Neural Comput & Applic (1998)7:37-51
(c) 1998 Springer-Verlag London Limited

| mplementing probabilistic neural networks
Fabio Ancona*, AnnaMaria Colla**, Stefano Rovetta*, and Rodolfo Zunino*

* Department of Biophysical and Electronics Engineering, University of Genova — Via all’Opera
Pia 11a 16145 Genova, Italy
*Elsag Bailey S.p.A.

Correspondence and offprint requests to: Stefano Rovetta, Department of Biophysical and Electronics Engineering, Uni-
versity of Genova — Via all’Opera Pia 11a 16145 Genova, Italy,

A modified PNN training algorithm is proposed. The
standard PNN, though requiring a very short training time,
when implemented in hardware exhibits the drawbacks of
being costly in terms of classification time and of requiring
an unlimited number of units. The proposed modification
overcomes the latter drawback by introducing an elimina-
tion criterion to avoid the storage of unnecessary patterns.
The distortion in the density estimation introduced by this
criterion is compensated for by a cross-validation proce-
dure to adapt the network parameters. The present paper
deals with a specific real-world application, i.e., handwrit-
ten character classification. The proposed algorithm makes
it possible to realize the PNN in hardware, and, at the same
time, compensates for some inadequacies arising from the
theoretical basis of the PNN, which does not perform well
with small training sets.

Keywords: Digital neural processor; Generalization;
Hardware implementation; Probabilistic Neural Networks;
Random optimization

1 Introduction

The Probabilistic Neural Network (PNN) model, described
by D.F. Specht in [1], is a neural implementation of the
Parzen windows [2] [3] probability density approximation
method, mainly (but not exclusively) oriented toward clas-
sification problems. It was originally devised to provide
a neural tool capable of very fast training on real-world
problems; as compared with the backpropagation, for a
given level of performance, the speedup reported was about
200000:1. The simplicity of the structure and its theoretical
foundations are further advantages of the PNN model.

However, when designing a hardware implementation,
the user is faced with severe drawbacks, mainly related to
the constructive criterion used for training. For instance,
in practical applications, a property needed for the training
procedure is often re-trainability. In other words, if the per-
formance of the trained network is not satisfactory on new
patterns, the procedure should be able to learn these patterns
without need for restarting from scratch. The basic algo-
rithm, though theoretically very well-suited to this purpose,
in practice poses a limit to this ability, in that the network is
allowed to grow indefinitely.

The problem of implementing a PNN has been ap-
proached in different ways. Among others, in [4] the author
of the model described an alternative architecture combin-
ing the Adaline [5] with the PNN. In [6] P. Burrascano pro-
posed the application of the Learning Vector Quantization

[7] algorithm to the PNN, by fixing the number of pattern
units, which play the role of prototypes for vector quantiza-
tion.

In the present paper, we describe a modification to the
standard algorithm. It has been devised for the implementa-
tion of PNN on a commercially available digital neural chip,
the Nestor/Intel Ni1000 Recognition Accelerator, designed
for the realization of pattern recognition methods based on
localized functions (PNN, RCE, PRCE) [8]. The implemen-
tation is oriented toward a classification application requir-
ing a large number of training patterns, namely, recognition
of handwritten digits. Some modifications to the basic pro-
cedure have been designed and tested. The new formulation
of the training algorithm is not limited to the case under ex-
amination, but can be extended to the general case of an
upper bound to the availability of resources.

2 ThePNN modd

2.1 Parzen’s estimate and the Bayesian deci-
sion criterion

The Parzen windows method is a nonparametric identifica-
tion procedure that synthesizes an estimate of a probability
density function by superposition of a number of windows,
replicas of a function g() called the kernel (often a unimodal
symmetric function):

1@)2 fula) = 230 (220

where z is the dummy argument for a point in the sample
space, the patterns z(I) form the training set, and X is a
function of n such that

lim A=0

n—oo

M

lim nA =00
n—ro0

and

E. Parzen proved that this estimate is consistent in
quadratic mean:

lim_ E|f(z) — fule)? =0 @

where the density f(z) is continuous. Consistency, as de-
fined here, implies that this simple approximation method
is also “well-behaved,” in the sense that, when the number
of training examples grows, the estimate tends smoothly to
the correct density. Finally, there are results that enable one
to apply this technique to multivariate densities [9] when
unimodal kernel functions are used.

The Bayesian decision criterion is the optimal clas-
sification procedure if the probability density functions
of the classes to be discriminated (prior densities) are
known. Therefore, by using Parzen’s method to approxi-
mate separately the conditional class probability densities,
the Bayesian procedure can be applied:

¢ = argmax;, {¥® £ ()} ®)

where c is the class label output by the classifier, X is a vec-
tor in the input space, £*)(x) is the density of the k-th class,
and the coefficient v(¥) contains the prior probability and
the risk coefficients, if any, associated with that class.

Parzen’s method is an attractive estimation procedure, as
it is a fast and straightforward way of learning probabili-
ties from a training set. The trainability by examples and
the nonparametric structure lead naturally to a neural im-
plementation of the method.

2.2 Theneural implementation

The structure of a PNN directly reflects the Bayes criterion
applied to the Parzen estimation method. The described
structure is sketched in Figure 1. The first layer (we do
not count the input fan-out units) is that of the pattern units.
There is one unit for each pattern, implementing a window,
and the window size is a free parameter (the “smoothing pa-
rameter”). The I-th pattern unit computes its output in the
following way:

Zy=x()-w 4)
= g(Z))

where Z; is the “net input” of the I-th pattern unit, y; is its
output, x(1) is the I-th input pattern vector, w is the vector
of the input weights of the unit I, and the activation func-
tion g() is the kernel function that is used to implement the
window centred on the I-th training pattern. Hence the first
layer implements the single windows.

The subsequent layer (of summation units) computes the
sum of the windows for each class to obtain the required
density estimate. Finally, the output units perform a com-
parison between the estimated probabilities at the point
given as the input pattern; the unit corresponding to the
maximum class probability provides the classification re-
sult. Therefore the output layer implements the decision
criterion by means of suitable coefficients that weight its
input connection. As in the classical formulation, these co-
efficients can include risk weights, if they are available.

2.3 Thetraining algorithm

The PNN is trained by a very fast procedure that requires
only localized parameter adaptations. This is in contrast
with other classical training algorithms, like backpropaga-
tion, in which all parameters have to be modified at each
learning step. The procedure consists in adding a pattern
unit for each new training pattern, adapting its input weights
so that they coincide with the pattern itself. The subsequent
activation function is designed to implement the desired ker-
nel function, centred on the selected pattern.

The summation layer has no adaptive parameters. The
weights in the output layer are given by the relative fre-
quencies of patterns in the training set, so that their values
need not be computed from the patterns but only from their

number and proportions. Therefore, the training is not itera-
tive but one-shot, and only a single pass through the training
set is required.

3 Implementation issues

3.1 Some disadvantages of the PNN training
algorithm

It is apparent that, in the presence of a large number of train-
ing examples, the number of pattern units may become pro-
hibitive. In the case of retraining, the situation becomes
still worse: the number of units needed is unbounded. This
is an obvious problem to be faced when designing a hard-
ware implementation of the algorithm. It is not easy to
dribble the problem by reducing the number of training pat-
terns. In practical applications, a large number of exam-
ples is necessary either to evenly cover the sample space,
whose dimensionality is usually large, or to reduce the ef-
fect of the non-deterministic components of the pattern gen-
eration process (noise). This latter phenomenon is well-
known in the fields of speech analysis (e.g., classification
of phonemes) and OCR, since a limited number of patterns
such as basic phonemes or alphanumeric characters may ap-
pear in a very large number of variants.

Moreover, the Bayesian approach itself requires a good
approximation to the probability density functions, since
it is based on the principle of approximating probabili-
ties, unlike other methods that focus on decision regions
(see for instance [2]). These methods only require that the
corresponding region borders be correctly approximated,
whereas PNN computes the regions in an implicit way, that
is, by comparing probability densities. Therefore the densi-
ties should be globally correct. This means that, as a classi-
fier, the PNN may not be very robust with respect to errors
on the representation of the £(*) (x), hence leaving out some
patterns may degrade the performance more than for other
classification criteria.

Finally, there is also an issue regarding the classification
cost. A large number of learned patterns can lead to an op-
posite situation, as compared with the usual neural algo-
rithms. The normal case is that of a system that needs a
computationally intensive training, but that, in the classifi-
cation phase, is very fast. A PNN instead is trained in time
linear with the number of patterns and in one pass, but its
classification phase requires combining all pattern to yield
the Parzen estimate, hence the classification is very slow if
compared to other models.

These problems can be summarized in the need for adapt-
ing a limited number of resources to an unbounded number
of training cases. The training procedure should be mod-
ified accordingly, since it has to cope with a number of
adaptable parameters that is smaller than in the theoretical
model. On the other hand, there are also reasons that theo-
retically justify a reduced number of windows.

The Parzen estimate is adequate in the presence of contin-
uous densities, as stated by the consistency property (equa-
tion 2). This property is referred to the asymptotic case, i.e.,
when an infinite number of patterns are available. However,
all real problems involve limited samples. The densities to
be approximated are therefore expected to be not only con-
tinuous but also smooth. In practice, smoothness in proba-
bility usually means that non-deterministic components are
present in the input generation process not only on the class
(as the classical “signal + noise” model assumes), but also
on the positions of the input examples in the pattern space.

Since this is a necessary requirement, the question arises
as to what level of smoothness is appropriate. The answer
is not easy; however, as a qualitative consideration, adding
too much detail to the representation of the empirically de-
termined distributions may lead to overfitting. In such a sit-
uation, adding more pattern units than needed is obviously
an error. The rationale underlying these arguments, which
are referred in general to the statistical estimation of a pa-
rameter from a limited sample, can be found in works such
as [10] and [11]. In [12] a broad overview of these and re-
lated problems is presented. But see also the original view
presented in [13] and other related works.

3.2 Implementing PNN training with limited

I esour ces

The proposed approach relies on an empirical procedure, in
that it is based on the cross-validation principle. Its main
aim is the optimization of the parameters in the case of a
limited number of available pattern units.

The Parzen estimate requires two choices. The selection
of a suitable kernel function poses no particular problem,
provided that some requirements are met. The user can thus
adopt the function that better meets the needs of a specific
implementation. As a reference, the Gaussian kernel is of-
ten used.

The effect of the smoothing parameter has been studied
by Specht in [14]. For A — 0, the Parzen estimate reduces
to an uninformative distribution, i.e., the uniform distribu-
tion. For A — oo, it reduces to what in statistics is usu-
ally called the “empirical distribution,” i.e., the one that at-
tributes a finite probability 1/N to each of the N patterns
in the training set, and a null probability to all other points
of the pattern space. However, the results of the work cited
above indicate that, within a sufficiently wide range of vari-
ations of A, the classification performance does not change
very much. Still, if there are fewer pattern units than train-
ing examples, this parameter may be of greater importance.
Our proposed learning is based on the choice of a proper
value for A.

Two modifications to the basic structure are proposed.
The first is the design of a criterion for selecting some pat-
terns to be stored and rejecting others that are considered
unnecessary. Since our aim is to reduce the number of

needed units, a natural choice is to decide whether a pattern
may offer a significant contribution to the classification. In
case it does not, the probability estimate should be updated
in an alternative way.

Consequently, the second modification implements this
alternative updating. This consists in assigning new roles
to the parameters of the model. We allow the value of the
window size X to vary from unit to unit. We also intro-
duce additional parameters. The algorithm is not a one-shot
procedure, but an iterative one; however, it remains compu-
tationally light.

Finally, the new algorithm ensures that the number n
of implemented pattern units will not exceed the available
number nmax.

The pattern rejection mechanism introduces a distortion
into the estimate of the class-conditional probabilities be-
cause the pattern frequencies do not represent anymore es-
timates of their probabilities. Therefore, we need to add
normalization coefficients on the output of the pattern units.
These take the form of adaptable weights w’ on the path
from the pattern units to the summation units, which now
implement weighted sums. For the same reasons, also the
class coefficients «, which are fixed in the original PNN
scheme, are now adaptable during training. The modified
structure is sketched in Figure 2.

The modified algorithm is structured into two blocks: the
first is the creation of the windows; the second is the opti-
mization of the window parameters.

The first block is similar to the PNN training but features
the rejection mechanism to avoid taking into account the
patterns that have already been satisfactorily classified. Re-
jection is decided when the ratio of the winning class prob-
ability to the second maximum class probability is higher
than a preset threshold value r. If the two estimated proba-
bilities do not differ in a sufficiently large amount, the pat-
tern is added. This block requires a random selection of
the training patterns. The function randominteger(m, n)
returns a random integer value v in the interval m < v < n.

Even if we use kernels with an infinite support (as Gaus-
sians are), a division by zero is possible when implement-
ing the algorithm with limited precision hardware. In the
implementation, a test is required that is not shown here for
simplicity.

The second block is the optimization of the parameters,
and is performed only when there is no pattern rejection.
The parameters are represented by a vector p containing
the window sizes and the normalization coefficients. The
optimization procedure is based on a cross-validation test.
The error function to be minimized, denoted by cost(p), is
computed as the mean classification error on the test set ("
patterns):

T
cost(p) = % Z error(class(x(1)), c(p, x(1)))
=1

where ¢(p, x(1)) is the class label computed on the pattern

x(1) using the parameters p and the function error(a, b) re-
turns O if the class labels a and b are equal, and returns 1
otherwise. The function class(x) indicates the real class la-
bel associated with the pattern x.

The optimization of the parameters is obtained by a ran-
dom search algorithm, presented in the following. We indi-
cate it by the function optimize(p) which, given a vector p,
returns a new value for it in the space of parameters. The
optimization is iterated Imax times, the limit being set by
the user. The selection mechanism ensures that only steps
that lower the cost will be accepted.

The algorithm is outlined in the following pseudo-code
procedure.

ALGORI THM PNNtraining
begi n procedure
mark all patterns as unused

while training set contains unused
patterns and cost(p) < Cip
repeat

set I =

set k= class(x(l))
until x(I) used
mark x(I) as used
conpute the class probability

randominteger(1, N) and

val ues
choose class ¢ with max
probability

choose class ¢ with the second
max probability
if fOXD)/FD X)) <r and 7 < Nmax
t hen

add a new pattern unit
centred on x(I)

whi | e nunber of iterations
S Imax
sel ect new p = optimize(p)
end while
end if
end while

end procedure

The random search algorithm adopted was described in
[15]. Here we apply the modifications presented in [16].
The selection criterion is random with a cost-dependent
bias, that is adapted according to the costs in the past train-
ing steps. This seems to act as a heuristic criterion to mimic
the gradient descent procedure, in a random way, in the
cases where the true gradient descent criterion is not appli-
cable. A convergence theorem for this algorithm was pre-
sented in [17].

The parameters of the algorithm are: £, the update
step (a vector in the space of parameters); 3, a bias vec-
tor that keeps track of “good” directions. The function
randomrealvector(m,n) returns a random real vector &
with components in the interval m < &; < n. The maxi-
mum allowed value for the components is denoted by €max.
This does not guarantee that the resulting point will be
bounded within a given volume. Again, in the practical im-
plementation, there is a supplementary test on the value of
p not included in the presented algorithm.

ALGORI THM optimize(p)

begi n procedure

set ¢ =randomrealvector(0, £max)

i f cost(p+ &+ B8) <cost(p) then
p=p+£&+8 and §=04+0.28

el se
i f cost(p—&+4 B8) <cost(p) then

p=p—-&+8 and 8=5-04¢

el se
B8 =058
end if
end if

return value = p
end procedure

The selection of a random search optimization procedure
is due mainly to the lack of an analytical expression for
the cost function. The simple form of the method and its
relative speed yield good results with a small effort, while
avoiding the need for reformulating a gradient-based algo-
rithm.

In the proposed algorithm, the parameter A has not the
meaning of a smoothness parameter in the strict sense of
Parzen’s theory. This is because, as previously remarked,
the pattern units layer does not take into account any more
the relative frequencies of patterns. Hence we allow the
pattern units to implement windows of different sizes and
normalization factors. The key point is that now these pa-
rameters are adapted on the basis of the generalization per-
formance, estimated on a test set. The rejection threshold al-
lows one to decide if the number of learned patterns should
be small (smooth probabilities) or large.

4 The application: Optical Charac-
ter Recognition

4.1 Theproblem

We shall now present the application problem examined.
The specific task is the recognition of handwritten digits, as

a module within systems for automated mail delivery. Typ-
ically, the reading of handwritten numerical information is
related to the recognition of the ZIP code.

The data base [?] contains 2000 character images (200
examples for each decimal digit) of 448 binary pixels (28
by 16 images), as illustrated in the examples of Figure 3(a).
The images are normalized in position and size. As an ad-
ditional pre-processing, a local averaging is performed on
4 by 4 square areas. This reduces the input space dimen-
sion, so that the actual patterns are 7 by 4 grayscale images,
or 28-dimensional vectors. Some examples of the resulting
patterns are shown in Figure 3(b). Practical experience sug-
gests that, in this kind of application, having fewer inputs
with (approximately) continuous values is often better than
having many binary inputs. This is because the information
is “more concentrated” and can be exploited in a more ef-
ficient way. The pixel depth is 4 bits, which agrees with
the 5-bit representation of the selected neural processor, de-
scribed in the next subsection.

The recognition process starts with the described low
level pre-processing. Then a classifier is used to identify,
within acceptable error margins, the single characters that
make up a numerical sequence. The PNN plays the role of
such a classifier. It is also possible to adopt ensemble tech-
niques for a more robust classification by building a team
of different classifiers. The subsequent step can be the ap-
plication of Hidden Markov Model analysis to identify the
digits in their context.

For the training of the single digit classifier, the database
is split into three sets: a training set (1000 patterns) for the
training of the pattern units, a test set (800 patterns) for the
cross-validation during training, and a final validation set
(200 patterns).

4.2 Thehardware

As previously remarked, the described algorithm has a gen-
eral validity. However, to give a set of working conditions
for the application described in the present study, we will
describe the actual hardware platform on which the algo-
rithm has been developed.

The Nestor/Intel Nil000 Recognition Accelerator is a
digital pattern recognition processor, designed to implement
prototype-based classifiers. It can store 1024 reference pat-
terns, of dimension 256 and of 5-bit precision in a Flash
memory. These patterns can be used to apply several algo-
rithms. The PNN, the Restricted Coulomb Energy (RCE)
and the Probabilistic RCE (PRCE) are pre-programmed in
microcode and executed by a 16-bit general-purpose micro-
controller. The actual operations required by the algorithms
are executed with the aid of a floating-point classifier engine
that computes the L; metric, or “Manhattan” distance:

D (x®,x?) = 3" |z{) —af?| (6)

and the probability density functions. This structure, along
with the availability of a RAM memory, allows the user to
program custom algorithms.

The processor is completed by a software development
environment, working on a PC under Windows interface,
that provides the functions of data management, training
and testing, as well as programming. A software emulator is
also available and has been used to develop the application
in the design phase.

4.3 Experimental results

It is not unusual to have huge quantities of data in OCR
problems. In our case, the data sets are only a subset of
the available data base; however, they are sufficient to sat-
urate the capacity of the processor. The Ni1000 can store
at most 1024 pattern units. But it should be stressed that
the effective training set is composed of all the training pat-
terns plus the cross-validation test patterns. This is due to
the fact that the test patterns are actually used to drive the
training process (this is true even in the case of a “passive”
use of the cross-validation technique, such as stopped train-
ing). Therefore, the corresponding standard PNN should be
made up of 1800 pattern units; this configuration would not
be implementable on the selected hardware device.

For the same reasons, a direct comparison between the
standard PNN and the modified PNN is not feasible. The
presented results were obtained by a standard PNN trained
on the training set alone, and by a modified PNN trained
on the training set and on the cross-validation test set. Of
course, since, for the standard PNN, the error on the training
set is always null, in all cases the results are specified in
terms of errors on the final validation test set.

The smoothing parameter here represents the variance of
a Gaussian kernel:

g(X) = —a(X-W)/>

= Wor)

where the exponential in base 2 is used because it is avail-
able in hardware, and is computed with the following esti-
mate:

N
_o _ (class(X)) |2
A N;\x(n u ®)

where p(®) = average pattern of the class k (barycentre of
its distribution). The parameter « is used to correct empir-
ically the Parzen estimate based on experimental evidence,
and is set initially to 1 (no correction).

The overall performance can be assessed by the average
test error rate, which is 10.7%, although the rate on the sin-
gle classes is variable (as is well known, some handwritten
characters are difficult to discriminate, e.g., a slanted “1”
and a “7”). Instead of comparing error percentages, we ver-
ify how many pattern units are required to obtain a given
performance.

The standard PNN requires 1000 units (one for each
training pattern) to reach a 10.7% error rate. The modified
PNN was trained with Ci, = 10%, an initial value r = .2
and I,,x = 100, and of course nmax = 1024. The de-
sired cost was obtained by 196 neurons, much fewer than
the 1000 neurons required by the standard algorithm.

Table 1 summarizes the average results for different num-
bers of units. These results refer to a set of experiments
aimed at the selection of the empirical parameters o and
r. Although, in these experiments, the results were vari-
able (due to the random evolution of different parameters),
the number of neurons sufficient to reach an error percent-
age of about 30% was about 50, whereas the desired per-
formance was reached by around 200 neurons. These are
average values, since the random selection of patterns does
not allow for a deterministic descent in the generalization
performance, although it would if the training performance
were measured. The overall error rate, being compensated
for by the possible context reconstruction, is satisfactory
from an application point of view, especially if the small
size of the training set is taken into account.

5 Conclusions and future work

Experimental verifications have demonstrated that, if com-
pared with the standard version, the modified algorithm re-
quires a much smaller number of units to obtain a compara-
ble performance level. This makes it not only suitable for a
hardware implementation but also more flexible as a learn-
ing tool for classification. The PNN standard algorithm
does not allow for the application of a cross-validation pro-
cedure or other methods for controlling its generalization
performance.

The PNN is an interesting model, thanks to the proper-
ties presented in the introductive sections. However, the
Parzen method (the basic inductive tool adopted by the net-
work), was developed in the sixties when the small sample
statistical approach was not available, as pointed out in [12].
Therefore its validity is somehow limited by the asymptotic
approach.

The present research has adopted a different method-
ological point of view that is ultimately consistent with the
small-sample principles. As a matter of fact, it is not aimed
at the minimization of the empirical risk (classification er-
ror on the training set), but adopts, in the limits of prac-
tical applicability, an estimate of the generalization abil-
ity as its performance criterion (classification error on the
cross-validation test set). To this end, the storage capacity
of the network is controlled by monitoring the test set per-
formance. Moreover, the structure of the network is modi-
fied to implement another principle of the small sample the-
ory, in that it is able to add a percentage of regularization
to the estimation of the probabilities. At the same time,
the method takes into account the limited availability of re-
sources for the practical realization of a PNN device.

The theoretical framework for the proposed method is a
ground for future research, which will aim at a quantitative
assessment of the properties of the model, as well as at the
development of systematic criteria for assigning values to
the training parameters. The parameter optimization proce-
dure can also be studied in more detail to provide faster al-
ternatives, although a properly tuned random search mech-
anism can avoid local minima, unlike other minimization
algorithms.

Acknowledgements

The authors acknowledge the cooperation of D. Benigno
and D. Badalacco, who implemented and tested the algo-
rithm, and A. C. Carassino’s valuable help for the installa-
tion and testing of the N11000.

References

[1] Donald F. Specht. Probabilistic neural networks. Neu-
ral Networks, 3:109-118, 1990.

[2] Richard O. Duda and Peter E. Hart. Pattern Classifica-
tion and Scene Analysis. John Wiley and Sons, 1973.

[3] E.Parzen. On estimation of a probability density func-
tion and mode. Annals of Mathematical Statistics,
33:1065-1076, 1962.

[4] Donald F. Specht. Probabilistic neural networks and
polynomial adaline as a complementary technique for
classification. IEEE Transactions on Neural Net-
works, 1:111-121, May 1990.

[5] B. Widrow and M. E. Hoff. Adaptive switching cir-
cuits. In 1960 IRE WESCON Convention Record,
pages 96-104, New York, 1960. IRE.

[6] Pietro Burrascano. Learning vector quantization for
the probabilistic neural network. IEEE Transactions
on Neural Networks, 2(4):458-461, July 1991.

[7] Teuvo Kohonen. Self Organization and Associative
Memories. Springer Series in Information Sciences.
Springer, 1982.

[8] Intel Corporation. Ni1000 Beta Release 2.3 documen-
tation, 1994.

[9] T.Cacoullos. Estimation of a multivariate density. An-
nals of the Institute of Statistical Mathematics (Tokyo),
18(2):179-189, 1966.

[10] J. Moody and C. Darken. Fast learning in networks of
locally-tuned processing units. Neural Computation,
1:281-294, 1989.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

John E. Moody. The effective number of parame-
ters: an analysis of generalization and regularization
in nonlinear learning systems. In John E. Moody,
Steven J. Hanson, and Richard P. Lippman, editors,
Advances in Neural Information Processing Systems
IV, volume 4, pages 847-854, 1991.

Vladimir Naumovich Vapnik. The Nature of Statistical
Learning Theory. Springer-Verlag, New York, 1995.

David H. Wolpert. Off-training set error and a pri-
ori differences between learning algorithms. Techni-
cal Report SFI-TR-95-01-003, The Santa Fe Institute,
1399 Hyde Park Road — Santa Fe, NM, 87501, 1995.

Donald F. Specht. Generation of polynomial discrimi-
nant functions for pattern recognition. IEEE Transac-
tions on Electronic Computers, 16:308-319, 1967.

J. Matyas. Random optimization. Automation and
remote control, 26:246-253, 1965.

F. J. Solis and J. B. Wets. Minimization by random
search techniques. Mathematics of Operations Re-
search, 6:19-30, 1981.

N. Baba, T. Shoman, and Y. Sawaragi. A modi-
fied convergence theorem for a random optimization
method. Information sciences, 13:159-166, 1989.

Table 1: Test error percentage versus number of units.

Number of units Error percentage

10 38%
20 35%
30 32%
50 30%
100 25%
150 16%

200 11%

Output units

Input pattern

Figure 1: The PNN scheme. Heavy lines indicate adaptable weights.

Output units

Summation units

Pattern units

Input pattern

Figure 2: The modified PNN scheme. Heavy lines indicate adaptable weights.

1
Figure 3: Some examples from the OCR database: (a) original, 1-bit per pixel images; (b) the corresponding pre-processed
(greyscale) patterns

10

