Circuital implementation of support vector
machines

D. Anguita, S. Ridella and S. Rovetta

A circuital implementation of the learning phase of a new model
of artificial neural network, the support vector machine, is
proposed. It is shown that a Hopfield-type recurrent network can
be easily implemented for this purpose.

Introduction: Support vector machines (SVMs) are among the
newest and most promising models of artificial neural networks.
SVMs show remarkable properties in terms of generalisation abil-
ity, and their performance is often superior to more traditional
architectures such as multilayer perceptrons and radial basis func-
tion networks {1, 2]. Learning in SVMs is equivalent to solving a
large constrained quadratic programming (CQP) problem, where
the number of variables equals the number of training patterns.

Up to now, no hardware implementation of SVM has been pro-
posed; we show in this Letter how a recurrent network can be
used to solve the CQP problem associated with an SVM and,
therefore, allow a circuital implementation of SVMs.

Learning in support vector machines: We will focus here on linear
SVMs; in this case the resulting network is equivalent to a percep-
tron. Extensions to nonlinear SVMs, making use of radial basis
functions or sigmoidal functions, do not affect the learning phase,
as presented here, and can be found in [1].

Given a set of two-class labelled training patterns (x,, 3,), ...,
(X, ¥), With x; € R™ and y, = {+1, -1} , it can be shown that
learning in SVM is equivalent to solving the following CQP prob-
lem:
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where Q is a symmetric n x n matrix with g, = yyx/x, r, = -1 Vi
and u is a constant, defined @ priori. The upper bound u limits the
magnitude of the solution y* when the two classes cannot be sepa-
rated without errors; in fact, in this case, v, — +oo for some i. The
upper bound forces the network to tolerate some errors; as it is
decreased, the tolerance to incorrect patterns increases [2].

We write the equality constraint as two inequality constraints,
and eqns. 2 and 3 in matrix form [3]:

f@=Bu-e>0 4
where ¢, = {0, —u}. Bis a (2+2n) X n matrix of the form
Bf=|-y y -1 I] (5)

where 7 is an # X n identity matrix.

After learning, the patterns corresponding to v; # 0 are calfled
‘support vectors’. They are the border patterns that separate the
two classes, and from which the weights and the bias of a percep-
tron can be derived, using the following relations:
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where 7, is the number of support vectors.

The perceptron found through the SVM shows remarkable gen-
eralisation properties. As an example, its average probability of
error does not depend on the dimensionality of the problem, but
only on the number of support vectors [1].

Recurrent neural network: We propose to use Chua’s recurrent net-
work (detailed in [3]) to solve the CQP problem described in the
previous Section. Fig. 1 shows an example of this network. The
neurons of the network are of two kinds; those indicated by I are
simple integrators, while neurons indicated by g implement the
penalty function necessary to satisfy eqn. 4:

0 v>0
g(v)_{Gu v<0 ®)
where G is the conductance of the neuron. For G — o, the penalty
function ensures that the solution satisfies the constraints as
desired. A simple example of neuron implementation is proposed
in [3]; more complex but, at the same time, more efficient circuital
solutions can be found in [4].
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Fig. 1 Recurrent neural network implementing the learning phase of
support vector machine

The mapping of the CQP problem on the recurrent network is
straightforward, as indicated in Fig. 1. Every non-zero element of
the corresponding matrix, or vector, represents a resistive connec-
tion. Note that the values must be interpreted as conductances.

The number of connections is greatly reduced, with respect to
Chua’s general version, thanks to the particular structure of eqn.
4. As an example, the connection matrix B has only 4n non-zero
entries, compared to a total of 2(n*+n) elements.

The evolution of the recurrent network is described by the fol-
lowing equation:

dv; 9 R of;
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where C; is the self-capacity of the integrators. Its convergence has
recently been proved [5], showing that the stable points of eqn. 9
satisfy the Kuhn-Tucker conditions of the associated optimisation
problem.
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Fig. 2 Linear separators found by two SVMs on IRIS data-set
........... SVM1
- -+ SVM2

Experimental results: We have used, for our experiment, the well-
known three-class IRIS dataset (Fig. 2). The first two classes can
be linearly separated without errors, while there is no exact linear
separation between the second and the third. The experiments
were performed with a conductance G = 10°Q2" and the upper
bound for the non-separable case was set to # = 15. We chose v, =
0 Vi as the starting point for the recurrent network; this is both a
feasible point of the CQP problem and an unstable state of the
network (V@(0) # 0), and therefore it can always be used as a
starting point for the solution search.

Two SVMs were implemented: SVM1 finds a linear separator
between the first two classes, while SVM?2 deals with the second
and third classes. In both cases, as predicted by theory, the SVMs
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find discriminating functions with good generalisation properties.
Note, for example, that the separator found by SVMI is maxi-
mally distant from each class.

Conclusions: We have proposed a circuital implementation of the
learning phase of support vector machines through the use of a
recurrent network. This is the first attempt to realise a hardware
implementation of SVMs. Our experiment confirms that the equi-
librium point of the network coincides, as predicted by theory,
with the solution of the associated optimisation problem.
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10Gbit/s transmission over 1500km with
semiconductor optical amplifiers

G. Onishchukov, V. Lokhnygin, A. Shipulin and
P. Riedel

The authors experimentally demonstrate, in a fibre-loop setup,
10Gbit/s return-to-zero propagation at 1.3pum over more than
1500km in a standard fibre using an optimised in-line
semiconductor optical amplifier. System margins have been
determined.

Introduction: Recently, the performance of 1.3um optical fibre
transmission lines with multiple quantum well (MQW) semicon-
ductor optical amplifiers (SOAs) as in-line amplifiers has been
intensively investigated. A 10Gbit/s return-to-zero (RZ) transmis-
sion over 420km was demonstrated in a straight-line test bed [1]
and over 210km in the field trial [2]. It was also shown that the
propagation distance could be increased by using an optimised
SOA [3, 4}

The aim of the current work was the experimental investigation
of the performance of such an optimised MQW-SOA in a recircu-
lating fibre-loop setup. A considerable increase in the propagation
distance has been demonstrated.

Experimental setup: The experimental setup was similar to that
used in [5]. An 8:1 time multiplexer (a three-cascade Mach-Zeh-
nder interferometer) was used to generate the most critical bit pat-
terns by blocking appropriate multiplexer arms. 37.6km of
standard singlemode fibre with mean zero dispersion wavelength
of 1307.2nm was used in the fibre Joop. An optimised, polarisa-
tion insensitive MQW-SOA was supplied by Philips Optoelectron-
ics. It has an 18.5dB fibre-to-fibre gain and a noise figure of
7.6dB at 1310nm with peak gain of 21dB at 1285nm and 1.2dBm
total ASE output power when driven at 300mA current. As the in-
line optical filter, a 0.8nm bandwidth interference filter was used,
which was superior to a 3nm filter and allowed us to abolish an
additional receiver filter [6]. A 7.5GHz low-pass RF filter was
used after the lightwave converter (HP 11982A).

ELECTRONICS LETTERS 6th August 1998 Vol. 34

Because of a strong amplitude pattern effect (inter-symbol inter-
ference), the usual Q-factor measurements (overlapping of all pos-
sible bits) did not provide any reasonable results for BER
estimation due to an appreciable deviation of the noise distribu-
tion from Gaussian. To overcome this problem, we measured the
Q-factor for each bit in a pattern separately, overlapping it with a
long set of zeros. As the system parameter, the worst case (usually
Q-factor of the fourth pulse in the ...00001111..” bit sequence)
was considered.

20
=~ 0 — = —al
. \'.‘ A "~
'io')' o T~ o Sus ~ a i
g 1oy T~ e Ve L N
C - - T s~ B
0 L
0 1000 2000
distance, km
10 o gy — T
= .- -~ Ly
A . T~
- T LI
e L =S a . ~n
% 5 '.\'_"'%lnu—.=.2
Q
o "
0 1000 2000
2
[
8
3
(=%
0 250 500
time, ps

¥ig. 1 Distance dependencies of Q-factors and pulse amplitudes at SOA
output and eye-diagram at 1500km

— — Il — — first pulse in “...00001111..." bit sequence
— @ fourth pulse in °...00001111..." bit sequence
—— V ~ - regular “...00001111...” bit sequence

Results and discussion: Our results showed that the performance of
the system under investigation is essentially governed by the
dynamics of the gain saturation and recovery, and most of the
specific features could be understood by taking into account
amplitude pattern and spectral walk-off effects [7]. Fibre Kerr
nonlinearity (self-phase modulation) does not really affect the sys-
tem performance because it is much weaker than the phase modu-
lation provided by gain saturation of the SOA. One reason for this
behaviour is the large (~5dB) losses of the elements between the
SOA output and the fibre (isolator, bandpass filter, tap coupler).

Better results have been obtained by using 30-40ps optical
pulses rather than 20ps pulses as is usually assumed for 10Gbit/s
soliton transmission lines. The recovery time of the SOA towards
the small signal gain typically amounted to ~400ps. This was con-
cluded from measurements of the time profile of ASE in a long set
of zeros. Thus, the SOA gain recovery time is much longer than
the pulse duration, and the gain saturation in SOA is determined
by the pulse energy and SOA saturation energy, rather than by the
corresponding power parameters. Compared with 20ps pulses of
the same energy, longer 30-40ps pulses exhibit a smaller spectral
walk-off; thus they are less affected by the in-line filter and yield
better results.

The distance dependence of the amplitudes and Q-factors for
the first and fourth pulses in a “...00001111..." bit sequence and for
a regular 10Gbit/s pulse train are shown in Fig. 1. The low ASE
power of the SOA used permitted us to work with a small positive
(~0.1dB) net gain in the line. This, together with the initial shift of
the signal wavelength to the blue edge of the filter, leads to the ini-
tial growth of the first signal pulse after a long set of zeros (in our
case, four zeros). Simultaneously, the amplitudes of the other
pulses in a set of ‘1’s continuously decrease with distance due to
the incomplete gain recovery between the subsequent pulses. Since
the stronger pulse has a larger red shift of its frequency at long

No. 16 1597



