronic Imaging / July 2002 / Vol. 11(3) / 369
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Gastaldo, Zunino, and Rovetta
the lower scores appear subsampled, they are subje
larger errors due to the lower statistical confidence. Nev
theless, the CPB neural network attained an average e
m̂err520.001 over the test set. The average error over
absolute values of the prediction errors wasm̂ uerru50.06.

Figure 4~b! presents results obtained for a subset of
testbed. The subset includes videos with sport conte
only. Figure 4~b! shows that human quality ratings exhibit
higher variance for this kind of video. In addition, the s
quences with sport contents are a small subset of the
library, hence the neural network suffered from larger
rors due to the lower statistical confidence. In this case,
neural-network system achievedm̂err520.01 and m̂ uerru
50.12.

In order to show the generalization ability of the mod
Fig. 5 shows a comparison of training and test results
tained with the complete testbed. Figure 5~a! gives a scatter
plot of the training results, with the actual subjective sco
as thex axis and the estimated objective score as they axis.
Pearson’s correlation coefficient for the training resu
takes on a value of 0.97; the Spearman rank order corr
tion, a nonparametric and distribution free test, gives
value of 0.85 as the correlation coefficient. Figure 5~b!

Fig. 4 Neural-network scoring performance: (a) results obtained on
the whole test library; (b) results obtained on sport videos.
370 / Journal of Electronic Imaging / July 2002 / Vol. 11(3)
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shows the scatter plot for the test results, which exhib
slightly lower correlation; Pearson’s correlation coefficie
takes a value of 0.93 and the Spearman rank order corr
tion coefficient takes a value of 0.8.

The significance of these results is supported by
comparison with the experimental results obtained by p
ture appraisal rating~PAR!,16 a single-ended quality mea
sure for MPEG used in a commercial product for vid
quality control. PAR achieves a Pearson correlation coe
cient of 0.93 between the estimated outputs and the p
signal-to-noise ratio~PSNR!, which is used as a referenc
measure of quality and is worked out on the differen
between original and decoded frames. Compared with P
the proposed neural-based approach obtains on test re
the same correlation coefficient between estimated out
and reference quality measures. Furthermore, the pre
work uses as reference quality ratings the subjective sc
rather than an objective measure such as the PSNR. In
sense, it can be asserted that the neural network yiel
more reliable estimate of video quality as perceived by
man assessors.

Figure 6~a! shows a plot of the error distribution ob
tained for the whole library of test videos. The graph p
sents the distribution together with the related best-fitt

Fig. 5 Correlation between the actual subjective score and the es-
timated objective score: (a) training results; (b) test results.
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Objective assessment of MPEG-2 . . .
Gaussian approximationN(0,0.05). The correctness of th
Gaussian assumption was verified by carrying out
Kolmogorov–Smirnov~KS! normality test, which satisfied
the null hypothesis to a high degree of confidencep
.0.95). TheQ–Q plot shown in Fig. 6~b! confirms that
the error distribution follows a normal distribution. Th
graph demonstrates that almost all the actual observed
ues of the prediction errors lie on the dashed line that r
resents the Gaussian distributionN(0,0.05).

Figure 7~a! shows the error distribution obtained for te
videos with sport contents. The actual error distribution
plotted together with the associate best-approxima
Gaussian distributionN(0,0.16). Figure 7~b! presents the
correspondingQ–Q plot, which strengthens the hypothes
about a normal distribution, as most of the observed val
lie on the dashed line indicating Gaussian distribut
N(0,0.16).

The overall numerical results are summarized in Table
which also gives the costse and eT(g) derived from the
neural-network test.

Fig. 6 Error distribution obtained for the whole library of test
streams: (a) actual error distribution together with N(0,0.05); (b)
comparison of quantiles of the normal distribution N(0,0.05) vs the
corresponding sample quantiles of the prediction errors.
l-
-

s

,

The analysis of the confidence interval~CI! for merr con-
firms the method’s effectiveness. For large sample sizen,
the 12a CI for a distribution with unknown meanm and
unknown variances2 can be approximated by

m̂6za/2

s

An
, ~10!

Fig. 7 Error distribution obtained for video streams with sport con-
tents: (a) actual error distribution together with N(0,0.13); (b) quan-
tiles of the normal distribution N(0,0.13) vs the corresponding
sample quantiles of the prediction errors.

Table 1 Test results.

Complete set Sport content only

m̂ uerru 0.06 0.12

m̂err 20.001 20.01

ŝ2
err 0.01 0.02

e 0.01 0.0251

eT(0.15) 0.1022 0.3011
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wherem̂ is the sample mean,za/2 is the 12a/2 percentile
of the standard normal distributionN(0,1), ands is the
sample standard deviation. The graph in Fig. 8 pl
za/2s/An(5um̂err2merru) as a function of the confidenc
level 12a for the test result obtained on the complete
(n5500). Figure 8 compares the results obtained by
sumings to be

• the sample standard deviation measured on the w
sample set (s>0.1);

• the estimate of the sample standard deviation by us
the Gaussian approximation of the error distributi
(s>0.05).

The graph shows that the 0.95 CI ism̂err60.0087 fors
50.1 andm̂err60.0043 fors50.05.

5 Conclusions

In this work we have presented an automated method
objective quality assessment by use of neural netwo
~Fig. 9!. The evaluation system handles MPEG-2 vid
streams. Numerical observations are computed for e
frame of the processed MPEG sequence and enter the
ral network consisting of a circular back-propagation arc
tecture. The statistical model supported by the trained n
ral network yields an output scalar value, which provide
numerical representation of perceived quality.

The major result of the proposed method is the possi
ity of reproducing human perception consistently by us
quantitative, data-driven models. The neural-netw
model is specifically tuned to learn the perceptual pheno
enon from examples, and exploits a known effective a
mentation of standard back-propagation~BP! networks.

A crucial advantage of the methodology described is
system’s capability to handle compressed video strea
Avoiding the need for decompressed pictures enhances
method’s effectiveness in real-time production applicatio

The experimental setup involved both a training pha
with observations collected from evaluation panels a
generalization testing using sequences and the assoc
quality assessments not included in the training sets.

Fig. 8 Plot of the confidence interval for sample mean m̂err as a
function of the confidence level 1-a.
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perimental evidence confirmed the validity of the approa
because the system always provided satisfact
continuous-time approximations for the actual scori
curves related to test videos.
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Appendix: Objective Features

An MPEG-2 bit stream has a hierarchical structure t
allows one to get information at multiple levels, i.e., s
quence, group of pictures, picture, slice, macroblock a
block. In the present work, objective features have be
chosen to characterize the stream at the picture level.

The following quantities are defined:

• energy5
1

256(i 50

16

(
j 50

16

~mbDCT@ i #@ j # !2, ~A1!

wherembDCT@ i #@ j # are the DCT coefficients of a P or B
macroblock. This quantity gives the energy of the corre
tion to the predicted macroblock.

Fig. 9 Video quality analyzer.
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Objective assessment of MPEG-2 . . .
• q–mv5
q–scale

11^um–vu&
, ~A2!

where q–scale is the quantizer-scale factor in a mac

block, and ^um–vu& is the mean amplitude value of th
motion vectors in the same macroblock.

• e–mv5energy•^um–vu&, ~A3!

wheree–mv is the weighted energy of a macroblock.
Table 2 lists the objective features worked out from t

coded bit stream. The following four classes of measu
can be identified.

• Percentage of macroblocks: Features are defined

fk5
nmb

nt
~mb! , ~A4!

wherenmb is the number of macroblocks of the typ

Table 2 Features worked out from MPEG stream.

Feature name Feature description

Percentage (macroblocks)

Pmb–no–pred nmb5macroblocks with no motion vectors

Pmb–fwd nmb5macroblocks with forward motion
vector only

Pmb–back nmb5macroblocks with backward motion
vector only

Pmb–bidir nmb5bidirectional macroblocks

Pmb–I nmb5 intramacroblocks

Pmb–skipped nmb5skipped macroblocks

Percentage (blocks)

Pb–sk–luma nb5skipped luminance blocks

Pb–sk–chroma nb5skipped chrominance blocks

Statistical figures

Smv–mean mean-pi5umotion vectoru
Sq–scale–mean mean-pi5q –scale

Senergy–mean mean-pi5energy

Smv–dev–std standard deviation-pi5umotion vectoru
Sq–scale–dev–std standard deviation-pi5q –scale

Senergy–dev–std standard deviation-pi5energy

Smv–var variance-pi5umotion vectoru
Sq–scale–var variance-pi5q –scale

Senergy–var variance-pi5energy

Percentile

Xmv(a) pi5mean of umotion vectoru
Xq–scale(a) pi5q –scale

Xenergy(a) pi5energy

Xq–mv(a) pi5q –mv

Xe–mv(a) pi5e –mv
s

specified in the second column of Table 2, andnT
(mb) is

the total number of macroblocks in the picture.

• Percentage of blocks: Features are defined as

fk5
nb

nT
~b! ~A5!

wherenb is the number of blocks of the type specifie
in Table 2, andnT

(b) is the total number of blocks in the
picture.

• Statistic features are defined as

fk5Hmean~p!

std deviation~p!

variance~p!
~A6!

where p is a vector of valuespi computed on each
macroblock of the picture;pi is given in Table 2.

• Percentiles: Features are defined as

fk5xa~p! ~A7!

wherexa is thea percentile ofp.

The last feature included in the objective set isNbits, i.e.,
the number of bits per picture.
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