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ABSTRACT

Interval Arithmetics (IA) augments the basic Vector-Quantization
(VQ) paradigm for image compression. The reformulated VQ
schema allows prototypes to assume ranges of admissible locations
rather than be clamped to specific space positions. The image-
reconstruction process exploits the resulting degrees of freedom to
make up for the excessive discretization (such as blockiness) that
often affects VQ-based coding. The paper describes the algorithms
for both the training and the run-time use of IAVQ codebooks; the
possibility of data-driven training endows the proposed
methodology with the flexibility and adaptiveness of standard VQ
methods, as confirmed by experimental results on real images.

1. INTRODUCTION

The ability to attain considerable compression ratios in high-
dimensional domains makes Vector Quantization (VQ) [1] suitable
for image compression [2,3]. As to the quality of reconstructed
images, quantizing the space into a few partitions often leads to an
excessive discretization of represented data (blockiness). Removing
such artifacts is still an open problem.

Interval Arithmetics (1A) [4] can be profitably integrated within
the VQ paradigm; the major advantage is that reconstruction
quality is enhanced without affecting compression performance.
Interval-Arithmetics Vector Quantization (IAVQ) redefines VQ
prototypes and lets them be placed in ranges of admissible
locations rather than specific space positions. Thus a VQ prototype
becomes an “interval prototype”. A minimum-distance criterion
rules codeword selection, hence the number of bits and the time for
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encoding a pixel block are the same as those of classical VQ.
Interval prototypes at the receiver end provide the pixel-
reconstruction process with degrees of freedom that improve image
rendering. The final setting of pixel values results from an
optimization process imposing a local-smoothness assumption; a
Cellular Neural Network (CNN) [5,6] supports the final image-
rendering process. Figure 1 presents a simplified schema of the
methodology.

The TAVQ method formulates the image-reconstruction process as
a constrained quadratic-programming problem [5] where interval
codewords impose the bounds to the solution space. Such bounds
are domain-adaptive, as [AVQ codebooks can be trained
empirically by means of simple, fast algorithms. Thus TAVQ
ensures the flexibility and example-driven ability of VQ schemata.
As compared with classical low-pass filtering [6], interval
quantities control the filtering action and ultimately prevent
generalized blurring effects. The augmented model does not affect
either compression ratio or speed performance. The circuitry
supporting  data  coding uses standard-VQ  hardware
implementations [2], and the application of a CNN to the decoding
process makes it possible to exploit well-known results in the HW
literature [7,8].

The paper describes both the training process and the run-time use
of IAVQ codebooks. Experimental results prove the notable
performance of the augmented methodology.

2. THEORETICAL FRAMEWORK

The basic VQ schema associates with each d-dimensional point,
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Figure 1. The IAVQ-based image-coding schema
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xeiRd, the best-matching element, w*(x), seclected from a
codebook, y = {w; e ERd, j=1,...,n,}, such that:

w"*(x)=arg min i Gc(i) - w_g-'))2 (1)
i=1

w ey

Several algorithms have been proposed to build up a suitable
codebook for a given VQ-coding task. The research presented in
this paper adopted a dedicated algorithm to assess both the number,
np, and the positions of codevectors. This choice was mainly
motivated by the availability of an efficient hardware
implementation of the method [2]. VQ-based image compression
in the pixel domain divides a picture into several (usually square)
blocks representing coded samples, x;ei}?d, [=1,...,n,, where d is
the number of pixels within a block, and #,, is the number of blocks
making up the picture. Each block is encoded by working out its
associate best-matching codevector according to (1). In the
sample case of a standard, 8-bpp image that is split into blocks
covering 8x8 pixels (¢=64), a codebook holding n,=256 codewords
yields a compression ratio ¢,=64.

Interval Arithmetics was introduced [4] as a handy formalism to
treat quantities in the presence of uncertainty that makes exact
determinations impossible. An interval variable defines a range of
possible values for that quantity; any value within the interval is
equally likely. An interval, X, is defined as an ordered pair X =
[x7, xpl, such that x;, x;y €R and x; < xy. The bounds are
admissible values for the associate quantity. In the following, by
convention, uppercase letters will always denote interval quantities,
whereas lowercase letters will stand for scalar variables. The
interval formalism supports a compact algebraic notation in the
space of intervals (¥, 4, B e 3, x € N), e.g.:

sum: Y=4A+B = Y=lay+ by, ay+ byl;
difference: Y=4-B = Y=la— by, ay—bL];

_ <2 . 2 2 2 .2
square: V=X = Y=[min{ X, , X}, }.max{ X, , X;; }].

In comparison with classical algebra, some operations require
additional computations to ensure the consistency of bounds. A d-
dimensional interval vector is represented by an array of intervals:

W =W, .., WDy,

3. TAVQ-BASED IMAGE CODING
3.1 TAVQ codebook training

Codebook training requires determining the positions and ranges of
all interval codewords. An exhaustive approach seems unrealistic
because of the huge number of parameters. A simplified training
strategy proceeds in two steps: first a standard VQ algorithm places
prototypes in the domain space; then interval codewords are
“inflated” around the VQ-generated initial positions. As the role of
a codeword is to drive subsequent filtering by the CNN. the
amplitude of each interval controls the extent of the associate
degree of freedom. Intuitively, larger intervals should result in a
better interpolation. In fact, zero-width intervals reduce the whole
schema to basic, unfiltered VQ coding, but wider intervals,
covering the whole range of possible pixel values, lead to
unconstrained low-pass filtering. A data-driven training process
can work out a tradeoff between such extremes empirically, thus
making pixel reconstruction domain-adaptive.

The interval-width optimization starts from a trained VQ codebook
v = {w;}. The only assumption is that y is adjusted by using an
LBG-like algorithm [9]. LBG is an iterative codeword-positioning
algorithm and guarantees that, at convergence, each prototype will
be placed in the centroid of the associate partition. As pixels do not
have preferential gray levels, the isotropic nature of the problem
searches for a VQ-centered interval codeword, given by

W, = (Wj(l)Wj(d)) Wj(') = [wsj) - zsf),lvgj) + ZS-I)] . Training aims

to determine the widest admissible ranges, sz)

(=1,....d,
j=1,...,}’lh )

A theoretical approach to the training problem leads to a set of
Theorems giving analytical formulations of the interval ranges.
Such amplitudes, however, result from a minimization process,
hence nontrivial data distributions (e.g., pixel blocks) will yield
very narrow ranges: a pair of samples lying close to a common
boundary can squeeze the variation margin even if the remaining
samples within each partition are tightly clustered. A more robust
strategy is required in order to attain wider intervals.

The empirical approach retains the statistical distribution of data by

considering each space dimension separately. The training method
starts from a standard-VQ codebook trained with any LBG-like

algorithm. Let p()r(f’")) be the probability density function that
describes the values assumed in the i-th dimension by the samples

belonging to the j-th partition: x(j"") € {x/(i)such thatx; em; } The

picture pixel depth bound these values:

XMIN < xU) < xyvax ViVj . The robust algorithm computes the
histogram of the observed values for each space dimension. The
interval amplitude is set by imposing that the resulting range
include a given share of the covered samples. The IAVQ codebook
comprises, for each codeword, an interval and its "reference” value
(the original VQ codeword position).

IAVQ training algorithm
L. Input: y={w; j=l,....n;}: VQLBG codebook;
m;, j=1,..., n;  sample partitions spanned by y;
0<t<1; therequested coverage of data values.
2. For each partition m;, j=1,...,1,
l.a  For each dimensioni=1,...,d

l.al  Evaluate the histogram, hG(-/")), of xU-)
lall Define: p(x(j’"))= h(r(f’"))/ng,f)

l.a.lll Work out the amplitude, z>0, such that:

l4)
“U
Jpcc(j"))z’x =t x%”') = min{dex, w(/-') + z};
)
x/

()

X£j‘i) = max{xMIN, Wj —Z}.

0 W(d)) as

1.b Assemble the codeword W, = W

O =) U0y =1
2. Output: the interval codebook, ¥ = {(Wj,wj-)j =1,...1, }

“Peak™ densities, reflecting concentrated distributions of values,
will determine narrow intervals, whereas shallow densities will
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yield wider intervals. Space partitions with high concentrations of
samples will be represented by “narrow” intervals, ultimately
witnessing a higher level of confidence in the prototype position.
Space regions covering scattered samples will be represented by
“wider” and more uncertain interval codewords.

3.2 TAVQ-based image coding

The basic idea of the image-compression method is to leave the
compression strategy unaffected (i.e., supported by a standard VQ
codebook and WTA competition). The encoder considers only the
"reference” codeword positions, and scalar distances are involved
in WTA selection. The additional interval information is used in
the decoding process at the receiver end. The image-coding
algorithm just repeats its VQ counterpart:

IAVQ-based image-coding algorithm
0. Input: Image blocks, f#={xi,....Xg}

VQ codebook, v ; Index set, 6 =C
1. For each block x €

2.a Work out w*(x)=arg minﬂw - 2£||2 };
weop

let ¢* be the index of w*(x) in ;
2.bSet® =0 U{g*}
3. Output: the set of codeword indexes, 0 ={q1,..., g}

The description of the compressed picture is the same for VQ and
IAVQ. Such an approach virtually decouples the image coder and
the image decoder. IAVQ becomes a superset of VQ, hence the
receiver acts as an augmented version of a classical VQ decoder.
Moreover, the overall compression performance remains
unaffected, as the compression ratio keeps constant. Finally, the
computational cost brought about by plugging in IAVQ is entirely
supported by the receiver.

3.3 TAVQ-based image decoding

The image decoder retrieves interval codewords from received
indexes. [AVQ-based image reconstruction requires selecting the
values that maximize picture quality from the intervals associated
with image pixels. Mean Square Error is the analytical measure of
distortion, and pixel estimation is formalized as a constrained
MSE-minimization problem. The first constraint takes into account
the contiguity of pixels, and imposes that the values of adjacent
pixels be not sensibly different. The smoothness assumption
brings low-pass filtering into the reconstruction action. The second
constraint requires the values of reconstructed pixel not to exceed
the associate interval bounds. By this mechanism, [AVQ
introduces a balancing control that inhibits uniform low-pass
filtering.

A Cellular Neural Network [5,6] supports the reconstruction
process: build up a CNN with the same planar structure as the
reconstructed image. Let y(r,c) denote the reconstructed pixel value
on the image coordinates (r.c), and let yyq(r,c) be the associate
reference value, given by the coordinates of the original VQ
prototype. Each network cell is characterized by an internal status
variable, u(r,c) [5]; the nonlinear function yielding the output
activation y(r.c) (i.e., the corresponding pixel value) is given by

[6]:
y(r,c)z %[lu(r,c)— yL(r,c] - |u(r,c)— yu (r,c]

+(yL(r,c)+ yU(r,c))] r=1,...m, c=1,....n 2)
where m and » are the number of rows and columns in the image,

respectively, and y; (r,¢) and yy(r.¢) are the lower and upper

bounds, respectively, of the interval representing the pixel at the
position (r,c). As compared with the standard CNN model [6], the
lower and upper saturation levels in the cell non-linearity are
determined, for each cell, by the lower and upper bounds of the
interval [AVQ prototype encoding the specific location. This sets a
limit on the generalized low-pass filtering effect by preventing
unconstrained fluctuations of pixel values.

The MSE-based problem formulation implies a quadratic
optimization problem, the solution of which must be found within
the (hyper)box bounded by interval ranges. This leads to a class of
very complex problems, and in principle one might question the
use of CNN to this purpose. The theory presented in [5], however,
gives an effective and efficient algorithm to tackle quadratic-
programming problems. A theoretical analysis shows that the
image-reconstruction formalism and the cell model (2) can be
proved to be equivalent to the problem setting used in [5]. The
reconstruction algorithm can be outlined as follows:

IAVQ-based image-decoding algorithm

0. Input: Set of codeword indexes, 6 ={q,..., g5}
Interval codebook, ¥
Build a planar CNN with m rows and n columns

. Setazﬁ;bk=m/a;bc=n/a;
3. Foreach index k=1....B
3.a Retrieve the indexed interval codeword W, € ¥

3.bSet b, =|k/b.]; by, =(k-1)modbg ;

3.c For each dimension i = 1.....d
3.cl  Set r=a-b, +Li/aJ; c=a-by +(i-1)moda;

3.0l Set yyq (r,c):‘,_le); " (“C):WL(,',?,L;
(i)

yole)=w
4. Run the CNN ruled by (2) according to the algorithm [5].
5. Output: the final set of pixel values { y(r,c) }.

Most of the receiver computational cost depends on the CNN
evolution process, which yields the reconstructed pixel values.
Thanks to both the standard features of the neural structure and the
general validity of the optimization algorithm, the method fully
benefits from the huge literature about effective HW
implementations of CNNs [7.8].

4. EXPERIMENTAL RESULTS

The experimental validation of the presented methodology
involved a comparison between standard CNN-filtered images and
those obtained by the IAVQ reconstruction method. Both
numerical (MSE plots) and qualitative results are reported,
showing the superior performance deriving from the interval-based
control of low-pass filtering. In all the experiments, unconstrained
filtering resulted in a far larger MSE at the convergence time;
instead, the distortion curves associated with the IAVQ method
always exhibited a saturation trend, settling at constant values. The
latter phenomenon witnesses the limiting effect of TAVQ bounds
on cell nonlinearities, as they prevented uncontrolled pixel
variations and inhibited image degradation.
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Figure 2. Comparison of standard CNN and IAVQ-based image reconstruction
left: results from standard CNN low-pass filtering; center: results from IAVQ; right: comparative plots of associate MSEs

Unconstrained filtering yields images suffering from apparent
blurring effects. By contrast, images decoded by the IAVQ method
take advantage of low-pass filtering, which contributes to removing
blockiness, but local details are preserved.
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