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Abstract—The class of mapping networks is a general fam- We attempt to set up a framework to allow the study of a

ily of tools to perform a wide variety of tasks; however, no more general network model that may encompass different
unifying framework exists to describe their theoretical and prac- representation paradigms

tical properties. This paper presents a standardized, uniform | d . K be d ibed f
representation for this class of networks, and introduces a sim- A layered mapping network can be described from a topo-

ple modification of the multilayer perceptron with interesting logical point of view by the number and dimensions of its
practical properties, especially well suited to cope with pattern layers and from a functional point of view by the transfer
classification tas'g,s- Th? proggser? m|°de' Uf“'f'es the two main eP- function of its units. The overall function is then described
resentation paradigms found in the class of mapping networks for . e " : o
classification, namely, thesurface-basedand the prototype-based in terms of a numbe.r of S|mple. components. This description
schemes, while retaining the advantage of being trainable by can be further detailed, an_d still encompasses a |§rge number
backpropagation. The enhancement in the representation prop- of neural-network models in use. A new scheme is proposed
erties and the generalization performance are assessed throughthat on one side may help interpret a learned mapping, and,
results about the worst-case requirement in terms of hidden o4 the other hand, features interesting properties by itself.
units and about the Vapnik-Chervonenkis dimension and Cover Nonlinear discriminant functions have been considered b
capacity. The theoretical properties of the network also suggest " ) - ) Yy
that the proposed modification to the multilayer perceptron is many authors. The circular unit model was introduced in
in many senses optimal. A number of experimental verifications the 1960’s [5]. This and other works aimed at obtaining
also confirm theoretical results about the model's increased per- the best representation and memorization from single-layer
formances, as compared with the multilayer perceptron and the networks. The related problem of generalization was intro-
Gaussian radial basis functions network. ’ , ) .
_ duced by Cover's paper. Vapnik [6] started a theoretical
It?dex Term?—ligedfck)rwarldgeural netwo;k?, backpropagation, analysis of the topic, but a complete treatment was presented
patiern classilication, knowledge representation only recently [7]. A perspective similar to that of Cover's
paper also characterizes the well-known book by Duda and

|. INTRODUCTION Hart [8] (first edition), in which considerations about the

APPING neural networks [1] are computing devicedegree-complexity qf polynorr_]ial discriminant functions are
that implement, in a distributed way, a functiaf presented. Geometrical Iearr_ung proc_:edgrgs presented in [9]
from some input domair® ¢ IR® to some output domain led tp a methqd based on qrcular discriminant funcnons. A
7, parameterized by a set of parameters and featuring OHI5;|}5.1It|layervers_lon was used in [1_0], but no_theoretlcal a_naIyS|s
feedforward signal paths. Such a general definition descriddisth® model is present. The circular unit was used in [11]
the basic properties common to many neural models, includifﬂj minimum-cost structures for classification, and in [12] for
virtually all networks used in practical applications. Howeve@n interesting cascaded-architecture algorithm, whose complex
a unified theory of neural models does not yet exist. topology prevents an easy interpretation of the classification
A central topic in pattern recognition is classification. Maptule synthesized.
ping networks are widely used to approach classification The approach taken in many of these works is to con-
problems when the task is to derive a rule from a set §fder polynomial activation functions as an alternative to the
examples. In classification tasks, the mapping to be learn@dltilayer scheme. However, this introduces the need for
represents a law that assigns a label to each pattern. Therefagiglitional constraints to keep the generality of the set of
the output domain is defined &= {0,1}°. In the following, functions implementable by the model low enough for a good
by default a two-class problem will be assumed (heinee1); generalization [7], [13]. The present work aims instead to
the general case with more than one output label will ®earch for theminimal increment in the generality of the
considered only in statements involving a quantification @hultilayer model that is capable of substantially improving
the number of parameters. the representation ability without affecting (and possibly en-
The problem of regression, that is, function approximatiohancing) the generalization properties.
has also been studied in great detail [2]-[4]. However, thelt should be stressed that the works focusing on radial basis
present work addresses only the problem of classificatidonctions [4], [14] are substantially different from the proposed
and focuses on the previously defined class of networkapproach, in spite of the formal equivalence. The present
work includes a proof of the fact that the proposed model
Manuscript received January 5, 1996; revised June 27, 1996. This work vié@N be made equivalent to the Gaussian radial basis function
supported by the Italian Ministry for the University and Research (MURSThetwork, thus demonstrating its generality. However, the radial
The authors are with the Department of Biophysical and Electroni¢cs . . . ..
Engineering, University of Genova, 16145 Genova, ltaly. asis function approach originates from the application of
Publisher Item Identifier S 1045-9227(97)00235-X. regularization techniques, whereas the present work focuses on
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notion of representation paradigntan help obtain such an
a  — interpretation.

The representation paradigm is a characterization of map-
ping networks that is closely related to the geometrical prop-
erties of the stimulus. A distance-based stimulus (e.g., the
Euclidean distance between the parameter vector and the input
vector) can be associated with theototype-basegaradigm,
according to which a network stores representative patterns
discriminant functions and their implementation by multilayefprototypes) and computes its output by measuring the match
perceptrons. Moreover, a major distinguishing feature is thetween a pattern and the stored prototypes. Nearest neighbor
ability of the proposed model to implement a larger set @fassifiers [19] implement this paradigm.
functions than that realizable by standard radial basis functionBy contrast, thesurface-basegbaradigm is represented by
approaches. those models that draw region borders (hypersurfaces) in the
input space, usually composed of individual segments realized
by different units, and compute their output according to the
position of an input pattern with respect to the borders. The
perceptron [16] is an example of this paradigm.

The prototype-based paradigm can be regarded as being
In the present work we refer to the multilayer mappingata-oriented in that it represents data directly and decision
network model with a topological structure inherited from thgoundaries only indirectly. The surface-based paradigm rep-
MLP. A single hidden layer will always be assumed in thgesents boundaries directly, and only indirectly data, so it is
following, without loss of generality. The network structurgule-oriented The two approaches can be regarded as being
being fixed, we focus on the description and design of th@mplementary.

(hidden) unit.

A generalized unit scheme is illustrated in Fig. 1, along with
the symbols adopted. This scheme was introduced in [25].B. The Circular Unit and the CBP Network
is the input vector of dimensiod. The parameters (weights, Tpe perceptron can be generalized by lettin@g:) =
bias, etc.) are the components of the veatoe IR?, yvh|ch_ SP_ wié; = w - €, where the mapr — £ (¢ € IRP) is such
needs not (and usually does not_) have the same dlmensm%éd? each componerd} is given by a product of components
x. The two blocks compute functions denotedibgnda. The ¢ ;. \hich can be some power of a single component or the
first block outputs the value = 7(x, w), which we call the nroqyct of powers of different components. Usually, one of
stimulus The second block outputs thetivationa = a(r).  the terms is a constant whose weight implements the bias.

These two quantities have a quite straightforward intefy,o parameter vector is of the same dimensiong,aand

pretation in geometric terms. The stimulus results from th&g yesyiting stimulus is a polynomial with its components
application of a “filter” sensitive to some geometric propertys «oefficients.

of the input space. The activation is the response of the unitrhis model is often adopted as a single-layer network
to the geometric property pointed out by the stimulus. scheme, as, for instance, in [5] and in more recent works, in-
Through the selection of appropriate functional forms fqq,ging the theoretical overview presented in [20]. In principle,

7 and @, the model can be used to represent all neurgl yrength is the representation power, as every function may
units usually adopted in practical applications. Some examplgs ot east locally approximated with arbitrary precision by a

g

Fig. 1. A generalized model of the neural unit.

Il. A UNIFIED VIEW OF MAPPING NETWORKS

A. Generalized Neural Unit

follow. polynomial (e.g., Taylor's series expansion). However, it is not
* The perceptron [16} = 7(z, w) = wo+ ¢, ziwi;a = possible to avoid a very sharp increase in the number of terms
a(r) = H(r) (where’{ is a Heaviside function). required when the order is increased because it is not possible
+ The sigmoidal multilayer perceptron unit [17} = to select a priori some terms and to neglect the others (see
(o, w) = wo + XL, wwisa = a(r) = o(r) (where [g]). For instance, the first-order model with bias (perceptron)
o is a sigmoidal function). has about as many parameters as inputs: 1 + d. For the

* The radial basis (Gaussian) unit [18]: = 7(z,w) = complete second-order model, howevet= 1 + d(d + 1)/2,
& = ¢ll?/o%a = a(r) = e which is of orderd?. In the general case, the number of
By using the terminology introduced, it is possible to mak&rms of a complete polynomial with variables of ordey is
a parallel analysis of many network models by comparing = (d+g_1), which is of orderd?. The polynomial growth
their stimuli and activations. From the standpoint of functionan be acceptable in cases with very small input dimengion
representation, however, a direct comparison of the mappirgg it should be avoided for practical cases.
obtained by different networks is appropriate only in terms Other specialized unit functions can be devised based on re-
of global evaluation parameters, such as a properly definguirements imposed by specific problems, the wavelet network
functional distance, and not at the single unit level. A ge¢21] being an example. However, they often show a limited
metric or algebraic interpretation of the unit functions doeapplicability for various reasons, e.g., some are too specific
not help in this respect. Hence an alternative interpretatiand tailored to a class of applications, and some others require
of the underlying elementary components is required. Thkenonstandard training method.
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On the basis of the above considerations, it is necessary TABLE |
to impose some constraints on the design of the stimulus RELATING WEIGHTS TO CIRCULAR PARAMETERS
and activation functions, if the model must be general and
cost-effective at the same time.

« The overall network should have an increased represen-
tation power as compared with the standard MLP.

From circular parameters to weights

. . . Wy =
« The increase in the representation power should not affect 1= 9
significantly the generalization power; in other words, it
should not cause an excessive increase in the probability
w; = —g¢;

of overfitting.

* The representation should allow for an easy interpretation
of acquired knowledge. This is needed in order to use the d 5
network as a data analysis tool. Wo = g (Z ¢ — 0)

¢ The network should be trainable by a standard algorithm, =1
without requiring a new theory.

e The implementation should stick as much as possible
to the standard multilayer perceptron structure. This is
especially important when dealing with hardware realiza-
tions, as we want to take advantage of the great efforts g = Wy
previously made by many researchers in the design of
MLP hardware.

We consider the selection of an appropriate number of ¢ = —wi/2wq
polynomial terms as the most sensible way to obtain a good
compromise among the above constraints. In the following, the 1 d_ 2
circular backpropagation(CBP) model [15] will be studied 0 = — (Z L wo)
from this standpoint. As previously remarked, the model Wy \;=1 4w,
features the standard multilayer topology with a single hidden
layer. At the unit level, the CBP model is described by the
following functions:

From weights to circular parameters

is obtained around the point Therefore, we describe the

d d
arameters as follows:
7(x,w) = wo + Z xiw; + wq Z e 1) P
i=1 i=1 ¢ = center or prototype
or, expressing the quadratic term in the compact faym= 6 =radial threshold (hence = Vo = radiug
_ B 4 . 5 We call these the “circular parameters.” The transformation
T(®,w) = wo + 2 TiWi + Wqlq (@) from standard perceptron weights to circular parameters is pre-

sented in Table I. The calculations involved are very simple,
and but for completeness they are presented in Appendix I.
a(r) = o(r) 3 The double form of each parameter is not a formal artifice,
) in that we adopt it to reflect the double nature of the repre-
This is a special case of the polynomial unit describegentation. The circular parameters represent a transfer function
above. There is one additional parameter, i.e., the coefficiéfpplementing the prototype-based paradigm. However, when
w,, Which weights the sum of the squared inputs. By simpl@e coefficientw, is very small, the circular parameters are
algebraic transformations, it is possible to obtain another for@t adequate anymore, and the stimulus collapses to the

for the same stimulus standard linear perceptron stimulus. In this situation, the unit
) implements the surface-based paradigm.
r=g(llz =l = 0) (4) The choice between the two representation forms is depen-

dent only on the value of adaptable parameters, so it is left

but have the following geometrical interpretations. t‘; thi opctlénplzatlodn lp;ocess. \é\./e reftlar t9 .'[hlrS] fact bgl saying
The distance from the point in the space of inputs is that the model has garadigm plasticitythat enables it

computed and compared with the vakieThe result is scaled to adapt_ the representation form, without need for the user's
with the coefficienty to obtain the actual stimulug and the supervision.

activationa is computed by the standard sigmoidal function. .
The output of the unit can be positive inside (fgi< 0) C. A Note on the Implementation of the CBP Network

or outside (forg >0) a circular (in general, hyperspherical) By simple inspection, it is easy to see that the only different
region; anyway, a localized “bump” with a circular sectiorieature of a CBP network, as compared with the MLP, is

in which the parameters g, and @ do not appear as weights
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an additional input. This means that a CBP network can beTheorem 1:A d-input linear threshold maching -

obtained by aroff-line modification to the training set, i.e., byperceptron without bias) has,c = d.

adding the quadratic term, directly to the input patterns. Proof: A linear threshold machine € R¢, when the
This trivial but fundamental observation allows one teectorz is fed at its input, outputs the valié(z? - w). The

devise very efficient implementations, in both hardware inmachine is requested to learn the dichotompn the pattern

plementations and software simulations, if an MLP device &t D of size n, defined by7T(z) € {-1,+1} Vxz € D.

already available. The resulting network will be trained byhe dichotomyZ’ induces a vectot of size n, with binary

plain backpropagation, at the only expense of an additiormmponents, such thaign(¢;) = T(x;) Y2; € D, and D can

input (for a network with 2 hidden units, this meané be arranged in a matriX of d columns andn rows such

additional weights). that row;(X) = x;. There are2™ possible dichotomies. The
However, when we are interested in issues related to tiehotomy7’ is implementable by the machimeif there exists

representation paradigm, and not in implementation detaids) assignment fotw such that

we will consider the CBP model as being completely different

from the MLP. Xw=t (5)

The value ofdy¢ is the maximum sample size such that there
exists a pattern seb for which everyT" is implementable.
For (5) to have a solution, the target vectoshould belong
This section describes the CBP model from different stang; the column space o (which is at most of dimension).
points, including the results on the capacity, introduced Byhjs is guaranteed for every as long as the dimension of
Cover [5], and on the Vapnik-Chervonenkis dimension [22)he space is greater than, or at least equal to, the number of
for both the single circular unit and the layered network. olumns(n < d). In this case, it is always possible to choose
very simple procedure to analyze a trained network to searghgych thatX has full rank. Hencedyc > d. Conversely,
for significant rules will also be presented. _ if n>d, the number of columns ok is insufficient for them
As is well known, the Vapnik-Chervonenkis dimensioRy form a base in an-dimensional space. Since the target
(dve) of a learmning machine is the maximum sample Sizgectors span the wholl”, then (5) cannot have a solution,
such that there is at least one pattern set for which evephatever the choice ab. Hencedyc = d. -
dichotomy is implementable by the machine; the capaCity proposition 1: Given a mappings: X — =, with X ¢ IR¢
is the maximum sample size such that a pattern set for whighq = - R?, if 4 is nonlinear, then a lineat{-perceptron
every dichotomy is implementable has a probability 1/2. ity input ¢ = dlx) (z € X, € € ) hasdyc = p. If ¢
There are many theoretical results that make us&efas a s |inear (¢ = ¢z, where¢ is a matrix of size(d, n)), then
sort of generalized number of degrees of freedom; for instange, . — yank(¢). In generaldye equals the number of linearly
a well-known result, although the estimated bounds are ngjependent components ot
very tight, is presented in [23]. Vapnik's learning theory [7]isa  proof: The proof follows directly from Theorem 1, by
very sound and general background for classification and othefstitutingX” = #(D) for X. If ¢ is nonlinear, it is possible
learning problems; this accounts for the greater importanggchooseD such thatX” has full rank, whereas if it is linear,
of dvc, as compared with Cover's capacity. Notwithstandinghe maximum rank attainable by’ is rank(X ¢) < rank(¢).
these limitations, a number of results make use of the capaqifyihe general case, it is possible to spiiinto a linear part
C, therefore, it could be exploited for comparisons with othe{ng a nonlinear part. The same considerations hold separately
models. for the two parts. The result follows. [
In the following, we shall prefix the name of a unit (for corollary 1: A d-input affine threshold machine
instance, perceptron) by using a symbol indicating the actiigarceptron with bias) hagvc = d + 1. A d-input H-circular
tion function: o for sigmoidal activation, for Heavisides. ynjt hasdyc = d + 2.

The same will be done for the names of multilayer networks  proof: In an affine perceptrony(z) = wo + S, w;z;.

(either CBP or MLP), for which the symbols will indicate thernere ared + 1 terms, all linearly independent. In a circular

I1l. PROPERTIES OF THECBP MODEL

activation functions of the hidden units. unit, ¢(z) = wo + N, wias + w, B¢, 2. There are
d+ 2 terms, all linearly independent. The direct application of
A. The Circular Unit Theorem 1 and Proposition 1 yields the result. [ ]

The capacity of a perceptron and that of a circular unit have ) )
been studied by Cover [5]. In the reference, it is shown thBt Representation Properties of the CBP Network
C = 2(d + 1) for the perceptron and = 2(d + 2) for the Since a CBP network features the MLP as a special case,
circular unit. it is possible to apply the known results on the approximation
It is known that, for a perceptron with inputs IR, dyc = properties of the MLP to a CBP network in the casg=0
d+1 (a proof is given, for instance, in [24]). It is also known(among others [3], [1]). Hence the general approximation
that, ford-dimensional hyperspheres,c = d+2 [25]. These properties of the MLP ensure that every mapping is realizable
results can be proved in many ways. In the following, waiith a CBP net with arbitrary precision, since it is also
present a very simple and intuitive proof that requires onhgalizable with an MLP. However, it is reasonable to expect
elementary linear algebraic considerations. the CBP model to have a higher representation power than that
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of the MLP in terms of resources needed (number of hiddem most one hypersphere is required to separate each point
units, number of layers), by virtue of the properties shown ate S from the wholeS(®. It is also possible that a single
the unit level. hypersphere may separate two or more points; however, we

At this point, however, a distinction should be made bere interested in an upper bound, so we search for the most
tween the cases of stepwise and continuous activations.uimfavorable case. This is obtained whenl)is even; 2)
the multilayer case, it is known that the sigmoidal multilayethe sizes ofS(*) and $(® are both equal ta:/2; and 3) no
perceptron provides a representation power that is differamo points of S() are spherically separable frost?. This
from that of the hard-limited version (Heaviside activationequiresn/2 hidden units. Ifn is odd, then it is possible to
function). Consequently, the estimate of the generalizatiomake this construction by using the subset of the smaller size,
power is also different. The case of sigmoidal activation withat is, |n/2]. Hence the number of hidden units required is
be briefly addressed later on. at most|n/2].

Definition 1: Let S be a finite set, with elements iR On the basis of this result, we can expect that the represen-
Let S®) be a subset of5 and letS® = § — S pe its tation performance in “easy” cases will be similar to that of
complement with respect t6. Let H be a class of varieties an MLP. But when the complexity of the rule to be learned
(hypersurfaces) such that each elemeiriduces a dichotomy increases, the number of hidden units for the CBP network
in IR%. The setsS(®@ and S®) are said to beH-separableif ~will have to increase more slowly than for the MLP. When
there exist, € H that realizes the dichotomy = S(®)+5®),  the worst case is reached, the number for the CBP network

Definition 2: (Special cases of separability) A dichotomywill be approximately half that for the MLP.
realizable by an element in the claBs= {x € R%: z - w =
k} of linear varieties (hyperplanes) is said to beearly ) ) o .
separable A dichotomy realizable by an element in the clas§- Extension to the Case of Continuous-Activation Units
H = {z € R% ||z — ¢|*> = k} of isotropic second-order The following result states that the representation properties
varieties (hyperspheres) is said to ¢gherically separable  of the MLP are enhanced when adopting theersion.

In the case of art{-MLP, the result presented by Huang Theorem 4 (Sontag [27], [28]):Any dichotomy on a set of
and Huang [26] holds: patterns of cardinalith can be implemented by sormeMLP

Theorem 2 (Huang and Huang)let S be a set of size with A4 hidden units.

n <oo, with elements inR%. Let ¢: S — {0,1} be an By this result, the gain of &-CBP network with respect to
indicator function inducing an arbitrary dichotomy SnThere the H-MLP configuration is comparable to that of switching
exists an{-MLP network with» — 1 hidden units capable of from H-MLP to o-MLP. It is possible to find instances of
realizing . a further improvement by considering-CBP networks. In

A similar result can be stated for aW-CBP network. these cases, the number of hidden units for a given number of
However, the upper bound on the necessary number of hidggnterns is even less than half.
units is lower. An example of this kind is the “alternate labels” problem,

Proposition 2: If S is a finite set with elements iR¢ every arising naturally in the context of Sontag’s work. This problem
dichotomy,{z}, S — {z} for € S is spherically separable. consists of a given number of data points, all lying on the same

Proof: From the hypothesis of finiteness of the €&t line. There are two possible class labels. Each point is labeled
given z* € S we can state that there exists> 0 such that, differently from its neighbors, so that the targets alternate
for eachz € S, ||z* — || > r. Hence it is always possible toalong the line. We will consider the case of equispaced points
construct a hypersphefeof radiusr and centex*: h = {x € throughout this work.

R%: ||z — z*||2 = 7). u In the “alternate labels” case, for instance with 11 data
Proposition 3: Every linearly separable dichotomy is als@oints, it is experimentally demonstrated that a CBP network
spherically separable. with A = 3 can solve the problem, while the above theorem

Proof: The proof is immediate if the linear separatingndicates that a MLP needs = 6. However, there are other
hypersurface is written as a degenerate hypersphere of infimilecumstances in which the gain of CBP is not so large. We
radius and center to infinity. m refer to the following recent result.

This proposition is simply a geometric interpretation of the Theorem 5 (Sontag [29]):A network (eithers-MLP or o-
fact that the perceptron is a particular case of the CBP unitCBP) with p parameters can shatter any set2pf+ 1 points
With the aid of these propositions, it is possible to state ttie general position.
following theorem, which is similar to Theorem 2 but refers In this case, since only the number of parameters is taken
to the case of circular units. into account, the user who wants to improve the representation
Theorem 3:Let S be a set of sizer < oo, with elements performance of an MLP architecture can either increase the
in RY. Let 4: S — {0,1} be an indicator function inducing number of hidden units or step to the CBP model.
an arbitrary dichotomy oi$. There is &-CBP network with This discussion can be closed with a note on the practical
|n/2] hidden units capable of realizing. side. While the “alternate labels” case can be mapped on the

Proof: Let S(® 4+ S() be the dichotomy orf induced framework studied by Mirchandani [30], if each data point is
by 1: S© = {z € S: 9(x) =0},SY = {x € S:¢p(x) = 1}. made to represent the “center” of an input region, the “general
Consider singularly the elements of one of the subsets, gagsition” is in fact very peculiar. Therefore, in applicative
S, without loss of generality. According to Proposition 2cases we may expect an intermediate situation, in which the
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gain of -CBP with respect td{-MLP is not as large as in  This observation does not imply a reliable knowledge-
the alternate labels example, but is larger than that of a simpéwersal process in every situation; nonetheless, the rule-
o-MLP. extraction procedures applicable in the standard MLP case are
preserved by the CBP model, whereas the latter introduces the
additional information on whether the rules are of the global
D. Generalization in CBP Networks or of the local type.

A fundamental advantage of the CBP model is that most
of the results known for the MLP can be stated for the CBP
model, too, with ap!oropriate modificatio_ns. This means that_ Optimality of the CBP Model
the fundamental estimate df, for a multilayerH-network,
provided in [23], is still valid: for an MLP withd inputs,  With reference to the list of desirable properties presented
h hidden units, and outputs,dvc < 2(h(d + 1) + b(h + 1N Section II, this section has shown the following.
1))log(e(h+b)). Hence, for a CBP net with the same topology, * The representation power of CBP is larger than that of
dve < 2(h(d+2) +b(h+1))log(e(h +b)). These values are the standard MLP.
not very different, and their ratio approaches one for networkse The increase in the representation power does not affect
with a large number of inputs, so the expected generalization significantly the generalization power. Th&, value
ability is similar for the MLP and the CBP model. estimated for CBP is very close to that estimated for the

The same reasoning is not so easy when one tries to estimate MLP.
the capacityC. One reason is that the definition of capacity * The representation allows for an interpretation of acquired
cannot be generalized in a unique way [31]. However, some knowledge in terms of representation paradigms. There-
results are presented in [32] (a more detailed version is to fore, the knowledge reversal is analogous, in the worst
appear [33]), and can be extended to the circular case by case, to that of the MLP, but is often easier.
means of the same arguments that hold aboutdie. In * The network is trainable by standard backpropagation in
particular, for networks with one output unit, it is shown that a transparent way.
dh+1 < C < 2(dh + 1) in the case of the¢{-MLP. These  * The structure of the network is almost identical to that
bounds are obtained for sets of points in general position. The of the MLP.
transformationz — & converting MLP into CBP (i.e., the The CBP model is a very special case in the class of
addition of the sum-of-squares component to the input vectgdlynomial units as described earlier in this section. In general,
does not always preserve the general position; in other wordse ability to implement a localized activation allows the
if every subset of sizé of the set of vectorgz™ ... 2™}  feasibility of a prototype-based representation. The polynomial
is linearly independent (does not lie on adydimensional model features this ability, but the ordemust equal two. In
hyperplane), this is not always true in the corresponding s@k class of second-order units it is possible to have or not to
{eW ... €}, Therefore we can state the following boundsave a localized activation; this depends on the relationships
for the H-CBP network:dh + 1 < C < 2((d + 1)h + 1). among coefficients, and may be verified by analyzing the

The lower bound could be tightened {d + 1)k + 1 if  definiteness of the matrix that describes the overall transfer
we restricted the general position requirement to exclude afsmction as a quadratic form.
sets of points lying oni-dimensional hyperspheres; however, To obtain the required ability, it is necessary to impose
this is not very interesting, since the corresponding gain é®nstraints on the coefficients of the second-order terms (pow-
proportional tok, but generally one tries to kedpas small ers of inputs and products of inputs). It is difficult to ensure
as possible. that these constraints will be met in every case because

they involve more than one weight. The only situation that

, guarantees the function to be able to implement localized

E. Knowledge Reversal by Interpretation activations is the circular one, as it involves one coefficient
of the Trained Network w, for all the second-order terms.

In some cases, the internal representation of the MLP is used herefore, the CBP model is the only one that is capable
to extract informations about the structure of the classificatiar switching from a linear to a localized (circular) activation
mapping. Thisrule extractionis based on the interpretationregion without requiring additional control structures that
of the transition between decision regions, at the unit levelpnstrain the parameters to satisfy special conditions. At the
as if-then rules. same time, it is also the least costly in terms of number of

The same reasoning can be applied to a CBP netwoddditional parameters, as compared with the MLP unit. Only
However, in this case, additional informations can be extractadthe circular case is the number of parametgrsonstant
from the representation paradigm adopted by each unit. With d, p = 2+ d. In the restricted elliptical case, for instance,
other words, if the weightw, is very small, the unit is itis linear ind: p = 14 2d. In the most general second-order
implementing a standard perceptron rule. If the weightis polynomial casep is quadratic ind, p = 1+d+d?/2. It should
not negligible, the unit is implementing a circular (distanceése noted that the number of parameters should be kept as
based) rule. Since the paradigm is decided by the optimizatismall as possible for many reasons, including those regarding
process, this gives an information on what type of representearning time, storage cost, sample complexity/generalization
tion better fits the training data. power, and readability of the learned mapping.
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To sum up, the CBP model is optimal in termsgsin in

representation powe¢according to our requirements) versus 1
increase in the number of parameters
0.5 n
IV. EQUIVALENCE TO GAUSSIAN
RADIAL BASIS FUNCTION NETWORKS 0
In this section we shall show that the CBP model may be
made equivalent to another widely used neural scheme, i.e., 05 F i
the network of locally tuned Gaussian units.
Equivalence between two network models requires two
conditions to be satisfied. The first is that the sets of functions -1 [ { I 7]
implementable by the two models coincide. The second is that 1 _0.5 0 0.5 1

the training procedures should allow them to learn the same
mapping for the same training set. Fig. 2. How CBP solves the alternate-labels problem.

The first condition is of architectural nature. It can be
verified by comparing the structure and interconnections of theA generic output unit will not receive this value directly
layers, and the activation functions of the units. The secoad an input, but only after a multiplication by the weight
condition is related to the algorithms used for training arpherefore, the output value of the hidden unit can be multiplied
not to the networks. It can be verified by comparing thgy an arbitrary constant, which will be compensated for by
iterative learning steps. However, if the performance criteriane subsequent weight
adopted in training is the same for both models (e.g., in 5
classification, the percentage of correctly labeled patterns), we ka = 67,,k(379
can concentrate on the architectural equivalence, since the goal e”ed? + 1.

of the optimization process coincides in the two cases. et the termgd take on very large values. Let the constant
The transfer function of a circular unit is radially symmetricy, take on correspondingly small values. The multiplying
Hence a CBP net has by itself the structure of an RBfaction can then take on values arbitrarily close to one. Hence,

network. However, in practice, the most commonly adopt§fciuding the weight in the expression for the output value,
basis functions are the isotropic Gaussians we can write

2
G(x) = exp <—u> (6) |lwarsr — w'acpp| < €
o

The training of such networks requires the choice of afQ" any >0, where agpr is the activation computed by

- L Using the Gaussian activation function and stimulus as per (6),
propriate values for the parameterand o, which is usually 9 per (6)

made independently. Here we show that-EBP network can ggriilfst?ueigi?]\éagz? EtSI\?vgeithh(i iﬁ;ﬁ“f::gﬁngggt:gd
implement a Gaussian RBF network; therefore, backpropaga-, ' P gnt. P

. e ) utput weightkw’ = w. ]
tion training can be used to obtain the same results as those/‘\fter showing that a CBP network can encompass also the
obtained by RBF training. 9 P

o i . . Gaussian RBF model, we may ask whether the converse is also
Proposition 4: There is a two-layet-CBP network equiv- . .
. . true, which means that the two approaches are theoretically
alent to a Gaussian RBF network with the same number . . . )
. . identical. However, this is not the case. This may be shown
hidden unitsh. . S . with the aid of the alternate-labels problem. Fig. 2 shows
Proof: The stimulus of the generic hidden unit of a

+-CBP network can be expressed in terms of the circuldn alternate-labels problem with seven data points, and the

arameters as per (4). The activation function is one-dimensional (1-D) activation profile of two CBP units.
P P ' It is possible to see that the CBP activation profile can

N 1 identify seven zones, characterized by sign inversion, while
(7)_1 —. (7) A , ; )
+e RBF is limited to five zones. This has been shown theoretically
for RBF (the proof is in Appendix Il), and experimentally
demonstrated for CBP, as shown in the figure, with good
convergence rate.
0= 1 ®) We conclude with a note on the representation properties of
1+ e (=98’ the CBP activation function as compared with the Gaussian
fynction. In the CBP network the parameters are expressed
in the form of weights, rather than in the circular form. This
means that degenerate radial functions are implementable in

Therefore, if we letr’ = g|lz — ¢||?, the overall transfer
function of the unit can be expressed as

By some algebraic manipulations, this expression can
transformed as follows:

a= % the CBP formalism, since an infinite radius is realizable when
lte 06 ! expressed as, = 0. In the RBF formalism, this would mean
e’ ed

_ giving an infinite value to an actual parameter (the center's
eed? 4 1. coordinates), which is unrealizable both in physical hardware
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and in software simulation. This means that the equivalence 1
between RBF and MLP could be theoretically assessed in

the limit, but not physically attained, whereas the equivalence

between CBP and MLP is feasible also in practice. Comparing 0.5
the dyv¢ of CBP with that of RBF is difficult, since to the best O +
of our knowledge no information on this topic is available o +

for RBF networks in the classification framework. However, 0
one can expect that thé,c of RBF will be proportional to
the number of weights in the network [34]. We stress that +
Theorem 5 remains valid also for the RBF activation function, -0.5 - % -1
if the training set is in general position.

T
i

V. EXPERIMENTAL RESULTS -1 : \ I
-1 -0.5 0 0.5 1

A. Experimental Setup Fig. 3. The alternate-labels problem with ten data points.

The simulations are grouped into three different sets. The
first set of two tests aims at obtaining very simple verifications T T T T
of the properties described theoretically. The second set is 1
a more comprehensive study of several properties of CBP
networks, based on a family of data sets generated by Gaussian o, 0 N + o
mixture d|str|but|ons: These experiments _follow the approach 05 L + o M R
presented by de Villiers and Barnard in [35] to allow a o+ o0
comparison with their results, obtained for the MLP. The A A
third set is a standard benchmark, i.e., a vowel recognition +
task, available on-line in the repository of Carnegie Mellon 0
University, Pittsgurgh, PA.Although experimental compari- + °
son among different classification procedures is probably an + % 1 e Tay ++++ o t oo
ill-posed problem [36], our choice is to complement theoret-_ 5 L ° + % 0d oo 4+ o i
ical analysis with practical verifications. This allows a more +
complete description of the model under study. P N

The first two problems consist of two-dimensional (2-D) t
synthetic tests (for ease of visualization). The training sets = [
are shown in Figs. 3 and 4. The first problem, a ten-points ' .
version of the “alternate labels” problem, aims at comparing -1 -0.5 0 0.5 1
the representation properties in the worst-case addressec,Lién‘L
Theorem 3 for the MLP and CBP. The second problem is the
well-known “two spirals” benchmark [37], [38], commonly

T
<
1

adopted as a testbed for pattern classification systems. The ! ' ' ! ‘
data set consists of points belonging to two interspersed spiral- - Son o Class Ao |
shaped classes, with 97 samples for each class. e T Class B+

The Gaussian mixtures are used to create a set of exper- - ° + -
iments, originally aimed at doing statistical considerations S ¢ 4+
on the representation and generalization properties of MLP —‘&%ﬁ;%ﬁ? +T
networks with different layouts (one- and two-hidden layer i 003‘) jg:p‘) :E’:}ﬁ #‘?* t
networks). Here we adopt the same approach in order to 0%‘%49 3..¢$ ;+ffi++ +
compare the CBP and MLP models. The training sets are u ® +#¢£t,$+ Lot
random samples of mixture distributions, resulting from su- 4 1*++ T +
perpositions of equiprobable Gaussian clusters. The parameters L TS o
of the Gaussian clusters (averages and variances) are in turn +

1

randomly selected from a Gaussian distribution. Patterns are . 1 L L
d-dimensional, withd € {2,5}, and the distribution of each Fig. 5. A training set drawn from the Gaussian mixture distribution.
cluster is the product off univariate Gaussian distributions;
g:)lzrgi]r?;'ltgsa;zzt X:']eeEQr?]CFI)FeaIisdé:\e/gtrzoir:]SF?gOIréCIc\j\(/ae vr\g‘r(;rttr;\ee The vowel recogni_tion task is based on the reg!-world da_ta
reader to [35] fo'r a complete presentation of .thié “distributio(r:10"ecuEd by Deterding [39] for speech _recogmnon_expen—
of distributions.” ments. The data represent a ten—dlmensmnal encoding of the
' steady-state part of vowels uttered by different speakers. There

1Anonymous ftp: ftp.cs.cmu.edu, directory /afs/cs/project/connect/benchare 11 classes, corresponding to as many vowel sounds. The
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Fig. 6. Training results for the alternate-labels problem with ten data points. L v Mas !

Percentage of convergence of multistart training for CBP (solid line) and MLP - .
(dotted line) versus number of hidden units ngg. 7. Training results for RBF on the two spirals problem.

II.l.-.

« ” ; e TABLE I
standard “vowel” database is Composed ofa training set (528 REsuLTs FORRBF ON THE TEN-POINTS ALTERNATE-LABELS PROBLEM

patterns) and a test set (462 patterns), to allow generalization .
h  Min. error Convergence

estimation.
The backpropagation procedure adopted was accelerated by
the method by Vogeét al. [40] for adapting the training param- 3 20% 0%
eters. An implementation of the algorithm, with optimizations
for RISC architectures, is available onlifie.
4 10% 0%

The RBF tests have been performed with a network featur-
ing a hidden unit activation of the form given in (6) rather
than that of (4). A CBP network and a RBF network differ d 0% 4.4%
essentially in that the terr in (4) is null in (6), and in that
the termg in (4) is substituted for by-1/02 in (6), that is
necessarily of negative sign. corresponding to the minimum theoretical number of hidden
Training of this RBF structure is accomplished by gradiemtnits (i.e.,h = 3 for CBP andh = 5 for MLP) is under
descent, as described above, with the derivatives of the cb%b, therefore in the plot it is not possible to appreciate it.
function with respect to the parameters given by Bishop [4The actual percentages are .5% for CBP and .3% for MLP.
pp. 190-191]. The decrease in the plot can be ascribed to the fact that,
When a random variable was required, the random numbenenh increases, so does the number of parameters, therefore
generator presented in [42] was used. The Gaussian generaitirer the threshold of 20000 epochs or the number of starts
routine can be found in [43]. per training run should have been increased to cope with the
more complex optimization problem. On the other hand, as
soon as the theoretical requisites for the representation of

B. Results on the Two-Dimensional Problems
ﬁonfigurations are met (i.eh, sufficient for then points), CBP

The alternate-labels problem turns out to be very difficu averaes with little or no difficult
for standard backpropagation to learn. In the diagram of Fig. % 9 Y-

: . : : - It is interesting to investigate the convergence of a RBF
a number of experiments with varying numbers of sigmoidal 2 .
i . 4 . o network on the same problem, to compare it with an equivalent
hidden units(h) are presented. Sigmoidal activations wer

chosen to allow backpropagation training. For each vallﬁe;eBP network. The results of this experiment are summarized

of h, 1000 training trials were run, starting from different” Table Il. Ftc))tr _eagh. nlim.befr of h'dde; ur:lts, the :jm?r:
seeds. The training was stopped either at convergence or whE{"n error obtained in framning (_secon column) an €
the number of epochs reached the threshold of 20 000. T%%Lcentage of zero-error trials (third column) are presented.

percentage of successful trials is plotted versus the value &p lower re;ljrgseip]tat;ont iﬁpfcéné;i, RBF thth respect fto
h. We observe that, as expected (Section Ill), the presence d?f can expiain the tact tha 0es not converge for

= i i 1 1 —_ =
sigmoidal activation functions increments the capacity of tr{%< 5, as discussed in the previous section. For= 5,

network, as compared with Heaviside units. This fact holc%erformance of RBF equgls that of MLP,’_ in agreemept with
for both cases (MLP and CBP). Theorem 4. Of course, in these conditiofls = 5 with

It is possible to see that the MLP does not converde™ 10), RBF training can be implemented in a much faster

100% of the times for any value df. The convergence rate W2y Py using a cluster analysis of the training set before
starting the classification phase, instead of a plain gradient

2ftp:/Irisc6000.dibe.unige.it/pub; files mbp*. descent [14].



RIDELLA et al: CIRCULAR BACKPROPAGATION NETWORKS 93

hA=T7

L=

.5

|-'|-.-.

05

Fig. 8. Training results for the two spiral problem. Visualization of the output with varying number of hiddenhunits

The performance of the MLP on the “two spirals” problenof five units each. Here we show the results of training CBP
was reported in [37] for a network with three hidden layemnsetworks with one hidden layer of seven to 15 units (Fig. 8).
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TABLE 111 TABLE IV
NEIGHBORS IN THE “SPIRALS" DATA SET REsuLTS OF THE GAUSSIAN CLUSTERS EXPERIMENTS
p MLP CBP RBF
HN P HN P
20 65.22(8.94)  96.28 (3.36)  94.93 (3.36)
0 21 6 2 Twe 40 6070 (5.82) 96.84 (3.17)  93.99 (4.96)
1 0 7 4 60 63.02 (5.25)  96.58 (3.42)  93.69 (4.86)
2 44 8 2 20 65.55 (13.99) 72.78 (12.98) 175.29 (7.60)
3 5 9 5 Gave 40 67.68 (12.88) 73.79 (13.61) 81.09 (10.70)
60 67.89 (12.41) 73.84 (14.34) 78.68 (10.84)
4 12 10 )
20 69.29 (10.35) 97.58 (3.22)  96.23 (3.34)
5 3 Total 97
Topt 40 63.36 (6.43)  97.87 (2.92)  94.30 (4.75)
60 65.20 (5.32)  97.70 (3.06)  94.24 (4.80)

All the trials were ended at convergence; therefore, seven
hidden units in one layer are sufficient to solve this problem
by the CBP model. 20
An RBF network has been trained on the same problem. The

result is shown in Fig. 8 fok = 42. However, no convergenceGOPt
has been obtained with < 41. The case oh = 42 requires
considerable optimization efforts. We consider= 41 as a
threshold value, based on the following considerations.

We ask how many neighbors of the same class can be ) )
represented by each hidden unit. For each point of one Rframeterized by the topology, hence they are a function of
the two spirals we take into account its neighbors, startifg AS in the original experiments, the number of weights was
from the nearest and proceeding according to their distarl€& constant ford = 2 andd = 5, and set to about 20, about
ranking. We count how many neighbors belong to the sarft8: @nd about 60 (within 5% tolerance).
spiral (“homogeneous” neighbors), before finding a point lying The pa}rameters measured in these experiments are related
on the other spiral. The results are summarized in Table 1P, classification performances (percentage of correctly labeled
where HN indicates the number of homogeneous neighbopgtterns) over the 10 trials of each run, and are defined as fol-
and P the number of points. lows (see also [35])7,.. is the average training performance,

Using these data, the RBF network size can be estimatbet IS the best training performancéyay. is the average test
based on the fact that: performance, andr,,; is the test performance of the net that

1) 20 hidden units represent isolated points; featured It . .

. . . . Table IV contains the estimated values of the parameters
2) 15 hidden units represent points withV = 2; d tud ith . tal standard deviati tated
3) six hidden units represent points WithN > 3. under study, with experimental standard deviation annotate

. . ) : in parentheses. These data are summarized in Fig. 9.
Therefore,h = 41 is the minimum size for which a

. ) ' | The results suggest thain this case the classification
cluster analysis based on nearest neighbor con3|derat|or§

65.17 (16.03) 71.60 (14.70) 74.47 (11.77)

40 66.87 (13.65) 73.54 (13.75) 79.87 (13.43)

60 67.36 (12.33) 73.99 (14.26) 78.90 (12.05)

. . . X é?formance of a CBP network is always higher than that
practically feasible. This does not mean that smaller si % an MLP network with the same number of hidden units.

nets could not be used; nevertheless, we can expect Bl ho|ds true even on the test set, although it is commonly
the convergence rate will experience a steep decrease Vﬂgﬂmowledged that a model with a larger number of param-
decreasing, since initialization becomes nontrivial under tha{eters is more subject to overfitting than a model with fewer

threshold. parameters. We recall that for a three-layer MLP the number of
weights ispyiLp = (d+1)h+(h+1)b, whereas for a CBP with
the same topology it iscep = (d+2)h+(h+1)b = pmrp+h.

The experiments were based on multistart training (ten trialsin the case of RBF, we can observe that performance on the
per training run with different initializations). The measuretest set is better than that of CBP. This could be explained by
ments were obtained by averaging over multiple training stte fact that data are clustered with a Gaussian distribution,
distributions (differing in both the number of clusters and thewhich could make it easier for the RBF networks to repre-
parameters), multiple samplings from each distribution, arsgnt them (although the data are not necessarily isotropic).
multiple sample sizes (either 100 or 1000). The results arowever, training results are slightly better for CBP.

C. Results on the Gaussian Mixtures
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Fig. 9. Average results of training on Gaussian mixtures versus number of weights.
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Fig. 10. Results of training on the “vowel” problem versus number of hidden units.

D. Results on Vowel Recognition

The results summarized in Fig. 10 and detailed in Table V
were generated by a set of training runs. Several trials were
performed. To facilitate the repeatability of the experiments,
the results were obtained as follows: first, the minimum MSE
was searched for; then, the corresponding classification erroy
was recorded on both the training g&t,,;) and the test set
(Gopt). This procedure is quite different from stopped training 5
with cross-validation, since the test performance is not takem

95
100
CBP
RBF
90 -
80 B
or MLPG\Q———————@ |
60 -
50 L 1 ]
20 40 60
Gopt
100 T T T
90 B
°[ B/E\B 7
RBP4 +
70 | cept i
MLp G
60 - -
50 1 1 1
20 40 60
Gopt
60 T T T
L+
CBP +
5 F 4+ -
MLP
40 1 L 1
4 5 6
TABLE V
RESULTS OF THE"“V OWEL" D ATABASE EXPERIMENTS
MLP CBP RBF
MSE  Topt Gopt | MSE  Topre Gope | MSE  Tope  Gope
0.1452 704 424 | 0.1300 77.5 50.0 | 0.1127 77.5 444
0.1204 754 44.4 | 0.1084 85.6 52.2 | 0.0956 82.6 45.0
0.1045 81.1 42.9 | 0.0856 87.9 55.8 | 0.0756 85.0 33.8

into account in the stopping criterion. The table compares the

test error obtained by MLP and by RBF with that obtained

by CBP. For this real-world benchmark, the CBP model The test performance, as compared with other results, seems
learns substantially better than the MLP. This can be seensatisfactory. However, it should be considered that the
by comparing the approximation error and the classificatioretworks adopted did not feature more than six hidden units.
error on the training set. The generalization ability of CBP (da Table V results for networks with comparable numbers of
estimated by this particular test) is also greater than that of thielden units are presented. The usual RBF approaches often
MLP. Results for RBF are in some way intermediate betweémvolve larger networks. An example is presented in [44],

those of MLP and of CBP.

where a very good performance (65% correct) is reported for
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an RBF-type network with 204 units. To make a comparison, Consider a Gaussian RBF network with=1,h = 2,6 =1

a CBP network with 80 hidden units was trained with stopped attempt representing the alternate labels problem with seven
training by cross-validation, reaching the same value (65.1data points. Symmetry considerations allow the stimulus of its
correct). output unit to be expressed as

2 2
Tout = Wo + wle_glx + UIQG_gzx . (9)
VI. CONCLUDING REMARKS

. . . . Derivation of this expression with respecttoyields
In this paper, the properties of the circular backpropagation

multilayer network have been investigated from the standpoint Irous _ —girwi eI gozwaeT92F (10)
of pattern classification. Theoretical analysis and experimental Az

evidence suggest that this model is especially well suited toThis expression vanishes fer= 0, for x = +o00, and for
implement classification tasks. The paradigm plasticity fea-

tured by the model allows the implementation of classification = i\/ln(_wlgl/U’?g?)_

principles which have different interpretations, based either (92 — 1)

on the classification rules (by direct implementation of theryis pair of roots is defined only when the arguments of the
decision boundaries) or on the data (by implementation Rfoarithm and of the root are both positive. We assume this

prototypes of the nearest neighbor type). Results about {08 case, since we are interested in assessing the maximum
properties of the model have been illustrated with experimen{al - bar of roots.)

verifications, on both synthetic problems and a real-world T ro0ts of the derivative correspond to minimum, max-

benchmark. _ _ imum and saddle points. Between pairs of these points, we
The perspectives of research include a hardware implemeqy, jgentify at most five regions corresponding to five differ-

tation of the model which will be applied to a charactegy; ojassification outputs. Therefore the seven-points problem
recognition task. Hardware implementation is very simpleg -+ e solved.

since it reduces to a preprocessing phase to be applied to
the input of a standard multilayer perceptron network. The

theoretical analysis is being extended to encompass other
neural models (e.g., vector-quantization networks) within the The authors gratefully acknowledge the anonymous re-
same framework. This requires only simple modifications ygewer’s comments for stimulating the theoretical and experi-
the standard scheme, such as weight linking, so that thgntal comparison between CBP and RBF.

resulting networks are still trainable by plain backpropagation.
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