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Abstract — Vector quantization systems are usu-
ally implemented in hardware by realization of an al-
gorithm, usually exploiting accelerated techniques for
codebook search. These implementations are not well
suited for the use as analog electronic neural net-
works building blocks. This paper presents an analog,
fully parallel implementation of vector quantization
exploiting a large number of simple processors. The
circuit features large-dimensional (64) vectors and a
medium-to-high density of units per chip. Moreover,
the winner—take—all block features a linear output that
replicates the value of the winning distance, in addi-
tion to the winner’s location flag. This makes it pos-
sible to use the system in trainable networks without
need for further circuitry.

INTRODUCTION

Signal processing applications are to date a
major (maybe the most important) area of in-
terest for the application of neural network pro-
cessors [1]. The challenge posed by heavy—duty
tasks such as image compression and real-time
video coding/decoding can be successfully over-
come by neural algorithms, which are inherently
suited to deal with non-linear, non—Gaussian and
non-stationary signals [2]. The main goal is
now to devise efficient hardware implementations
which should allow these algorithms to be applied
on line and in real time.

Current “conventional” solutions usually re-
sort to digital hardware implementing optimized
algorithms, distributed over specialized modules
in a chipset or provided by specialized functions
of dedicated DSPs [3].

We present a circuit that implements in analog
VLSI the feedforward step of a vector quantiza-
tion system. The design is based on neural net-
works principles: a high number of simple par-
allel analog processors is connected in a network
with the minimum amount of centralized control
functions, and the function is implemented di-
rectly by the structure rather than by a sequence
of elementary steps (an algorithm).

The circuit is currently under design, so the
results presented here are preliminary; only se-
lected parts of the circuit will be described. In
the full version of the paper, additional details
will be presented.

NEURAL NETWORKS AS IMAGE
PROCESSORS

The image compression principle adopted by
most neural network image-processing systems
is that of vector quantization [4, 5], since other
principles (such as transform coding) are trans-
lated into neural structures with less advantage.

Image compression is accomplished by the fol-
lowing procedure. The original image is divided
into square blocks containing a limited number
of pixels. The pixel values are used as compo-
nents of the vector to be input in the transmitter.
The transmitter then searches the set of available
reference vectors (collectively referred to as the
codebook), and selects the reference vector fea-
turing the minimum distortion (distance) with
respect to the input vector. The index of the
best-matching vector is then transmitted, and
the receiver uses the reference vector to represent
the input vector and reconstruct an approximate
version of the original image.

Figure 1: Functional block diagram of the circuit
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Figure 2: The square—of-difference circuit

Vector quantization is often implemented by
the conventional, digital approach [6, 7, 8, 9] by
selection of a fixed codebook (usually by the well
known Linde-Buzo-Gray [10] algorithm) and an
optimized algorithm for vector search. However
the LBG algorithm requires batch training, hence
the training set should be available completely at
each training step; moreover, from the standpoint
of distortion minimization, it suffers from a large
number of local minima, which “means that re-
sources (memory to store the codebook and time
to search it) are not optimally exploited. Neural
networks performing VQ are usualy based on on-
line adaptation, with more sophisticated train-
ing algorithms (Kohonen’s SOM [11], Martinetz’
Neural Gas [12]). On-line training (also termed
training by pattern or stochastic optimization)
falls less easily into local minima and offers the
valuable advantage of being applicable even dur-
ing the actual functioning, thus allowing the sys-
tem to deal with time-varying input statistics
(nonstationary input).

All these models, while different in the training
process, share the same feedforward step, which
is simply the search of the best match among a
set of reference vectors or prototypes, with re-
spect to an input vector. This is usually a time-
consuming process, since it implies computing a
quite large set of distances and selecting the min-
imum. The circuit proposed here performs a fully
parallel vector search, so it need not an optimized
search algorithm. It is therefore suited as a build-
ing block for any kind of vector—quantization sys-
tem.

CIRCUIT DESCRIPTION AND
DESIGN CONSIDERATIONS
The block diagram of the circuit is illustrated
in Fig. 1. Al the illustrated functional blocks
are physically present, and there is no multiplex-

Figure 3: The winner—take-all circuit

' Mo F

:Ml '—_‘ M2 : Mi6 M17

. “—\—lb—las Tyas

Y E M10

: : Mi2 —

' M5 ,.. 1 Mi13

! : [

e : L Ve
M) M"MM — 1 [MI5

ing. Therefore, the circuit features O(1) time
complexity (independent on both the number n
and the dimension m-of the vectors in the code-
book). Each neuroa k reads the input vector and
computes its euclidean distance from the locally
stored reference vector w(¥). Euclidean distance
is the distortion measure commonly adopted in
implementations of vector quantization. The
outputs of all neurons feed the winner-take-all
layer, and the final circuit output is represented
by a binary encoding of the best-matching neu-
ron and by a voltage proportional to the ‘corre-
sponding distance value.

The availability of the distortion value corre-
sponding to the winning neuron makes the cir-
cuit suitable for implementing all types of vec-
tor quantizer, with or without on-line training,
including all neural algorithms such as the two
quoted in the previous section.

The requirements for this circuits are those
of real-world applications; this accounts for a
number of non—conventional design choices. The
usual subthreshold design has been discarded,
since its sensitivity to external and internal noise
and interferences is too high. The standard cir-
cuits building blocks have been redesigned or red-
imensioned to cope with the increased voltage
ranges and power dissipation requirements.

The vector dimension is 64 (corresponding to
elementary image blocks of size 8x8), which re-
duces the number of prototypes (for a fixed
area consumption) with respect to other projects,
such as for instance in [13], which features a vec-
tor dimension m = 25. This in turn implies that
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the overall circuit will be realized as a connection
of homogeneous building-block chips, but this is
not a drawback, since it will allow an easier power
dissipation and a customized configuration of the
codebook size for each application. Each chip is
estimated to implement about 64 neurons (code-
book of m = 64) in an area of about lem x lcm.
No special circuitry will be required to connect
many chips into a single vector quantizer, only
a supplementary competitive layer to select the
best match among the partial best matches of
each chip.

The external analog signals, i.e., the input vec-
tor components and the output distortion value,
are represented as voltages. However, the in-
ternal signal exchange is done in current mode,
which simplifies greatly the circuits.

The overall scheme of the circuit is as follows
(refer to figure 1). The input vector is buffered
and read by the 32 neurons. Each neuron is com-
posed of 64 partial distortion stages, computing
the squared difference between vector component
and prototype component. This block is based
essentially on the same principles as the well-
known Gilbert multiplier cell, but modified (see
Fig. 2) for a wider range and a better precision
of the square function, with a limited number of
components.

Reference vectors are memorized in a digi-
tal memory. There are 64 D/A converters, one
for each component, and their output voltages
are multiplexed over the neurons to refresh local
memory elements (capacitors). To avoid leak-
age during switching (mainly due to clock feed-
through effects) dummy switches are used [14].
The refresh cycle time is 1ms.

The last stage of the circuit is a competitive
layer. The best matching vector is selected by a
winner—take—all circuit which has been modified
to yield the distortion value relative to the win-
ning prototype. In the following, the competitive
stage of the circuit will be detailed.

THE WINNER-TAKE-ALL BLOCK

The circuit that implements the selection
among the reference vectors implies several mod-
ifications on the standard scheme by Lazzaro et
al. [15]. When realized with a large number of
inputs, Lazzaro’s scheme is not stable, since the
smallest inputs can receive a reverse current flow-
ing from the largest ones. Moreover, the input
impedance (the drain impedance of a MOS de-
vice) can be quite high if the input transistors
are to be kept within limited dimensions. There-
fore, if the input branches are not connected to
ideal current generators, this may cause problems
eventually affecting the precision of the circuit.

Figure 4: Layout of the winner—take—-all circuit
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The proposed solution, illustrated in Fig. 3,
features many improvements. The input lines
(dotted rectangle on the upper left) read an input
current and mirror it on the “competition” node
(gate of M5). The upper mirror enhances the cir-
cuit’s performance with non-ideal input current
generators. Moreover, each input line is biased
with a constant current offset, which modifies
the operating point so that the input impedance
is greatly reduced. Generation of the bias cur-
rent, about 40uA , does not require additional
circuitry, but only a proper dimensioning of the
previous stage in the circuit.

The subsequent stages are two complementary
replicas (one with n-channel MOS, the other with
p—channel MOS) of the output stage of a stan-
dard WTA. This arrangement creates a com-
petition that selects the minimum (rather than
the maximum) current. This allows us to avoid
adding external circuitry to reverse the behavior
of a standard WTA.

There are two output voltages, Vout and Vepe.
If the input range is within reasonable limits, the
input-output relation between the winning cur-
rent and the voltage Vo is linear, and the pro-
portionality factor depends only on geometrical
and physical parameters, but not on input sig-
nals. This is another effect of the current offset.

The other voltage, Vene, constitutes a 1-out—
of-n encoding of the winning input position. De-
vices M12-M15 push the value of Vepe to either
the maximum or the minimum value, so that
there is a logic ”1” corresponding to the winner,
and a logic ”0” elsewhere. These values are then
encoded into a 6-bit word (not shown).

For the simulation with the HSPICE program
(level 13}, 1um technology, the following param-
eters were used: Vdd = 2.5V, Vss =-2.5V; k, =
60uA /V?; Vg = 0.8V. Transistor sizes are the
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following;:

MOS | W/L || MOS | W/L
M1-M4 | 100/3 M8 15/3
M5 | 10/3 || M9-M11 | 5/2
M12 | 2/3 | M13-Mi14 | 6/3
M6 | 8/2 M15 2/3
M7 | 3/15 | M16-M17 | 39/3

The layout of this block is shown in Figure 4.

The input/output proportionality factor is 5kQ
44.5%, for operating temperature varying from
40°C to 80°C. The minimum input variation that
can be discriminated (resolution) is less than
0.4pA , with input current ranging from 40pA
to 110pA (80uA swing). This allows a precision
of at least 7 bits, which is attained when the res-
olution is 80uA / 128 levels = .625 pA or less.

CONCLUSIONS

In this paper, an overall description and pre-
liminary results about an analog VLSI vector
quantizer have been reported, with a more de-
‘tailed description of selected features. The cir-
cuit is not oriented to global integration, but to
modular system building. Since the operating
speed of the quantizer is very high, and limited
by the inter—chip communications, the applica-
tions of this design will be in the field of high-
throughput image compression, such as real-time
videocompression and multimedia.

The whole project will be described thoroughly
in a paper currently in preparation.
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