Parallel Architectures for Vector Quantization

Fabio Ancona, Stefano Rovetta, and Rodolfo Zunino

DIBE - Department of Biophysical and Electronic Engineering - University of Genoa
Via all’Opera Pia 11a - 16145 Genova - Italy - Email: {ancona, rovetta, zunino} @ dibe.unige.it

Abstract—The paper describes a parallel implementation of
neural networks based on vector quantization. A toroidal-
mesh topology has been used to assess the overall approach.
A theoretical analysis of the modular system’s efficiency is
presented. The final application goal is a lossy compression
of high-dimensional data for low bit-rate communications.
Experimental results on a significant testbed shows a re-
markable encrease of the system’s performances. In addi-
tion, the fit between predicted and measured efficiency val-
ues confirms the validity of the overall theoretical model.

1. Introduction

Real-time signal and image processing applications
require a very high computational power. For this reason,
parallel architectures are often considered to fit the char-
acteristics of these algorithms [1,2]. This design approach
is even more uscful for the image processing based on
neural techniques, as they involve a massive computa-
tional load in their neural training process. Neural net-
works based on vector quantization (VQ) are often con-
sidered in image compression domain since they allow a
high compression ratio and a good image quality [3-4].
The VQ algorithms can be implemented with easy struc-
tures, but, however, they require a high computational
cost involved in repeating the same computation for each
vector of the codebook. This is the ideal condition for an
implementation using special-purpose VLSI processors
with a high degree of modularity and local interconnec-
tions for data transfer [5].

The paper describes a methodology to implement a
neural algorithm for vector quantization, the Neural Gas
[6], on parallel HW. In particular, the proposed design
methodology for VLSI signal processing architectures has

been developed and evaluated by using a toroidal mesh of

transputers as a convenient case study of concurrent host
architectures. The final application goal is a lossy com-
pression of high-dimensional data for low bit-rate com-
munications. The high computational load of the ncural
training process and the technical importance of the

0-7803-4122-8/97 $10.00©1997 IEEE

specific application motivate the search for a highly effi-
cient parallel implementation of the quantization method.

2. The Parallel-NGAS Implementation

The Neural Gas algorithm is an iterative algorithm to
train a set of prototypes, and its features fit an SIMD im-
plementation. At each iteration, a training pattern is pre-
sented and prototype vectors are ordered according to
their Euclidean distances from the input sample. Proto-
types are then adjusted according to their positions on the
ordered list: closer vectors undergo larger modifications.
The intensities of the adaptation steps and the width of
each vector’s neighbourhood decrease during training,
thus providing a stabilization mechanism, also present in
similar algorithms (including Kohonen's SOMs [7]).

2.1. Architecture

Transputers can be considered as VLSI building blocks
to implement massively concurrent architectures. For
these reasons, we have developed and evaluated the pro-
posed parallel approach to VLSI signal processing archi-
tectures, using a toroidal mesh of transputers (Fig. 1) as a
convenient case study of concurrent host architectures. In
addition, the choice of using transputers has been encour-
aged by their high structural flexibility, which allows
systems to be designed in compliance with target appli-
cations, and by their cost, which is lower than that of
commercial workstations. On the other hand, higher de-
velopment costs demand an accurate architecture design,
and the data-allocation strategy and the organization of
processors play crucial roles for a system’s effectiveness

[8].
2.2. Data-allocation Strategy

A straightforward and effective data-allocation method
is to split the data set into N subsets and to map them into

K Prototypes
/—"—_\
KM KM KM
\ A / v
DN®»| |T -
D Training data] D/N -» —
oni» | [H]

N=No. of mesh rows; M=No. of mesh columns;
D=No. of training samples; K=No. of prototypes.

Fig. 1 - The mesh architecture and the reated
data-allocation strategy.

the mesh rows (Fig. 1). As a result, each row is entrusted
with the training of one N* of the entire training data set.
Conversely, the mutual topological independence of neu-
rons makes it possible to partition the prototype set into
as many subsets as the mesh columns. The number of
rows and columns are not fixed and can be changed ac-
cording to the number of available processors.

The above allocation approach has important conse-
quences on the actual algorithm implementation and its
efficiency. The system’s run-time kernel is arranged in a
state machine as follows:

1) Compute the distances between available samples and

local prototypes by the Euclidean distance.

Sort prototypes by adopting the following parallel

strategy:

- each mesh row computes the sort computation of the
total prototype set;

- each processor sorts its local portion of neurons
(prototypes);

- a central column of the mesh is chosen to merge the
sorted local prototype portions by means of row-wise
communications;

Update prototypes as follows:

w, =w, +(AwieD + Awl#r))

where K is the k™ prototype of the local neuron por-

tion, Aw{*® is the local adaptation step, and

Aw"" is the adaptation step computed by the proc-

essor of the previous row and corresponding to the

same column. With this technique, the training con-

2)

3)

900

tributions of the patterns belonging to the other data-
set portions are propagated in the network, and this
demonstrates the consistency of the overall parallel
approach.

4) Send the adaptation step of each neuron to the next
row in the mesh.

This approach has several specific features enhancing
a parallel performance: the computation-intensive phase,
namely, the working out of distances, is performed en-
tirely at the local level, thus yielding the maximum effi-
ciency. Likewise, the vector-adjustment step does not in-
volve any inter-processor communication.

3. Theoretical Analysis

This section presents a theoretical analysis of the effi-
ciency of the overall proposed structure. This analysis
makes it possible to derive an analytical expression for
the prediction of the system’s performance. The following
notations and conventions are used:

- P = number of processors;

- T =time required to transmit a data block, whose size
is 4 bytes;

- Tam = time to perform a floating-point sum,;

3.1, Communication overhead

The run-time execution of the proposed application in-
volves two diiferent types of communications:

1) Horizontal transmissions during the sorting phase:

<+ K D
73"=g(l'2-“ﬁ"ﬁ"m)=

M-1
—2—K—D—(N——)z , M =2 @

where 1 g =27 is the time to transmit values of the

vector index and the scalar distance (each of them is a
data block of 4 bytes). The operator Z points out

the data flow, from the M™ column toward the first
column: the data flow increases proportionally for

K of

.,
dist
M

each column crossing. The costant term

expression (1) is the data-set portion by which each
X is the

processor increases the overall data flow.

neuron-set portion allocated on each processor; the
costant 2 of the expression (1) points out the double
wave of the data flow (forwards and backwards), as
final vector position must be returned to each proces-

2)

sor. The term £ is the pattern-set portion allocated to
N

each processor: it indicates the number of data flows
involved during the overall application (training
phase of the neural network proposed).

The real overall transmission time involved in the
sorting phase, T, is upper bounded by T*?; actu-
ally, we have simplified a theoretical expression by
assuming that the first column is the manager one.
This simplification increases the real communication
overhead, as the horizontal data flow is single and not
more split into two flows, both converging from the
most external columns toward the central column at
the same time.

Vertical transmissions during the sending adjustment:

0 - S e eV moat)] @

where m is the vector size

If N is even, then the vertical transmissions are paral-

lel and they are performed in two steps:

Step 1: data communications between the 1% and 2™
rows, between the 3™ and 4" rows, and so on,
until between the (N-1)™ and the N rows,
at the same time;

Step 2: data communications between the 2™ and 3%
rows, between the 4% and 5% rows, and so on,
untilthe N™ and the 1* rows, simultane-
ously.

Otherwise, if N is odd, these transmissions require
three steps, where the 1* and 2™ steps are analogous
to the previous case for the first N-1 rows, while the
3" step involves communications between the N and
the 1* rows.

3.2. Computational timings

At run time, each processor performs three different

computations, involving the following three timings:

- distance phase:

- D ®)

par =7y Td

where % is the size of the pattern-set portion: this

value is divided by M, as only the local data contribu-
tion is considered.

- sorting phase:

OC

5, 5, 3 D K
TS =T, +T 0 = _ﬁ(fgﬂ oM - 1)1,,,) @

The time involved in the sort phase is composed of two
contributions, that is, the time to sort the local codevec-
tor portion,t(”, that is, IyM vectors, and the time to

901

merge the M sorted codevector portions. Let 1, be the
time involved for merging a vector into the global neu-
ron list of the central column.

The first contribution is equal for each processor,
whereas the second one has a higher computational
load for the processor of the manager column. For this
reason, in the effectiveness expression, we consider for
each processor the computational cost involved in the
manager processors, thus obtaining a default approxi-
mation of the system’s efficiency.

adjustment phase:
w D
T,Sﬁ,) =W(TAW +MKTsum) (5)

where ¢ - is the time to compute the vector adjustment
step for X prototypes, that is, w, =w, + Awi=® for
k=1... K. In the above expression, ¢, is divided by
the number of columns, M, though only the contribution
of the local prototype-set portion must be considered:
this computational cost increases linearly with the
number of codevectors. The other expression term,
%4‘1.(_,,“, is the time to add the adjustment step obtained

in the previous row, Aw .

2.3. Architecture efficiency

The efficiency of a parallel architecture is defined as
the system’s speedup over the number of processors used
in the network, that is, in other terms, as

where T, and T are the timings for the sequential and

the parallel executions, respectively. The timing of the
sequential algorithm can be expressed as follows:
Ty =TL4TQ 4187 = Doty 4 Do, 4 D1 (6)

where ,,1_and 1, are the timings for performing
the distance, the sorting and the adaptation steps of the
NGAS algorithm, respectively.

By combining the communication overheads (1)-(2)
with the computational timings (3)-(4)-(5), one obtains
the timing of the proposed concurrent process:

Tpo =T + T +TD +TE) +TSY =

=L@u1+2{£mr.[2+(Nmod2)]}+
N N M

D D K D
_A_llv—fd + F(Tg) + H(M - 1)1'",) + W(TAW + anTu) (7)
One obtains the efficiency expression for the overall

system by combining (6) with (7):

——
(Ty +7y)

T

5

n

- | MO =D+ m@ + Nmod D]Ke + ML) + (M =13, + mKT,,,

®)

(r, +71,.,)

4. Experimental Results

We evaluated the overall approach using an applica-
tion testbed consisting in an image-compression task, in
which a low bit-rate coding is achieved by VQ encod-
ing. We used a toroidal-mesh architecture composed of
6 transputers (2 columns and 3 rows) of the T800 fam-
ily, using inter-transputer links operating at 20
Mbit/sec. The compression system processed standard
(grey- level) images (8bpp) with 512x512 pixels. All
pictures were split into 4096 blocks including 8x8 pix-
els each. In the experiments, a set of classical pictures
were used for the network training, and a different im-
age set for the generalization-based algorithm control.

In the graph in Fig3, the training and test (the
“Lena” picture) costs are plotted versus the number of
prototypes used. The curves show that the relative im-
provement on test data decreases progressively; the fact
that the test-cost curve becomes “flat”, while the train-
ing one keeps decreasing, marks an incipient overfitting
and triggers the generalization-based stopping condi-
tion. This situation indicates the estimated “best” num-
ber of neurons which balances the representation accu-
racy with the size of the vocabulary. In the case consid-
ered, the estimated optimal cardinality of the prototype

0.0%
0.01]
0.014
0.0127
0.01
0.0081
0.0081
0.004-
0.0021
o

1 11 21 31 41 51 61 71 81 81 101 111121131 141 151161 171 181 191 201 211 22120

Fig. 3- Analog-cost curves (x axis = neu-

ron number) of NGAS for image
compression

902

set lies in the range {190, 230].

The network’s performance was obtained on a
“validation” picture not used for training nor for cross-
validation. Results attained a compression ratio of 42.7,
with a PSNR of 28.26 (SNR=22.71, MSE=97.90), indi-
cating the method’s notable performance as compared
with classical compression techniques (e.g., JPEG).

Figure 4 shows the system’s efficiency when it runs
in the training mode: it is measured versus the number
of neurons and versus the vector size. The training
phase has been set for a number of patterns (set of
training data) equal to 100 and for a number of global
iterations equal to 100 (1 iteration involves the training
for the overall pattern set). Experiments involve 16- and
64-vector sizes, as they are considered the most signifi-
cant in the image-compression domain. Better perform-
ances are obtained by a 16-vector size and by increasing
the number of codevectors, and this is due to the higher
ratio between the compuational cost and the communi-
cation one.

Another important verification of the consistency of
this research is the correctness of the predicted effi-
ciency (8) as compared with experimental results. For
this reason, we measured the time required to transmit a
data block (4 bytes), obtaining T = 7.98 usec (including
both fixed and variable communication costs), the tim-

0.8

07 p
0.6
3
_§ 0.5
K3
% 04
»
§ 0s
E 03
(]
02 vector size
0.1 ——m= 16
~—m=64
1] + .
16 R 64 128 190 230
Codevector number
Fig. 4 - System efficiency versus the number

of neurons and the vector size.

Table I - Efficiency results

T, " TM Measured Predicte
[sec.] [sec] n dn

K=1 3637. 1265.9 0.478 0.456
90 8
K=2 4255. 1416.2 0.483 0.500
10 9
K=2 4920. 1570.4 0.509 0522
30 2

ings required for adding a pair of floating-point values
amounted t0 Ty, = 4.29 psec., and the time for merg-
ing a vector distance into the global distance list during
the sorting phase was 1, = 750 usec. Using these tech-
nical values in expression (8), one obtains the efficiency
estimates. Table I shows a comparison between pre-
dicted and measured values; the fit between experimen-
tal and expected values demonstrates the validity of the
theoretical model. The comparison involves only the 64-
size vectors, as it is the typical vector size in the VQ-
based image-compression domain, and the most signifi-
cant cardinalities of tlie prototype set (K=190, 210, and
230).

5. Concluding Remarks

Vector Quantization can provide an image-coding
schema with a remarkable compression ability, thanks
to the codebook-indexing mechanism intrinsic to the
quantization process. This advantage is often obtained
at the cost of some coarseness and blockness affecting
the reconstruction quality. A crucial issue inherent in
all these methodologies is the computational cost of
training, especially in high-dimensional domains with
many training samples.

903

Therefore, a method for a parallel implementation
with high efficiency appears very interesting and useful
from a practical perspective, too. In this regard. the pa-
per has presented a general methodology that combines
a low-cost machinery with a scalable and effective im-
plementation of the neural model. This represents the
basic advantage and the main novel point of the de-

scribed method.

The current lines of research in this area concern the
development of more complex architectures integrating
several processors for a real-domain utilization.

6. References

(1]
2]
31

(4]

[5]

(]

7]
(8]

Allen, J.: ‘Computer architecture for digital signal
processing’, Proc.JEEE, 1985, pp. 852-873.

Seitz, C.L.. ‘Concurrent VLSI architectures’,
IEEE Trans., 1984, C-33, pp. 1247-1265.

Gray, RM.: ‘Vector Quantization’, JEEE Acous-
tics, Speech, and Signal Processing Magazine,
Apr. 1984, pp. 4-29

Linde, Y., Buzo, A, and Gray, RM.: ‘An algo-
rithm for vector quantizer design’, IEEE Trans.
Commun., Jan. 1980, vol. COM-28, pp. 84-95.
Ancona, F., Rovetta, S., and Zunino, R.: ‘A paral-
lel Approach to Plastic Neural Gas’, 1996 IEEE
Int.Conf. on Neural Networks, June 1996.
Martinez, T. M., Berkovich, S. G., and Schulten,
K. J.: “Neural-Gas” network for vector quantiza-
tion and its application to time-series prediction’,
IEEE Transaction Neural Networks, 1993, vol. 4,
No. 4, pp. 558-569.

Kohonen, T.: ‘Self-organization and associative
memories’, Heidelberger:Springer, 1982.

Pagano F., Parodi G., and Zunino R., “Parallel
implementations of associative memories for im-
age classification’, Parallel Computing, 1993, vol.
19, No. 6, pp. 667-684.

