3 HASEGAWA,T., BANBA,S, OGAWA,H, and NAKAMOTO,H.:
‘Characteristics of valley microstrip lines for use in multilayer
MMICs’, IEEE Microw. Guid. Wave Lett., 1991, 1, (10), pp. 275—
277

4 GILLICK, M., and ROBERTSON, ID.:. ‘An X-band monolithic power
amplifiers using low characteristic impedance thin-film microstrip
transformers’, IEEE Microw. Guid. Wave Lett., 1992, pp. 328-330

5 GILLICK,M., and ROBERTSON,ID. ‘Ultra low impenance CPW
transmission lines for multilayer MMICs’. IEEE MTT-S Int.
Microwave Symp. Dig., June 1993, pp. 127-130

6 LUCYSZYN, S., WANG, QH., and ROBERTSON, 1D.: ‘0.1 THz rectangular
waveguide on GaAs semi-insulating substrate’, Electron. Lett.,
1995, 31, pp. 721-722

Incorporating a priori knowledge into neural
networks

D. Anguita, S. Ridella, S. Rovetta and R. Zunino

Indexing terms: Neural networks, Backpropagation, Multilayer
perceptrons, Pattern classification

A correct interval arithmetic back-propagation (IABP) algorithm
is derived that allows one to incorporate some a priori knowledge
into a neural classifier. The proposed method also allows a
straightforward circuit implementation.

Introduction: The process of building a reliable classifier from a set
of samples by using a multilayer perceptron (MLP) is not trivial
and in many cases could be very helpful to embody in the network
some simple a priori knowledge (if any) of the problem. We can
encode a priori knowledge expressed as rules of the kind:

F ¥ € [X?,X;] AND .

‘ AND 2%, € [X?,,X%] THEN x” € C,
where x/ is the 7th component of the pattern x# and C, is one of
the possible classes. The intervals [X7, X7] define a region of the
input space (a hyperrectangle) whose points are known to belong
to a particular class. A multilayer perceptron that makes use of
interval arithmetic [1] (IAMLP) has been proposed for the pur-
pose of computing with interval values [2]. The IAMLP can be fed
directly with the intervals defined by the set of rules and, at the
same time, act like a conventional MLP: this can be obtained by

reducing the hyperrectangle to a point, letting the two extremes of
the interval coincide.

Interval arithmetic back-propagation: Let us consider two intervals
X and Y, and a real number w. We can define arithmetic opera-

tions (+,—,*) and the sigmoid function sgm() as follows:
X +Y =[X+Y, X +Y]
X-Y=[X-Y,X-Y]
sgm(X) = [sgm(X), sgm(X)]

wX = [wX - Hw) + wX - H(—w),
wX - H(w) +wX - H(—w))
where H is the Heaviside function.

By using the rules of interval arithmetic, one could derive IABP,
at least in principle, in the same way as conventional BP. Unfortu-
nately, the resulting algorithm does not ensure that it will follow a
descent direction. In fact, the peculiar form of the product causes
a first-order discontinuity of the gradient for w = 0.

Here we: propose a solution to this problem. We approximate
the interval product by a differentiable version, by replacing the
Heaviside function with a sigmoid: H(w) = sgm(yw), where y con-
trols the steepness of the sigmoid. Note that if Y — o or the inter-
val degenerates to a single point (X = X), the two versions of the
product coincide.

Furthermore, we define an error function that takes into
account the fact that, in general, the outputs are interval values:

E=§;Z[<tf—gz’ 24 @7 - 077

1930 ELECTRONICS LETTERS 26th October 1995 = Vol. 31

Thanks to the proposed approximation, the TABP algorithm can
now be easily derived in the same way as conventional BP by dif-
ferentiating E with respect to the weights of the network (the for-
mulas are omitted due to lack of space).

VA

1> >

v W
IS
Fig. 1 Synapse of IAMLP ;

Fig. 1 shows the circuit that implements one of the ‘synapses’ of
the IAMLP. It computes the product betwéen-a weight w and the
input interval X, making use of an amplifier (S) with sigmoidal
transfer function. The activation of the neuron (not shown) can be
computed separately, in a conventional way, on the two extremes
of the output interval Y.

During learning, in order to reproduce the correct behaviour of
the IAMLP, the parameter y should be increased, by using, for
instance, an annealing process [3]. Note, however, that the weights
of the network grow during the learning phase and tend-to push
the network behaviour towards the correct one. In fact, during
our experiments we simply raised v in the final learning phases by
doubling its magnitude at each step.

10 \

0-8 ° 1 x \‘\‘

06 /

0-4

0-2

0 02 0-4 06 08 10

Fig. 2 Comparison between MLP and IAMLP

——-—MLP
—— IAMLP

IAMLP learns from a priori knowledge: Here we present an exam-
ple of the ability of the IAMLP to use some a priori knowledge to
learn a simple problem. Our training set is composed of 20 ran-
dom points sampled in a unit square: the points lying inside a
square of area 1/2 and centred in (0.5,0.5) belong to class C;, and
the others to class C; (Fig. 2). The discriminating functions gener-
ated by a conventional MLP and by an IAMLP are also shown.
The MLP can correctly classify ‘all the points of the training set,
but fails to learn the underlying problem. On the contrary, the
IAMLP grabs the main characteristic of the problem. The addi-
tional information provided to the IAMLP states that all the
points at the border of the problem space belong to class C; (ice.
IF X; = 0 OR X; = 1 THEN (X,,X;) € C,). Note that, to provide
the same information to the MLP, it would be necessary to sample
the space defined by the IF clause with a large numbet of points:
this would increase the learning complexity exponentially for high-
dimensional problems.

No. 22

Conclusions: The proposed IAMLP is able to learn some @ priori
knowledge (i.e. IF THEN rules) in addition to the patterns that
can be learned by a conventional MLP. This is accomplished by
converting the rules to interval values that can be supplied directly
to the network. Furthermore, the IAMLP allows a straightfor-
ward circuit implementation and the derivation of IABP, a BP-like
learning algorithm.

© TEE 1995
Electronics Letters Online No: 19951309

D. Anguita, S. Ridella, S. Rovetta and R. Zunino (University of
Genova, Department of Biophysical and Electronic Engineering, Via
Opera Pia 114, I-16145 Genova, Italy)

3 August 1995

References

1 ALEFELD, G., and HERZBERGER, 1. ‘Introduction to interval
computation’ (Academic Press, New York, 1983)

2 ISHIBASHI, H., and TANAKA, H.: ‘An extension of the BP-algorithm
to interval input vectors — learning from numerical data and
expert’s knowledge’. Proc. Int. Joint Conf. on NN, Singapore, 18—
21 November 1991, pp. 1588-1593

3 YU, X, LOH, NK., and MILLER, W.C.: “Training hard-limiting neurons
using back-propagation algorithm by updating steepness factor’.
Proc. IEEE Conf. on Neural Networks, Orlando, FL, USA, 1994,
pp. 526-530

Increasing innate robustness in artificial
neural networks using redundancy

M.P. Thompson and C. Kambhampati

Indexing terms: Neural networks, Redundancy, Fault tolerant
computing

A theoretical explanation of robustness and its relationship with
redunduncy is proposed and used to derive a novel and powerful
technique which allows the innate robustness of most types of
artificial neural network (ANN) to be enhanced to a user-defined
degree.

Introduction: ANNs are models of biological neural networks
which continue to function despite individual cell deaths due to
their innate (or on-line) robustness. The ANN equivalent of cell
death, namely neuron removal, how it can be understood and
countered, is considered in this Letter. Robustness can be engi-
neered into an ANN either during or after training. Techniques
for increasing robustness during training include training a net-
work known to have too large a topology (which has the dis-
advantage of inferior generalising ability) and/or altering the net-
work’s training regime to explicitly consider robustness [1, 2].
Techniques for increasing robustness after training include: (i)
majority voting with x identical networks, (ii) majority voting with
x differently trained networks [3], (iii) increasing reliability of each
neuron through statistical means [4], and (iv) intrinsic fault toler-
ance enhanced by redundancy [5]. The proposed theory and tech-
nique, like [5], rely on the intrinsic summation of weighted inputs
in neurons, and are applicable to any ANN model which uses such
neurons.

Definitions: My,i) is the ith element of A the of set of neurons
outputting to neuron y. The maximum absolute contribution
(MAC) of neuron a to neuron b is denoted 3,, = |w,.m,|, where w,,
is the weight from neuron a to neuron b, and m, is the maximum
absolute output of neuron a. Heaviside(x) = 1 when x = 0 and ~1
when x < 0. x is infinitesimally less than x. x* is infinitesimally
more than x. The bth copy of neuron « is denoted by %a.

Theory: It is proposed that each neuron y has an intrinsic capacity
B, (= 0) for absorbing errors in its sum of weighted inputs, which
is the lesser of infinitely less than: (i) B, the minimum decrease in
Y's bias B,, and (i) B,’ the minimum increase in y's bias B,, which

ELECTRONICS LETTERS 26th October 1995 Vol. 31

alters y's output behaviour. B, % can easily be derived from the
input/output behaviour of y found when calculating the deviation
between actual and desired network outputs before any damage.
Each neuron A(y, i) can alter y’s sum of weighted inputs by up to
its MAC. This MAC is the maximum possible error in Y's inputs
that can occur directly as a result of A(y, i) being destroyed. Thus,
in a noiseless system, so long as the sum of the MACs of neurons
removed from A, is < B, ¥’s output cannot be altered by those
removals:

in noiseless case=0x(y,i)y
E error in output of A(y,1) < 857

Vi
= +'s output unaffected (1)

If eqn. 1 is false, then the removal(s) may corrupt ¥’s output. If
a corrupted neuron corrupts one or more others which in turn
corrupt others, then the number of erroneous neuron outputs can
increase quickly, in a process analogous to a chain reaction. In
this way a neuron which can tolerate erroneous inputs from a
small number of neurons outputting directly to it can be corrupted
by a single corrupt neuron outputting indirectly to it. If an output
neuron’s behaviour is altered, then this will alter the classification
performance of the network as a whole.

The question arises of how many neurons can be removed from
a network without compromising classifying performance. The
most obvious way of calculating whether or not particular damage
to a particular network affects classification performance on a
particular data set is simply to calculate the deterioration in close-
ness of fit on that data due to network damage.

In the limited noiseless case where neuron y takes inputs from
neurons with equal MACs (8,,,, = 8, V 1), eqn. 1 can be used to
derive the maximum number of neurons outputting to y which
may be removed without risk of altering y’s output characteristics

(eqn. 2):
Safely removable A, upper bound =

e
integer part of (g) (2)
N

Eqns. 1 and 2 show that as the ratio of B,*¥ increases relative to
the possible MACs of neurons outputing to v, the less reliant vy is
on each of them. The following technique increases this ratio.

Technigue: Innate robustness can be increased for a neuron 1 and
therefore in a network on a neuron-by-neuron basis using the
steps below. The proposed technique has the effect of sharing
information previously stored only in one neuron 1, between c,
identical neurons each of which performs the same function as n
but with proportionately less weight. Because each copy has less
weight, a neuron y inputting from n’s copies is less dependent on
each one due to a correspondingly smaller MAC. ¢, is n’s degree
of redundancy (DoR).

Step I: Maximise B, if possible by altering y's bias B, so that p,}
and B, are equal. This can be achieved by increasing B, by 0.5(B,'
— B,")). If v has sigmoid thresholding which is made use of (which
cannot be substituted with Heaviside thresholding without altering
v's input/output behaviour), then B,* and B,7 will already be equal
at 0+.

Step 2: Duplicate M ¢,~1 times, making c, identical copies of 1.
The copies M (1 <7< ¢,) should be connected to the same neurons,
and with identical weights as the original n (both to and from n).
The number of copies ¢, depends on the degree of robustness
required, and limits such as maximum number of neurons or max-
imum fan-in. The greater the number of copies, the greater the
innate robustness.

Step 3: Every nouron v inputting from what was 1 will now receive
from n (1 <7< ¢,) inputs totalling exactly ¢, times greater than
from m (simple scaling). To maintain y’s sum of weighted inputs .
unchanged it is necessary to reduce the weights from the neurons
| to neuron y by a factor of ¢,. To make the duplications trans-
parent with respect to the whole network, this step must be per-
formed for all y. The transparency requirement is given in eqn. 3.

No. 22 1931

