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Efficient Training of Neural Gas Vector Quantizers
with Analog Circuit Implementation
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Abstract—This paper presents an algorithm for training vector tional cost (typically video coding). The proposed VQ training
quantizers with an improved version of the Neural Gas model, algorithm performs effectively in terms of distortion noise, and
and its implementation in analog circuitry. Theoretical properties has HW-amenable features; hence, the related implementation

of the algorithm are proven that clarify the performance of the . L . e
method in terms of quantization quality, and motivate design " VLSI circuitry is also illustrated. Codevector positioning is

aspects of the hardware implementation. The architecture for driven by an improved version of the Neural Gas (NG) model
vector quantization training includes two chips, one for Euclidean [4], whose simple topology makes it possible to minimize
distance computation, the other for programmable sorting of interneuron connectivity.

codevectors. Experimental results obtained in a real application : : :
(image coding) support both the algorithm’s effectiveness and the This latter property makes NG appealing with respect to

hardware performance, which can speed up the training process Other VQ-training methods such as SOM'’s [5], which in-

by up to two orders of magnitude. volve a fixed grid of neuron interconnections and can notably
complicate HW implementation. Moreover, the NG model
I. INTRODUCTION seems computationally more efficient than affine topology-free

approaches [8], [9], as the latter ones require global com-

HE LITERATURE provides a large amount of training . . o
algorithms for vector quantization (VOQ) [1] s st(_}msputatmn of frequencies and probabilities, and may therefore
x q 5y . pay an increased computational cost. As far as representation
conventional [2] and neural-network [3]-[9] algorithms wit- "7 ", o
cwahty is concerned, the performance of NG training has also

ness the interest in VQ as an effective paradigm for dom 'een proved experimentally [4] to overcome standard VO

analysis, s_|gnal processing, and information coding. As acfgorithms in the literature, such as SOM's or theneans
hardware implementations of VQ, most efforts have been

. . . i | o algorithm [2].
spent in supporting the winner-take-all (WTA) function in both Previous research showed that NG can yield impressive

analog and digital technology [10}-{16]. Other approaChe%ﬁciency even on conventional architectures [26], and that

optimize codebook search for real-time applications [17]. lastic algorithm [17] ensures convergence and can mini-
Visual information coding [18] is usually the target applica- p 9 : . nverg
ize codebook size. NG is appealing as prototypes mostly

tion. VQ performs effectively at very low bit rates, and itd"

notable computational cost justifies the effort for hardwal%oer:ate !ndep;end(efn:rl]y Ofl onihanqthe:; the ogly |m;ormat|tc_)n-
implementations. exchanging step of the algorithm involves codevector sorting

Comparatively, less work seems to have been done on haQB?E)- . the NG alaorithm bv aivina both
ware support for VQ training algorithms, despite codebook IS paper improves the algorithm by giving ot
training is usually the computation-intensive part in a V halytical and compu_tatlonal Sl_Jppo_r_t for partial sorting, _wh|c_h
system setup. In addition to the direct modeling of Kohonen eeds up computation and simplifies f[he HW especially in
Self-Organizing Maps (SOM's) [19], [20], very large scald e presence of large co_dgbooks. The cw_cunry |mplements_ the
integration (VLSI) training architectures have been describ Ht'cal steps of VQ trammg, namely, distance computatl.on
in [21], [22] and, more recently, [23]-[25]. The complexity o D(?[?) and DSD. The design sFrategy integrates multlplt_e chips;
mapping theory into architectures is possibly the major iss§8/ItiNg the overall schema into components simplifies the
hindering the hardware (HW) support of training algorithms. ,Qe3|gn§rs conflgurat!on. This connects the present algorithm
dynamic adjustment of codevectors can involve a wide-spreigPrévious work, which led to an analog chip for full-search
circulation of information, thus demanding complex wiring?@d€P00k scanning [27]; moreover, a circuit for sorting was
and coordination. It is, therefore, no surprise that the lated@fted in [28].

trainable encoder implements a nearest-neighbor model [24]T€ result of the presented research is a novel frame-
which does not require any interprototype connectivity, =~ WOrk for effective VQ training, where theory drives HW

This paper tackles the problem of HW support for V implementation. Experimental verifications include: 1) tests

training in high-dimensional domains requiring huge comput validate theoretical expectations and 2) measurements of
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Section IV reports experimental results. Concluding remarkgeres is not a function of the rank, but of the distance

are made in Section V. d, itself. This would remove the need for WTA circuitry
and codeword sorting altogether. In fact, sorting in codeword
Il. THEORETICAL ASPECTS OFVQ TRAINING scoring provides the training strategy with mechanisms related
to robust statistics. This mainly deals with the practical well-
A. The VQ-Training Algorithm known problem of dead vectors: if weight adjustment depends

nd,, the risk is high that the annealing mechanism implied

The VQ training algorithm is based on the NG modei (3) fails to recover “distant” codevectors that might have

for n((eju:al network tralr&[ng. tN(ihpIaces.e} S?t d'Oft 'Ct? dt(.avect?B en moved away occasionally or badly initialized. Making
In a data space according 1o the empirical diSribution of g, 4eyactor displacements dependent on their ranks ensures

training set, and aims to minimize average distortion. Theo{Pfat even the farthest codewords are significantly influenced by

shpws that the asymptohc_al_ positions of codg\_/ectors_ spa \?ery training sample. The theoretical justification of sorting
uniform coverage over training data [4]. Empirical ewdenc&

indicates that NG Its | ller distorti nds a thorough confirmation in experimental practice [4],
indicates that, on average, resulls in a smafler distortion, %], showing the extremely low rate of dead vectors derived
compared with other VQ algorithms; moreover, convergen

. : ' X fom an NG training, as compared with other methods.
typically requires fewer iterations.

- del d t 1000l ; However, a downright implementation of the original NG
€ model does not assume any topoiogy for neuron co gorithm would imply complete sorting and network-wide

nec_tivity. _During Fraining, code\{ectors are sorted in terms Lommunications. In large codebooks for real applications,
their Euclidean distances from input samples; each codew ever, a complete sorting would complicate connectivity

is adjusted according to its rank. Codewords are denoted crt’r¥d layout design [12], [29]. This motivates partial sorting

g(w"_’llﬁ - Il - '.&’]N} andblle |nt<|';_1d-dc;menf5|ﬁnal domain space.¢ o an architectural perspective; the theoretical validity of
- 'he algonthm can be outlined as Tollows. the approach is proved in the following.
For iterationst = 0 to 7
1) draw a training samplex € X;

. . B. Theoretical rt for Partial Sortin
2) V codevectoruw,,, computethe Euclidean distance eoretical Support for Partial Sorting

Considering a subset of the sorted list should not affect train-
dp = ||Wy —x||, n=1,--- N (1) ing results, as compared with those yielded by the original NG.
This is possible as NG implements stochastic optimization,
increasingd, (K < N); yvhose progress can be modeled by two additive quantities,

: i.e., cost and noise. The former depends on the distortion
let n(k) denote the index of théth codeword on the o
sorted list: brought about by quantization, the latter results from random
- ’ . . fluctuations during the minimum-search process.
4) adjustthe subset of codevectors according to their ranks . . . L
o The theoretical baseline for the presented algorithm is fairly
on the partial list : . AR .
simple: for a complete sorting, the gain in distortion for
Sa;;) — Wff()k) +e(k,t) - (x— Wff()k)% k=0,..., K. the last codevectors on the list becomes comparable with
@) the loss due to random fluctuations. As a result, a complete
sorting is practically insignificant to optimization. To prove
The rewarding functiorr supports a decreasing learning ratéhis property, the sensitivity of training to the sorting process
and balances the distribution of weight updates during trainirig. analyzed and a novel interpretation of the codevector-
An implementation of the scheduling functions is given in [4adjustment strategy is provided.

In order to simplify the analysis and without loss of gen-
_ t/T k
e(k,t) = no(nz /o) eXp<— )

3) partial sort extract the firstk' codewords in order of

w

erality, one can assume a continuous-time training process

e Al) (involving an infinite number of training samples) and a
B A\’ ) continuous-size codebook (reflecting a very large number of
At) = )‘0<)\_0> > o >nr > 05 Ao > Ar > 0. (3) codevectors). Actually, such idealization is a good model of

. . . practically interesting problems; that is, VQ training in high-
According to (3), training evolves from a distributedimensional applications with large codebooks (e.g., image
activation pattern, in which several codevectors are adl“St@gding). Under these assumptions, normalized sensitivity de-

at the same time, to a true WTA schema, in which only ongqs from the weight-update rule (3), and is formally defined
codeword is affected by a training sample. The NG modgg

is computationally interesting, as most of a codevector’s

activity proceeds locally: 1) DCD and 2) weight adjustments Xo 8 T o T —k

exploit local information, thus enabling the use of codeword- Sk, 1) = _%ﬁe( ) = < ) <m) (4)

embedded circuitry [27]. Sorting is the only process requiring

a network-wide circulation of information to evaluate lisivhere the normalization factor A\ /79 has been introduced,

ranks k. without loss of generality, to simplify notation in the following
When considering the computational costs of the sortimgath derivations.

operation, one could think of other VQ algorithms of the When regarded as a function of time for a fixed réagksen-

type (2) which update all codewords every training cycle, arsitivity shows how the importance of rarily evolves during

NoAT
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training. The properties of sensitivity can clarify the overall Theorem 2: The series/ (%) tends to zero exponentially
operation of the VQ training algorithm. The sensitivity for the ]

highest ranki: = 0 (which relates to the best-matching neuron) ,}E{}o I(k) = 0. (10)
increases exponentially during training; therefore, identifying

the winning neuron becomes more and more important as Proof: Clearly, I(k) > 0; one can prove convergence by
training progresses. Conversely, the sensitivity for any othéPPer bounding the integrand function

rank decreases, hence the importance of each nonwinning T I (Bt)?
position decreases, too. I(k) < / exp [At bW <1 + Bt + T)} dt
This behavior matches the originally described features of 0 . 0 )
the NG algorithm [4], and derives from the shape of the _ e—k/)\o/ exp[(A—kB/)\o)t— kit?} dt
rewarding functionA(¢). From a practical perspective, one 0 20
should consider that the algorithm’s robustness relates strictly =c *Bgk), g(k)<oo Vk>O0. (11)

to the accuracy of the sorting process. Thus, the robustness of
partial sorting increases in time, as can be easily proven Inequality (11) implies that the serid$k) is bounded within
thjn 5(0,1) = oo; tli{n S =0 VE>1.  (5) two series converging to zero, hence
] Oo ] _ = ) lim ¢ *Bg(k) =0= lim I(k) =0.
The first limit holds ifnrAo/noAr > 1, meaning that the top k— oo k—o0
rank becomes more and more important as training progressgisice the bounding series tends to zero exponentially, the
In theory, one might also set the annealing process in suclgiess(k) itself must converge to zero with the same rate,
way that the importance decreaseskct 0; previous research ynich completes the proof. 0
[4] and experimental practice indicate that privileging the Theorem 3: (Convergence of total importance)
winner position strongly improves training quality. The second
limit is always true and confirms the decreasing importance
of minor list ranks while training progresses. The importance
I(k) of the kth list position throughout the entire training
process is measured by Proof: This property is a corollary of the previous one,
T as the exponential convergence rate I¢k) is a sufficient
I(k) = / S(k,t)dt. (6) condition for the convergence of the sum in the assertiah.
0 Theorem 3 represents the actual theoretical support for
The integrals (6) must be worked out numerically. Importangertial sorting. One can set a list depth< /N and limit the
becomes insignificant for large values of k; more importantly,sorting process to the initigk’ positions, with an arbitrarily
few top positions convey most of the overall importance. Thinall effect on training results. Remarkabli; can be set
behavior is justified analytically by the following Theorems.once and for all as property (12) is independent of the specific
Theorem 1: (Importance decreases with list rank) guantization problem. This holds because the theorems follow
from the implementations of the scheduling functions (3).
Vk 20, I(k) > I(k+1). () Sample results for a few top ranks are given in Fig. 1,
Proof: The conditionk > 0 reflects the meaning of showing sensitivity curves (a) and relative importance values,
as a rank on a list. The inequality can be easily proved gfined asx = I(k)/Iror (b). The graph confirms the expo-

> I(k) = Itor < . (12)
k=1

rewriting importance: nential rate of convergence of the series. The sensitivity graph
T in Fig. 1(a) witnesses the different importance trend for the
I(k) = / exp <At - ﬁeBt) dt top list position(k = 0) with respect to the others: identifying
0 Ao correctly the winning neuron is much more important than any
A= 1 n N7 Ao other position on the list. This might indirectly motivate the
T noAr success of most WTA-based VQ training algorithms such as
B 1 I & ®) means; conversely, taking into account the residual importance

justifies the superior performance of NG in representation
Icﬂwality mean-square error (MSE). More importantly, as a
pdsitive support for partial sorting, the cumulative distribution
of 4, points out that more than 95% of the total importance is

T . .
/ eXp<At—)\ith> [1_exp <—)\ith>:|dt>0 VE > 0. conveyed by the 15 top ranks on the list.
0

T A

If one uses (8) to reformulate (7), after simple rearrangeme
condition (7) can be rewritten as

0 0
9) lll. CIRCUIT IMPLEMENTATION OF VQ TRAINING

The integrand function is positive if .
A. Overall Architecture

1 . . . . .
exp<——eBt> <l& —)\—eBt <0 The architecture described in this paper uses dedicated

0 circuitry to perform the computation-intensive steps of the
which is always true becausg > 0. O training algorithm. The narrow dynamic range of the involved
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3 k=0 >
] Sampling——— W Aw
d J K Digital (Sw)

Analog (ASIC)
Distance comp. DCD

Sorting

Indexing

Fig. 2. The VQ training system architecture.

during training, whereas a distance-computation device can
also be used at run time for information coding with trained

codebooks. The two devices will therefore be considered
separately.

0 2000 4000 . 8000 8000 10000

@ B. DCD

Computing the distance of each codevector from the current-
input vector is a time-consuming task. Many solutions have
been proposed, based on both HW accelerators and on al-
gorithm optimization. In the relevant literature, fully digital
approaches are usually employed for distance-computation
circuits [32]. Analog realizations can be found especially in
the neural network field [33], [34]. Optimizing DCD from an
algorithmic point of view, on the other hand, is useful in the
case of a single winner. In this situations, many techniques can
be applied [32], [35]. Such techniques aim to reduce codebook
search time.

The solution proposed here relies on a complete paral-
lelization, in terms of DCD (all vector components enter the
computation in parallel) and codebook access (all codevec-
tors are accessed simultaneously). This architectural setup is
consistent with several approaches described in the literature
[25], [31]. Electronic implementation of a completely parallel
architecture is possible, with a reasonable area efficiency, only
i one resorts to analog circuitry.

In the presented research, a DCD with the above features has
been suitably designed and fabricated. A detailed description
quantities (typically less than 10 bits) allows analog implemegf the internal chip architecture [27] is beyond the scope of
tations; at the same time, by analog circuitry, the architectut@is paper, which mainly focuses on the overall architectural
attains maximum parallelism in a limited silicon area, thugspects of the VQ training algorithm. The DCD processes
effectively supporting the large bandwidth required by VQnalog vectors (represented as an array of input voltages),
[30], [31]. stores the codebook in local analog memories (capacitors)

The training architecture is sketched in Fig. 2 and implemnd in an external digital memory, and outputs three types
ments the algorithm’s steps 1) and 2), involving DCD angf information: the index of the best-matching codevector, en-
DSD, respectively. A full HW implementation of the algorithmcoded as a digital word; the distance value of the best-matching
is feasible, as step 3) is performed locally at the codeveci@devector; and the distance values of all the codevectors.
level, too. In the present setup, however, conventional digitalThis enables the circuit to act as both the required distance-
processors accomplish this task, for both a structural apdmputing device and a stand-alone VQ encoder, while pro-
practical reason. First, this choice makes it possible to modifjding remarkable flexibility for a modular connection of many
the codevector-rewarding functios(k,¢). Secondly, weight such circuits. The chip is illustrated by the block diagram
update is computationally much lighter than the previous stefas; Fig. 3 (a photograph is presented in Fig. 4). The circuit
by contrast, an accurate HW implementation of the exponentaicepts input voltages in the range 0-1 V. The best-matching
functions may prove quite complicated. codevector is evaluated in terms of squared Euclidean distance,

The choice of using separate devices for DCD and DS&xpressed asl; = > .(w;; — x;)?. Each term of this

aims at a practical goal as well. Sorting is only requiresummation (the output of a squaring block) is a current signal;

Relative impaortance
SABINWND

(b)

Fig. 1. Sensitivity analysis of the VQ training process. (a) Normalize
sensitivities versus timék > 0). (b) Relative importancé, versus rank.
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Codevector w;
- 0)
(W1 —X;)? > n(
L1—X ‘
(W2 —Xp)° >
12— X2 d;
2 dn ()]
—>
WTA
(Wiq— %) >
d»
Codevector w, di-dy
—>
dn
Codevector wy

Fig. 3. Block diagram of the DCD.

interconnections might be difficult to implement by VLSI
circuits [29]. A study of the structural aspects involving sorting
time and the number of components is presented in [37].
Neural-network approaches use SOM’s [38] or Hopfield net-
works [39]. VLSI circuits tackle the communication-exchange
problem by limiting connections with pairwise comparisons;
they then set up a hierarchy of progressive selections [10],
[40]. Thanks to a better matching, local comparisons enhance
robustness by higher accuracy [30]; on the other hand, the
system area complexity tends to increase. In fact, the simplest
architecture for HW sorting requires only one wire connecting
several elementary cells. This approach is followed in [41],
[42], where a reduction in corner and offset errors is also taken
into account. For such structural features, a similar single-wire
connection approach is adopted by the DSD of the VQ-training
architecture.

The novel sorting circuitry described in the following best
fits the overall external architecture and minimizes intercon-
Fig. 4. Chip photograph of the DCD. nections. The schema is based on Lazzaro’s well-known WTA
structure; the modular approach makes it possible to include

L . L different schemata from the literature that, for instance, might
hence, the summation itself is greatly simplified. Then, tf}e : ;
rn out to improve accuracy or speed (as presented in [41]).

distance is input to the WTA block, a modified and enhanceﬁ]e DSD circuit operates iteratively: the length of the list

version of the well-known circuit designed by Lazzabal. . .
[13]. This block produces the output signals described aboVIg can be preset and sorting completesti() time. Each

Other components of the circuit are the refresh circuitry, basg%ratlon includes two steps: 1) the current largest input value

on external D/A converters, and the polarization/reference Sd%_detected by WTA competition; such a value is linearly

. i S . .. represented at the output voltage,,; and 2) the “winner” is
system, implemented with the resistive interpolation blasmg ) ;
. removed from the list of competitors. For each output value,
technique [36]. N . .
the circuit yields an analog representation of the value itself,
a digital encoding of its rank on the sorted list, and a digital
C. DSD indexi i Hon | i
indexing of its position in the original set.
The literature offers a variety of HW circuits for sorting. The Each input current is handled by an associate elementary cell
complexity of rank extraction mainly lies in the need for circufFig. 5(a)]; each cell integrates analog circuitry andaype

lating information among the components of a system, whopesitive-edge triggered flip-flop. A single wing,,; connects
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PRESET (M1, M2) from line ;.. As a result, the cell is removed from
CLock further competitions, and this condition holds untiPRESET
pulse drivesiM,,, back on.

To sum up, the highest input value is mappedVat;

at the first iteration; as soon as the winning cell exits the

competition, the second highest value is enabled to show

up, and so forth; iterations are timed by clock strikes. As

= a result, the sorted list is represented by the sequence of
potentials V,,; at consecutive clock cycles. Programmable
sorting (k = 1,---,K) is accomplished by presetting the

——Vwn counter to issue @ReSETpulse afterK clock cycles.

s D. Architectural Reasons for HW Implementation
and Partial Sorting

The following analysis shows that the described architecture
improves the efficiency of the training process substantially.
To this end, we compare the timings of the analog architecture
Crock with the corresponding performance of an (ideal) architecture

PRESET using serial digital circuitry. The analysis considers the phases
Ill ’7 INl significant to comparison, i.e., DCD and sorting.
| | In a standard implementation of the NG algorithm, the time
taken by one iteration of the algorithm results from the sum
of two terms

Vv v
Cell #1 eee Cell #N

l l VOU[
N

(b)
Fig. 5. The architecture of the sorting circuitry. (a) The elementary cell. (wyherequ) andTéCfr) indicate the times required to compute
Cell-interconnection structure. one term of summation (1) and to make a pairwise distance
comparison, respectively. In order to evaluﬁ;%iq), we shall

the gates of transistor&/1 of all the cells [Fig. 5(b)] and is make an optimality assumption, involving a DSP-like architec-
biased by a constant currefif. At startup, a “low” PRESET ture, running at clock perioﬁTéCK) and able to best exploit the
pulse forces statug to be high in all the cells. sequence of computation. Each term in summation (1) requires

Step 1:The identification of the largest input value at each difference, a product, and a sum; if the HW can execute a
iteration is supported by Lazzaro’s WTA circuit [13], whichmultiplication and a sum in a single clock strike, we obtain
has been chosen from several alternatives [43] mainly f%f“) = 2T(§CK). Moreover, we shall assume that the serial
its simplicity. The sets of transistor paif9/1,M2) of all architecture can execute a comparison of two distances in one
the cells constitutes the basic WTA subcircuit. Thanks to tledock cycle, henc@(ﬁcm = T(ECK). Expression (13) involves a
negative feedback with global competition on lilg,;, the simplified model as, for example, it does not take into account
entire current/, flows in transistord/2 of the cell with the the time required to swap two elements on the sorted list.
largest input current. If the input currents in transistéfd The performance attained by the analog architecture with
are suitably biased [44]V,.; also yields an analog, linear,partial sorting is expressed as
representation of the winning value.

Step 2:The sorting circuit exploits the consequent nonuni- T, =T + T =TSV + k- T (14)
form distribution of bias curreni,. As long as switchi/,, is
kept “on” by a high signal) (default condition), the matchedwhere the termgs"” and 7:"™ have the same meanings as
pair (M,, M,) and the load transista¥/. drive voltageV,. If ~above. The first term in expression (14) takes advantage of
the cell is not the winner, no current is mirrored inth. and the on-chip parallelism as all sample-codevector distances are
V, is low; V,, becomes high when the cell wins a competitiorcomputed simultaneously, hengg™™ = 77", likewise, the
The logic circuitry exploits this information to remove thesorting circuitry can yield a sorted quantity per clock cycle,
winner from the competition. At the next rising edgecnbck, hence T ™ = 7K, Experiments indicate a good setting
the flip-flop status@ in the winning cell becomes low, andfor the partial sorted listk = 5.
informs external circuitry about the current winner. Feeding Standard values for low-rate VQ image coding dre- 16
back Q(low) to the flip-flop input inhibits further changesand N = 256. The maximum operating speed of the analog
in the flip-flop status; this prevents the cell from re-enteringrcuitry is 2 MHz, henceT,ECK) = 500 ns. If the digital
competitions in the next iterations. At the same timé,, implementation supports a DSP bus running at 100 MHz,
is turned off and virtually disconnects the WTA subcircuif(®®) = 10 ns. Substituting these values into (13) and (14)

T, =T 76 > N d - T80 4 745 . Nlog, N
(13)



694 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 6, JUNE 1999

allows one to evaluate a lower bound to the architectural
speed-up .
Ty N(2d +log, NI ®
o= +d > ( + log, (C)K)d — 34, (15)
1o (k+1)Ts @ o ®
It is worth stressing that the above value allows quite . u
optimistic assumptions about the serial implementation (for .
example, the whole architecture should run at the processor @)

speed, no codevector swapping is accounted for in the sorting
process, etc.). Therefore, the estimated bound (15) is substan-
tially pessimistic, as measures obtained by various experiments
with commercial DSP’s yielded empirical values of the speed-
up (15) always greater than 100. Anyway, the result obtained
must be considered satisfactory, especially in view of the
lower clock speed and of the lower complexitty of the overall
architecture.

perc. deviation from NG
B

-

“® 0
IV. EXPERIMENTAL RESULTS wh oo ‘ ‘
. . . . /712345678 9101112131415
This section provides experimental support for both the NG Partial list length (K)
theoretical derivations and the circuital implementations of the b
VQ-training algorithm. First, the method is compared with the (b)

NG algorithm, under the assumption that the latter behavFég- 6. Artificial-tes'tbed results fpr parti_a_l sorting. (a) Frjtz_ke’s synthetic
. - . . testbed for evaluation of clustering ability [6]. (b) Deviation from NG
ideally; the OYera” distortion on the' da'ta set measures egfdormance; the grey area marks the distribution of ideal NG. Small values
model’s effectiveness. Then, VLSI circuits are considered antdk (e.g., K = 5) provide good approximations for the ideal performance.

evaluated.

allows comparisons with previous results in the literature. The
testbed included 4483 two-dimensional samples, whose spatial
This section considers the quantization performance distribution is shown in Fig. 6(a); a plastic algorithm [17]

the training algorithm. The goal of the experiments is tevaluated the appropriate number of codevectdfs= 30).
evaluate the specific effect of partial sorting to the overall VRig. 6(b) displays averaged results in terms of percent devia-
performance. Therefore, the algorithm results are comparngsh from the reference distribution. The graph clearly shows
with those obtained by the NG model, which requires #at, if K increases, distortion converges to that obtained by
complete and exact sorting of codevectors. The comparisNG; at the same time, the distribution of results shrinks.

A. Experimental Support for Partial Sorting

refers to both synthetic and real-world testbeds.  This confirms theoretical expectations, i.e., partial sorting
In the experiments, the lengthi of the partially sorted list approximates ideal NG fairly well, even for small values of
was progressively increased and ranged fiim=1t0 K =  k; moreover, the confidence in such approximation increases

15; in Section Il, theory predicted that using larger values @fccordingly.

codebooks were related to the average distortion of NG, actipgkled a real testbed, i.e., image coding. This application is

as the “reference” model. In order to remove statistical biagchnically significant as VQ methods can attain remarkable
thirty independent training runs were performed for each valggmpression ratios and yet maintain a satisfactory picture
of K and for the original NG algorithnik’ = N). Thus, the  qyality, especially at very low bit rates [18]. In a VQ-based

NG reference performance is represented by a range of Valﬂﬁﬁge-coding system, a picture is split into elementary sub-

rather than by a single datum; likewise, results from the trb‘?ocks, playing as samples in the quantized space. Typical
partial-sorting method are summarized by their average, mmock sizes cover 4x 4 or 8 x 8 pixel grids. In the

and max values. The comparison in performance between
proposed method and the ideal NG model can be expresggs
guantitavely by a percentage deviatindefined as

eriments, standard, gray level (8 bpp) images of sizex512
were used, and blocks of both sizes«(4 and 8x 8) were
tested. In all cases, codebooks included 256 codevectors, and
By — Exg this setting was worked out again by specific plastic-network
6= 100EA4 (16) models [17].

NG The present analysis only focuses on a distortion comparison
whereE and Exg denote the average distorion of the partiawith the NG model; hence, we refer the reader to [17] for both
sort algorithm (with list length= K) and of the NG model, a qualitative assessment of the image-coding methodology
respectively. and an extensive treatment of generalization performance. The

The synthetic data distribution proposed by Fritzke makedlédtter issue is a crucial problem in VQ algorithm testing:
possible to visually evaluate codevector positions [6], [7], arafter completing a training phase and creating a codebook,
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Partial list length (K) Fig. 8. Output of the square-of-difference circuit for a triangular input signal.
@
max MSE values for the & 8 block space, however, always
29 lay within the NG range fotk' > 20. To summarize, in the
) image-coding experiments, empirical evidence again confirms
E theoretical predictions: the distributions of distortion always
~ T converge to those of ideal NG whéfi increases, whereas the
g 8¢ associate confidence intervals shrink progressively.
: 1 It is worth noting that, in all testbeds, the upper boundsto
o [ was always sed priori to 15, yielding satisfactory results (i.e.,
9 »7 fairly good approximations for the NG performance) anyway.
a1 T In other words, the length of the partially sorted list appears
§ . - = 1 invariant to the specific quantization problem. This property
o ? seems the best experimental confirmation of the importance
26 analysis made in Section IlI.
Ng1 2345678 09101112131415
Partial list length (K) B. DCD Results
(b) Experimental verifications on the DCD chip have been

Fig. 7. Image-coding results for partial sorting. The greyed area marks ta€rformed to assess proper implementation of the distance-
distribution of ideal NG. (a) MSE results for 8 pixel blocks. (b) MSE computing circuitry and overall performance.
results for 4x 4 pixel blocks. The distance-computing block, a square-of-difference cir-
cuit, has been separately tested and compared with the required
the distortion performance must be evaluated on codevectbehavior. To this purpose, a stand-alone block has been added
outside the training set. This is especially true in image codinm, the chip. The squaring function reveals good symmetry and
and represents a true test of a robust codebook. In fact, titbe overall error versus the theoretical characteristic. We can
codeword positions determined by the partial-sorting methadbserve that a symmetric behavior (polynomial characteristic
and by the NG are very close; hence, the two approachegh even degree) is more important than exact quadratic
exhibited equivalent generalization performance. behavior in this specific application, namely, DCD. The output
Fig. 7(a) and (b) display results for the block sizes 4 and current ranges from 3.39 to 3.52 mA for an input voltage
8 x 8, respectively. Due to the applicative nature of the imageanging from 2 to 2.95 V (slightly less than that of the
coding testbed, the direct metric of performance is reported threoretical model). The best matching quadratic characteristic
they axis. Therefore, the graphs compare reconstruction M&Eapproximated with an average square error of about 5%, and
for the experiment; this indicates the tradeoff in performaneeaximum deviation of 0.01 mA. Fig. 8 illustrates the response
for different values of K. The reference (NG) distribution of the circuit to a triangular waveform test signal.
is wider for the 4 x 4 blocks than for the 8 8 ones, as The overall performance of the chip has been assessed,
the 4x 4 block space is sampled much more intensely. Thwith the aid of a dedicated test board, to enable evaluation of
very narrow gray band in Fig. 7(a) indicates that NG resultee single-chip properties. Experiments have been performed
deviated from their average value by at most 0.15%; in otheith 512 x 512-pixel images and 40-vector codebooks. The
words, the NG algorithm virtually found one minimum pointhroughput of the DCD chip is constrained mainly by the
of the distortion cost. Partial-sorting results slightly exceedauh-chip decision circuitry (WTA), so that, when used as
the NG distribution boundaries never more than 0.1% falistance-computation block only, its speed performances can
K > 10; negative deviations suggest that partial sorting lse fully exploited. Experimental verifications result in an
less sensitive to the annealing process. The average, min, astimated throughput of abol®® input vectors/s. We remark
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Fig. 9. Simulation results of a sorting circuit with four input lines: Clock CK (toppeset (middle); Vout (bottom).

that internal operation is fully parallel, so that the requirednly for demonstration purposes for the reader’s convenience.
clock signal can work at relatively low frequencies, since k allows the reader to have an immediate visual perception of

whole pattern is processed in a single clock cycle. the system-correct sorting; the sequence of analog outputs at
Vout Witnesses the correct functioning of the circuit and the
C. Experimental Evaluation of DSD linear mapping of input/output values.

The DSD was simulated at the layout level by usin?eThe device is currently being fabricated with the same

HSPICE lev.13 with 0.8:m technology by Austria Mikro chnology as used for the DCD device, and the apparent
Systeme (AMS); power supply was 5 V. The circuit wadmitation on the number of elementary cells can be easily
tested under stressing conditions (up to 64 input lines) aRYercome by including multiple devices in a common architec-
always proved effective and accurate. The aspect ratios fdf€ [45]. However, other schemata for the WTA subnetwork
the analogue subcircuit wer@V/L); = (W/L)s = 25/5; are being examined, especially in order to improve accuracy
(W/L)ow = 5/2; (W/L)a = (W/L), = 30/2; (W/L), = by multistage WTA subcircuits.

1/2. The digital subcircuitry used standard CMOS configura-

tions. Input currents were in the rang#® 140] A to ensure V. DiscussioN AND CONCLUSION

compatibility with the outputs of the DCD circuitry; the bias Tha technical interest in VQ models stems from their

current wasl, = 30 pA; the chip clock frequency was 2 omarkaple performances in difficult applications with high-
MHz. An appealing feature of the presented circuitis a relatiygy o nsional data representations and oversampled data spaces.

insensitivity to design parameters, thanks to the integration Iﬂflage coding at very low bit rates is a prototype for such

analog and digital subcircuits. Conversely, power consumptig| plications. At the same time, these very domains make VQ
represents a drawback; this mainly relates to the current-m

- - . — ' guite demanding in terms of computational costs of training
WTA mechanism, especially when its above-threshold biasigy real-time performance. If this fact poses a basis for

[27], [44], is considered. In the present implementation, POWEfinporting VQ training in HW, not all theoretical models

requirement varies in the range 1-3 mwicell. are equally prone to a circuit implementation. The amount

For simplicity of notation and interpretation, Fig. 9 presentsy nyolved computation and the interconnection structure

a demonstration involving four cells with a clock at 1 MHZ'among codewords (or neurons, in neural-network terminology)

; ; ; L _ ; . . . . . .
the assoma;te input currents (k) are I;,” = 8g+3'5m(27f' sometimes hinder critically a direct porting of algorithms to
8-10%); I = 120 + 3 - sin(2r - 7-10%); I = 90+ 5 circuits.
sin(27 - 10-10°); Ii(f) = 140+ 5-sin(27 - 10-10%). The input  Architectural parallelism and distributed management of
exhibits a high-frequency component that has been introdudatbrmation provide a viable approach to overcoming those



ROVETTA AND ZUNINO: EFFICIENT TRAINING OF NEURAL GAS VECTOR QUANTIZERS 697

issues. In HW, the former calls for several, independen] Y. Q. Chen, R. I. Damper, and M. S. Nixon, “On neural-network

units entrusted with specific computational ability; the latter

confines data to the local level and minimizes the circulation ofy

information by reducing the number of interconnecting wires.
The research presented in this paper accounts for s

aspects with a VQ-training algorithm specifically aimed at H

implementation. Specific features of the method are codewordk]
level local computation and minimal circulation of information
by partial sorting. The theoretical analysis made in Section If7]
primarily serves to prove the method consistency in terms of
quantization quality, as compared with a similar algorithm8
(NG) that is known to provide a notable improvement in

performance.

Thus, the overall approach matches the above guidelines b
effective porting: using analog technology for the distanceto;
computation device optimizes silicon area by reducing the
occupation of single cells. Likewise, an elementary sche
implements partial sorting and minimizes interconnection
circuitry down to one wire. The two devices operate
in conjunction with external digital circuitry for weight
storage/adjustment to permit flexible training strategies. The
integrated approach makes it possible to best exploit analdgl
components to reduce bandwidth bottlenecks and, at the same
time, to benefit from digital circuitry in permanent storag¢i4]

and from programming facility.

From a qualitative perspective, the theoretical analysis apd;
the related experimental results appear complementary. The
algorithm’s effectiveness in optimizing quantization noise h
been attested substantially by showing the method equivale
to a “reference” model described in the literature. More
importantly, a crucial theoretical result lies in proving thak!’]
partial sorting operates independently of a specific application,

hence no on-field tuning is required.

These results justify the HW-implementation effort, whictflg]
has led first to the design and realization of the DCD. This
device supports the core of the overall quantization process as
its internal parallel architecture boosts the timing performan
by reducing the bandwidth required for computation. The
testing process of the first production run of the VLSI chif?1]
has confirmed the robustness and accuracy of the original
design, and has opened stimulating prospects for the nex
engineering step. This redesign phase will mainly aim to

upgrade production by using a better technology (AMS:thy

in order both to incorporate a larger number of codevectops)

and to increase operating speed.
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