Neural Hardware for Image Processing

Fabio Ancona, Stefano Rovetta, and Rodolfo Zunino

DIBE - Deptment of Biophysical and Electronic Engineering

University of Genoa
Via all’Opera Pia 11a, 16145 Genova - ITALY
phone: +39 10 3532268 - Fax: +39 10 3532175 - e-mail: ancona@dibe.unige.it

Abstract - The paper describes a board-based hardware
implementation of a neural algorithm performing vector
quantization for very low bit-rate video compression. The
Neural Gas model has been chosen for its remarkable
properties in terms of both consistency (quality of the
quantization process) and easy implementation. The neuro-
board interfaces to a PC through a standard ISA bus. The
board supports both training (codevectors adjustment) and
run-time eperation. The main advantages of the implemented
solution lie in its simplicity and easy control for HW tests and
SW development.

1. INTRODUCTION

Image compression applications use vector quantization
(VQ) for its high compression ratio and image quality.
Application areas of VQ include high-definition television,
teleconferencing, remote sensing, radar, sonar, computer
communications, facsimile transmission, and image data-
base management [1]. Over the past decade, VQ has
developed from a theorctical possibility into a powerful
technique for speech and image compression at medium to
low bit rates [2,5]. Many researchers have proposed spatial
coding schemes that replace the DCT with a vector
quantizer, and several schemes have been marketed
successfully. The fact that VQ is a very good compression
technique lies also in its very simple decoder, which is much
less complex than its coder. Thus, VQ algorithms can be
implemented with easy structures, but, they involve a high
computational cost in repeating the same computation for
each vector of the codebook: these are ideal conditions for a
parallel implementation.

The paper shows hardware architectures for implementing
VQ-based neural networks. In particular, the Neural Gas
(NGAS) algorithm [6] is proposed, as it exhibits interesting
properties that can be exploited in an HW realization. A PC-
based implementation was chosen mainly for its flexibility
and relatively low development cost. The target architecture
is a board interfacing to the PC through a standard ISA bus.
The board operates as a "VQ coprocessor" performing
codebook training independently of the hosting system; the
structure provides inherent parallelism and can therefore be
regarded as an open architecture. The board can also operate

0-7803-3694-1/97/$10.00 © 1997 IEEE

(after training) for run-time functioning and specific support
for videophone applications. Infact, the overall architecture
has been designed for high performance image coding,
which can apply effectively to both videophone applications
and digital TV signal processing [7].

The novelty of the proposed solution lies in providing a PC-
based configurable HW support for VQ training joining
affordable costs with satisfactory effectiveness. Simplicity
and easy control for HW tests and SW development
represent the basic advantages of the overall approach. The
structure’s performance is limited by the PC bus speed
(which drives the on-board clock (8MHz)), by the
complexity of the programmable control logic and by using
one DSP.

II. THE “NEURAL GAS” MODEL

Vector quantization is the process of approximating a large
data set of multidimensional data (e.g., image blocks for
image compression) by a reduced number of “prototype”
vectors, obtained by clustering several, similar data into one
prototype. This approximation resembles that used in scalar
quantization, and proceeds by minimizing some error
function (usually, the mean square error).
The Neural Gas (NGAS) algorithm, developed by Martinetz
et al. [6], is an iterative algorithm to train a set of
prototypes. At each iteration, a sample datum is received
and prototype vectors are ordered according to their
distances from the input sample. Prototypes are then
adjusted according to their positions on the ordered list:
closer vectors undergo larger modifications. The intensity of
the adaptation steps and the width of each vector’s
neighborhood decrease during training, thus providing a
stabilization mechanism, also present in similar algorithms
(including Kohonen's SOMs [8]). The NGAS training
algorithm can be outlined as follows:
I. Set W = a set of X randomly initialized prototypes
(#=1...K); set I = a fixed number of iterations.

2. Repeatfori=1tor/:

2.1. Input a sample vector x.

2.2. Compute the distance d, = || x ~ w; || from each

prototype wy.

1342

Result M Y
C26

J Codebook Memory

] I Pattern Memory I

To/from memories T

l ISA bus interface

Fig. 1 - Schematic representation of the board components.

2.3. Sort the list of prototypes according to d.
2.4. Compute the adaptation step Aw, for each prototype
Wg.

2.5. Apply adaptations to each prototype.
3. Output the set of prototypes W.
This procedure exhibits interesting properties that can be
exploited in an HW realization. The simple rule provides a
uniform coverage of input samples with the available
number of prototypes, thus maximizing the representation
consistency. Although there is no theoretical proof of
convergence, the algorithm has often been shown to have
notable advantages over similar models.

II1. “NGAS”- HARDWARE IMPLEMENTATION

A specific feature of the NGAS algorithm [6] guarantees the
existence of such an initialization that prototypes always lie
in a bounded region, provided that input values are
themselves bounded (which is always the case in practice).
This is very important when one needs to assess a priori the
dynamic range of a stored quantity.

VQ models prove very effective but exhibit the drawback of
a huge computational cost due to both the number of
processed examples and their dimensionality. This critical
issue motivates the research for dedicated architectures to
support standard computing platforms.

A. Hardware Architecture and Functioning

The neuro-board (Fig.1 and Fig.2) can operates in three
different modes:

- training (off-line);

- feedforward phase (run time);

- board testing.

The first functioning mode, after initial memory loading of
codevectors and patterns, works out the overall training
steps of the algorithm proposed, changing the Euclidean-
distance computation into the easier Manhattan-distance
computation (Ix - wk| instead of ||x -w, ||). This algorithm
modification derives from the need of decreasing
computational complexity, verifying that the quality loss in
the training ability is acceptable. Figure 3 shows the

Fig. 2 - Picture if the neuro-board

performances of the NGAS algorithm both when it uses the
Euclidean distance and when it adopts the Manahattan
distance. These experiments include both the training phase
(the training set is composed of the Tiffany and Peppers
images) and the test phase (using the Lena image). One can
verify that the decreasing of the computational cost does not
influence the training ability of the network, thus
confirming the validity of this novel approach.

The second mode of the board is similar to the first one, but
does not include the adaptation step (step 2.4 of the training
algorithm shown in the previous section): it is used when
the network is trained.

The last mode is used in the hardware-test phase of the
board. This system is a visual debugger that allows one to
follow the phases of the board functioning. For instance, one
can assess if the registers and the memories contain the
correct data; therefore, one can verify if the DSP performs
all its operations correctly.

A software running on the PC supports the board
management. In particular, it supervises patterns and
codevectors loading from the PC to the board, PPIs
programming, and setting of the board-functioning mode.
This management is realized by the PC, loading the state
register (8 bits) of control signals for supervising each
interaction between the PC and the VQ-board. This register

Training and Test curves

0.02 ¢
Training. Manhatten
_____ “Training, Eudlidesn
Test. Menhathen
0.015 == w w Test, Euclidean
%)
001 |
=
Mw
0.005 | o
0 . . . , .
1] 80 100 150 200 250
leration

Fig. 3 - Training ability: comparison between the Euclidean distance and
the Manhattan distance.

1343

ALU

— [T

Data bt i

1 buffes)

(8 bits) '

Pattern
memory

Prototype
memory

Fig. 4 - Scheme of the parallel data-bus access.

plays a crucial role in the board management and allows one

to realize a multitasking board by varying the combination

of the control signals. In addition, another register, the

control register (8 bits), is very important for an efficient

system functioning: it contains the control signals for the

management of each possible interaction among the DSP

device and the other components of the overall system

(ALU, control units, and PC).

The DSP device is the most important component of the

system, as it works out the majority of the NGAS algorithm.

For this reason, its communication interface is important to

guarantee an efficient functioning of the system. The

TMS320C26 is supported by three input ports and two

output ports:

Input ports

- The state register.

- A register (16 bits) to import the random number for the
pattern selection during the training phase.

- A register (16 bits) to receive the operational results of
the mathematical coprocessor (Manhattan distances).

Output ports

- The control register.

- A register (16 bits) to transfer the final result of the
image compression (the index of the winner codevector).

The DSP device has a different computational load,

depending on the training mode or the run-time mode that

has been set, as summarized in the following:

Training

1. Sorting of distances provided by the ALU.

2. Processing of the adaptation step Aw; for each prototype
w; (exponential computations), where X is the number of
codevectors.

3. Application of adaptations to each codevector (w, = w;
+ Awy).

Run time

1. Sorting of distances (equal to step 1. of the training
mode).

2. Transfer of the index of the winner codevector to the PC.
The TMS320C26 is not supported by a floating-point unit
(FPU), therefore exponential computations are performed by
the DSP’s ALU (a Taylor series was chosen to approximate

exponential computation). A pre-processing of each
floating-point number is necessary to transform it into
integer format, and a post-processing, which receives the
integer result from the DSP’s ALU, must provide the result
in floating-point format. .

The other computational unit, the ALU, performs the
Manbhattan distances, using an architecture based on a three-
phase pipeline. In particular, the functioning of this
structure can be summarized as follows:

Three-phase pipeline:

- Prototype-memory access.

- xJ. - wj , j € [1, vector size]

- S+|x. - w,

i
It is easy to verify that 68 clocks are necessary for a
Manbhattan-distance computation between a sample vector,
X, and a codevector, w. In addition, the ALU solves the
drawback of the different precisions used for the patterns (8
bits per pixel) and for the codevectors (16 bits per pixel),
processing each pattern vector in such a way that it becomes
a 16-bit vector. There are different techniques to reach this
goal and we adopted the following one: the most significant
8 bits are the original pattern, whereas the other 8 bits are
equal to the first-ones. As a result of this computation, each
distance needs at most 22 bits. As the used DSP has a 16-bit
local bus, an approximation to distance results is necessary:
only the first most significant 16 bits are considered. Each
distance is loaded into a 16-bit register (an input port of the
DSP), and the processor TMS320C26 can start to work out
its process.

The board has two control units, one for I/O operations (I/0-
control unit) and the other for the ALU control (ALU-
control unit), which are implemented using an FPGA
technology. The first unit supports the data-transfer
management from the PC to the suitable memory bank on
the board, and vice versa. In other words, the input PPI
takes data from the bus (now data are available to the board)
and then the I/O-control unit manages data transfers into the
memory, and vice versa. This supervision is realized by
driving opportune control signals toward the PPIs. The other
control unit manages both the three-phase pipeline of the
ALU and the data-parallel loading from the RAM to the
ALU. These tasks are crucial for the overall system
performance, and their good functioning increases the
system’s efficiency. The parallel access to the memory has
been realized by buffering the data bus: this technique
consists in isolating (with buffers on the data bus) two
portions of the data bus to access both the prototype memory
and the pattern memory simultaneously (Fig. 4). This
strategy is possible, even though the two memories can be
addressed separately.

j-1
, where S = i’xi - wi! , i € [1,vector size]
i

1344

The overall architecture is structured for parallel processing.
As a matter of fact, the two operational units (ALU and
DSP) work at the same time: while the ALU performs the
current distance, the DSP works out the sorting of the
distances already provided. In addition, while the DSP
works out steps 2. and 3. of its training phase, another
pattern will be read by the ALU controller and the ALU can
begin its distance computations. If the board is set in the
training mode, the training process will be iterated a number
of times set in the initial phase of the system.

The main board feature is the adopted configurable
hardware solution based on a flexible and cheap PC-hosted
implementation. In addition, simplicity and easy control for
HW tests and SW development represent the basic
advantages of the overall approach.

B. Experimental Results

We tested the VQ-board in the videophone and low bit-rate
image coding technical domains. As a matter of fact, the
board processes image subblocks with 64 pixels each. In the
current prototype version, the number of such samples may
vary in the range [256,1024], whereas the codevectors can
be at most 256, which is an acceptable number for technical
purposes [8][9]. Gray-level pixels are represented with an 8-
bit precision, whereas a 16-bit precision allows the
codevectors to span the image space more accurately.

Some experimental results on the system’s performances
mainly concern the critical computational step of the
application (computation of a vector distance). Results show
that this phase is completed in 8psec, using a power voltage
of 5V, and that the full-operation absorbed current amounts
to about 2A, mainly required by the FPGA.

The performances of the overall structure are limited by the
mathematical-coprocessor complexity. Simulations based on
ALTERA MAX+PLUSII advised a clock frequency of
9MHz. For this reason, the on-board clock is driven by the
PC bus speed (8MHz). Under these conditions, the VQ-
board completes a feedforward phase (image compression),
obtaining a compression of 2 images per second. It is worth
pointing out that the DSP device used (TMS320C26) works
at a maximum clock frequency of 40MHz; therefore, it
stimulates an implementation with advanced technologies,
for overcoming the drawback of the low frequency of the on-
board clock.

IV. CONCLUSIONS

In this paper, we have described an architecture for the
implementation of algorithms based on vector quantization.
In particular, we have proposed a neural approach (Neural
Gas) and presented its hardware realization. The
architecture is parallel and composed of two computational
units that work out independently. The performances

obtained are not excellent, as the technologies used are not
advanced. However, the proposed system may be further
developed and has been realized at low cost.

Future research will involve the use of more powerful
devices and the inclusion of twin processors on a single
board, yielding a truly parallel computing ability. This will
result in a technically significant system providing real-time
performances in adaptive videophone applications. To this
end, the availability of an integrated development system for
high-performance DSPs seems to play a key role.

REFERENCES

[1] Jain AK.: ‘Image data compression: A review’, Proc IEEE,
Mar. 1981, vol. 69, pp. 349-389

[2) Gray R.M.: ‘Source Coding Theory’, Boston, MA: Kluwer
Academic Publishers, 1990

{3] Gersho A.: ‘On the structure of vector quantizer’, IEEE
Trans. Inform. Theory, Mar. 1982, vol. IT-28, pp. 157-162

[4] Gray RM.; ‘Vector Quantization’, IEEE Acoustics, Speech,
and Signal Processing Magazine, Apr. 1984, pp. 4-29

[5] Linde Y., Buzo A., and Gray R.M.: ‘An algorithm for vector
quantizer design’, IEEE Trans. Commun., Jan. 1980, vol.
COM-28, pp. 84-95

[6] Martinetz T., Berkovich S.G., Schulten K.: ¢ “Neural Gas”
network for vector quantization and its application to time-
series prediction’, IEEE Trans. on Neur.Net., 1993, vol4,
No.4, pp.558-569.

[7] Ancona F., Rovetta S., and Zunino R.; ‘Hardware
Architectures for Vector Quantization in Very Low Bit-Rate
Image Coding’, 1996 Int. Workshop on the HDTV, Oct. 1996.

[8] Anguita D., Passaggio F., Zunino R.: ‘SOM-based
Interpolation to Image Compression’, Proc World Congr. on
Neur.Net. WCNN95, Washington, vol. I, pp.739-742, July
1995.

[9] Ridella S., Rovetta S., Zunino R.: ‘Generalization-based
approach to plastic vector quantization’ Proc.World
Congr.on Neur.Net. WCNN'95, Washington, vol. I, pp.505-
508, July 1995.

1345

