IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 4, JULY 2002 939

Objective Quality Assessment of MPEG-2 Video
Streams by Using CBP Neural Networks

Paolo Gastaldo, Stefano Rovetta, and Rodolfo Zunidember, IEEE

Abstract—The increasing use of compression standards in video streams. As a result, this technique no longer requires
broadcasting digital TV has raised the need for established cri- inputs from human operators, as opposed to conventional
teria to measure perceived quality. Novel methods must take into subjective tests. The need for objective quality measures in

account the specific artifacts introduced by digital compression digital TV h ial rati le t lit bi
techniques. This paper presents a methodology using circular Igita ds a commercial rationaie, 100, as quality may bias

backpropagation (CBP) neural networks for the objective quality @ customer’s choices of advanced pay-on-demand services. In
assessment of motion picture expert group (MPEG) video streams. addition, the number of coders on the market will increase in

Objective features are continuously extracted from compressed the next years, hence both manufacturers and broadcasters will

video streams on a frame-by-frame basis; they feed the CBP i aiaply face the problem of comparing the user-level quality
network estimating the corresponding perceived quality. The of video

resulting adaptive modeling of subjective perception supports ; L . L
a real-time system for monitoring displayed video quality. The ~ Avariety ofmethods for objective quality assessmentofdigital

overall system mimics perception but does not require an analyt- TV have been proposed in the literature [2], [3]. “No reference”
ical model of the underlying physical phenomenon. The ability to - approaches to objective assessment aim to estimate perceived
process compressed video streams represents a crucial advantade ity by processing data extracted from video streams only.
over existing approaches, as avoiding the decoding process greatlyB trast. “full ref Y or “red d ref " h
enhances the system’s real-time performance. Experimental y contrasi, "lull reterence Qr reduced re er_ence approa_lc €s
evidence confirmed the approach validity. The system was tested involve both the encoded signal and the video source in the
on real test videos; they included different contents ranging from evaluation. Most methods are based on decompressed video:
fiction to sport. The neural model provided a satisfactory, con- gbjective parameters are worked out by comparing pictures
tinuous-time approximation for actual scoring curves, which was at the receiver end with original scenes. The comparison is
validated statistically in terms of confidence analysis. As expected, . ) . - -
videos with slow-varying contents such as fiction featured the best mgde e_lther |n_the feature space or in the picture domain by
performances. using differencing methods [4].

An attempt to relate objective measures to subjective
assessments is described in [5]-[7], where linear mathematical
models single out clusters of objective features that best
fit subjective assessment results. Other approaches aim to

. INTRODUCTION emulate human perception explicitly: perceptual models

HE recent increasing success of digital TV has stimulatdtfocess objective parameters from image segmentation [8];
T the research for objective automated methods to assessifh@ Structured approach, objective assessments stem from
user-end perception of broadcasting. The underlying techni@athree-layered picture structure (object, texture, and noise
problem is to estimate the effects of the visual artifacts brougRyers) supporting the human visual process [9]. Metric-based
about by digital encoding. In this sense, traditional techniquéBProaches to the emulation of human perception measure
for analog data processing often prove ineffective in measurifigatio-temporal distortion [10] as well as blurring and
the perceived quality of a digital compressed video. blockiness in decoded pictures [11]. A method that does

Up to now subjective measurements [1] have been a fundit involve the original video is described in [12], where

mental instrument to characterize video quality, despite thé algorithm extracts data from decoded frames to detect
complexity and variability of results. Subjective assessmepfockiness artifacts.
methods attempt to evaluate the perceived quality by askingVost of the above papers implied somgriori simplifying
human assessors to score the quality of a series of test sceRgOtheses about the underlying mathematical model, which
Objective quality assessment aims to emulate human respoﬁg@ehow affected the practical validity of most results. From

to perceived quality by extracting numerical quantities frord Scientific perspective, those research works approached the
problem of human perception of quality as a modeling one. A

neural-based approach to motion picture expert group (MPEG)
quality evaluation is described in [13]; that method operated at
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on compressed data only; this removes the need for any infor- .-
mation about either the original video or the decoding process. e
From an engineering standpoint, the adaptive neural framework
decouples the evaluation task from the specific video source anc
from decoder issues as well. .
The present approach partly disregards the objective of * b LY /

gaining a deeper insight into some aspects of quality percep: S -xﬁ
tion. Rather, the aim is to produce a method to mimic such =. - _}f

perception. As an immediate consequence, many simplifying .
assumptions, useful to enable one to understand the perceptic —E— /

[e]

-

a.\‘}

=

L =]
b, S

mechanism, are discarded in that the resulting model is nol T __:’f
sufficiently powerful. This in turn requires that a potentially Lu
complex mathematical model be used.
Section Il briefly summarizes the neural model (CBP)
adopted, highlighting the advantages in using this network fﬁ@. 1. The CBP model includes one additional input to the standard MLP.
the specific multimedia application. Section Il describes the
neural-based system for video-quality evaluation, showing the
criteria driving feature selection, the experimental setup, ande conventional sigmoidal function is denoteddfy:) = (1+
neural training. Section IV reports on experimental resulté,_m)_l-
demonstrating the method operation under different conditionsThe inputlayer connects the input values to each unit of the
and for different input sources. Some concluding remarks dtslden layer. Theth “hidden” neuron performs the following

made in Section V. transformations on the input values:
;g n;
ll. FEEDFORWARDCBP ARCHITECTURES Py = wj,O"‘ij,i-Ti"‘wj,ni-H foa =1, (1)
Feedforward NNs provide a straightforward paradigm to map =1 =1

feature vectors (describing video frames) into the corresponding
quality assessments. Such a problem setting treats the quaMfierea; = o(r;). The input features; (i = 1,...,n;) com-
scorings used for training as an ordered discrete set of lab&ile With the associated weights;;(i = 0,...,n; + 1) and
whereas any intermediate values in the associate network oufi§gd thejth hidden unit. The terms; anda; denote the neuron
are allowed. In this sense, efficiency requirements as well gi§mulusandactivation respectively. The last term in expres-
generalization issues ultimately lead to the problem of propePn (1) actually augments the conventional MLP up to the CBP
sizing the number of neurons in the NN. model.

MLPs can efficiently tackle problems in which the target- Theoutputlayer provides the actual network responsgs,
mapping function can be supported by few units with glob&y the following transformations:
scope; in MLPs, those elements are encoded by the sigmoid

functions within hidden units. Conversely, if the target mapping o
can be best expressed as a superposition of locally tunéa IWk,oJrZWk,jaj% yr=o(r); k=1...,n. (2)
components, radial basis function (RBF) networks will typically i=1

perform much more efficiently. As a result, the unknown
characteristics of the problem-related target mapping furtherTheory proves [15] that this model is the most efficient poly-
complicate the problem of selecting the nature and the numlsemial extension of MLPs with linear stimulus, and formally
of hidden units. encompasses the RBF network model as well. The strict re-
A solution to this specific problem has been proposed Iationship of CBP to vector quantization (VQ) networks has
[15]. The CBP network extends the multilayer perceptron Hyeen analyzed in [17], showing that the model ensures a no-
including one additional input with its associated weight. Sudhble representation effectiveness with a very small increase in
an input just sums the squared values of all the other netwdhe number of parameters. Previous experimental verifications
inputs. As proved by CBP theory, the additional unit allowsn real testbeds always confirmed that such theoretical proper-
the overall network to adopt the standard, sigmoidal behavities actually witness a satisfactory practical effectiveness.
or to drift smoothly to a bell-shaped radial function, which The crucial feature that makes the CBP model suitable
approximates—but is not—a Gaussian. At the same time, tlee the video quality-assessment task is its ability to switch
limited increase in the network parameters does not affect #atonomously between the different representation paradigms
expected generalization performance, as it has been prog®iLP or RBF), as conventional backpropagation algorithms
that the Vapnik—Chervonenkis dimension (VC-dim) [16] of th§18] can be adopted for weight adjustment. The resulting weight
augmented circular perceptron increases by one unit [15]. configuration ultimately sets the most suitable representation
The CBP model adopted for this research can be formaBgtting for the mapping problem, and is only driven by training
described as follows. An MLP architecture combines two funchata, independently of argypriori assumption on the observed
tional layers (Fig. 1) includingy;, andn, units, respectively. domain.
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I1l. NEURAL-NETWORK—BASED ASSESSMENT OF original wideo
VIDEO QUALITY l

Avoiding inputs from human subjects can lead to determin-
istic models, yet objective systems should keep human scores
as references to ensure consistency with subjective results
The present approach applies CBP feedforward networks
to the automated quality evaluation of MPEG-2 [19] video
streams; the single-ended no-reference paradigm need no
know uncompressed original videos.

Fig. 2 shows a schematic representation of the overall system. &
Objective features are worked out directly from MPEG-2 bit- |
streams (i.e., without any decoding), and feed the NN to obtain =
quality ratings. The system operates on a frame-by-frame basis
and yields a continuous output; as such, it provides a real-time J
monitoring tool for displayed video quality. Thus, the NN is e s L |
entrusted to mimic the subjective, single-stimulus continuous .| pspLay |
quality evaluation (SSCQE) method [20], recording continuous | [ '
assessments of picture quality provided by human observers. e

The crucial advantage of the approach lies in generating X( /
quality ratings without decoding the video stream. Indeed, the ' |/ /
objective metric supported by the neural system relies entirely TSURJECTIVE ! 00
on a representation format—the compressed bitstream—that | guaLity !
bypasses the need for human assessors’ rating process a (& ._ :‘_____._ T, pchily, T
together. This greatly improves the method's effectiveness T Netveors » !
especially in terms of real-time performance, as one can get an 0
estimate of perceived quality at transmission time.

For the reader’s convenience, we recall that MPEG-2 attains
still-image quality by standard discrete cosine transform (DCT) ity —
compression; motion information is treated by dividing each
frame (picture) into several macroblocks (holding 466
pixels each), and by encoding the apparent movement of
macroblocks within time-consecutive frames. Fig. 2. The proposed single-ended system for automated quality assessment.

ENCODER

MPEG-2 bitstream

FEATURE
EXTRACTOR

cer [/

£

the method generality thanks to the quite narrow distribution
A. Features for Objective Quality Assessment of measured samples, which appear concentrated around their
mean values.

The set of processed features play a crucial role for thegecongly, the statistical analysis assumes that nonnormally
effectiveness of the overall methodology. A single-ended p&jisyrihyted features carry most information. The method adopts
adigm avoidinga priori assumptions requires quite a larggnirg- and fourth-order moments of the distributions of values
set of parameters to be extracted from video streams, for g@normality indicatorsSkewnesgi.e., a measure of the de-
purpose of collecting as much information as possible. Tr”{}?ee of symmetry in a variable distribution) akdrtosis(i.e.,
significant features are then sorted out by a conventional stallSq,easure of the relatieeakedness/flatness a distribution)
tical analysis. Appendix A lists the objective features workeghe sed to characterize the statistical activity of each feature.
out from the MPEG-2 compressed stream. Only features having skewness and kurtosis significantly dif-

In principle, one expects that a considerable number of &llent from normality are considered for the neural-network
the above features will be discarded, either because they fgdeling. A threshold scheme drives that selection process;
not carry significant information or because they are mutuallipecific threshold values have been set by averaging over several

correlated. Since the presentapproach does notimplypngri - samples in different contexts. The following basic quantities are
assumption on the significance of the encoding parametegasined:

an a posteriori statistical analysis drives the feature-selection
criterion. — Visalbrary{Vy,..., ¥} of L test streams, com-

First of all, a percentile-basis analysis is required to remove posed of> frames each;

outliers from input data. To this end, for each feature, an ele-— FIE')S the set of objective featurgs = 1,.. ., Ny);
mentary preprocessing phase set a 0.05 percentile threshold to~ kapj is the value measured Hj, for the jth frame of
each tail of the distribution of empirical values. The specific theith stream¥;.

threshold value was determined empirically, but does not affectThe feature-selection algorithm can be outlined as follows:
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0. (Input) —sets of features,
ciated with each sequence frame
1,...,Ny).

d,, asso-
(k

(P)
L) S

L)
2Rt

()

? k‘I/L} N

1
b= {78

1. (Rescaling)

For k=1,..., Ny

—compute the 0.05 and the 0.95 per-
centiles, a:é’fgs, xé’fgs, respectively, for

the values in Dy;

—build up a set @, by rescaling each ele-

ment of ¢, into the range [-1,1]:

®3)

QkI{ikz}% 2=1,....P,...,P(L—1)+1,....P-L

4)
where
z—Dq k
kg L0.05 P+z-—1
fi. = 2%_17 7= {%J - (5)
(370.95 - 370.05)
Rescaling ,E{D) by using xé’fgs and xé’fgs as

its lower and upper bound, respectively,
supports the outlier-removal process pre-
viously anticipated.

2. (Descriptive statistics)
Create two sets:

—X {skew;} where skew,
1,...,Nf;
— K =
1,...,Ny.
3. (Threshold setting)
Compute the threshold values,
kurtyy,, as:

skewness(®,,), k

{kurtz} where kurty kurtosis(®,,), k

skew,, and

—skewyy,, is the 0.5 percentile of >
— kurtyy,, is the 0.5 percentile of K.
4. (Feature selection)

Compile the feature set, Z, holding the

objective features that satisfy (for
k= 1,...,Nf):

Ly € Z & (skewy, > skewy,:) AND (kurty > kurtyy,) -
(6)

As a result of the above procedure, thegéncludes the fea-

tures that, due to their asymmetrical distribution, are unlike
to stem from a Gaussian distribution. The purpose is to sin
out the statistically significant objective descriptors, under t
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projection pursuit (EPP) [22], [23] represents a method that fol-
lows the same paradigm of the proposed algorithm. EPP is a
powerful methodology to derive a feature set to describe the
original data set; it seeks for a coordinate system such that the
resulting distribution of values along each axis is as much dis-
tant from a Gaussian curve as possible. EPP, on the other hand,
is a computation-intensive method, which might prove difficult
to tune in nonlinear domains.

B. Feature Run-Time Sampling

The objective assessment system should generate contin-
uous-time quality ratings. In principle, one might feed the CBP
network with the feature values continuously extracted from
each sequence frame. In fact, the mechanism generating the
input featurese; must take into account known mechanisms
specific for human perception.

In more detail, one has to consider that: 1) assessor’s reaction
times are subjectto delays [24]-[26]; 2) time-consecutive frames
tend to interfere with one another [27], and 3) the most recent
segments of asequence have agreater effect onthe overall quality
rating [3], [28]. In the literature, such peculiarities are known
as “the assessor's response time,” “masking phenomenon,”
and “recency effect,” respectively.

The following quantities are used to parameterize these set-
tings (Fig. 3). To compensate for temporal averaging, a st of
frames contribute to generating a single score. Within this set,
groups ofi’ consecutive frames yield a single feature veator
according to the mas‘ldging phenomenon. The input vector

—~(4,
cludesn, featuresf,,, (Fi € Z) defined as follows:

—GW

Frv, =0 @)

wherep(f1,..., fx) is a family of operators, withy, p, and

Pm, respectively, the highest, the smallest and the mean values
over the interval. The parametérrefers to the delay between
the subjective judgment and the last frame that has influenced
it.

() (j+W—1)>
kWb, - J R

C. The Neural-Network Approach

Several features characterizing video streams jointly affect
subjective judgments; possibly nonlinear relationships and
partly unknown mechanisms may complicate the process
modeling. These effects actually seem to have sometimes
been underevaluated in the literature, and the major advantage
of a neural-network approach lies in the ability to deal with
rnultidimensional data representing complex relationships. By

ecoupling the feature-selection task from the design of an ex-
cit mathematical model, one obtains the crucial advantage of
oidinga priori assumptions on the significance of objective

(practically reasonable) assumption that noninformative quaaasures.

tities most often exhibit a Gaussian distribution.

In the present approach, CBP networks map feature vectors

The described algorithm has been preferred to alternative §io quality ratings. The mapping function is learned from ex-
proaches such as the principal component analysis (PCA) [Zkhples by means of an iterative training algorithm, and a single
mainly because of the high data dimensionality involved. Theitput neuron in the NN vyields the quality assessment for a
complexity of working out eigenvectors due to numerical precgiven input vector. The network configuration (i.e., the number
sion issues may sometimes affect the performance of PCA whsfrhidden units) has been designed by using a specific initializa-
applied to huge multidimensional data. Conversely, exploratatign technique that exploits the equivalence of the CBP model to
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Fig. 3. Feature run-time sampling process according to perceptual mechanism.
VQ paradigms [17]. In particular, a VQ preliminary phase using TABLE |
the plastic neural gas algorithm [29]-[31] made it possible to TESTRESULTS
assess the proper number of prototype vectors to represent the Test videos
available sample distribution. In the subsequent network setup complete set __no-sport sport
phase, the number and the space positions of those prototypes fer 0001 0.0005 0.003
were mapped directly into the specific CBP network configu- G 00665 0.045 ot
ration according to the formalism described in [17]. Thus the ¢ 00104 00038 0.0251
initial setting of the network weights proved most effective in ef015) 0102 0.0308 o301
accelerating the convergence of the overall training process, as
compared with a conventional random setting. TABLE I

The CBP network training uses an accelerated variant [18] FEATURESWORKED OUT FROM MPEG SREAM

of the classical backpropagation algorithm. The possibility of

. . . . PERCENTAGES (MACROBLOCKS
using conventional techniques to train an advanced network ¢ )

structure is the major advantage of the CBP model. The network Pmb_no_pred __nm=macroblocks with no motion vectors
cost function is expressed as Pmb_fwd nmp = macroblocks with forward mv only
) Pmb_back nmp = macroblocks with backward mv only
(m) _ (m) = ,
R D D DI C L) BN C s e o
wheren,, is the number of training patterns anglis the ac- Pmb_1 iy = Intra macroblocks
tual quality assessment derived experimentally from the human Prmb_skipped my = skipped macroblocks
scoring panel. An alternative to (8) is ttieeshold costunction PERCENTAGES (BLOCKS)
er (fy): Pb_sk_luma np = skipped luminance blocks
Ny ne Pb_sk_chroma np = skipped chrominance blocks
er(y (‘t(m) (m) ) STATISTIC
nonp z:1 ;g . Smy_mean mean - p; = [motion vector|
g(u) _ { 0O uly (9) Sq_scale_mean mean — p; = q_scale
leouw> v Senergy_mean mean — p; = energy
where the network cost is expressed as the percentage of outputs ~_Smv_dev_std standard deviation - p; =[mation vector|
yx that differ from the expected scotg in more than a fixed Sq_scale_dev_std  standard deviation — p; = g_scale
threshold% Senergy_dev_std  standard deviation — p; = energy
Smy_var variance - p; = |motion vector|
IV. EXPERIMENTAL RESULTS Sq_scale_var variance - p; = q_scale
The effectiveness of the CBP model for objective quality Senergy_var variance - p; = energy
assessment was verified experimentally by using a library of PERCENTILES
MPEG-2 videos provided by the Research Center of the Italian Xmv(a) pi = mean of [motion vector]
Radio and Television Corporation (RAI). The testbed included Xq_scale(a) pi=q_scale
twelve frame-coded sequences, each 70 s long; the picture "y, 0v0) i = energy
size was 72 576 pixels. The sequence contents varied from Xgmv(a) -
fiction to sport and were encoded at different bit rates in the Xe_rv(a) o
- Di ]

range [4,8] Mbits/s.

The assessments for each sequence were collected from
nonexpert viewers; the subjective tests were performed with @he quality ratings were represented by a continuous scale
SSCQE technique at a sampling rate of two scores per secamahging in -1, 1].
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Fig. 4. Test results obtained with the four-dimensional space covered by the
selected features. (a) Neural-network outputs compared with human quagy R It
ratings. (b) The associated error distribution. - Results

Fig. 4 shows test results obtained for the selected feature set.
A. Experimental Setup Fig. 4(a) compares the quality ratings by human assessors with
the corresponding outputs of the NN; for display clarity, the ac-

The neural-network training process involved the set &fal ratings are sorted in increasing order, each point orxthe
featuresZ that the statistical analysis selected from the globakis representing a single evaluation event. The graph shows an
feature setF}, listed in Appendix A. The resulting featureasymmetric distribution of subjective scores, as 44% of the orig-
space (a subset @t2%) included the quantities highlighted ininal scores exceed 0.5. Since the lower scores appear subsam-
bold face in Table Il. The training patterns were generated BYed, they are subject to greater errors due to the lower statistical
the run-time sampling process presented in Section Ill, wig@nfidence. Nevertheless, the CPB NN attained an average error
N =24, W =6 and A = 17. flerr = 0.001 0N the test set.

In order to enhance the CBP network generalization perfor-Fig. 4(b) plots the error distribution together with the related
mance, the dimensionality of the input data space was furthmst-fitting Gaussian approximatidgz = 0, 6 = 0.066).
reduced with the feature-selection technique described Anchi-square test verifying the correctness of the Gaussian as-
[32]. The eventual four-dimensional feature space covered tigmption did not detect a satisfactory match, mainly due to the
quantities:ps(Nn_bits), pn(Xgscale(1)), pr(Xmwv(1)), and apparent undersampling phenomenon. However, a more robust
pn(Smu_dev_std). The plastic VQ algorithm processed thé<olmogorov-Smirnov (KS) normality test satisfied the null hy-
training samples to design the neural-network configuratioppthesis to a high degree of confideripe> 0.95).
the resulting valuey;,, = 15 set the number of hidden units in Figs. 5 and 6 present the results obtained by letting the
the feedforward structure. CBP network evaluate two subsets of the original data set not
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where(1 — «) is the confidence level, andis defined as

rS

S

£ = Za/gﬁ.

In (11), s is the sample standard deviation-unbiased estimator of
o—andz, s is the(1 — «/2) percentile ofV (0, 1). The curve

in Fig. 7 plots (10) for theomplete setest resultgn = 665)

and shows that the neural-network system achieved).0175

with confidencep(= 1 — «) = 0.95.

(11)

error frequency

[
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prediction error

~=~ Error Distribution ====wGaussian Approximation

(b)

Fig. 6. Test results obtained for videos includedjort (a) Neural-network
outputs compared with human quality ratings. (b) The associated error
distribution.

V. CONCLUSION

Feedforward NNs can effectively support objective quality
assessment of MPEG-2 videos. In this respect, the major
result of the presented research is the possibility of reproducing

used for training. The two subsetssifort” and “no-sport”,  hyman perception consistently by using quantitative data-driven

respectively) differed in their video contents. A comparison @fiodels. The neural-network model is specifically tuned to

Fig. 5(a) with Fig. 6(a) points out that human quality ratingfearn the perceptual phenomenon from examples, and exploits

show a higher variance for videos including sport contengsknown effective augmentation of standard BP networks.

only; in addition, sequences with sport contents are a smallp crucial advantage of the proposed methodology is the

subset (27%) of the test library, hence the NN suffered frogystem ability to handle compressed video streams. Avoiding

larger errors due to the lower statistical confidence. the need for decompressed pictures enhances the method’s

Figs. 5(b) and 6(b) confirm these achievements by fittingffectiveness in real-time production applications.
error distributions with the associated best-approximating Gaus-The experimental setup involved a training phase with ob-
sians. The Gaussian parameters @g@re= 0, = 0.045) for servations collected from evaluation panels, and generalization
no-sportand(ji = 0, & = 0.11) for sport The overall numer- testing using sequences and the associated quality assessments
ical results are summarized in Table I, also giving the cestg?0t included in the training sets. Experimental evidence
andeg () derived from the neural-network test. confirmed the validity of the approach, as the system always

The graph in Fig. 7 plots the estimated confidence interval f8fovided a satisfactory continuous-time approximation for the
the sample average errft,., and confirms the method effec-actual scoring curves re!ated to test videos. A comparison with
tiveness. Theory states [34] that, for large sample sizebe related works is compllcated by 'Fhe lack of a copsolldated
confidence interval for a distribution having expectatjoand Sténdard allowing reliable comparison among quality-evalua-
variances? (both unknown) can be computed as tion r_nethods; more importantly, this is even more true when

considering that the approach presented in this paper treats

no-reference objective quality assessment, which is new in the
Pllip—pl<e)=1—« (10) literature to the best of our knowledge.
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The following quantities are defined:

16 16

2= 3> (mborlill))?

i=0 j=0

energy = (12)

(1]
wherembper[i][j] are the DCT coefficients of & or
B macroblock. This quantity gives the energy of the [2]
correction to the predicted macroblock.

[3]

_ gscale
© 1 {m])
whereg_scale is the quantiser-scale factor in a mac-

roblock, and{|m_v|) is the mean amplitude value of
motion vectors in the same macroblock.

(13)

q-mu
[4]
[5]

(6]

e_mu = energy - {|{m_vl) (14) -
wheree_muv is defined as the weighted energy of a
macroblock.

An MPEG-2 bitstream has a hierarchical structure that allows
one to get information at multiple levels: sequence, group of[g]
pictures, picture, slice, macroblock and block. Objective features
have been designed to characterize the stream at the picture
level. Table Il lists the objective features worked out from thel10]

coded bitstream. Four classes of measures can be identified:

Percentage of macroblocks—Features are defined a}%l]
follows:

(8]

_ Nomb
— (mb)
Ny

Fy, (15) n2

iments described in the paper.
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