Direct expansion of time function: Another convenient expression
of the expansion is now presented. With the change of variables,

— -1 _
w-! = laz-b _ a\/gw 1)
Vbaz —1 Vw1 —b
we obtain a new representation from the z-transform of eqn. 5:
_ \/_bw -b
Fw™) = Z faw™" (8)

Thus for analytical functions, the coefficients f, may be computed
by transforming them into a series in F(w!) and dividing by (Vbw-

— b). When F(w) is a rational fraction of w' it is easier to use a
polynomial division which gives the coefficients f,.

Bilateral decomposition: Consider the identification of a time func-
tion defined for negative and positive time by a finite sum of
Laguerre functions. We define the bilateral z-transform by

+oo
3 k)
k=—o0
for values of z ensuring the convergence of F(z). We introduce the
two causal functions

fHR) = f(k) for k>0
frk) =0 for k <0
k) =f(-k=1) fork>0
(k=0 for k<0
Their z-transforms are then defined by
+oo
=3 FrR) (%)
k=0
“+oo
D= ke (96)
k=0

It is then clear that
1
F(2)=Ft(2) +2F~ (;) (10)

According to the Laguerre expansion of a signal for positive time,
we may write (with different parameters (a,, 5,) and (a_, b))

+o0
=Y fiLa(kay,by) (11a)
n=0
“+oo
=" fiLn(ka_,b_) (116)
which have z-transforms
+00
Fr) =) fHLn(z,a4,by) (12a)
n=0
+00
Fo(ky =" frLn(z,a_.b.) (12b)
n=0
We may now expand the time function bilaterally as
+00 +(bil/2 —a3 blﬂz’l)"
Fo)= 3 fit— e 2
= (1-ai'z71)

- 1/2 ‘1b1_/2z)”
+sz TP e (13)
To simplify F{(z), we choose

aL=a

+oo . — 9 -
pol/2 _ go1pl/2,—1yn
ry=y e et

Pt (1—a-1z-L)n+1

Sy g

(b=1/2 — g~ 1p1/25-1)=(nt1)

1 — a—lz—l)—n

956 ELECTRONICS LETTERS 8th June 1995 Vol. 31

Finally, by defining
fo= v

— —f’a’lbl/g

ifn>0
fofnry) = ifn<0

the z-transform is written as

+oo -1/2 _ ,—1p1/2. -1\ "
1 b a” btz
F) = 1—g-lz1! Z In (1—a-1z-1)

N (14)
Simplification occurs when the change of variables
p—1/2 _ q—1pl/2,-1
1_1 e —
o= 1—q 1z} (1)
is substituted into eqn. 14, giving
Py = Yot 55 (16)
O D "
n=—oo

Summarising, the computation of the coefficients f, may be
achieved using different techniques. For an analytical time func-
tion defined on the interval [0, +e0], we may use eqn. 8, for exper-
imental data on the interval [0, K] eqn. 6 is convenient, and for
time functions defined in negative and positive time, bilinear
decomposition {eqn. 16) must be applied.

Conclusion: We have shown how to expand a discrete time series
using the discrete Laguerre functions. The main contribution of
the proposed method is the extension of a classical approach to
the case involving series defined over a interval defined in negative
and positive time. Application of these expansions may be devel-
oped in the field of signal modelling and system identification
where the input and the output of the concerned process are
defined in an interval including the time origin. This occurs in
anticipative or noncausal system applications such as image
processing.

© IEE 1995
Electronics Letters Online No: 19950663

S. Ekongolo, D. Maquin and J. Ragot (Centre de Recherche en
Automatique de Nancy- CNRS UA 821, Institut National Polytechnique
de Lorraine, 2, Avenue de la Forét de Haye, F-54516 Vandoeuvre,
France)

25 April 1995

References

1 WAHLBERG, B.: ‘System identification using Laguerre models’, IEEE
Trans. Autom. Control, 1991, 36, (5), pp. 551--562

2 MAKILA,pM.: ‘Laguerre series approximation of infinite
dimensional systems’, Auromatica, 1990, 26, (2), pp. 985-995

3 MARMONIER, R, ROESCH,M., and RAGOT,J).: ‘Some methods of
decomposition of a time function into discrete Laguerre function’,
J. 4, 1976, 17, (4), pp. 215-218

Compact digital pseudorandom number
generator

D. Anguita, S. Rovetta and R. Zunino

Indexing term: Random number generation

A general-purpose easy-to-implement random number generator
is presented. It features an 8bit word size, good statistical
properties and repeatability of the generated sequence. The circuit
has been included in the design of many systems, ranging from
neural networks to cryptography.

Introduction: Many applications require the use of a random
number generator with particular properties [1]. Such a device
often lies at the very heart of a system. Examples of applications
in the electronic field include cryptography (for which the period
length serves as the minimum protection against brute force
attacks) and initialisation of parameters for neural networks train-

No. 12

ing. We require that the system generate a sequence of numbers
with good statistical properties, i.e. as uniform as possible. In the
case of cryptography, reproducibility is also crucial. In these situa-
tions, a pseudorandom generator is used instead of a real noise
source. A pseudorandom generator starts from a single number
(the seed), and creates a sequence by a chaotic process simulating
randomness. We¢ aim to obtain the longest possible period before
the repetition of a sequence. Moreover, when the generator algo-
rithm is planned to be implemented in bardware, the simplest cir-
cuit is obviously preferred.

The proposed scheme shows a good statistical behaviour, easy
scalability to increase the length of the period, a very simple reali-
sation in digital hardware, and the ability to produce zero as part
of the output sequence. This feature allows the implementation of
a random variable with values in [0, MAX] as often assumed in
some applications, without requiring additional computations that
would reduce the compactness of the circuit.

Pseudorandom number generators: The proposed generator is
based on the model of linear recursive generation (LRG) [2], par-
ticularly well-suited for hardware implementation. The basic
building block is a shift register. The method of LRG is based on
a linear recursive sequence of bits, defined as follows:

X =Cy X1 +CoXpo + ...+ Cp4Yk—p

where X, is the kth bit of the generated sequence, and the p coeffi-
cients C, are binary constants that determine the behaviour of the
generator. The linear recursive sequence is initialised with a set of
p values {X,, ..., X,}. The first p~1 constants C; take on values in
the range {0, 1} and C, = 1. As the next bit X, depends only on
the past p bits, the maximum period # we can achieve will be n =
2r-1. The following holds [1]:

Theorem: The period n has its maximum possible value 271 if
and only if the polynomial

flz) =14 Cra + Cox® + ... + Cpa?
P

is prime over the field of the polynomials with coefficients in {I,
0}. The sequence generated by such a set of coefficients is statisti-
cally balanced (its average is T, X,/n = 1/2).

;/{ :2; I/L |

(v
Fig. 1 Linear recursive generator

The circuit implementation of such a simple generator, shown
in Fig. 1, is straightforward. It involves only one shift register and
an exclusive-or computing the sum of the p bits C X, ,, ..., C,X, .
This basic scheme produces a single bit stream with pseudoran-
dom behaviour, but can also be used to build up a generator for a
stream of multibit words. If a word length of b bits is required, the
first b bits of the shift register can be used (if # < p), or another
shift register of suitable length can be appended to the output of
the single-bit circuit to accumulate enough bits to form a complete
word. In either case, the period of the sequence is reduced to
(2—1)/b words. A better generator can be designed by using b par-
allel LRGs. A shift matrix C, is obtained by considering the b
rows of p shift coefficients each. It can be shown that, if the shift
matrix has full rank, the period of this circuit is still 22-1. A more
complex realisation is the main drawback of this solution.

Usually, a sequence length of 255 is still not sufficient for most
realisations, even for those requiring 8 bit words. Hence the basic
LRG should be improved by lengthening its period. It is not very
difficult to achieve such a goal, but we must also satisfy the
important requirement of statistical uniformity (the sequence
should be characterised by impulsive autocorrelation). When
designing the generator, we must also take into account the actual
word size b required. If analysed statistically, some schemes
behave better when realised with a larger number of bits. In gen-

ELECTRONICS LETTERS 8th June 1995 Vol. 31

eral, it is harder to design a generator with good independence
properties if the word size is smaller. For these reasons, once a
generator has been designed, it is a good practice to simulate it in
software and to analyse its output by means of a statistical inde-
pendence test, like the standard chi-squared test.

ck—r——o] [T] 1 1] D]

DY,

%
|—‘D—> Do
——

CK @0

l—’R Q7 ————p p7

reset
Fig. 2 Proposed circuit

Implementation: The proposed circuit is shown in Fig. 2. It is
based on the idea of combining two generator blocks in such a
way that their periods interact to form the maximum possible
sequence length. This means that, if the periods of the two blocks
are n, and n,, respectively, the combination should yield a period n
= mn,. This property can be achieved when the two periods are
mutually prime.

The first block is an LRG with 9 bits, initialised with an 8 bit
seed. The last bit is loaded with a fixed value (selected at design
time). The period is thus 2°-1 = 511.

If the constant initialisation bit is set to 1, the generated
sequence also includes the value 0, which is consequently a legiti-
mate value for the seed. This property may be required, for
instance, in all applications in which the seed is user-selectable,
and hence it can not be ensured that a particular value will never
be introduced.

The second block need not be another pseudorandom generator
but only an element introducing a decorrelation among the succes-
sive bits of the sequence; to this end, it is sufficient to provide an 8
bit counter with a period 256. As 511 and 256 are mutually prime,
the global period of the generator will amount to 256 x 511 =
130816.

The initialisation is performed with two 8 bit words, one to set
up the counter and the other to provide a seed for the LRG.

The standard y? test yielded good results in terms of sequence
uniformity. The parameter ¥*> remained within acceptable limits
for most of the sequences, generated with different seeds.

Conclusion: The proposed circuit has been used in the design of
many systems currently under development. Some examples
include the VLSI implementation of a vector guantisation neural
network requiring a set of initial random values for the training
process (plastic neural gas [3]), and a hardware cryptographic sys-
tem implementing a scaleable fractal algorithm. A more exhaustive
validation of the statistical properties of a pseudorandom sequence
would be needed, especially for cryptographic applications, but the
definition of a theoretically sound and practically useful testing
procedure is still an open problem.

The proposed circuit is especially well suited to applications
requiring a compact circuit to generate random sequences, as in
digital realisations of distributed computing applications [4].

Acknowledgment: The authors thank M. Cappelli, from whose
ideas this work originated .

© IEE 1995
Electronics Letters Online No: 19950695

27 April 1995

D. Anguita, S. Rovetta and R. Zunino (D.1 B.E., University of Genoa,
Via All’Opera Pia 11a, I-16145 Genova, Italy)

No. 12 957

References

1 LECUYER, P.. ‘Uniform random number generation’, Ann. Oper.
Res., 1994, 53, pp. 77-120

2 XNUTH, DE: ‘The art of computer programming: Seminumerical
algorithms (Addison-Wesley, 1981), 2nd Edn., Vol. 2

3 RIDELLA, S., ROVETTA,S., and ZUNINO, R.: ‘Plastic neural gas for
adaptive vector quantisation’, submitted to IEEE Trans. Neural
Netw.

4 PARODI, G.C, RIDELLA, S., and ZUNINO, R.: ‘Using chaos to generate
keys for associative noise-like coding memories’, Neural Net., 1993,
6, (4), pp. 559-572

Digit serial division algorithm

A.E. Bashagha and M.K. Ibrahim

Indexing term: Digital arithmetic

A new radix digit serial division algorithm is presented. The speed
of the proposed algorithm is nearly twice that of an existing
design. Moreover, the new algorithm requires less area for a digit
size of up to 8bits (for a 32bit quotient).

Introduction: The digit serial approach has recently been devel-
oped as a compromise between the fast and expensive bit parallel
approach and the slow and cheap bit serial realisation [1]. The
digit serial structure processes a number of bits #, called a digit at
one cycle, where n varies between 1 bit and the wordlength, N.
Digit serial notation is also used in the context of redundant
number based systems which are also known as on-line arithmetic
systems [2]. The drawback of the on-line systems is an increased
size of the computational elements and the overhead of data con-
version.

New digit serial algorithms and architectures based on radix-2"
arithmetic have recently been developed [3, 4]. Each quotient bit is
generated in m cycles, where m is the number of radix-2” digits of
the word. The throughput rate of these architectures can be
increased by pipelining the architecture to the digit level [3] or
even the bit level [4]. However, the pipelining of the architecture
will increase the latency and the number of latches (i.e. the area).
We propose a modified version of the original digit serial algo-
rithm of [3, 4], where k£ quotient bits can be generated in m+k
cycles. This results in a reduction of the computation time per
quotient bit and, moreover, a reduction in area since fewer latches
are required.

Digit serial division: We consider the division process = A/D,
where the dividend A, the divisor D, and the quotient Q, are 2N
bit, N bit, and N bit fixed point fractions, respectively. It is
assumed that | 4| < |D] and |D} # 0. The input operands, A and D,
are divided into 2m digits and m digits, respectively, where each
digit consists of # bits (i.e. N = mn). They are fed in a digit serial
form (digit-by-digit) starting from the least significant digits
(LSDs). The N bit quotient, (, is generated in a bit parallel form
and can be converted to a digit serial form. The m-digit partial
remainder (hereafter referred to as the remainder) PR, for i = 1,
.., N is generated in a digit serial form starting from the LSD. It
is assumed that all the data, A4, D, Q, and PR, arc in two’s comple-
ment form.

In the original digit serial division algorithm [3, 4], m cycles are
required to generate each quotient bit g, for i = 1, ..., N. This bit
is used to control the (i+1)th step of the algorithm such that an
addition (subtraction) is carried out if g, = 0 (1). Therefore, the
addition (subtraction) operation of the (i+1)th step cannot be
started until the quotient bit g; of the ith step is generated. The
delay between feeding the LSDs of the inputs at the ith step and
generating g; is m cycles. Therefore, the LSD (and also the other
digits) of the ith remainder has to be delayed by m cycles before
being processed in the next step. The throughput rate of this algo-
rithm is one quotient bit every m cycles, and the latency is mN
cycles. The throughput rate can be increased by pipelining the
architecture to the bit level [4], but the area will increase and the
latency will become mnN (i.e. N?) cycles.

958

ELECTRONICS LETTERS 8th June 1995 Vol. 31

Proposed algorithm: As indicated earlier, the value of ¢; in the ith
step is either 0 or 1, and hence the operation in the (i+1)th step is
either addition or subtraction. In the new algorithm, instead of
waiting m cycles until ¢, is generated, we start the (7+1)th step and
use the generated digits of the remainder PR, without any addi-
tional delay. Since g; is not yet known, we carry out both opera-
tions in the (i+1)th step, ie. addition and subtraction. The
addition and subtraction are carried out in parallel, and two possi-
ble values of the remainder, PR,,, at the (i+1)th step, are gener-
ated. Once the quotient bit g, is obtained, it is used as a control
mode to an # bit multiplexer to select one of the two possible val-
ues of the remainder, PR,,,, such that PR,, = 2PR+D if g, = 0
and PR,, = 2PR-D if g; = 1. Therefore, the ith and the (/+1)th
steps are overlapped, and the two steps are carried out in m+1
cycles instead of 2m cycles as in the original algorithm. This proce-
dure can be generalised such that k steps are overlapped together
to generate k quotient bits in m+k cycles.

| ID |PRi-I

0 O]

9ia

M =|l n-bit multiplexer |

D [PR

[:one latch

O :{m-1) latches

Fig. 1 Basic digit serial cell

Digit serial architecture: The basic cell used to implement this
algorithm is shown in Fig. 1. For simplicity, we select & = 2 such
that two quotient bits are generated every m+1 cycles. In this
Figure, DCAS is an n bit digital controlled add/subtract cell [4],
PR, and PR,,,, are the possible values of the (i+1)th remainder,
and PR, is the correct value (i.e. PR, equals either PR, or
PR..,,). The n bit multiplexer has two » bit inputs (one digit of
PR,,,, and the corresponding digit of PR,.,,) and one n bit output
(one digit of PR,;) MPX is a 2 bit to 1 bit multiplexer used to
select the quotient bit g;,;. Both multiplexers are controlled by a
control mode M (where M = g,). The control signal C; for the first
DCAS cell equals g, ;.

The area per quotient bit of the proposed structure A, and the
corresponding time 7, are now compared with the area 4, and
time 7T, of the original algorithm [3, 4] using the figures of merit in
[5], with the area and time being given in units of two-input
NAND gate. We also assume that the proposed architecture and
that of [3, 4] are pipelined to the digit level. It should be noted
that 4, and 7, are calculated as half the area and time, respec-
tively, required to generate g, and g,,, as shown in the box of Fig.
1. The expressions for A,, T,, Ag, and T, and the corresponding
values for k = 2 and N = 32 are as follows:

Ap, =1.5Apcas + (L5mn +0.5n + 1) Aiasen
+0A5(n+ I)AMPX Ap =355+ 23.5n

Tp :0.5(m+ 1)TDCAS Tp =85+ 5m+ 2.5n

A, = Apcas + 2mnAiatch A, =455+ 12n

T, = mTpcas T, = 160 + 10m
where FA is a full adder, XOR is an exclusive-or gate, and MPX
is a 2bit to 1 bit multiplexer. It is assumed that a carry propagate
adder is used in the DCAS cell, and hence the area of the DCAS

cell is that of an A(FA+XOR)+latch, whereas the corresponding
time is that of an nFA+XOR+latch. The area ratio 4,/4, and the

No. 12

