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Abstract

This paper analyzes the Circular backpropagation
network, a simple modification of the multilayer per-

ceptron with interesting practical properties, especially

well–suited to cope with pattern classification tasks.

The proposed model unifies the two main represen-

tation paradigms found in the class of mapping net-

works for classification, namely, the surface–based
and the prototype–based schemes, while retaining

the advantage of being trainable by back–propagation.

Multi–layer perceptrons, Radial–Basis–Function net-

works and Vector–Quantization networks are shown to

be implementable with small modifications to the model

under study1.

1. Introduction

Mapping neural networks are computing devices
that implement, in a distributed way, a function ψ,
from some input domain D ⊂ Rd to some output do-
main T , parametrized by a set of parameters and fea-
turing only feedforward signal paths.

Mapping networks are widely used to approach clas-
sification problems when the task is to derive a rule
from a set of examples. The present work focuses on
the class of mapping networks in the context of classifi-
cation problems (by default with two–class problems).
We attempt to set up a framework to allow the study
of a more general network model that may encompass
different representation paradigms.

We refer to the multilayer mapping network model
with a topological structure inherited from the mul-

1The results reported in this paper are an extension of work
previously presented in the IEEE Transactions on Neural Net-
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tilayer perceptron (MLP). A single hidden layer will
always be assumed in the following, without loss of
generality. The network structure being fixed, we fo-
cus on the description and design of the (hidden) unit.

We adopt the following formalism. x indicates the
input vector of dimension d. The parameters (weights,
bias, etc.) are the components of the vector w ∈ Rp,
which needs not (and usually does not) have the same
dimension as x. The unit is divided in two blocks,
computing functions respectively denoted by r and a.
The first block outputs the value r = r(x,w), which
we call the stimulus. The second block outputs the
activation a = a(r). This scheme, introduced in [7],
on one side may help interpret a learned mapping from
a representation standpoint, and, on the other hand,
features interesting properties by itself.

This work deals with a modification to the activa-
tion function of the hidden neurons of a MLP, intro-
ducing a polynomial activation. The approach taken
in many previous works is to consider polynomial ac-
tivation functions as an alternative to the multilayer
scheme. However, this introduces the need for addi-
tional constraints to keep the generality of the set of
functions implementable by the model low enough for a
good generalization [2][11]. Our approach aims instead
to search for the minimal increment in the generality
of the multilayer model that is capable of substantially
improving the representation ability without affecting
(and possibly enhancing) the generalization properties.

2. The CBP model

2.1. Generalized neural unit

Representing a neural unit with the two quantities
r and a yields a quite straightforward interpretation in
geometric terms. The stimulus results from the appli-
cation of a “filter” sensitive to some geometric property
of the input space. The activation is the response of



the unit to the geometric property pointed out by the
stimulus.

Through the selection of appropriate functional
forms for r and a, the model can be used to represent all
neural units usually adopted in practical applications.
Some examples follow.

• The perceptron [9]: r = r(x,w) = w0 +
∑d

i=1 xiwi; a = a(r) = H(r) (where H is a Heav-
iside function).

• The sigmoidal multilayer perceptron unit [10]:

r = r(x,w) = w0 +
∑d

i=1 xiwi; a = a(r) = σ(r)
(where σ is a sigmoidal function).

• The radial basis (Gaussian) unit [4]: r =
r(x,w) = ||x − c||2/σ2; a = a(r) = e−r

It is now possible to make a parallel analysis of many
network models by comparing their stimuli and activa-
tions. The notion of representation paradigm can be a
useful tool for performing such comparisons.

The representation paradigm is closely related to
the geometrical properties of the stimulus. A distance-
based stimulus (e.g., the Euclidean distance between
the parameter vector and the input vector) can be
associated with the prototype-based paradigm, accord-
ing to which a network stores representative patterns
(prototypes) and computes its output by measuring
the match between a pattern and the stored proto-
types. Nearest–neighbor classifiers [1] implement this
paradigm.

By contrast, the surface-based paradigm is repre-
sented by those models that draw region borders (hy-
persurfaces) in the input space, usually composed of in-
dividual segments realized by different units, and com-
pute their output according to the position of an input
pattern with respect to the borders. The perceptron
[9] is an example of this paradigm.

These two approaches can be regarded as being com-
plementary.

2.2. The circular unit and the CBP network

The perceptron can be generalized by letting r(x) =
∑p

i=1 wiξi = w · ξ, where the map x 7→ ξ (ξ ∈ Rp) is
such that each component ξi is given by a product of
components of x (some power of a single component, or
the product of powers of different components). Usu-
ally, one of the terms is a constant whose weight imple-
ments the bias. The parameter vector is of the same
dimensions as ξ, and the resulting stimulus is a poly-
nomial with its components as coefficients.

The number of terms of a complete polynomial with
d variables of order q is p =

(

d+q−1
q

)

, which is of order
dq. Therefore, we consider the selection of an appropri-
ate number of polynomial terms. In the following, the
circular back-propagation (CBP) model [8][7] will be
studied from this standpoint. As previously remarked,
the model features the standard multi layer topology
with a single hidden layer. At the unit level, the CBP
model is described by the following functions:

r(x,w) = w0 +
d

∑

i=1

xiwi + wqxq (1)

where the last term is a compact form for xq =
∑d

i=1 x
2
i , and

a(r) = σ(r) (2)

This is a special case of polynomial unit. There is
one additional parameter, i.e., the coefficient wq, which
weights the sum of the squared inputs. By simple alge-
braic transformations, it is possible to obtain another
form for the same stimulus:

r = g
(

||x − c||2 − θ
)

(3)

in which the parameters c , g, and θ do not appear as
weights but have the following geometrical interpreta-
tions.

The distance from the point c in the space of in-
puts is computed and compared with the value θ.
The result is scaled with the coefficient g to ob-
tain the actual stimulus r, and the activation a is
computed by the standard sigmoidal function. The
output of the unit can be positive inside (for g >
0) or outside (for g < 0) a circular (in general,
hyperspherical) region; anyway, a localized “bump”
with a circular section is obtained around the point
c. Therefore, we describe the parameters as follows:

c = center or prototype

θ = radial threshold (hence ρ =
√
θ = radius)

g = gain

We call these the “circular parameters.”
The double form of each parameter reflects the dou-

ble nature of the representation. The circular param-
eters implement a transfer function implementing the
prototype-based paradigm. However, when the coeffi-
cient wq is very small, the circular parameters are not
adequate anymore, and the stimulus collapses to the
standard, linear perceptron stimulus. In this situation,
the unit implements the surface-based paradigm.

The choice between the two representation forms de-
pends only on the value of adaptable parameters, so it
is left to the optimization process (paradigm plasticity).



This enables the network to adapt the representation
form, without need for the user’s supervision.

The only different feature of a CBP network, as com-
pared with the MLP, is an additional input xq. This
means that a CBP network can be obtained by an off-

line modification to the training set, i.e., by adding the
quadratic term xq directly to the input patterns. The
resulting network will be trained by plain backpropa-
gation, at the only expense of an additional input (for
a network with h hidden units, this means h additional
weights).

3. Equivalence to Gaussian radial basis

function networks

In this section we shall show that the CBP model
may be made equivalent to another widely used neu-
ral scheme, i.e., the network of locally tuned Gaussian
units. In the next section, a similar proof will be given
for vector–quantization based networks.

Equivalence between two network models requires
two conditions to be satisfied. The first is that the sets
of functions implementable by the two models coincide.
The second is that the training procedures should allow
them to learn the same mapping for the same training
set.

The first condition is of architectural nature. It can
be verified by comparing the structure and intercon-
nections of the layers, and the activation functions of
the units. The second condition is related to the al-
gorithms used for training and not to the networks.
It can be verified by comparing the iterative learning
steps. However, if the performance criterion adopted in
training is the same for both models (e.g., in classifica-
tion, the percentage of correctly labeled patterns), we
can concentrate on the architectural equivalence, since
the goal of the optimization process coincides in the
two cases.

The transfer function of a circular unit is radially
symmetric. Hence a CBP net has by itself the structure
of a radial basis function (RBF) network. However, in
practice, the most commonly adopted basis functions
are the isotropic Gaussians [5][6]:

G(x) = exp

(

−||x − c||2
σ2

)

(4)

The training of such networks requires the choice of
appropriate values for the parameters c and σ, which
is usually made independently. Here we show that a
CBP network can implement a Gaussian RBF network;
therefore, backpropagation training can be used to ob-
tain the same results as those obtained by RBF train-
ing. More formally, we can state this fact as follows:

There is a 2-layer, sigmoidal-activation CBP net-
work equivalent to a Gaussian RBF network with the
same number of hidden units h.

To prove this statement, we can express the stim-
ulus of the generic hidden unit of a σ-CBP network
in terms of the circular parameters as per Equation 3.
The activation function is:

a(r) =
1

1 + e−r
(5)

Therefore, if we let r′ = g||x− c||2, the overall transfer
function of the unit can be expressed as:

a =
1

1 + e−(r′
−gθ)

(6)

By some algebraic manipulations, this expression
can be transformed as follows:

a =
1

1 + e−r′e−gθ
=

er′

egθ

er′egθ + 1

A generic output unit will not receive this value di-
rectly as an input, but only after a multiplication by
the weight w. Therefore, the output value of the hidden
unit can be multiplied by an arbitrary constant, which
will be compensated for by the subsequent weight:

ka = er′ kegθ

er′egθ + 1

Let the term gθ take on very large values. Let the
constant k take on correspondingly small values. The
multiplying fraction can then take on values arbitrarily
close to 1. Hence, including the weight in the expres-
sion for the output value, we can write:

|waRBF − w′aCBP| < ε

for any ε > 0, where: aRBF is the activation computed
by using the Gaussian activation function and stimu-
lus, as per Equation 4; aCBP is the activation using the
CBP activation function and stimulus; w is the out-
put weight; and w′ is the compensated output weight,
kw′ = w

After showing that a CBP network can encompass
also the Gaussian RBF model, we may ask whether
the converse is also true, which means that the two
approaches are theoretically identical. However, this
is not the case. This may be shown with the aid
of the alternate-labels problem. Figure 1 shows an
alternate-labels problem with 7 data points, and the
one-dimensional activation profile of 2 CBP units. It
is possible to see that the CBP activation profile can
identify 7 zones, characterized by sign inversion, while
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Figure 1. How CBP solves the alternate-labels prob-

lem.

RBF is limited to 5 zones. This has been experimen-
tally demonstrated for CBP, as shown in the figure,
with good convergence rate. The limitation for RBF
can be proved as follows.

Consider a Gaussian RBF network with d = 1, h =
2, b = 1 to attempt representing the alternate labels
problem with 7 data points. Symmetry considerations
allow the stimulus of its output unit to be expressed as

rout = w0 + w1e
−g1x2

+ w2e
−g2x2

(7)

Derivation of this expression with respect to x yields

∂rout

∂x
= −g1xw1e

−g1x2 − g2xw2e
−g2x2

(8)

This expression vanishes for x = 0, for x = ±∞,

and for x = ±
√

ln(−w1g1/w2g2)
(g2−g1)

. (This pair of roots is

defined only when the arguments of the logarithm and
of the root are both positive. We assume this is the
case, since we are interested in assessing the maximum
number of roots.)

The roots of the derivative correspond to minimum,
maximum and saddle points. Between pairs of these
points, we can identify at most five regions correspond-
ing to five different classification outputs. Therefore
the 7-points problem cannot be solved.

We conclude with a note on the representation prop-
erties of the CBP activation function as compared with
the Gaussian function. In the CBP network the pa-
rameters are expressed in the form of weights, rather
than in the circular form. This means that degener-
ate radial functions are implementable in the CBP for-
malism, since an infinite radius is realizable when ex-
pressed as wq = 0. In the RBF formalism, this would
mean giving an infinite value to an actual parameter

(the center’s coordinates), which is unrealizable both in
physical hardware and in software simulation. There-
fore the equivalence between RBF and MLP could be
theoretically assessed in the limit, but not physically
attained, whereas the equivalence between CBP and
MLP is feasible also in practice.

4. Equivalence to vector quantization

networks

Competitive networks are often compared to mod-
els with localized activations because of their distance-
based stimulus. In this subsection, we consider the
competitive CBP model in the self-supervised form, in
which the identical mapping is learnt by a network with
as many outputs as inputs. For this model the target
is defined as:

x(l) = t(l) ∀l. (9)

The j-th hidden unit is defined as:

rj = w0 +

d
∑

i=1

wixi + wqxq (10)

and

aj =
eGrj

∑nh

j′=1 e
Grj′

(11)

This is the so-called “soft-max” function. Its be-
haviour is controlled by the non-adaptive parameter
G, so that for G very high it reduces to the normal
“max” function. The output layer is a standard MLP
layer with no = d units.

The architectural equivalence between the above de-
scribed auto-associative CBP network (AACBP) and a
vector quantization (VQ) network is now apparent. In
this situation the last layer is used as an output only
in the training phase, for the error function computa-
tion. When using the network the actual classification
is found on the hidden layer. Therefore, since the error
computed on the last layer should correspond to the
classification on the hidden layer, the weights should
be constrained to have the same value on the two lay-
ers:

k = i ⇒ wji = wkj ∀j (12)

The usual VQ learning step is computed as a func-
tion of the distance between the input pattern x(l) and
the winning unit.

∆wji = η′(wji − xi) (13)

The back propagation learning step is proportional to
the gradient of the cost function.

∆wji = η′′
∂c

∂wji
(14)



In the AACBP case, the derivative of the hidden
units activation function is:

∂aj

∂rj
= G

eGrj
∑nh

j′=1 e
Grj′ − eGrjeGrj

∑nh

j′=1 e
Gr2

j′

=

Gaj(1 − aj) (15)

The components of the gradient of c in the weight space
are:

∂c

∂wji
= − ∂c

∂aj

∂aj

∂rj
xi (16)

for the first (hidden) layer, and

∂c

∂wkj
= −

no
∑

k=1

2(tk − ak)wkj (17)

for the last layer. By imposing conditions (9) and (12),
we have:

∂c

∂wkj
= −2(xk − ak)aj

+

no
∑

k′=1

2(xk′ − ak′)wk′jaj(1 − aj)Gxk (18)

which corresponds to

∂c

∂wkj
= −2(xk − ak)aj + δjxk (19)

where the coefficient of the term xk in equation (18)
has been given the standard symbol δj .

Usually, the “max” activation function is adopted in
VQ training. Hence we will assume G → ∞, and the
above value is:

∂c

∂wkj∗

= 1 and
∂c

∂wkj
= 0 ∀j 6= j∗ (20)

where j∗ denotes the index corresponding to the max-
imum activation (j∗ = argmaxj{aj}).

Therefore an appropriate modification to the ac-
tivation function of a CBP network makes it possi-
ble to map a surface-based feedforward network onto
a prototype-based representation, trainable by back-
propagation; moreover, the backpropagation updating
rule is equivalent to the Kohonen-type updating step
[3] used in vector quantization networks.

5. Concluding remarks

In this paper, the extensions of the circular back-
propagation multilayer network have been investigated.
Theoretical analysis and experimental evidence suggest
that this model is especially well-suited to implement

classification tasks. The paradigm plasticity featured
by the model allows the implementation of classifi-
cation principles which have different interpretations.
This allows apparently different networks to be encom-
passed by the same framework, extending the applica-
bility of backpropagation training to prototype-based
models.
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