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Abstract — Vector Quantization (VQ) applies effectively to very low bit-
rate image transmission. The high compression ratios are often balanced by
limited reconstruction quality due to blockiness effects due to coarse
quantization. Interpolating different codevectors can overcome such
drawback by enhancing the generalization ability and the adaptiveness of the
coding system at run time. Experimental results on real testbeds show the
method’s advantages as compared with related techniques.

I. INTRODUCTION

The growing interest in low bit-rate image transmission has recently pointed
out the need for high-compression coding methods. Vector Quantization (VQ) is
receiving renewed aftention [1], as it can reach high compression levels. Vector
Quantization represents information by placing a set of reference vectors
(prototypes) at significant positions in the observed data space. Prototype
positioning is performed according to some example-driven iterative algorithm.
Some algorithms implement a probabilistic-like distribution of data over vectors
[2]; other models support inter-neuron connectivity by a fixed [3] or variable [4]
topology to control data partitioning. The dynamic approach described in [5]
yields a uniform distribution of neurons over training data.

VQ-based coded pictures are split into many elementary blocks of fixed size
(e.g., 4x4 or 8x8 pixels), representing the data samples for quantization. High
compression ratios result from using a number of prototypes that is much smaller
than the cardinality of the data set. VQ attains remarkable compression ratios at
the cost of a reduced visual quality; tessellation brings about coarseness in
reconstructed patterns. Variable-size adaptive compression can limit the
tessellation drawback by pre-classifying image sub-blocks and tuning codebooks
and dimensions accordingly [6-8]. A deeper generalization problem affects the
family of closest-prototype schemata, due to the fact that codevector positioning is
the result of a partial (often biased) sampling of the data space.

The paper describes a novel methodology that intrinsically overcomes the
structural limitations of VQ by increasing representation accuracy. The proposed
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multi-best approach implements an interpolation strategy, by which multiple
codevectors contribute to encoding a single pattern. In this sense, the method can
be regarded as a multi-dimensional extension of neural network ensemble
techniques for accurate estimation [9]. In the literature, an approach following a
strategy very close to the multi-best method is presented in [10], where a multiple-
prototype mechanism aims to account for multiple-cause observations, and the
overall goal is the decomposition/reconstruction of event probabilities.

In order to limit the computational overhead and to ensure a satisfactory
compression ratio, the paper is focused on a two-best encoding method, which
uses a pair of codevectors for each block. A sub-optimal linear-complexity
algorithm is described. The interpolation strategy is combined with a (classical)
variable-size approach to attain both representation and structural adaptiveness.

As opposed to classical VQ schemata, interpolation can correctly reconstruct
patterns never seen before and not included in the codebook. The generality of the
overall compression method is then remarkably enhanced, as the system turns out
to be less "sensitive" to the (training set. In addition, the basic interpolation
mechanism applies to any prototype-based representation schema and is
independent of the vector-positioning algorithm used for training. The
interpolation-based strategy shifts the problem of improving reconstruction
quality from the training phase to the encoding phase, thus reducing the
importance of off-line training in favor of on-line restoring ability.

The approach was applied to a significant set of natural images. Results have
been evaluated from both an analytical (in terms of MSE) and a qualitative point
of view. In all experiments, the method compared favorably with standard VQ
approaches and with classical DCT-based techniques [11,15].

IL. VECTOR QUANTIZATION IN IMAGE COMPRESSION
A. Basic VQ Techniques for Image Compression

In image VQ, a picture is split into M blocks; each block P, i=1,...M
includes N pixels and defines a vector in an N-dimensional space. For example, in
the case of 8-bpp gray-scale images, the space is an N-dimensional hypercube
with 256 possible values for each component. Each vector P; is compared with a
collection of C codevectors Xj, j=1....,C, defined in the same space: Xj =[xj12
Xj2,.-» Xn]. The codevectors represent prototypes of processed information and
their ensemble forms an alphabet (codebook) of codewords. The assumption
underlying data-driven training of codebooks is that a finite collection of patterns
can represent consistently the actual distribution of coded data. Vector
quantization compresses a sample pattern by selecting one of the available
codewords following a minimum-distortion criterion. A reliable assessment
criterion based on the properties of the human visual system has not yet been
defined, hence Euclidean metrics will be adopted as a default distortion measure
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Fig. 1. VQ block diagram

d(P;, X;). The codeword (Fig.1) associated with P; is the vector X such that d(P;,
Xp) < d(P;, Xj) Vj=1,...,C. The compression ratio can be expressed as

Nb?
CRyo =T (1)

where 59 are the bits per pixel in the original image and b° indicates the number
of bits needed to index a codeword.

The adequacy of the alphabet plays a crucial role in VQ methods. As the
final visual quality results from both the positions and the number of codewords
used, the effectiveness of the training algorithm is of major importance. Suitable
techniques aim to build the "best" codebook that minimizes loss in quality at a
given compression ratio. Besides the LBG algorithm by Linde, Buso and Gray,
other iterative approaches relate to neural network models and are based on
Kohonen Self-Organizing Maps (SOMs) [3]. Within the connectionist framework,
Martinetz et al. proposed a topology-free Neural Gas approach [5].

Standard VQQ techniques can attain remarkable compression ratios at the cost
of a rather low visual quality. In particular, it has been verified [11,12] that VQ
usually results in a significant loss of details and often yields too coarse
reconstructions. In order to improve performance, adaptive techniques consider
the different visual significance of each region in natural images. These methods
either classify patterns in advance or provide specialized alphabets for different
types of regions. The best tradeoff between quality and compression is searched
for punctually. Uniform regions characterized by little visual information and low
frequencies allow high compression ratios; high-activity, detail-rich areas are
encoded more accurately at lower compression ratios.

B. Adaptive Techniques in VQ

Classified V(Q approaches process pixel blocks of the same size. A classical
application of adaptive compression to VQ-based representations implies a
preliminary classification of blocks. Image regions are associated with different
classes; the block’s internal activity (variance) is used as a classification criterion.
Each class is assigned a specific codebook; codebooks can vary in both nature and
size. This class of approaches can enhance quality and performance, but inflate
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computational complexity and demand a larger memory occupation. Moreover,
the resulting quality strictly depends on both the training sets and the learning
algorithm applied. The obtained compression/quality tradeoff does not always
Justify the considerable increase in complexity.

Variable block-size approaches to adaptivity let the dimension of input
blocks vary. Images are pre-processed and split into different areas. The activity
(uniformity level) is computed for each block and compared to a given threshold.
If a preset uniformity level is not reached, the block is split into several sub-
blocks, and the process recursively iterates on "child" blocks. A quad tree is
progressively constructed [13]; different codebooks deal with samples having
different dimensionality. Thanks to block-size adaptiveness, a quadtree-based
approach considerably improves compression/quality ratio and visual quality. The
eventual visual results are greatly improved, even though the corresponding
increase in complexity may be significant because of block pre-processing. A more
effective method will involve a tradeoff between these aspects.

ITI. INTERPOLATION-BASED MULTI-BEST TECHNIQUES

A. Basic Multi-Best schema

In classical VQ schemata, reconstructed patterns necessarily belong to the
codevector collection, as the available alphabet(s) restrict(s) the set of possible
outcomes of a VQ compression system. The multi-best methodology consists in
using more than one reference vector to code an image block. An ensemble of
different prototypes (pivots) are considered simultaneously; a reconstructed output
pattern is derived from a weighted interpolation of the ensemble components. This
approach allows the reconstruction of patterns that are not present in the
codebook, thus considerable improvements in visual results are obtained.
Moreover, the method ultimately reduces the importance of the training set and of
the learning algorithm for the final quality. The ensemble of pivot vectors for the
i-th pattern is called Interpolation Ser and is defined as W, = {W,1, W3, Wizl
the ensemble cardinality, Z(i), varies according to both reconstruction
requirements and the pattern’s characteristics. A weighting factor, wy, is
associated with each vector Wj. A reconstructed pattern, R, is a linear
combination of the pivots considered:

Z(i)
R, = w,W, 2
J=1

As results may be quite different from the basic codevectors, the system’s
generalization ability is significantly enhanced. A final quality cross-check
between classical and multi-best VQ approaches maintains consistency and
emphasizes simplicity. Multi-best will be applied whenever d(P;, Rj) < d(P;, Wy)
Vj=1,..,C. This relation ensures that the interpolation will provide better
reconstruction results than each individual prototype. Such criterion for triggering
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interpolation can be refined by thresholding mechanisms without loss of generality.
The method involves an increase in the amount of transmitted information, since
weighting factors must be transmitted along with the indexes of the pivots used.
Clearly, this affects compression performance. The compression ratio in a multi-
best case can be expressed as

CRyp = ” Ai\/Iqu 3
33 (e vey)
=1\ =1

where: M is the number of blocks considered, b7 are the bits per pixel in the
original image, &° and b7 indicate the number of quantization bits for

representing the codebook indexes and the weighting factor for the j-th "winner"
vector, respectively. Expression (3) shows that real applications will require a
tradeoff between improvement in quality and loss in compression.

Experimental evidence proves that the multi-best approach avoids
coarseness and greatly limits artifacts. The basic advantage of multi-best image
coding is the capability to control the quality of reconstruction without changing
the codebook. Adaptive quality control can be obtained just by varying the
number of pivots and the weighting procedure. Thanks to the interpolation, under
a wide range of working conditions, changes in the operation environment do not
require either massive retraining or additional codebook re-transmission.

In other words, the multi-best approach shifts the problem of enhancing
quality from a huge VQ-training process to an adaptive coding schema. Another
significant result is the reduced importance of the off-line training step. From a
theoretical point of view, the interpolation mechanism makes it possible to
improve quality optimization both by a priori information about the covered
visual classes and by a posteriori evidence provided by each processed sample.

B. Two-best approach to Vector Quantization

A drawback of the described method lies in the possibly high loss in
compression. To overcome such limitation, we consider a two-best solution,
which encodes image sub-blocks by using two pivots for the interpolation process.
The corresponding reduction in complexity allows a satisfactory increase in
compression. Experimental evidence on natural images proves that a two-best
approach performs satisfactorily in most cases, as more than 80% of blocks are
suitably reconstructed by at most two elements (RMSE<10).

The two-best reconstruction process involves two phases: 1) the
identification of the optimal pair of pivots (Pivots Identification); 2) the actual
interpolation mechanism to be applied (/nterpolation Method). Both phases can
be applied in different ways, thus notably modifying the overall system’s behavior.
In particular, pivot selection heavily depends on the actual interpolation method
applied, as a pair of codewords may be an optimal choice for one interpolation
schema, but prove ineffective for another.
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Therefore, interpolation will be discussed first. A reasonable approach
considers the line defined by the selected pivots (joint line) [14]. In this case, the
pattern’s position can be approximated by the projection of the pattern on the line
(R)). This projection method does not ensure optimality but has proved to be a
good approximation in most cases. Moreover, the method involves the
transmission of the scalar projection value (p;) instead of the two weighting
factors (wi1, wi2). The projection value has to be quantized, thus bringing about
errors and distortions. Such problems can be overcome by considering the
smallest projection value related to the closest pivot. This limits the saturation
probability and allows higher accuracy. The projection method leads to a
satisfactory compromise between reconstruction fidelity and compression ratio,
and attains good results also in computational terms.

Let o denote the angle between P; and (W;2-Wiy); for practical purposes, the

projection value, p;, is normalized:

W - Wy "
|Wz'2 - Wi1|

where + indicates the inner vector product. To simplify notation, we define a

Multi-Best Reconstruction operator, MBR(), which unifies the method's

reconstruction process analytically, as follows:

pi = IPjICOS(X = (Pi “Wn)

(Wb B Wa )
|W, ~W,|

In practice, inter-pivot versors can be tabulated in advance and stored to
minimize run-time computational costs. Expression (5) shows that, for each block,
transmitted quantities include pivot indexes and the quantized projection value. It
is worth noting that the projection may also take on negative values.

This formulation of the compression problem points out the importance of
the second process phase, i.e. Pivots Identification. For each processed pattern,
this implies the identification of the suitable couple of codevectors actually used
for interpolation. Again, a smallest-distance criterion rules this selection. The
identification process must locate the pair of codewords (Wa, Wp) in such a way
that the interpolated vector Ry is closest to the sample vector P;. In principle, this
might involve scanning all distinct couples of prototypes in the codebook. From a
computational point of view, the exhaustive search among all possible pairs of
codevectors is unrealistic; this ideal approach will be denoted by the suffix W_#w.

A much simpler strategy can notably reduce the computational load. This
technique arbitrarily picks the best-matching neuron (in the classical sense) as one
of the two pivots. After fixing the best-matching pivot, the maximum projection
algorithm is applied to identify the most suitable pair for the reconstruction. In the
following, this technique will be denoted by the suffix B W. Therefore, if B;
denotes the best-matching neuron with the pattern P, the sub-optimal solution to
the interpolation problem can be formally expressed as:

o =(B1,arg[ {[P, - MBR(P,.B,.W, )I}D (©)

R, = MBR(P,W,,W,)=W,_+p, )

min
WyeX
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Obviously, the simplified approach yields sub-optimal results, as compared
with the W W exhaustive-search technique; yet the B W method appears quite
interesting from a practical perspective, for two main reasons. First, the
mechanism represents a superset of classical VQ; the structural underlying
assumption is that the closest neuron is the most likely candidate for interpolation.
Second, the computational cost involved increases linearly with the number of
neurons. The choice of pivoting around the closest prototype may appear
arbitrary. Its validity, however, is proved by the nature of the problem itself and
by statistical considerations. Experimental evidence shows that this solution offers
impressive advantages over single-neuron VQ and compares favorably with the
W-W solution, performing close to optimality in most cases.

C. Technical implementation

The technical realization of VQ-based compression also included an
adaptive, variable-size approach, The adaptive approach is suggested by the fact
that uniform or slowly changing patterns are suitably reconstructed also by a
single-vector schema. An exhaustive application of two-best interpolation to
image blocks would waste compression and computational resources. Therefore, a
good approach to a quality/compression tradeoff seems to apply two-vector
interpolation only to high-activity areas (i.e., high-variance blocks). This implies a
size-adaptive schema, that performs a quad-tree segmentation; a block-variance
threshold, o, rules block splitting. During encoding, a picture is split into blocks
of either 16x16 or 8x8 pixel size, according to internal block activity. Two-best
compression applies to 8x8 blocks only. The integrated methodology combines
size-adaptive with coding-adaptive mechanisms. The hybrid method nature
represents a crucial features and the basis for attaining multiform adaptiveness.
Fig. 2 presents an outline of the global compression schema.

—‘ Channel

System

Fig.2 - The overall compression schema

IV. EXPERIMENTAL RESULTS

The experiments demonstrate the basic feature of the multi-best technique,
namely an increased generalization ability due to the capability of reconstructing

397



patterns not present in the codebook, even when they differ markedly from
prototypes. The training set included three grayscale (8 bpp) 512x512 standard
pictures. The test set consisted of two other pictures (lena and sailboat),
specifically chosen to stress the method’s generalization ability (sailboat has a
frequency distribution quite different from that of the training samples). In all
tests, we used a Self-Organizing Map with a planar topology and 256 neurons
layered along a 16x16 square grid.

In the experiments using a classical VQ approach, images were split into 8x8
blocks. In multi-best experiments, instead, training pictures were split into two
sets of blocks to support the size-adaptive compression schema: 16x16 blocks
corresponded to uniform regions and 8x8 blocks covered regions with details.
This block classification followed a variance-based criterion. In traditional VQ,
as expected, more complex blocks yield less accurate reconstructions. Fig. 3
compares performances from a different perspective, plotting reconstruction
quality versus compression ratio. The figure gives the results obtained by
traditional VQ, by the W _W and the B W approaches on a test image.
Experiments have been performed exhaustively applying the two-best approach
on all the 8x8 blocks selected by the pre-processing phase. A fixed amount of 4
bits has been adopted to encode (quantize) the block’s mean and the projection’s
value quantization, respectively. Compression is varied by modifying the block-
variance threshold G. The graphs show that the B_W schema does not perform
very differently from the exhaustive W_W schema, whereas its behavior is quite
different from that of the classical approach.

The comparative analysis of the proposed methods also required qualitative
evaluations of reconstructed pictures. This visual analysis confirms the
performance improvement resulting from codevector interpolation. Fig.4 displays
a comparison between a mono- and a multi-best reconstruction of the /ena image
(in this case, the B_ ¥ method was applied). The overall low-pass effect is strongly
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Fig.3 - Reconstruction errors vs/ compression ratios (CR) for the lena image
for: classical VQ (C=32-512), two-best B W and two-best W_W (C16=(8=256)
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a) b)
Fig. 4. Reconstrcuted images of lena (test)
a) standard VQ (C=256; BR=0.188 bpp, PSNR=28.26 dB); b) two-best B W
(C16=C8=256; BR=0.197 bpp, PSNR=30.27 dB)

reduced and the staircase effect was avoided, thus allowing a more natural
perception of the picture. For completeness, two-best compression was also
compared with traditional DCT-based [15] algorithms. Although at high bit rates
JPEG attains a good quality, a dramatic loss in quality occurs at low bit rate (e.g.,
only 29.14 dB at BR=0.20 bpp). From a visual point of view, blockness and
artifacts make JPEG useless.

V. DISCUSSION

The ultimate effect of the described intepolation method lies in enhancing
the generalization ability of an image-compression system, by shifting the
adaptiveness In the reconstruction process from a-priori to a-posteriori
information. On the other hand, the consequent loss in compression ratio appears
marginal when compared with the notable imrpovement in visual quality. In this
sense the proposed method outperforms both classical VQ compression and DCT-
based JPEG standards.

The overall technical set up can be further improved by including in the
compression system additional adaptive methods, covering, for example, variable-
size interpolation and selective coding of image blocks. The inclusion of these
into an applicative environment for low bit-rate image transmission is currently
being developed.
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