
Università degli Studi di Genova
Facolt̀a di Scienze Matematiche Fisiche e Naturali

Corso di Laurea in Informatica

Anno Accademico 2004/2005

Tesi di Laurea

Aste elettroniche in ambiente
multi-agente

Candidato
Davide Roggero

Relatori

Prof. Fioravante Patrone

Dott. Viviana Mascardi

Correlatore

Dott. Giorgio Delzanno

A mia nonna,
che, dovunque sia,

e’ con me.

Ringraziamenti
Inizio con i ringraziamenti a coloro che mi hanno aiutato nella realizzazione di
questo lavoro.
Ringrazio il prof. Fioravante Patrone e la dott. Viviana Mascardi per l’aiuto fornit-
omi, per la disponibilit̀a e per avermi portato (in certi momenti anche di peso!) alla
fine del percorso.
Un grazie anche al mio correlatore, dottor Giorgio Delzanno.
Un ultimo ringraziamento tecnico, alla dottoressa Ivana Gungui, senza la quale il
mio lavoro di tesi (e il mio capitolo di introduzione a DCaseLP) sarebbero stati più
faticosi.
Ora passiamo ai ringraziamenti personali:

• Ai miei genitori, perch́e sono i miei genitori e, nella lite e nella pace, non li
scambierei con altri;

• al mio amore, quella Foglia che mié caduta fra le mani, che mi sostiene e mi
stimola sempre ad andare avanti;

• alla mia nonna, chée scomparsa alla vista di tutti in un inverno freddo, ma
noné mai scomparsa dal mio cuore;

• ai miei amici dei tempi del liceo, Andrea, Carlo e Luca, perché sono quasi dei
fratelli per me;

• a Chiara, Sara e Marta perché sono pezzi importanti della mia vita;

• ai miei amici di vecchia data, Alessandro, Cristiano, Massi, Chiarina, Gloria
e Sabrina, per la loro compagnia e le serate passate insieme;

• a Gabriele, Daniele, Flavia, Marcolino, Francesca e a tutti gli amici con cui
ho passato tanto (TROPPO!) tempo qui all’università;

• a tutti gli amici del teatro, con cui ho condiviso momenti divertenti;

• a tutta Calvari, perch́e é un covo di malati di solidarietà;

e a tutti gli altri amici, sono troppi da elencare e deve ancora stampare questa tesi!

Contents

Introduction i

1 Decision Theory 1
1.1 Decision under certainty .2
1.2 Decision under risk .6

2 Non-Cooperative Games 13
2.1 Strategic-form Games .14
2.2 Nash equilibrium in strategic-form games15
2.3 Incomplete Information Games .17
2.4 Bayesian equilibrium .20

3 Introduction to Auction Theory 23
3.1 Standard auction mechanisms .24
3.2 Basic models of auction .24
3.3 Bayesian equilibrium in auction mechanisms27
3.4 Revenue Equivalence Theorem .30

4 DCaseLP and Jade 31
4.1 Introduction .31
4.2 The JADE platform .32

4.2.1 JADE architecture .34
4.2.2 Communication in the JADE platform35
4.2.3 Using the JADE platform36

4.3 DCaseLP .42
4.3.1 DCaseLPs focuses .42
4.3.2 CaseLP .44
4.3.3 DCaseLPs first release .46
4.3.4 DCaseLPs current release49

5

5 Analysis and design of auction mechanisms 51
5.1 Introduction .51
5.2 Common Features .52
5.3 Communication Protocols .54

5.3.1 Sealed-bid auction mechanism55
5.3.2 English auction mechanisms with continuous bidding55
5.3.3 English auction mechanism with rounds57

5.4 Design of auction mechanisms .60
5.4.1 Registration phase .60
5.4.2 Sealed-bid auction mechanisms61
5.4.3 English auction mechanisms with continuous bidding65
5.4.4 English auction mechanism with rounds69

6 Simulating auction mechanisms 75
6.1 Introduction .75
6.2 Customizable characteristics of the implemented mechanisms75
6.3 Testing the prototypes .77

6.3.1 First-price sealed-bid auction78
6.3.2 Second-price sealed-bid auction81
6.3.3 English auction with continuous bidding81
6.3.4 English auction with rounds83
6.3.5 Results .86

Conclusions 89

A Implemented agents for auction mechanisms 91
A.1 First-Price Sealed-Bid Auction Agents91
A.2 Second-Price Sealed-Bid Auction Agents97
A.3 English auction with continuous bidding104
A.4 English auction with rounds .110

Introduction

Information and Communication Technology (ICT) is currently considered as one
of the forces that can deeply influence and transform human society. Many people
agree on the important role played by ICT in productive growth and international
competitiveness, thanks to reduction of transaction costs, support to efficient man-
agement, and exchange of and access to a greater number of information. This hap-
pened especially for commerce, changing radically how enterprises and economies
work. For example, large on-line selling enterprises use the Internet strategically to
improve service quality, process speed and for cost savings, whereas small enter-
prises use e-commerce primarily to increase their customer base and make them-
selves known.
This trend continues and will have even deeper impact on many commercial areas:
Agent-Mediated Electronic Commerce (AMEC) can offer potential answers to open
challenges like business process outsourcing, marketing of agricultural exports and
online dispute resolution.
C.Sierra, in his article ’Agent-Mediated Electronic Commerce’ [Sie04], asserts that
electronic commerce can be described by the following equation:

eCommerce = organization + mechanism + trust

Organization. Problems of co-ordination and co-operation have been a challenge
for human society for centuries. To solve these problems, norms and rules have
been established, and organizations and institutions have been created to back up
those norms and enforce them. The success of these social abstractions in provid-
ing an answer to the co-ordination demands of citizens has served as inspiration
for multi-agent systems designers facing similar complex problems. In the context
of commerce and trade, there are many organizations and institutions that provide
support for human interactions; hence, it is not strange that electronic commerce
developers have had a special interest in the use of these metaphors. In a sense,
social order is the multi-agent system equivalent of robustness in classical software
engineering.

i

The distributed nature of multi-agent systems and the flexible interactions among
its agents determines the complexity of its design. Furthermore, this complexity
increases notably as we consideropensystems; that is, systems in which the com-
ponents are not known in advance and/or can change over time. In these systems,
agents cannot be assumed to be cooperative and working for the common good of
the overall multi-agent system. Usually, assumptions of agents being selfish (utility
maximizers, in economic terms) are made by the system designers. The expansion
and massive usage of networks makes openness a necessary requisite in the devel-
opment of multi-agent systems, because of dynamic nature in which services and
devices appear and disappear continuously. Dynamism becomes commonplace.
Organizational approaches seem to be the solution to this challenge. They propose
to analyze the system from a global viewpoint, determining roles and groups of
agents and their interactions and relationships, without looking into their inner char-
acteristics. In recent years, the interest in organizational approach has grown, partic-
ularly within groups working on electronic commerce applications: Gaia [WJK00],
MadKit [FG98], Electronic Institutions [Rod01], and Tropos [GMP02] are systems
that uses this methodological approach.
Mechanism. Commerce is all about interaction between buyers and sellers at all
stages: finding, purchasing, and delivering. In order to support interaction, au-
tonomous agents are increasingly being used in a wide range of industrial and com-
mercial domains.
Autonomous agents have a high degree of self-determination they decide for them-
selves what, when and under what conditions their actions should be performed. In
most cases, such agents need to interact with other agents to achieve their objectives
(either because they do not have sufficient capabilities or resources to complete their
problem-solving alone, or because there are interdependencies between the agents).
The objectives of these interactions are to make other agents undertake, modify or
cancel a particular course of action (e.g. perform a particular service) or come to an
agreement on a common course of action.
Mechanism design is precisely concerned with fixing the rules governing the in-
teraction among agents in such a way that certain properties (such as stability, or
equilibrium) can be guaranteed. The definition of the rules of the game determines
how the interaction will take place and, introducing constraints on the complete au-
tonomy of agents, tries to induce a given (rational) behavior in them, if possible by
selecting dominant strategies.
Trust. In most real cases, organizations and protocols cannot completely guarantee
that agents will behave as expected, or as agreed upon in a contract. Human soci-
eties and, naturally agent societies as well, have to face risks in interaction. And
trust between agents has proved to be a good way to reduce risks.

Distributed systems formed by thousands or millions of agents necessarily require
new mechanisms to deal with security. This is especially important in electronic
commerce environments where transactions involve a significant amount of money.
Traditional methods based on Access Control Lists (ACL), or on Role-based Access
Control, stop working when the individuals may not be known ahead of time, as
happens in open multi-agent systems. Different approaches have been proposed to
overcome this situation: using chains of trust, rights, and delegation.
The uncertainty relating to the behavior of an agent in a society can be perceived
as a potential source or risk in a commercial transaction. This is why it is essential
to find ways of removing this uncertainty if electronic commerce is going to be
realized in open environments. Trust and reputation measures are the inspiring
social mechanisms that researchers in the field of electronic commerce are looking
into in order to increase the number of transactions. Here, we understand trust as
the positive expectation that a partner will act cooperatively in situations in which
defection would prove more profitable to itself.
In recent years, there has been an explosion of reputation models that try to build
trust in electronic commerce transactions. The models used by eBay, Amazon and
OnSale Exchange, although rather simple, are good examples. All of them use some
sort of average of user opinions. But other more complex reputation systems, based
on different reputation measures and using fuzzy sets, have been proposed: for ex-
ample, REGRET [Sab03] and CREDIT [RSGJ03].

The aim of the thesis

Looking at the Sierra’s equation, we focused on the mechanism aspect of elec-
tronic commerce, developing alibrary of customizable agents for simulating auc-
tion mechanisms. The goal is to provide tools for the strategical analysis of realistic
auctions and for comparing theoretical results with empirical tests. The need for
a prototyping method and a set of tools and languages to support the analysis and
realization of auction mechanism prototypes brought us to choose the DCaseLP
environment.
DCaseLP[Mig02, AMMM02] meansDistributed CaseLP, whereCaseLP[MMZ99,
BDM+99] is the acronym forComplexApplicationSpecificationEnvironment based
onLogicProgramming

DCaseLP (Distributed CaseLP) [Mig02, AMMM02], is a rapid prototyping soft-
ware environment that supports the development of MASs and, as its predecessor
CaseLP [MMZ99, BDM+99], has been designed and developed by the Logic Pro-
gramming Group at the Department of Computer Science of the University of Gen-
ova in Italy.

DCaseLP aims at providing the developer of a MAS with an AOSE methodology
and a software environment to be used during the requirements analysis, the de-
sign and the development of a working prototype. A fundamental goal is to support
the development of MASs consisting of multilingual agents. More precisely, more
than one language must be available not only to specify the agents belonging to the
system, but also to define their architecture, behavior and state, allowing both exis-
tence and communication in the environment of agents created using such different
languages.
For this thesis, we decided to useAUML [FIP] as the specification language for
the analysis of agents interaction, while we used Pascal pseudo-code to design the
internal behavior of the agents.
Logic programming languagetuProlog [DOR01] was chosen for the implementa-
tion of the prototypes because its characteristics, like knowledge representation and
support to agent autonomous reasoning, seemed the most suitable to accomplish our
tasks.

Structure of the thesis

This thesis is made of two parts, the first three chapters are devoted to intro-
ducing the theoretical background of this thesis, while the second part is devoted to
describe the technical aspects.
In chapter 1 we introduce the basics of Decision theory, that is the mathematical
theory that studies models with one decision-maker. We introduce the notions of
preference, utility functionsandrisk.
Chapter 2 illustrates some models and results of Game Theory, that is the mathemat-
ical theory of conflict and cooperation situations. In the models proposed by Game
Theory each participant, calledplayer, has to deciderationally what is thestrategy
to play (what course of actions to undertake), taking in account both his/her pref-
erences over the correspondent outcomes of the game and the other player’s strate-
gies. We introduce also the fundamental notion ofNash equilibrium, a solution of
the game by which all the players are satisfied.
In Chapter 3 we show the results obtained by applying the models and theorems
of Game Theory to the analysis of auctions. This set of mathematical results and
models goes under the name of Auction Theory and includes the famous Revenue
Equivalence Theorem (RET).
Chapter 4 describes DCaseLP andJADE(Java Agent DEvelopment Framework),
a software development framework aimed at developing multi-agent systems and
applications conforming toFIPA (Foundation for Intelligent Physical Agents) stan-
dards for intelligent agents. It includes two main products: a FIPA-compliant agent

platform and a package to develop Java agents. It also offers a set of graphical tools
to support the debugging and deployment phases.
Chapter 5 deals with analysis and design of auction mechanisms. We analyze four
different auction mechanisms, producing an Interaction Protocol for each mecha-
nism. Then, in the design phase, we show the pseudo-code of each agent imple-
mented.
In Chapter 6, we describe the customizable characteristics of each mechanisms im-
plemented, then we test the prototypes implemented under the hypothesis of the
RET and we verify the correspondence of empirical results with theoretical ones.

Chapter 1

Decision Theory

Game theory deals with situations in which more than one decision makers are
involved. Before considering game theory, it is useful to have a look at the basics
of “decision theory”, that is, the case of a single decision maker. There are three
fundamental cases that are considered:

• decision making under certainty

• decision making under risk

• decision making under uncertainty

We shall first discuss decision under certainty; then, we shall discuss decision under
risk, while we shall almost entirely avoid the treatment of decision under uncer-
tainty.

1

2 CHAPTER 1. DECISION THEORY

1.1 Decision under certainty

The standard model about decision under certainty is given by the couple(X,�),
whereX is a non empty set and� is a relation onX. There are usually some as-
sumptions on(X,�), that are collected in the following Table 1.1. On the left is the
name of the property, on the right is written the intended meaning (interpretation)
of the property.

X is a set the set of available alternatives
�, a relation onX the preferences of the decision maker
� is reflexive no serious meaning
� is transitive coherence condition: essential assumption

about the rationality of the decision maker
� is total the decision maker can always express

his preferences w.r.t. any couple of alternatives

Table 1.1

Let’s fix the mathematical terminology:

Definition 1 A relation� onX is said to be a preorder if it is reflexive and transi-
tive. It is said to be atotal preorderif it is a preorder and is also total. We say that
a relation� defined onX is:
reflexive, if: ∀x ∈ X, x � x
transitive, if: ∀x, y, z ∈ X, x � y andy � z impliesx � z
total, if: ∀x, y ∈ X, x � y or y � x

Some remarks about the interpretation of these properties. In this thesis we use
a weak approach to preferences, but we could have introduced a strict relation of
preference� and obtain similar results. The choice of using the weak or the strict
approach is in general just a matter of taste. The strict approach is adopted in books
by Fishburn[Fis79] and Kreps [Kre88], while the weak approach can be seen in
Myerson [Mye91].
The key condition to model conflict situation is transitivity. It is the basic ingredient
for rationality as is usually intended by economists.
In fact, the core of game theory is the analysis of interactions amongrational de-
cision makers. So, transitivity will be assumed in what we shall do. Clearly, there
is room for models about decision makers which do not satisfy the transitivity as-
sumption, but the “core model” assumes that. Many example can be provided (e.g.
“money pump” in Binmore[Bin92]) to show that the absence of transitivity can lead
to weird results.

1.1. DECISION UNDER CERTAINTY 3

About the interpretation of the “total” property, it does not exclude indifference
between alternatives, but excludes that the decision maker is unable to compare
a couple of choices. This is a strong assumption, and in some cases is patently
violated. However in many instances it is not a too severe restriction, and since it
allows to work in a much easier way, it is customary to assume it. Clearly, whenever
modelling a decision-making situation, this assumption (as any other one) has to be
tested for realism (or reasonableness).
To conclude, the core model for decision making under certainty is formally given
by a couple(X,�), whereX is a non empty set and� is a total preorder onX.

Some formal developments of the model
It is known that, given� onX, one can define the “dual” relation�. The definition
is the following:

x � y :⇔ y � x

Given�, a couple of more interesting relations can be defined (actually, both of
them have been already used in the informal discussion of the basic model):

x ∼ y :⇔ x � y andy � x

x � y :⇔ x � y and¬(y � x)

The symbol¬ is the usual symbol for the negation of a relation.
The first relation above will be referred to as the “indifference” relation, while the
second is the “strict preference” relation (this is the terminology used in the standard
interpretation of the model). Another useful derived relation isx ≺ y, defined as
y � x.
Given a total preorder�, we can say that� is also a total preorder and that its dual is
the original�. For∼, it is easy to check that it is an equivalence relation (reflexive,
symmetric and transitive). Reflexivity and transitivity for∼ are consequence of
reflexivity and transitivity of�, while symmetry is a consequence of the structural
symmetry of its definition.
The crucial point is anyway the relation�. These are its essential properties:

Theorem 1 Given(X,�), with� total preorder, the relation�, defined as above,
is:

• asymmetric(6 ∃x, y ∈ X s.t.x � y andy � x)
• negatively transitive(∀x, y, z ∈ X : (x � y ⇒ (x � z or z � y))

The� relation has other additional properties, but those stated in Theorem 1 are
crucial, as can be seen by the following:

4 CHAPTER 1. DECISION THEORY

Theorem 2 Given(X,�), with � asymmetric and negatively transitive, then the
relation�, defined as follows:

x � y :⇔ ¬(y � x)

is a total preorder.

Proposition 1 Given(X,�), define�, and then from� define “�” as done in the
theorem above. Then, the last relation coincides with the original�. And similarly
if one starts with�.

Utility functions
Decision problems can be reduced to finding the outcomexb in a subsetXB of X
that the decision-maker most prefers. A problem of this kind looks easy when stated
in this abstract way but it can be hard to solve if the elements of X are complicated
and the preference relation� is difficult to describe.
A mathematical device, strictly related to preferences, can be introduced to simplify
the situation: utility functions.

Definition 2 Given(X,�), where� is a total preorder, a functionf : X → R s.t.:

x � y ⇔ f(x) ≥ f(x)

is said to be a utility function representing�.

Thanks to this definition, a decision problem can be stated in this way: find a value
xb in a subsetXB of X such thatf(xb) = maxx∈X f(x).
It is important to underline the fact that utility functions have been introduced be-
cause are useful to solve problems mathematically, but we do not claim that people
really have utility generators inside their head: we can say that rational players will
behave as though their aim is to maximize some utility function. On the other hand,
it is reasonble to think that real rational players have preferences over a set of out-
comes. IfX is a finite set, it is easy to provide an explicit, algorithmic construction
for a utility function. Assume thatX = {x1, . . . , xn}. Start fromx1 and define
f(x1) = 0. Then, takex2. If x2 ∼ x1, then definef(x2) = 0. If x2 � x1, then
definef(x2) = 1, and ifx1 � x2, then definef(x2) = −1. Then look atx3. If x3 is
strictly preferred to all of the preceding elements, definef(x3) = 2, and similarly
if it is the worst one. In case of indifference with a previous one, the value assigned
to f(x3) will coincide with the value assigned to the indifferent element(s). Ifx3

lies strictly between the two preceding elements, definef(x3) as the mean value

1.1. DECISION UNDER CERTAINTY 5

of f(x1) andf(x2). The construction proceeds in the same way for the remaining
elements ofX. Just remark that, givenxk, if there is one element strictly preferred
to xk and one strictly worse, one has to locate the elements ofX which are closer
(in the sense of the preorder) toxk, and then to definef(x) as the mean value of the
values assigned to these elements closest toxk.
In the case in whichX is countable, just takeX = {x1, . . . , xn, . . .} and use the
same procedure. There are enough real numbers to comply with the required pro-
cedures of taking mean values.
The answer is much less obvious in the general case. It is easy to predict that
continuity properties will have some role, since otherwise using uncountable sets
one can easily provide extremely wild examples.
In the general case, there is no guarantee that we can find a utility function that
represents a total preorder. For example, the lexicographic ordering cannot be rep-
resented by any utility function.
However, there are some conditions which guarantee the representability of a total
preorder, and they can be easily adapted to deal with preorders.

Theorem 3 Let be given(X,�), with � total order on X. There isf : X → R
representing� if and only if there existsW ⊆ X, countable and “order dense” in
X

A reference for a proof of this theorem is Fishburn[Fis79]. The meaning of “order
dense” is given by the following

Definition 3 Given(X,�), with� total order on X,W ⊆ X is said to be “order
dense” inX if

∀x, y ∈ X\W s.t.x � y, ∃z ∈ W s.t.x � z � y

A famous example of an “order dense” subset is given byQ, seen as a subset ofR,
with the usual order onR.
Just few words on the fact that the theorem deals with orders instead of preorders.
Given�, total preorder, we can introduce∼ which is, as already noticed, an equiv-
alence relation. Hence, we can consider the quotient spaceX/ ∼, that is, the set of
equivalence classes w.r.t. this equivalence relation.
Then, we can define[�] onX/ ∼ in the following way:

[x] � [y] :⇔ x � y

Clearly, one has to check that the definition does not depend on the representative
elements chosen in the equivalence classes. But this is straightforward. The final

6 CHAPTER 1. DECISION THEORY

result will be that[�] is a total order on X/ ∼. With the use of the quotient
space we have obtained that the indifferent elements collapse into a single one (the
equivalence class).

Uniqueness of the utility function
Given(X,�) and assuming that there is a utility functionf : X → R which repre-
sents it, it is easy to verify that2f , f + 1, represent the same preorder. Moreover,
given anyφ : R → R strictly increasing,φ ◦ f also represents�. It can be proved
the following:

Theorem 4 Let be given(X,�), with� total preorder on X. Thenf, g : X → R
represent� if and only there isφ : f(X) → g(X), strictly increasing, onto and s.t.
g = φ ◦ f .

1.2 Decision under risk

Let us start with an example. A gambler plays at the roulette. That is, he bets
1000 euro on number 23. He does not know the consequence of this action, but
he knows that there is a chance over37 that number 23 will come out, while there
are36 chance over37 that a different number will come out (the “game” is slightly
unfavourable to the player, due to the presence of the0 in the roulette). Thus, there
is probability of1/37 that he will gain 35000 euro, and probability of36/37 that he
will lose 1000 euro.
This is the typical situation ofdecision under risk. These are the common settings:
for each action of the player there is a set of possible results and a probability
distribution over these results; the player has to choose between actions, thus he has
to compare between probability distributions to decide what is the action to choose:
it means that he must have preferences over probability distribution (that decision
theorists calllotteries).
We have a setX, and we are interested into preferences� on ∆(X) (where∆(X)
is the set of probability distribution onX).
Notice that, ifX is a finite set, there is no problem in considering the set∆(X) of
all probabilities onX. But, if X is some set like[0, 1], there are some details that
must be fixed. What is a probability on[0, 1]? It is a measure with total mass1,
but one has to specify theσ-algebra on which the measure is defined (in general,
you cannot assume that you can attach a probability to any subset of[0, 1]). So, in
the general case, there are some technical complications. To avoid them, we shall
restrict the set of probability distributions that we consider. We shall look only at
simpleprobability distributions onX.

1.2. DECISION UNDER RISK 7

Definition 4 Given a setX, a simple probability onX is a functionp : X → [0, 1]
s.t. p(x) 6= 0 only for afinite subset ofX, that will be called the support ofp, and
denoted byspt(p).

So, the setting in which we will work is the following.
We have a setX, X 6= ∅. The intended meaning of the elements ofX is that they
are the “final consequences”. Then, we considerP , the set of simple probability on
X (we shall also refer to the members ofP as to lotteries). That is,P = {p : X →
[0, 1] s.t. spt(p) is finite, and s.t.

∑
x∈X p(x) = 1}.

Notice that
∑

x∈X p(x) =
∑

x∈spt(p) p(x) = 1, that is, it is essentially a finite sum.
A simpler setting could be assuming that the setX is itself a finite set. Doing this,
however, it would be impossible to work with some kind of problems that we have
in mind (essentially, probability distributions on monetary consequences).
Regarding preferences, the setting is similar to that of decision making under cer-
tainty, but with an essential difference: now preferences are onP whereas, in the
previous case, preferences were onX itself.
The setP is not “any” set (as it was in the case of decision making under certainty),
but it has a special mathematical structure which shall be taken into account in the
assumptions we shall make.
It is useful to remark that the simplest examples of lotteries (i.e., elements ofP) are
given by concentrated measures, that is:p = δ{x} (the Dirac’s delta, concentrated
onx, which assigns probability1 to x and0 to any other element ofX). It is natural
to identify X with this set of probability distributions, so thatX can be seen as a
subset ofP . Although it is not equivalent to say that you can obtainx with certainty
or that you can get it with probability1, for our purposes we shall not make such a
distinction.

Given a setX, P and a relation� onP , we shall assume

Assumption 1 � is a total preorder onP

From an interpretational point of view, this assumption isstrongerthan the analo-
gous one made for decision making under certainty. This is because we are dealing
with more complicated objects. For example, our decision maker now has to be able
to compare any couple of (simple) probability distributions on the consequences of
his actions, which is a much stronger requirement than asking to be able to compare
any couple of consequences.
The following assumptions are entirely new w.r.t. the case of decision making under
certainty.

Assumption 2 (archimedean condition)∀p, q, r ∈ P s.t.p � q � r,∃α, β ∈
]0, 1[s.t.αp + (1− α)r � q � βp + (1− β)r

8 CHAPTER 1. DECISION THEORY

Figure 1.1: The archimedean property

Assumption 3 (independence)∀p, q, r ∈ P s.t.p � q,∀γ ∈]0, 1[, γp + (1− γ)r �
γq + (1− γ)r

A notation likeαp+(1−α)r is a representation of a convex combination of elements
of P , operation which is meaningful on simple probabilities. A similar kind of
operation is not possible, in general, in the context we used in the case of decision
making under certainty, this means that assumptions 2 and 3 in that context are,
generally speaking, meaningless.
Coming back to the interpretation of assumptions 2 and 3, we shall use extensively
these concentrated measures. Thus, let us takep = δ{x} andq = δ{y}. In assumption
3 there is the hypothesis that the decision maker strictly prefersp to q (which means
essentially that the player prefersx to y). Now, let us consider another element of
P , for exampler = δ{z}. The idea of assumption 3 is that a decision maker who
prefersp to q is obligedto prefer, for example, to getx with probability1/3 andz
with probability2/3 to gettingy with probability1/3 andz with probability2/3.
To understand such a restriction, one can imagine that has to choose between a
device givingx with probability1/3 andz with probability2/3 and a device giving
y with probability 1/3 andz with probability 2/3. Now, there is a probability of
2/3 that the final outcome will be the same, i.e.z, and there is a probability1/3 that
the final outcome will bex or y. Since the decision maker strictly prefersx to y, he
should also strictly prefer the first device to the second one. To put things clearer, if
one strictly prefers to receive 1 euro instead of receiving nothing, then one should
strictly prefer to receive 1 euro with probabilityα > 0 to receiving nothing.
To illustrate assumption 2, consider three lotteriesp = δ{x}, q = δ{y}, r = δ{z},
which can be represented on a line as in Figure 1.1 below:
Then, one considersαp + (1 − α)r, which can be written also as:r + α(p − r).
Consider “moving”α from 0 to 1: it happens (in this representation) that this lottery
moves fromr to p. So, in this representation, it is natural to assume that there is

1.2. DECISION UNDER RISK 9

someα∗ s.t. r + α∗(p − r) lies “to the right” of q. This is precisely the meaning
of the archimedean property. It guarantees that a result like this, suggested by the
picture made, really holds. This fact could not happen if it were the case that some
alternative, some lottery, is not “comparable” with other alternatives. That is, it is
“infinitely worse” (or “better”) then another one. In such a case, maybe it is not
possible to make a convex combination of lotteries capable of compensating the
occurrence of “hell”, that is an alternative which is infinitely worse compared with
another one. In the picture,r could be imagined to be located at “−∞”. Then there
is no convex combination ofr andp such that the decision maker could consider it
better thanq.
We are now able to state the representation theorem.

Theorem 5 Let be givenP , set of simple probability distributions on some setX 6=
∅, and a relation� on P . Then,� satisfies assumptions 1,2 and 3 if and only if
there existsu : X → R s.t.:

(∗) p � q ⇔
∑

x∈spt(p)

p(x)u(x) ≥
∑

x∈spt(q)

q(x)u(x)

Moreover, ifu, v : X → R satisfy (*), then there exista, b ∈ R, with a > 0, s.t.
u = av + b.

Assuming thatX is a finite set, i.e.X = {x1, . . . , xn}, then we can identifyp ∈ P
with p = (p1, . . . , pn) ∈ Rn and similarly forq. So, condition (*) becomes:

n∑
k=1

pku(xk) ≥
n∑

k=1

qku(xk)

Givenp, probability onX, we can see that
∑n

k=1 pku(xk) is theexpected valueof
the random variableu : X → R.
So, the meaning of the theorem is the following. To compare a couple of elements
p, q ∈ P , one has to see which one will give the highestexpected utilityto the
decision maker, given its utility functionu. This functionu is often referred as the
“von Neumann-Morgenstern” utility function of the decision maker. These results
appeared for the first time in a fundamental work by Von Neumann and Margenstern
in 1944 [NM44].
The last statement of the theorem affirm that a “von Neumann-Morgenstern” util-
ity function is determined only up to a positive affine transformation. One should
note the difference with the case of decision making under certainty. In that case,
the utility function is determined only up to any strictly increasing transformation.

10 CHAPTER 1. DECISION THEORY

Figure 1.2: The representation theorem.

Hence, in the case of decision making under risk, there is much less freedom in the
choice of the utility function.

For a proof of the theorem, one can look at the book of Fishburn[Fis79]. It is
possible, however, to give a quick idea of how the proof could be in a very simple
case, such as whenX = {x1, x2, x3}. Assume, without loss of generality, that
δ{x3} � δ{x2} � δ{x1}. The setP can be identified with a triangle (equilateral) of
verticesx1, x2, x3, as seen in Figure 1.2. One can decide to define thatu(x1) = 0
and thatu(x3) = 1, thus exploiting the freedom in the choice of scale (i.e., fixing
the parametersa andb) which is left to us, accordingly to the last statement of the
representation theorem.

Then, the value thatu will assume onx2 will be determined by the preferences of
the decision maker. The idea is that the archimedean property would assure that

1.2. DECISION UNDER RISK 11

there is a lotterypγ, concentrated onx1 andx3, which is indifferent tox2. That is:

δ{x2} ∼ pγ = γδ{x3} + (1− γ)δ{x1} = δ{x1} + γ(δ{x3} − δ{x1})

This is not precisely guaranteed by the archimedean property, as it is stated in the
assumption 2: some technical work and the use of the other assumptions are needed
to guarantee the existence of this lottery indifferent tox2. Havingpγ, one simply
definesu(x2) = γ. So, we have definedu : X → R. Clearly, there is still a lot
of work to be done. In particular, one must guarantee thatu really represents (via
expected values) the preferences of the decision maker. The key point to assure this
is the independence assumption. This assumption says that the behaviour of the
preferences of the decision maker on the segment fromx1 to x3 is replicated in a
homothetic way on the chords of the triangle which are parallel to the segmentx1,
x3. Namely, the independence assumption guarantees that, as soon as we know that
pγ is indifferent tox2, then also all of the lotteries which are located on the segment
joining x2 to pγ are indifferent tox2.
A special and useful case to consider is whenX is an interval ofR. because it
allows for applications of the theory to the case in which the final outcomes, i.e. the
elements ofX, are amounts of money.
Let u : X → R be a von Neumann-Morgenstern utility function, which represents
the preferences of a decision maker. In the special case that we are considering, i.e.
X is an interval ofR, there is an important fact that happens. Takex1, x2 ∈ X,
and consider a lottery involving justx1 andx2. We shall have some probability
p on x1, and1 − p on x2. Of course, we can calculatepx1 + (1 − p)x2, that we
can rewrite asx2 + p(x1 − x2) = (usingλ = 1 − p) = x1 + λ(x2 − x1). Now,
since this is a lottery, we can evaluate the expected utility that the decision maker
will get, which is: u(x1) + λ[u(x2) − u(x1)]. But x1 + λ(x2 − x1) is also a real
number, which belongs toX, and located somewhere betweenx1 andx2. Since
x1 + λ(x2 − x1) ∈ X, u is defined on it, so it can be evaluatedu(x1 + λ(x2 − x1)).
But the pointx1 + λ(x2 − x1) can be seen, at the same time, as representing the
lottery which assigns probabilityp to x1 and1 − p to x2. If we want to see on the
graph which is the expected utility that our decision maker associates to this lottery,
we have to look at the intercept of the vertical line abovex1 + λ(x2 − x1) and the
segment joining(x1, u(x1)) and(x2, u(x2)).
Notice that the real numberx1 + λ(x2 − x1) represents theexpected gaincoming
from the lottery.
What we see in the figure is that our decision maker prefers (to the lottery) to receive
with certaintyan amount of money equal to the expected gain of the lottery.
To see a numerical example, consider a lottery which gives0 euro with probabil-
ity 1/2 and1000 euro with probability1/2. Then, the expected gain is500 euro.

12 CHAPTER 1. DECISION THEORY

So, there are two different things that can be considered: the lottery, in which the
decision maker will receive either0 or 1000 euro, with probability1/2 each, and
another (degenerate) lottery in which the decision maker will receive with certainty
(or with probability1, which we consider equivalent) the amount of500 euro.
The decision maker could prefer to receive500 euro with certainty instead of the
lottery, thus exhibiting an instance of what is calledrisk aversion. Or could be
exhibiting the opposite attitude, which would qualify him as arisk lover. There is
also the possibility of indifference (risk neutral).
In general, risk aversion means that a decision maker always prefers to receive with
certainty the expected value of the lottery to the lottery. Geometrically, risk aversion
is equivalent to theconcavityof u.

Chapter 2

Non-Cooperative Games

Game theory is the mathematical theory of conflict and cooperation situations in
which several agents make decisions and an outcome is produced. Every agent
has its own preferences over the set of possible outcomes. We have introduced
preferences in the previous chapter, so we shall take those concepts for granted.

Games can also be seen as decision problems with several decision-makers; hence,
there are many models that can be used to manage these problems, and many differ-
ent classifications depending on the presence of different aspects. The fundamental
classification is given by the possibility of making binding agreements between
players. Thus, we can speak of

• Non-cooperative game theory, that deals with maximization of the utility of
players

• Cooperative game theory, that deals with allocation of benefits between play-
ers

In the next section, we will briefly describe non-cooperative games in two different
form: the strategic and the extended ones.

13

14 CHAPTER 2. NON-COOPERATIVE GAMES

2.1 Strategic-form Games

Let’s start introducing the elements that are really involved in a static conflict situ-
ation:

• N = {1, .., n}, the set of players.

• X = {Xi}i∈N , the strategy sets of players.

• R, the set of possible outcomes.

• A mapf : X → R, which assigns to every strategy profilex its corresponding
outcome

• {�i}i∈N , the preferences of the players (total preorder onR)

• {hi}i∈N , the utility functions of the players, representing their preferences on
R.

Now, we can define a functionHi : X → R such thatHi(x) = hi(f(x)), for all
i ∈ N and allx ∈ X, and say that:

Definition 5 An n-person strategic gameG with player setN is a 2n-tuple

((Xi)i∈N , (Hi)i∈N)

such that, for alli ∈ N , Xi is the non-empty set of strategies of playeri, andHi

is its payoff function, which assign to every strategyx ∈ X the payoffHi(x) that
playeri obtains if such a strategy is played.

This definitions takes into account the elements described before and gives us a
simple but realistic model that can be applied to many conflict situation.

A play of a gameG always takes place in the same way: there may be some
stage in which players can communicate and even make non-binding agreements,
then each playeri chooses anxi ∈ Xi. These choices are madesimultaneouslyand
independently. Finally every playeri receives his payoffHi(x).
Given the formal definition of a strategic game, it is obvious that we should be
interested in finding the best strategies for each player. This leads to investigate an
interesting aspect of game theory: the concept of solution.

2.2. NASH EQUILIBRIUM IN STRATEGIC-FORM GAMES 15

2.2 Nash equilibrium in strategic-form games

The most important solution concept for strategic games is the Nash equilibrium,
introduced in Nash [Nas51]. Kohlberg [Koh90] says that the main idea under this
equilibrium is “to make a bold simplification and, instead of asking how a the
process of deduction might unfold, ask where its rest points may be”. In fact, a
Nash equilibrium of a strategic game is simply a strategy profile such that no player
gains when deviating from it; i.e. the Nash equilibrium concept searches forrest
pointsof the conflict situation described by the strategic game.

Definition 6 LetG = ((Xi)i∈N , (Hi)i∈N) be a strategic game. A Nash equilibrium
of G is a strategy profilex ∈ X which satisfies that

Hi(x) = Hi(x1, .., xi, .., xn) ≥ Hi(x1, .., x
′
i, .., xn)

for all x
′
i ∈ Xi and for all i ∈ N .

Let us make an example to explain the meaning of this definition.

Example 1 Player I has to choose a strategy inX and Player II has to choose a
strategy inY . Player I has utility functionf on the outcomes of the game, while
Player II has utility functiong. So the game isG = (X,Y, f, g). Let (x̄, ȳ) ∈
(X, Y) be a Nash equilibrium. Let us remember that players choose strategies
independently and simultaneously (they do not know each other’s move for sure).
Moreover, they cannot make binding agreement. Imagine that the two players make
an agreement (from which they could always back out) in which they promise to play
in this way: Player I chooses strategȳx and Player II chooses strategȳy. Player I
should reason in this way:
‘We agreed to play in that way, but I can violate that agreement and nothing will
happen to me, so let’s see if I can play a better strategy thanx̄. There are two
possibilities: either Player II doesn’t respect the agreement too (so is not useful to
take it into account), or he respects it. In the latter case, I could look for a strategy
x̄ such thatf(x̄, ȳ) > f(x̄, ȳ)‘ Player II should reason in a similar way with role
inverted. But neither Player I nor Player II will find such strategies because

f(x̄, ȳ) ≥ f(x, ȳ) for eachx ∈ X

g(x̄, ȳ) ≥ f(x̄, y) for eachy ∈ Y

as the definition of Nash equilibrium says.

16 CHAPTER 2. NON-COOPERATIVE GAMES

The definition of equilibrium is structured to take into account this considerations:
the Nash conditions say that no player has incentives for deviating from the strategy
suggested by the equilibrium,given the fact that the other is not deviating too!
Notice that is easy to find a game in strategic-form without Nash equilibria, as this
example shows:

Example 2 Given the ‘matching pennies‘ game:

I / II P D
P (-1,1) (1,-1)
D (1,-1) (-1,1)

Let us look for a Nash equilibrium.

• (D, P): not an equilibrium because because Player II could get a better pay-
off playing D.

• (D, D): not an equilibrium because because Player I could get a better payoff
playing P.

• (P, D): not an equilibrium because because Player II could get a better pay-
off playing P.

• (P, P): not an equilibrium because because Player I could get a better payoff
playing D.

Given a strategy profile(x, y) with x, y ∈ {P, D}, each player has an incentive to
deviate. It is clear that there are no Nash equilibria in this game.

The last example shows some limitations of Nash equilibrium as a concept of so-
lution for games, in fact we would expect that there exists a solution for at least
any finite game. Luckily this problem has been resolved quite easily and naturally
extending the definition of strategy in this way:

Definition 7 LetG = ((Xi)i∈N , (Hi)i∈N) be a finite game. The mixed extension of
G is the strategic game

E(G) = ((Si)i∈N , (Ki)i∈N)

where, for every playeri ∈ N ,

• Si =
{

si ∈ RXi| ∀xj ∈ Xi, si(xj) ≥ 0 and
∑

xj∈Xi
si(xj) = 1

}
,

2.3. INCOMPLETE INFORMATION GAMES 17

• Ki(s) =
∑

x∈X Hi(x)s(x),∀s ∈ S, whereS =
∏

i∈N Si and s(x) denotes
the products1(x1)...sn(xn)

The mixed extension of finite game only make sense if the player have preferences
over the set of lotteries on R (the set of possible outcomes) and satisfy Assumption
1, 2 and 3 of Section 1.2. In such a case, their preferences can be represented by
von Neumann and Morgenstern utility functions: this ensures the meaningfulness
of using their expected payoffsKi. It is interesting to note thatE(G) is really
an extension ofG, in the sense that for every playeri, every element ofXi (that
can be calledpure strategy) can be obviously identified with an element ofSi (e.g.
pure strategyxk ∈ Xi can be identified with mixed strategys wheres(xj) = 0
for everyxj ∈ Xi except fors(xk) = 1). Let’s see the interpretation of mixed
extension. Basically, it’s just the original game with the difference that players,
instead of making pure choices between moves, attach probabilities to each move
(in other words, they define a lottery on moves) and then ’extract randomly’ the
move to play. Now we can state the theorem proved by John Nash in his original
paper [Nas51]:

Theorem 6 LetE(G) = ((Si)i∈N , (Ki)i∈N) be a mixed extension of a finite game,
thenE(G) has at least one Nash equilibrium.

2.3 Incomplete Information Games

Until now we have always treated games ofcomplete information, where we as-
sumed that the characteristics of the game arecommon knowledgeamong all the
players. It means that the players know how many they are and what are each
other’s preferences and utility functions. This assumption is sometimes not very
realistic. For example, in an auction of paintings, each bidder has an evaluation of
the masterpiece that he is trying to buy, but this is a private information that is not
known to all bidders. Moreover, he does not know the value that the other bidders
are attributing to that painting. Obviously, it is necessary to introduce another model
to manage these kind of games, and this has been done by Harsanyi[Har68]. This
kind of situation is calledincomplete informationbecause there are some aspects
of the game that are not known to the players. In our discussion, we will limit to
consider situations where only the utility functions of the players are not common
knowledge. Harsanyi (see also Myerson [Mye91]) shows that many other kinds of
imperfect information situation can be reduced to this one. The basic idea is the use
of ’type’ of players, where we store all the information about a player that is not
known to the others.

18 CHAPTER 2. NON-COOPERATIVE GAMES

Definition 8 Given the set of playersN = {1, .., n}, a Bayesian game is a 4n-tuple

((Ai)i∈N , (Ti)i∈N , (pi)i∈N , (ui)i∈N)

• Ti with i ∈ N , the set of possibile types of playeri

• Ai with i ∈ N , the set of actions that playeri could play

• pi : Ti → ∆(T−i) with i ∈ N , a probability-valued function for playeri

• ui : A× T → R, the utility function of playeri

whereT−i = (T1, .., Ti−1, Ti+1, .., Tn) is the set of all possible combination of types
of all players excepti, T = (T1, .., Tn) is the set of all possible combination of types
of all players andA = (A1, .., An) is the set of all possible combination of action
of all players

The introduction of a set of types for each player is needed to model the fact that
player i does not know who are his opponents, but he knows whocould be: he
has a set of possible ’personalities’ for any opponent among which there is the
’actual’one.
In this model, each player has a type that is known only to himself, and he knows
what are the probabilities that the other players have a certain combination of types.
That is, for any possible typeti ∈ Ti, the probability-valued function specifies a
distributionpi(·|ti) over T−i (the set of all possible combinations of types for all
players excepti), representing what playeri would believe about the other players’
types if his own type wereti. Thus, given typeti, pi(t−i|ti) denotes the subjective
probability that playeri assigns to the event that the other players have typest−i =
(t1, ..ti−1, ti+1, .., tn).
The interpretation ofui is that the game specifies a payoff for playeri that depends
on the combination of action of all the players but also on their types, in fact we
expect that different types of players have different preferences over the set of out-
comes of the game.
When we study a Bayesian game, we assume that each playeri knows the entire
structure of the game (as defined above) and his own actual typeti ∈ Ti and this
fact is common knowledge among all the players inN . Because of this reason,
we referred to the objects of choice in a Bayesian game as actions rather than a
strategies. In fact, an action is a move that a playeri of specific typeti can choose,
while a strategy is a complete plan of actions, one foreachti ∈ T . Thus, a strategy
is a functionsi : Ti → Ai.

Belief consistency

2.3. INCOMPLETE INFORMATION GAMES 19

The probability-valued functionpi introduced in the last section represents what
playeri would believe about the other players’ types: in other words, it represents
his beliefs. We say that beliefs in a bayesian game areconsistentiff there is some
common prior distribution over the setT = (T1, .., Tn) of type combination such
that each players’ beliefs are just the conditional probability distribution that can be
computed from the prior distribution by Bayes’ formula (used only whenever the
marginal distribution is positive). More formally,

Definition 9 Given a bayesian gameΓ, the beliefspi are consistent iff there exists
some probability distributionP ∈ ∆(T) such that

pi(t−i|ti) = P (t1,..tn)P
(s−i)∈T−i

P (s1,..si−1,ti,si+1,..,sn)
∀(t1, ..tn) ∈ T, ∀i ∈ N

wheres−i = s1, ..si−1, si+1, .., sn

Most of the bayesian games that have been studied in applied game theory have
consistent beliefs. One reason for this tendency is that consistency simplifies the
definition of the model: it is simpler to specify one probability distribution than
many functions that depend on types. Furthermore, inconsistency often seems an
unnatural feature for a model. In a consistent model, different beliefs among player
can be explained by differences in information, whereas inconsistent beliefs involve
differences in opinions among players that cannot be derived from anything but
must be assumed a priori.

Type-agent representation
Harsanyi [Har68] discussed a way to represent any Bayesian game by a game in
strategic form, which can be calledtype-agent representation. In this representation
there is aplayer-agentfor every possible type of every player in the Bayesian game.
It is necessary to assume that the setTi are disjoint, so thatTk ∩ Tj = �.

Definition 10 Given a Bayesian gameΓb = ((Ai)i∈N , (Ti)i∈N , (pi)i∈N , (ui)i∈N), a
type-agent representation ofΓb is a strategic form game defined as

G(Γb) = ((Dr)r∈T ∗ , (vr)r∈T ∗)

where

• T ∗ =
⋃

i∈N Ti is the set of player-agents

• Dti = Ai ∀i ∈ N∀ti ∈ Ti is the set of strategies of player-agentti

• vti : ×s∈T∗Ds → R is the utility function of player-agentti defined as

20 CHAPTER 2. NON-COOPERATIVE GAMES

vti(d) =
∑

t−i∈T−i
p(t−i|ti)ui((d(tj))j∈N , (tj)j∈N)

wheret−i = (t1, .., ti−1, ti+1, .., tn) and
(d(tj))j∈N = (d(t1), .., d(ti−1), d(ti), d(ti+1), .., d(tn))

The idea is that player-agentti is responsible for selecting the action that player
i will use if he has typeti. Thus, the strategy profiled is a plan that define an
action for every type of every playeri in the Bayesian gameΓb, while the payoff for
player-agentti is the conditionally expected utility payoff for playeri, given that he
has typeti.

2.4 Bayesian equilibrium

For a game of incomplete information, Harsanyi [Har68] defined aBayesian equi-
librium to be any Nash equilibrium of the type-agent representation in a strategic
form (as defined in Section 2.3).That is, a Bayesian equilibrium ispecifies an action
for each type of each player, such that each player would be maximizing his own
expecting utility when he knows his own type but does not kknow the types of the
other players.
It is necessary to specify what every possible type of player would do, not just the
actual type, because otherwise we could not define the expected utility payoff for
each player, who does not know the other players’ actual types.
Before we formally state the definition of Bayesian equilibrium, we must introduce
another definition:

Definition 11 LetΓb = ((Ai)i∈N , (Ti)i∈N , (pi)i∈N , (ui)i∈N) be a Bayesian game, a
mixed strategy profile is anyσ ∈ ×i∈N ×ti∈Ti

∆(Ai) such that

• σ = ((σi(ai|ti))ai∈Ai
)ti∈Ti,i∈N ,

• σi(ai|ti) ≥ 0,∀ai ∈ Ai,∀ti ∈ Ti,∀i ∈ N and

•
∑

ai∈Ai
σi(ai|ti) = 1,∀ti ∈ Ti,∀i ∈ N

In such a mixed strategy profileσ, the numberσi(ai|ti) represents the conditional
probability that playeri would use actionai if his type wereti. The mixed strategy
for typeti of playeri is σi(·|ti) = (σ(ai|ti))ai∈Ai

.
Definition 11 makes possible the introduction of the main concept of solution for a
Bayesian game:

2.4. BAYESIAN EQUILIBRIUM 21

Definition 12 A Bayesian equilibrium of the gameΓb is any mixed-strategy profile
σ such that,∀i ∈ N and∀ti ∈ Ti

σi(·|ti) ∈ arg max
τ∈∆(Ai)

∑
t−i∈T−i

pi(t−i|ti)
∑
a∈A

[
∏

j∈N−i

σj(aj|tj)] τi(ci) ui(c, t)

22 CHAPTER 2. NON-COOPERATIVE GAMES

Chapter 3

Introduction to Auction Theory

People with objects to sell usually want to sell them for the highest price they can
get. Sometimes there is no choice but bargain the price with the possible purchasers,
sometimes there is an established market that decides the price with rules of his
own; in situations where the seller is a monopolist, he can decide the set of rules
by which the price will be fixed. Such set of rules is called anauction mechanism.
Moreover, it is necessary to specify how the prospective buyers evaluate the goods,
and this could be done defining a avalue model. Auction theory studies these
mechanism and models, analyzes behaviors and outcomes of sellers and buyers
in order to determine the properties of a mechanism and its efficiency in certain
situations. Auctions are certainly one of the most old and known forms of sales
of goods, but only recently the analysis of games of incomplete information has
permitted a compared analysis of the efficiency of different auction mechanisms
and a deeper knowledge on designing optimal mechanisms. In this chapter we
will introduce the basic value models and auction mechanisms together with some
important results of auction theory.

23

24 CHAPTER 3. INTRODUCTION TO AUCTION THEORY

3.1 Standard auction mechanisms

The typical situation where an auction is suitable to allocate some goods can be de-
scribed in this way: on a side of the market (usually, the offering side) a monopolist
wants to sell some goods; on the other side there are two or more potential buyers.
It is implicitly assumed that the monopolist will choose the procedure (or mecha-
nism) to allocate the goods, but this does not necessarily mean that he can extract
the entire surplus, because he does not know the buyers’ true valuation of the goods.
It is useful to give a classification of the most common auction mechanisms to
understand better their characteristics. The first distinction can be made between
openandsealed-bidauctions.
In the open auction mechanisms, the seller announces prices or the bidders call out
the prices themselves, thus it is possible for each agent to observe the opponents’
moves. The most common type of auction in this class is theascending(or English)
auction, the well-known procedure typical of artwork auctions, where the price is
successively raised until no one bids anymore and the last bidder wins the object at
the last price offered. Another diffused type, thedescendingor Dutchauction works
in exactly the opposite way: the auctioneer starts at a high price and then lowers it
continuously. The first bidder that accepts the current price wins the object at that
price. This type of auction gets his name from the Dutch flower auctions, where
these mechanism is implemented replacing the auctioneer with an electronic clock
that decreases the original price of a given percentage every fixed step of time.
The sealed-bid auction mechanism are characterized by the fact that offers are only
known to the respective bidders (as the name suggest, offers are submitted in sealed
envelopes). In thefirst-pricesealed-bid auction each bidder independently submits
a single bid without knowing the others’ bid, and the objects is sold to the bidder
who made the best offer. First-price auction are especially used in government
contract. Another widely used and analyzed auction in this class is thesecond-price
sealed-bid auction, that works exactly as the first-price one except that the winner
pays the second highest bid. This auction is sometimes called Vickrey auction after
William Vickrey, who wrote the seminal paper on auctions[Vic61].

3.2 Basic models of auction

Any theoretical conclusion on the effectiveness of different mechanisms depends
strongly on the assumptions that are made on the bidders’ evaluations of the of-
fered goods. These assumptions are included in models that try to mimic some real
situations. A key feature of auctions is the presence of asymmetric information,

3.2. BASIC MODELS OF AUCTION 25

thus we expect that the mathematical formalization can be done with incomplete
information games.

In the basicindependent private-valuemodel each bidder:

• knows privately the actual value of the object to himself

• believes that the other bidders’ evaluation of the object can be described by a
probability distribution that is identical for all the bidders

• believes that there is statistical independence between the individual evalua-
tion.

This model implies that any difference in the bidders’ evaluation depends on indi-
vidual characteristics of each bidder. An auction that uses this model can be for-
malized with a Bayesian game where each player’s type is his value for the object.

Example 3 Consider a first-price auction for a single indivisible object with in-
dependent private values. There aren bidders and each bidder has a evaluation
vi ∈ [0, M]. Each bidder consider the values to the othersn − 1 bidders to be in-
dependently drawn from the interval[0, M] with a specified cumulative distribution
F . The rules of the auction are:

• each bidderi simultaneously submits a sealed bidbi

• the object is delivered to the bidder whose bid is highest

• the winner pays the amount of his bid.

It is clear that is possible to formalize the situation described above with a Bayesian
game The bidders are players in the setN = {1, .., n}. The set of possible types
of each player is the interval[0, M]. Each playeri has a typevi ∈ [0, M] that is
his private value for the object. The probability-valued functionpi can be easily
extracted from the distributionF . Thus, lettingb = (b1, ..., bn) denote the profile of
bids andv = (v1, ..., vn) denote the profile of types to then players, the expected
payoff to playeri is

ui(b, v) = vi − bi if {i} = arg max{1,...,n} bj,
= 0 if {i} /∈ arg max{1,...,n} bj,

In the opposite model, thepure common-valuemodel, the actual value is the
same for everyone, although the bidders may have different estimates of the value
because they may have private information about the its quality. This is the case,
for example, of the sales of public resources to companies with the same level of

26 CHAPTER 3. INTRODUCTION TO AUCTION THEORY

technology (hence, that have the same prospects of profits) but have different eval-
uations of what will be the working conditions that they are going to face. This
model has been introduced by Wilson in a paper dated 1969 [Wil69].

Example 4 Consider a first-price auction for a single indivisible resource with an
unknown value in a pure common-value model where only two bidders participate.
The resource’s monetary value depends on three independent random variables
x0,x1,x2, each drawn from a uniform distribution on the interval[0, 1]. The win-
ner will get an amount of money equivalent toA0x0 + A1x1 + A2x2 derived from
the exploitation of the resource, whereA0,A1,A2 are given non-negative constants
that are known to the bidders. Before the auction takes place, the two bidders have
analyzed the resource to extract useful informations. Bidder1 observed signalsx0

andx1, while bidder2 observed signalsx0 andx2. Bidder1 does not knowx2 and
bidder2 does not knowx1. The rules of the auction are:

• each bidderi simultaneously submits a sealed bidci

• the object is delivered to the bidder whose bid is highest

• the winner pays the amount of his bid

• in case of a tie, each bidder has a1/2 probability of getting the object at the
bidded price.

Assuming that both bidders are risk-neutral, we can view this conflict situation as a
Bayesian game where the bidders are players, their types are(x0, x1) for player1
and(x0, x2) for player2, the set of action is the interval of possible bids (presum-
ably [0, T] whereT = A0x0 + A1x1 + A2x2), and their utility function is

ui(c1, c2, (x0, x1), (x0, x2)) = A0x0 + A1x1 + A2x2 − ci if ci > cj

= (A0x0 + A1x1 + A2x2 − ci)/2 if ci = cj

= 0 if ci < cj

A more general model encompassing both the private-value and the common-value
model as special cases assumes that each bidder has some private information on
the object, but each bidder’s value depends onall private signals of the bidders.
That is, bidderi has a private signalti and his value of the object isvi(t1, ..., tn) if
all signal were available toi. For example, the evaluation of a painting is composed
by the bidder’s private evaluation (how much pleasure the bidder would get from
owning it) and by the other’s private evaluation (how much the other bidders would
like to get the painting), because it affects what the resale value can be. This model
has been introduced in a important paper by Milgrom and Weber [MW82].

3.3. BAYESIAN EQUILIBRIUM IN AUCTION MECHANISMS 27

3.3 Bayesian equilibrium in auction mechanisms

A deeper analysis reveals that, beyond different realization of the auctions, there is a
strategical equivalence between the Dutch auction and the first-price auction. In fact
both procedures, represented by normal form games, have the same set of strategies
and the same payoff utility function: both cases expect that the bidders call their
price without knowing anything on the others’ behavior, and that the buying price
will be the highest bid. Thus, the first-price auction and the Dutch one are only two
different ways of implementing the same mechanism of goods allocation. Hence
we can focus on the other three mechanisms and not consider the Dutch one. It is
useful to analyze these games and look for Bayesian equilibria in order to compare
different auction mechanisms. Let us find the equilibria for the private-value first-
price auction examples of the previous section:

Example 5 (Referring to Example 3) Suppose that there is a Bayesian equilibrium
in which every player decides his bid calculatingβ(v1) whereβ is a differentiable
and increasing function. Suppose also that the types are uniformly distributed, with
F (x) = x/M for anyx ∈ [0, M].
In the equilibrium, each playeri knows that the other players will not bid more
thanβ(M), so he will never submit a bid higher thanβ(M). Let us say that playeri
submit a bidbi = β(wi). The probability that another playerj will submit a bid that
is less thanbi is vi/M . In fact,j will submit abj < bi if and only ifβ(vj) < β(wi),
and this can happen only ifvj < wi, becauseβ is increasing. Hence, bidderi has
a probability of(vi/M)n−1 of winning the object because the othern − 1 bidders’
types are independently and uniformly distributed. Thus, the expect payoff to player
i biddingβ(wi) with valuevi is

u(β(wi), vi) = (vi − β(wi))(
vi

M
)n−1

However, as we assumed before,β(vi) is the optimal bid for playeri: this implies
that the derivativeu′

i(β(vi), vi) should be equal to zero, that is

(vi − β(vi))
1
M

(n− 1)(vi

M
)n−2 + (1− β′(vi))(

vi

M
)n−1 = 0

This differential equation implies that

β(x)(x
M

)n−1 =
∫ x

0
y(n− 1)(y

M
)n−2(1

M
)dy

Resolving the integral, the previous equation becomes

β(x) = (1− 1
n
)x

28 CHAPTER 3. INTRODUCTION TO AUCTION THEORY

Because the bidder who wins the auction pays for the object the equivalent of his
bid, the expected revenue of the seller will be(1− 1

n
)v, wherev is the winning bid.

Notice that the margin of profit of each player in this Bayesian equilibrium depends
on the number of players admitted, this implies that the higher is the number of
players, the higher will be the revenue of the seller.

It can be demonstrated that the Bayesian equilibrium of a first-price auction with
private value can be obtained if the players choose their bids according to a function

β(x) =

R x
0 y(n−1)F (y)n−2F ′(y)dy

F (x)n−1

Griesmer, Levitan and Shubik[GLS67] analysed the equilibria of first-price auction
mechanism when contestants’ valuations are drawn from uniform distributions with
different supports.
Let us look for equilibrium in a second-price auction in a private-value model:

Example 6 Consider a second-price auction with private values for a single indi-
visible object. There aren potential buyer, each buyeri ∈ [1, n]’s evaluation of the
object isvi and that the indexi indicates the order of arrival of the sealed envelopes.
The rules of the auction are as follows:

• each bidder submits his offer in a sealed envelope with no information on the
other offers

• the object is assigned to the bidder with the lowest indexi among those that
have submitted the highest bid

• the winner pays the highest bid made by one of the other players.

This game is similar to the one of Example 5, except for the utility function that now
is:

ui(b, v) = vi −max{bj|j ∈ N\i} if {i} = arg max{1,...,n} bk,
= 0 if {i} /∈ arg max{1,...,n} bk,

It is easy to verify that there is a truth-telling equilibrium, that is that each player
i bids his own evaluationvi. To confirm this, suppose that the other players’ best
offer hisw. Suppose also thati offersvi − x. If vi − x > w theni gets the object
at a pricew with a payoff ofui = vi − w, exactly as if he biddedvi; if vi − x < w
and vi > w, player i do not get the object even if he has the highest evaluation,
obtaining a null payoff instead of a bettervi − w if he playedvi. Suppose instead
that playeri makes a bid ofvi + x. If vi + x > w > vi theni gets the object at

3.3. BAYESIAN EQUILIBRIUM IN AUCTION MECHANISMS 29

a pricew with a payoff ofui = vi − w < 0, while if he offeredvi he would have
obtained a payoff of0; if vi + x < w, player i do not get the object exactly as if
he offeredvi. We can conclude that each player do not get a better payoff playing
a strategy different from declaring his own evaluation, hence(v1, ..vn) is a Nash
equilibrium. Moreover, the revenue of the seller is equivalent to the second-best
offer in the auction.

In an English auction under private-value hypothesis, the best strategy for any player
i is to remain in the competition, making small raisings, until the price reaches his
evaluationvi, and then drop out: this means that the good is assigned to the bidder
with the highest valuation, and the price to pay will be equivalent to the second
highest valuation (plus a small delta). Comparing the second-price auction and the
English one with independent private values, we can realize that, from the point of
view of the seller, are equivalent: both assign the object to the bidder who values
it the most and both set the price to the second-best evaluation among the bidders.
However, this equivalence applies only for private values, or if there are just two
bidders: with any common components to valuations and more than two bidders,
when some player quits, he implicitly reveals some informations on the value of the
object that condition the other players’ behavior.

30 CHAPTER 3. INTRODUCTION TO AUCTION THEORY

3.4 Revenue Equivalence Theorem

Let us start with a definition:

Definition 13 An auction mechanism is efficient if and only if the offered object is
always given to the buyer with the highest valuation for it.

It is easy to verify that all the four basic mechanisms shown in Section 3.1 are
efficient. Assuming that an auction mechanism is efficient, an interesting problem
is to establish which procedure can guarantee the maximum revenue to the seller.
As we hinted in the previous section, economic theory provided some fundamental
and surprising results on the equivalence (at equilibrium) of the expected revenues
of various auction mechanisms. Vickrey provided the earliest conceptualization and
results in his famous paper [Vic61], which was, together with another paper [Vic62],
a major factor in his 1996 Nobel prize. In the same year, Myerson [Mye81] and
Riley and Samuelson [RS81] showed that Vickrey’s results apply very generally.

Theorem 7 . (Revenue equivalence theorem). Assume that

• there areN risk-neutral potential buyers

• the independent private-value model is used

• the buyers are symmetric, that is, they cannot be distinguished one from the
other

then all the efficient auction mechanisms guarantee to the seller the same expected
revenue, and each bidder makes the same expected payment as a function of his
valutation.

This theorem implicitly defines a wide class of equivalence of auction mechanisms
(in terms of expected revenue) and both the first-price and the second-price sealed
auction belong to this class. This could be surprising: in the first-price sealed auc-
tion, the winner pays the the price that he called while in the second-price one the
winner pays a price equal to the highest bid made by the other players. The fact is
that the players’ best strategy in the second-price auction is to bid their true valuta-
tion while in the first-price auction the bidders face a trade-off between lowering the
offer (thus obtaining a better payoff in case of success) and getting higher probabil-
ity of success (but paying more for the object). As we saw in the previous section, it
is optimal for a bidder in a first-price auction to bid his valutation minus a discount:
the revenue equivalence theorem states that this discount compensate exactly (in
expected value) the reduction of payment caused by the second-price mechanism.

Chapter 4

DCaseLP and Jade

4.1 Introduction

DCaseLP[Mig02, AMMM02] meansDistributed CaseLP, whereCaseLP[MMZ99,
BDM+99] is the acronym forComplexApplicationSpecificationEnvironment based
onLogicProgramming.
DCaseLP is a software environment designed and developed by the Logic Program-
ming Group at the Department of Computer Science of the University of Genova
in Italy, with the aim of providing a development tool for specifying, implement-
ing, executing and debugging prototypes of Multi-Agent Systems (abbreviated with
MASs).
DCaseLP has originated from the intention of overcoming the deficiencies present
in a previously developed software tool, namely CaseLP, which provides a prototyp-
ing method and a set of tools and languages to support the realization of prototypes
of complex applications.
Correctness and reliability of a developed software are difficult to be guaranteed,
particularly for distributed software systems where a set of entities have to cooper-
ate and coordinate in order to exchange information. Moreover, many distributed
systems must use existing software modules and, consequently, must integrate in-
formation from a potentially large number of different sources.
Thus, integration and reuse of different kinds of information and software tools
constitute an urgent need that new software products must satisfy. CaseLP came
into being with the purpose of helping the developers of MASs to accomplish these
tasks.

JADE (Java Agent DEvelopment Framework) [Til] is a middleware for the devel-
opment of distributed multi-agent applications: it is a free software distributed in

31

32 CHAPTER 4. DCASELP AND JADE

open source under the terms of the LGPL (Lesser General Public License Version
2) by TILAB, the copyright holder.
JADE is a software development framework aimed at developing multi-agent sys-
tems and applications conforming toFIPA (Foundation for Intelligent Physical
Agents) standards for intelligent agents. It includes two main products: a FIPA-
compliant agent platform and a package to develop Java agents. It also offers a set
of graphical tools to support the debugging and deployment phases.
JADE has been fully coded in Java and an agent programmer, in order to exploit
the framework, should code his/her agents in Java, following the implementation
guidelines described in the programmer’s guide [BCTR04].
In the first part of this chapter, we will describe the JADE platform and some of
the FIPA specifications, while in the second part we will outline the advantages and
disadvantages of CaseLP first, and then of the first release of DCaseLP, proceeding
toward the current release of DCaseLP, while in the second one we will describe the
features of the JADE platform .

4.2 The JADE platform

JADE (Java Agent DEvelopment Framework) is a software framework fully imple-
mented in Java language. It simplifies the implementation of multi-agent systems
through a middleware compliant with FIPA specifications and through a set of tools
that supports the debugging and deployment phase.
The agent platform can be distributed across machines (which not even need to
share the same OS) and the configuration can be controlled via a remote GUI. The
configuration can be even changed at run-time by moving agents from one machine
to another one, as and when required. The only system requirement is the Java Run
Time version 1.2.
JADE is written in Java language and is made of various Java packages, giving ap-
plication programmers both ready-made pieces of functionality and abstract inter-
faces for custom, application dependent tasks. Java was the programming language
of choice because of its many attractive features, particularly focused on object-
oriented programming in distributed heterogeneous environments; some of these
features are Object Serialization, Reflection API and Remote Method Invocation
(RMI).
The communication architecture offers flexible and efficient messaging, where JADE
creates and manages a queue of incoming ACL messages, private to each agent;
agents can access their queue via a combination of several modes: blocking, polling,
timeout and pattern matching based.

4.2. THE JADE PLATFORM 33

The full FIPA communication model has been implemented and its components
have been clearly divided and fully integrated: interaction protocols, envelope,
ACL, content languages, encoding schemes, ontologies and, finally, transport proto-
cols. The transport mechanism is easily adaptable to any situation, by transparently
choosing the best available protocol: Java RMI, event-notification, and IIOP are
currently used, but more protocols can be easily added and integration of SMTP,
HTTP and WAP has been already scheduled. SL and agent management ontol-
ogy have been implemented already, as well as the support for user-defined content
languages and ontologies that can be implemented, registered with agents, and au-
tomatically used by the framework.
JADE is being used by a number of companies and academic groups, both members
and non-members of FIPA, such as BT, CNET, NHK, Imperial College, IRST, KPN,
University of Helsinky, INRIA, ATOS and many others. It has been recently made
available under Open Source License.

34 CHAPTER 4. DCASELP AND JADE

4.2.1 JADE architecture

The standard model of an agent platform, as defined by FIPA, is represented in
Figure 4.1.

Figure 4.1: Architecture of JADE agent platform

The Agent Management System (AMS) is the agent who acts as supervisor and
manages access and use of the Agent Platform. Only one AMS will exist in a
single platform. The AMS provides white-page and life-cycle service, maintaining
a directory of agent identifiers (AID) and agent state. Each agent must register
with an AMS in order to get a valid AID. The Directory Facilitator (DF) is the
agent who provides the default yellow page service in the platform. The Message
Transport System is the software component managing all the exchange of messages
within the platform, including communications with remote platforms: RMI is used
for intra-platform communication, whereas CORBA or HTTP are used for inter-
platform communication.

When a JADE platform is launched, the AMS and DF are immediately created and
the Message Transport System module is set to allow message communication.

The agent platform can be split on several hosts. Only one Java Virtual Machine
(JVM) is executed on each host and acts as a basic container of agents, providing a
complete run time environment for agent execution and allowing agent concurrency
on the same host.

The main-container is the agent container where the AMS and DF lives and where
the RMI registry, that is used internally by JADE, is created. The other agent con-
tainers, instead, connect to the main container and provide a complete run-time
environment for the execution of any set of JADE agents.

4.2. THE JADE PLATFORM 35

4.2.2 Communication in the JADE platform

JADE is a FIPA-compliant platform, so in this section we will describe generally
the standards proposed by FIPA regarding Agent Communication.
A messageis a communicative act of an agent toward one or more other agents. In
multi-agent systems often message exchanges are complex and the simple request-
response protocol, typical of the client-server model, is often not sufficient. Agents
communicate by exchanging messages that represent speech acts, and which are
encoded in an Agent Communication Language (ACL).
Agent communication is compounded of three fundamental aspects: the structure
of the messages, their representation and their transport. FIPA introduced various
Agent Communication specifications that refer to different aspects of communica-
tion, and are the following:

• Communicative Acts

• Content Languages

• Interaction Protocols

Communicative Acts The Communicative Acts (CAs) specifications define the
communication language and its semantics. These formal definitions provide a clear
and unambiguous way for expressing the standardized meaning of the communica-
tive actions carried out by the agents, mainly the messages they exchange and the
protocols they use. For more details, see the FIPA Communicative Act Library
Specification downloadable from http://www.fipa.org/specs/fipa00037/ .
Content LanguagesThe Content Language (CL) specifications deal with different
representations of the content of messages and describe the Semantic Language.
The Semantic Language is used to define the semantics of FIPAs Agent Commu-
nication Language (ACL). For more details, see the FIPA SL Content Language
Specification downloadable from http://www.fipa.org/specs/fipa00008/.
Interaction Protocols The Interaction Protocols (IPs) specifications are message
exchange protocols for ACL messages. They constitute a frameworks for the com-
municative acts defined in the CAs specifications. Every IP specification describes
a conversation between agents: the flow of messages exchanged by the participants.
Various IP specifications are viewable at http://www.fipa.org/repository/ips.php3.
TheACL messageis the entity that is transferred among agents: the description of
its structure can be found in FIPA ACL Message Structure Specification (down-
loadable from http://www.fipa.org/specs/fipa00061/). To realize a communication,
agents must share a common vocabulary in order to understand each other and in-
terpret the meaning of the terms, objects, relations in the same manner. Anontology

36 CHAPTER 4. DCASELP AND JADE

actually provides such a vocabulary. Through an ontology, a group of agents can
communicate an represent knowledge regarding some topic and can define a set of
relationships and properties on the entities contained in the ontology.
An ACL message contains the message, called content, together with additional in-
formation like the type of communicative act that it represents (calledperformative),
the sender and receivers and the ontologies for the interpretation of the content.
The content of an ACL message must be expressed using a content language, but the
receivers needs also at least one ontology to understand the meaning of the content.
Clearly, the application domain determines the effective parameters used in the
agent communication, the only necessary parameter in all the messages is the per-
formative.The messages transmitted within specific implementations can include
user-defined parameters in addition to the ones proposed by FIPAs standard.

4.2.3 Using the JADE platform

To support the difficult task of debugging multi-agent applications, some tools have
been developed. Each tool is packaged as an agent itself, obeying the same rules, the
same communication capabilities, and the same life cycle of a generic application
agent.
Remote Monitoring Agent
TheRemote Monitoring Agent(RMA) allows controlling the life cycle of the agent
platform and of all the registered agents. The distributed architecture of JADE al-
lows also remote controlling, where the GUI is used to control the execution of
agents and their life cycle from a remote host.
An RMA is a Java object, instance of the classjade.tools.rma.rma and can
be launched from the command line as an ordinary agent (i.e. with the command
java jade.Boot myConsole:jade.tools.rma.rma), or by supplying the
-gui option to the command line parameters (i.e. with the command java jade.Boot
.gui). More than one RMA can be started on the same platform as long as every
instance has a different local name, but only one RMA can be executed on the same
agent container.

The followings are some of the commands that can be executed from the toolbar of
the RMA GUI, for a detailed explanation refer to the JADE Documentation. The
listed commands are performed by using the current selection of the agent tree as
the target.

• Start New Agent. This action creates a new agent. The user is prompted for
the name of the new agent and the name of the Java class the new agent is an

4.2. THE JADE PLATFORM 37

Figure 4.2: GUI of the RMA agent.

instance of. If the class of the agent istuPInJADE.JShell42PCycleGui ,
then a ’File Open’ window will appear and a the tuProlog theory file contain-
ing the agent’s code must be selected. Moreover, if an agent container is
currently selected, the agent is created and started on that container; other-
wise, the user can write the name of the container he wants the agent to start
on. If no container is specified, the agent is launched on the Agent Platform
Main- Container.

• Kill Selected Agents. This action kills all the agents and agent containers
currently selected. Killing an agent container kills all the agents living on the
container and then de-registers that container from the platform. Of course,
if the Agent Platform Main-Container is currently selected, then the whole
platform is shut down.

• Suspend Selected Agents.This action suspends the selected agents. Beware
that suspending a system agent, particularly the AMS, deadlocks the entire
platform.

• Resume Selected Agents.This action puts the selected agents back into the
active state, provided they were suspended.

• Send Custom Message to Selected Agents.This action allows to send an
ACL message to an agent. When the user selects this menu item, a special
dialog is displayed in which an ACL message can be composed and sent.

• Migrate Agent. This action allows to migrate an agent. When the user selects
this menu item, a special dialog is displayed in which the user must specify

38 CHAPTER 4. DCASELP AND JADE

the container of the platform where the selected agent must migrate. Not all
the agents can migrate because of lack of serialization support in their imple-
mentation. In this case the user can press the cancel button of this dialog.

• Clone Agent. This action allows to clone a selected agent. When the user
selects this menu item a dialog is displayed in which the user must write the
new name of the agent and the container where the new agent will start.

Agent Identification. According to the FIPA specifications, each agent is identified
by an Agent Identifier (AID). An Agent Identifier (AID) labels an agent so that it
may be distinguished unambiguously within the Agent Universe.
The AID is a structure composed of a number of slots, the most important of which
is name. The name parameter of an AID is a globally unique identifier that can
be used as a unique referring expression of the agent. JADE uses a very simple
mechanism to construct this globally unique name by concatenating a user-defined
nickname to its home agent platform name (HAP), separated by the ’@’ character.
Therefore, a full valid name in the agent universe, a so-called GUID (Globally
Unique Identifier), isfoglia@Vento:1099/JADE wherefoglia is the agent
nickname that was specified at the agent creation time, whileVento:1099/JADE
is the platform name. Only full valid names should be used within ACLMessages.
Debugging featuresJADE offers two different agents that provides interfaces to
debug the MAS: the Sniffer Agent and the Inspector Agent.
TheSniffer Agentis an agent ’enriched’ with so-called sniffing features: it displays
the messages exchanged by agents selected by the user, as a sort of sequence dia-
gram. The Sniffer Agent can be started from the RMA GUI clicking on the Tools
menu and then selecting the Start Sniffer item from the displayed menu (shown in
Figure 4.3).
This agent offers an ad-hoc GUI from which the user can sniff an agent or a group of
agents belonging to the MAS: every message sent/received to/from the target agent
or group is observed and displayed in the GUI (see Figure 4.4).
In the window on the right of the GUI in Figure 4.4, the user can view the sniffed
agents and the flow of messages between them: the box labeled Other represents all
the agents of the platform that are not currently sniffed, while the other boxes are
labeled with the name of the sniffed agent. Each labeled arrow represents a message
sent from the agent at the tail of the arrow to the agent at the point of the arrow.
To view the details of a message, right-click on the arrow representing this message
then click the View Message box that appears. After clicking View Message, a
window appears, as shown in Figure 4.5: it lists the content, the receiver, the sender,
the ontology, the language of the message, and other information.

4.2. THE JADE PLATFORM 39

Figure 4.3: Starting the sniffer agent.

Figure 4.4: Sniffer agent’s GUI.

The Sniffer Agent not only allows one to view every message, but also to save it (or
all of them) to a file that can be reloaded in this GUI at a later time.
Another interesting agent that is useful in debugging the MAS is the Introspector
Agent. This agent has a GUI that, as the name suggests, allows a sort of introspec-
tion of the single agents.
To start this agent from the RMA GUI, the user can either press the appropriate
button or click on the Tools menu and then select the Start Introspector Agent item
from the displayed menu.
This agent can monitor and control the life cycle of a running agent, and also view
the messages that it has sent and received. The user is able to look at both queues of
messages of the agent: the Incoming Messages and the Outgoing Messages queue.
In the Incoming Messages panel are listed the Pending and Received messages,

40 CHAPTER 4. DCASELP AND JADE

Figure 4.5: ACL message window created by the Sniffer agent.

4.2. THE JADE PLATFORM 41

Figure 4.6: Introspector agent’s GUI

labeled by their performative; by right-clicking on one message, the user can view it,
remove it or remove all the messages. In a similar manner, the Outgoing Messages
panel lists the Pending and Sent messages. The Introspector Agent also offers the
possibility to monitor the queue of behaviors of an agent, including their execution
step-by-step.

42 CHAPTER 4. DCASELP AND JADE

4.3 DCaseLP

DCaseLP (Distributed CaseLP) [Mig02, AMMM02], is a rapid prototyping soft-
ware environment that supports the development of MASs and, as its predecessor
CaseLP [MMZ99, BDM+99], has been designed and developed by the Logic Pro-
gramming Group at the Department of Computer Science of the University of Gen-
ova in Italy.
DCaseLP aims at providing the developer of a MAS with an AOSE methodology
and a software environment to be used during the requirements analysis, the de-
sign and the development of a working prototype. A fundamental goal is to support
the development of MASs consisting of multilingual agents. More precisely, more
than one language must be available not only to specify the agents belonging to the
system, but also to define their architecture, behavior and state, allowing both exis-
tence and communication in the environment of agents created using such different
languages.
As its name emphasizes, DCaseLP has not been created from scratch, but has come
into being to overcome deficiencies present in its predecessor CaseLP: the latter
supports multilingual agents at the specification level, but not at a lower level, since
all the agents are coded in the logic programming language Prolog. The previous,
and first, release of DCaseLP [AMMM02] overcame most of CaseLPs limitations
but did not allow to develop a completely multilingual prototype. The subsequent
work of integration of logical agents (described in another thesis [Gun05]) has lead
to the current working version of DCaseLP, which provides an additional language
to implement agents in the MAS but is not, yet, the final version since it is an
ongoing work and can be subject to additional integrations.

4.3.1 DCaseLPs focuses

It is quite clear that the development of a working prototype of a MAS can require
a long time and different skills, and is more complicated if the system is composed
of heterogeneous agents. During prototyping, the heterogeneity of agents emerges
from three different features:

• the specification language;

• the architecture;

• the implementation language.

Specification language:during the specification stage, the developer might need,
maybe for only some of the agents, to emphasize particular features of their behav-

4.3. DCASELP 43

ior and, to do so, would like to use one or more different specification languages
than the one currently in use and probably satisfactory for specifying other agents
in the system.

Architecture: it determines the way the agent reasons, represents its knowledge,
plans its behavior and makes decisions. The developer must be able to choose from
the variety of architectures that have been defined in the agent community, in order
to maintain the differences existing between the agents being modeled.

Implementation language:the developer should be able to define the behavior and
the state of each agent using the more appropriate language, taking into account the
architecture of the agent itself or the particular application domain, instead of being
forced to implement all the agents with the same language. By integrating into the
same running prototype different implementation languages, some of which directly
executable, it is also possible to directly implement some of the agents, skipping the
specification stage when it is not relevant.

A software environment claiming to integrate heterogeneous agents must show
the basic attribute of multilingualism in all these three aspects, and this is what
DCaseLP wants to accomplish.

The development strategy that DCaseLP proposes (refer to [Mig02] for details) is
specifying each view of the MAS as, for example, the MAS architecture, the inter-
action protocols between agents, the internal architecture and functioning of each
agent using the language that is most suitable for the current description, and to
subsequently verify, execute, or animate the obtained specifications. These speci-
fications are checked not through formal validation and verification methods (not
yet dealt with in DCaseLP) but by producing an executable code and running the
developed prototype. It should be clear by now that the methodology proposed by
DCaseLP, together with the feature of providing more than one language to define
different aspects of an agent, allow to consider it an instance of the ARPEGGIO
framework ([DKM+99]), as its predecessor CaseLP.

Agents need to interact and exchange information in order to cooperate or com-
pete for the control of shared resources; this interaction may follow sophisticated
communication protocols to which the developed prototype must adhere.

Such interaction protocols are considered a basic matter in DCaseLP and, as de-
tailed further in this chapter, DCaseLP provides the developer with the means to
exactly specify which agents can take part to a conversation and in which order
they interact, making the debugging of the prototype much easier. Before describ-
ing DCaseLP, it is best to detail the features characterizing CaseLP, so the reader
will have a better understanding of the DCaseLP environment and of the overall
ideas behind it that have brought it into existence.

44 CHAPTER 4. DCASELP AND JADE

4.3.2 CaseLP

CaseLP [MMZ99, BDM+99] provides a well-defined prototyping method, as well
as a set of tools and languages which support the developer during the realization
of the MAS prototype and are helpful in testing distributed software applications.
A logic programming language has been chosen as the basis for the prototyping
environment because it is powerful, declarative and an executable specification lan-
guage and, together with the agent technology, can play a very effective role in the
rapid prototyping, testing and refinement of a wide spectrum of software applica-
tions.
At the system specification level, an architectural description language can be used
to describe the prototype in terms of agents classes, their instances, the services they
provide/require and their communication links.
At theagent specification level, a rule-based,not executable language can be adopted
to easily define reactive and proactive agents. An executable, linear logic language
can define more sophisticated agents and the system in which they operate. Fur-
thermore, an imperative language, HEMASL [Mar99], can describe both the agents
architectures, the agents classes, their instances and the environment in which they
are embedded.
Finally, at theimplementation level, a Prolog-like language, extended with addi-
tional primitives, has been used. Obviously, in order to really be a supporting devel-
opment environment, CaseLP also offers simulation tools to visualize the execution
of the prototype and to collect statistics about it. In Figure 4.7 the reader can see
the main languages that CaseLP offers to the developers.
The communication among agents takes place through message passing and the
agent communication language used is KQML [LM95] based on speech-acts, al-
though any other communication language can be easily adopted by the agents.
The Limitations
By providing a set of specification languages for the definition of the behavior of
the agents, as well as a methodology to translate/integrate them into a unique ex-
ecutable specification, CaseLP has succeeded in obtaining multilingualism in both
the specification and the architecture of the agents, though missing the multilin-
gualism in the implementation language. Besides this lack, CaseLP also has other
limitations:

1. centralization;

2. poor support to concurrency;

3. limited portability.

4.3. DCASELP 45

Figure 4.7: The main languages available in the CaseLP environment.

Centralization In CaseLP, the prototype is executed through a centralized round-
robin scheduler that activates all the agents in turn in the MAS, following a fixed
cyclic order. Once an agent is activated, it behaves accordingly to the rules that
define the actions it should take, and when it has terminated the scheduler activates
the next agent. The scheduler controls the global clock of the MAS by managing
the simulation time, and also handles the exchange of messages between agents.
Concurrency CaseLP does not allow the real concurrent execution of agents, since
there is no way to have more than one agent activated in the MAS at the same
time. As we have said above, the CaseLPs scheduler activates only one agent at a
time, and it is not possible to have more than one scheduler running in the MAS:
concurrency among agents is only simulated.
Portability CaseLP was initially developed as an extension of a constraint logic
programming language with theories, communication predicates and ’safe’ state
update predicates (that guarantee no permanent effect in case of failure), therefore
it has been implemented in Prolog. Unfortunately, at present Prolog is not widely
used as a programming language for (commercial) applications, thus there is not
a Prolog interpreter to consider ’portable’ to the systems available in the industry
domain.
These features are, nowadays, a must for the majority of commercial (and not) appli-
cations, thus they had to be added in some way. Since it did not seem easy to achieve
such characteristics directly from the Prolog infrastructure on which CaseLP is built
upon, the adopted solution has been to develop a totally new environment, DCaseLP
indeed, based on another programming language (JavaTM[Sun]) widely used nowa-
days, with the intention of realizing the same project from which CaseLP originated.

46 CHAPTER 4. DCASELP AND JADE

4.3.3 DCaseLPs first release

The first version of DCaseLP has been developed mainly concentrating on overcom-
ing the three above-cited lacks: such purpose has been fulfilled through the intro-
duction of JADETM(Java Agent DEvelopment Framework [Til]),a software frame-
work fully implemented in the Java programming language and whose minimal
system requirement is the version 1.4 of the Java run-time environment.
Since JADE runs as a Java application, it runs in a JVM (Java Virtual Machine)
and, therefore, is portable on most of the available operating systems. Agents in
JADE are implemented with Java threads, thus it is possible to execute more than
one agent simultaneously, achieving the aimed concurrency. Distribution comes
directly from the possibility of distributing JVMs and from JavasRemote Method
Invocation(RMI) mechanism.
This release of DCaseLP represented a step forward towards realizing the aimed
multilingualism since it proposed two implementation languages: the Java language
and the Jess [FH] expert system language. Unfortunately, the multilingualism of this
version was still too limited and CaseLPs languages/tools were quite far from being
exploitable by it.
As far as the multilingualism at the specification level is concerned, this release of-
fered the possibility to specify some aspects of the MAS using AUML (Agent-based
Unified Modelling Language) [FIP], and automatically create Jess agents from the
AUML specification.
In Figure 4.8, we have shown the languages available in the DCaseLP environment.

The new agents: Java and JessThe introduction of the JADE platform has, at first,
lead to the new type of agents executable in a prototype of MAS: the Java agents.
JADE is a framework for implementing working MASs and provides many func-
tionalities that facilitate the management of all the agents that constitute the system.
As it is, it cannot be considered a real software development tool for MASs because
it does not support the entire software engineering process: it does not provide any
means by which to create an abstract model of the system to develop, nor by which
to easily pass from the designed components/agents to the software objects.
It supplies many Java packages among which there are the ones containing the
classes to use to implement agents, their ontologies and their behaviors. An agent is
created extending an appropriate class that allows to take basic actions and to define
new ones (more details can be found in JADEs documentation downloadable from
http://jade.tilab.com/). Both the knowledge and the behavior of these agents are
entirely implemented in Java, and this is why they are called Java agents.
Beside the Java agents, another type of agents was introduced in the first version of

4.3. DCASELP 47

Figure 4.8: The languages available in the first release of the DCaseLP environment.

48 CHAPTER 4. DCASELP AND JADE

DCaseLP: the Jess agents.
Their behavior and knowledge is represented using declarative rules written in Jess,
a rule engine and scripting language entirely written in Java. Jess is a language
inspired by the CLIPS [NAS] expert system shell: it allows to create a knowledge
base and to interact with it through the use of an inference engine; in other words,
it adds to applications the capacity to reason using knowledge supplied in the form
of declarative rules.
A Jess agent is a JADE agent extended in order to embed a Jess interpreter and Jess
rules. The architecture is a deliberative one: it is composed of a list of Jess rules
defining the behavior of the agent, a list of Jess facts representing its internal state
and a Jess interpreter that represents the core of the agent.
Once the rules representing the behavior of an agent have been specified, it is possi-
ble to create a Jess agent embedding such rules and then run it in the JADE platform
(more details can be found in [AMMM02]).
By using DCaseLP, therefore, the developer can create in a semi-automatic way
agents that satisfy the interaction protocols and the UML/AUML diagrams and, by
executing the prototype, can check if the requirements analysis has been correctly
carried out.
The idea of translating UML and AUML diagrams into a formalism and check-
ing their properties by either animating or formally verifying the resulting code is
shared by many researchers working in the AOSE field [Hug02, SA03]. The reader
interested in more detail on the passages that lead to the Jess agents (starting from
the diagrams) is referred to [AMMM02].
The semi-automatic translation from UML/AUML diagrams into Jess agents is
achieved by exploiting two different configuration files that are written in the XSL
format, which is normally exploited to express style sheets. These configuration
files have been developed as part of the work of the master thesis described in
[Mig02].
The Limitations Two are the missing features of the first release of DCaseLP on
which we have focused our attention on:

• the possibility to reuse the Prolog-based code and instruments already devel-
oped for CaseLP;

• the ability to reason about properties of the interactions occurring between
the agents.

A step forward towards recuperating the functionalities offered by CaseLP has been
done with the integration of tuProlog into DCaseLP [Gun05].
CaseLP is implemented in SICStus Prolog [SIC] and its agents are mainly SICS-
tus Prolog code extended with adhoc communication primitives. A lot of work has

4.3. DCASELP 49

been done to study and define semi-automatic translators from high-level specifi-
cation languages to CaseLPs implementation language: the environment contains
tools that semi-automatically translate c [Del97], HEMASL [Mar99, MMMZ00]
and AgentRules [Mas02] into Prolog.
E〈〈{ has been, for example, used to model high-level interaction protocols in appli-
cations developed with CaseLP.

4.3.4 DCaseLPs current release

In the current release of DCaseLP there are now kinds of agent that can be run in a
developed prototype:

• Java agents

• Jess agents

• tuProlog agents

tuProlog [DOR01] is a declarative logical language for which there exists an in-
ference engine written in Java. The tuProlog agents are logical agents intended as
logic programs: the behavior of these agents (as well as their knowledge) is, in fact,
implemented by a Prolog theory.
The next step to take to achieve the aim is to recuperate (from CaseLP) the use of
E〈〈{ , AgentRules and HEMASL: we think that having added Prolog to DCaseLP,
this task will be more easy to accomplish.
Verification of specifications.By executing theE〈〈{ specification of the MAS, the
prototype can be tested and its correctness verified by using theE〈〈{ interpreter.
CaseLP is, thus, capable of providing a limited support to formal verification of
specifications.
Without introducing the Prolog language, all that work would have not been ex-
ploitable from DCaseLP. The ability to specify agents as Prolog theories should
make it easier to use the tools available in CaseLP, since the latter is totally imple-
mented in a logic programming language.
Reasoning about interaction protocols means to check if a certain set of properties
holds after a conversation has taken place. This can, for instance, allow to determine
which protocol (from a set of available ones) satisfies a goal of interest, or it can
help to find out which protocols can be combined to accomplish complex tasks.
After proving desired properties of the interaction protocols, the developer can ani-
mate them through the facilities offered by DCaseLP.

50 CHAPTER 4. DCASELP AND JADE

Figure 4.9: The languages available in the current and future release of the DCaseLP
environment: the dotted lines are part of the future work.

Chapter 5

Analysis and design of auction
mechanisms

5.1 Introduction

As stated in the previous chapters, auctions are procedures for allocating goods that
rely on competitiveness and lack of information on the actual market price of the
goods. The main reasons for using auctions are to extract an higher surplus (from
the Auctioneer’s point of view) and to pay less for the goods (from the bidders’
point of view). Hence, a careful choice of the auction mechanism to employ and
the capability of foreseeing the outcomes of the auction are necessary to obtain the
desired results.

Considering that the Dutch auction mechanisms is completely equivalent un-
der any value model to the first-price sealed-bid auction, we have implemented the
three standard mechanisms described in Chapter 3: English, first-price sealed-bid
and second-price sealed-bid mechanism. For the English auction mechanism, two
different versions have been implemented: one with continuous bidding and the
other that make use of bidding rounds.

51

52 CHAPTER 5. ANALYSIS AND DESIGN OF AUCTION MECHANISMS

Each auction mechanisms require two types of agent at least:

1. TheAuctioneeragent that puts items on sales, receives offers, distributes in-
formation on what is going on and decides the auction winner

2. The Bidder agents that try to buy the items on sale by evaluating newly ac-
quired information and sending offers.

In the next sections we are going to analyze one by one the different auction
mechanisms implemented, detailing:

• the communication protocols, using a specialized form of UML Interaction
diagrams,

• the design of the implemented agents, using a Pascal-like pseudo code.

In the next chapter we will describe the outcomes of our test, obtained from running
our agents in different value models and we will compare the empirical results with
the theoretical ones.

5.2 Common Features

Before an auction can take place, the potential buyers’ agents must be aware that
someone is selling some object, they must have at least a minimal interest in buying
the object on sale and they must also know when and where the auction is going
to take place: these aspects could be resolved introducing ‘searchers’, agents that
wander around the network to gather information on the scheduled auctions (see
[Mae94]), and bulletin boards where auctioneers can advertise the auction that they
are preparing. However, we will not investigate these aspects any further because
outside of the scope of this thesis. Instead we will concentrate only on the mecha-
nisms of offering and evaluating bids.

There are three main phases in every implemented auction mechanism:

1. registration phase

2. bidding phase

3. object attribution phase

5.2. COMMON FEATURES 53

Registration phase The registration phase has been introduced because, given
that all bidders know who is the auctioneer and what is selling, it is necessary to
the auctioneer to be aware of who are the interested potential buyers; thus, all the
implemented auction mechanisms have a first phase in which each potential buyer
registers himself as a bidder in the specific auction, declaring that they want to
receive all the information about the starting auction.

This phase is implemented in this way: as soon as the bidder comes to know that
an interesting auction is going to take place, it sends a message to the auctioneer
where he asks to be registered, and then waits for a confirming message; when the
message arrives, the bidder knows that is officially participating to the auction and
can start to think about his strategy. The auctioneer could decide not to allow the
bidder to enter the auction, and this could happen because of a negative evaluation
given by some reputation system (e.g. based on behaviors during past auctions as
seen in [CH04]) but we will not handle this case.

Offering phase There are two common features in the bidding phase (that, oth-
erwise, differs from mechanism to mechanism): auction duration and reserve price.
In all the mechanisms that we implemented, the auctioneer determines what is the
bidding deadline, and communicates it to the registered bidders: this permits them
to use also time-based strategies (supposing that all the agents have synchronized
clocks). Also the reservation price is an information that the auctioneer distributes
to all the bidders and is an implicit warning that no offer lesser than the reserva-
tion price will be accepted: this feature forces the bidders to offer a price that is
already acceptable to the auctioneer. The reservation price can be set to zero if the
auctioneer has no minimal estimate of the object on sale.

Object attribution phase An aspect of the third phase that is common to all the
auction mechanisms (except for the English auction mechanism with continuous
bidding) is that the highest bid could be offered by more than one bidder simul-
taneously. If this happens, it is necessary to decide which bidder gets the object
on sale: in our implementation we assign the object using a lottery with a uniform
probability distribution because there are no information that permit to distinguish
one bidder from the other; if a reputation system was used, we could use a lottery
weighed on the reputation of the bidders to give more probability of winning to the
bidder considered more reliable.

In every mechanism, when the auction time is over and the winner has been se-
lected, it is important for the auctioneer to receive a confirmation from the winner

54 CHAPTER 5. ANALYSIS AND DESIGN OF AUCTION MECHANISMS

in which he agrees to pay for the object on sale: in our implementation, the auction-
eer waits a determined amount of time for the confirmation message and, if it does
not arrive, it can restart the auction. If a reputation system was implemented, the
auctioneer could send a negative feedback to the agents that maintain the database
of bidders’ reputation. If the confirmation message is sent from the winner to the
auctioneer, the auction terminates.

5.3 Communication Protocols

The Unified Modeling Language (UML) is gaining wide acceptance for the repre-
sentation of engineering artifacts in object-oriented software. The view of agents as
the next step beyond objects leads to explore extensions to UML and idioms within
UML to accommodate the distinctive requirements of agents.
To pursue this objective, recently a cooperation has been established between the
Foundation of Intelligent Physical Agents (FIPA) and the Object Management Group
(OMG). As a first result of this cooperation, Bauer, Muller and Odell proposed a
framework of AGENT UML (AUML) ([BMO01]) where they introduced, among
other ideas, a new class of diagrams:interaction protocol diagrams.
Interaction Protocol (IP) diagrams extend UML state and sequence diagrams in
various ways. Particular extensions in this context include agent roles, multithreaded
lifelines, extended message semantics, parameterized nested protocols, and proto-
col templates.
In the first stage of analysis we described the communication protocols of the im-
plemented auction mechanisms. We opted for AUML IP diagrams because they
suited our purposes very well: in fact, an agent IP describes

• a communication pattern, made of an allowed sequence of messages (between
agents having different roles) and constraints on the content of these messages

• a semantics that is consistent with the communicative acts (CAs) within the
communication pattern.

We introduced the communicative acts in Section 4.2.2. Given the fact that the
auction mechanism agents run on the JADE platform (described in Section 4.2) and
that JADE adheres to the FIPA standards, it seemed natural to take advantage of
these type of diagrams to model the exchange of messages between the auctioneer
and various bidders.

5.3. COMMUNICATION PROTOCOLS 55

5.3.1 Sealed-bid auction mechanism

In our library, we decided to implement classic first-price and second-price sealed-
bid auction mechanisms for a single indivisible object, as described in Chapter 3.
Analyzing these mechanisms we realized that they share the same communication
pattern, so we produced a single interaction protocol, shown in Figure 5.1.
Let us describe this protocol. The Auctioneer agent waits forregister messages
denoted by arequest communicative act by which agents declare their will to
enter the auction as Bidders and to receive all the information about the proceeding
of the auction.
The Auctioneer could reply with aconfirm communicative act with a message
that informs the Bidder agent of its actual registration, or with arefuse act, deny-
ing to the agent the participation to the bidding phase.
After the registration phase has finished, the Auctioneer agent sends a message with
aninform communicative act where it stores all the information about the auction:
what is the reservation price, when the auction finishes and how many bidders are
participating. At this point the Auctioneer waits for Bidders’ offers and stores all the
them until the auction time expires. The participating agents could also submit no
bid. At the end of the auction, the Auctioneer examines all the offers and decides
what is the best one, then sends aninform message to all the bidders with the
highest bid to notify them that they can win the auction and how many other agents
are in the same situation. Hence, the Auctioneer determines the real winner and
broadcasts aninform message to declare who got the object on sale and at what
price. Last, the auctioneer waits for aconfirm message from the winning Bidder
agent.

5.3.2 English auction mechanisms with continuous bidding

We implemented an English auction mechanism for a single indivisible object as
described in Chapter 3. Our analysis of this auction led us to the definition of the
interaction protocol in Figure 5.2. Let us see the communication protocol in detail.
In the registration phase,p Bidder agents ask to be registered in the Auction by
sending a message with communicative actrequest , the Auctioneer can accept
the request (sending back a message ofconfirm to each accepted agent) or deny
the request (with arefuse communicative act).
Once the registration time is over, the Auctioneer sends aninform message to the
n registered agents specifying its reservation price, this warns the Bidder about the
minimal acceptable offer. Then the Auctioneer sends anotherinform communica-
tive act to start the offering phase.

56 CHAPTER 5. ANALYSIS AND DESIGN OF AUCTION MECHANISMS

Figure 5.1: Sealed-bid auction mechanism

5.3. COMMUNICATION PROTOCOLS 57

In the offering phase, the Bidder agents sendpropose messages that contain of-
fers: every time a Bidderx offers a bid that is better than the highest received bid,
the Auctioneer sends aninform message back tox to notify that is winning the
object Then the Auctioneer has three possibilities:

1. broadcast to alln participants what is the new highest offer

2. broadcast to alln participants that there is an extension to the original auction
span

3. declare the end of the offering phase

All these possibilities are communicated byinform messages and each of them
causes different behaviors of the Bidder agents: the first two messages leave to
the Bidders the chance to make new offers (shown in the Figure 5.2 by the loop
back arrows), while the last message moves the communication protocol to the next
phase, the object attribution.
The object attribution phase of an English auction mechanisms with continuous
bidding is simple because the evaluation of the best bid is completely done in the
offering phase, so the winner agent is already determined once that phase is finished.
Thus, the Auctioneer broadcast aninform message with the name of the winner,
then wait for aconfirm message.

5.3.3 English auction mechanism with rounds

The communication protocol of an English auction mechanism implemented with
rounds is almost identical to the continuous version, except for the object attribution
phase. In fact, thanks to the mechanism of rounds, all the best offers are taken into
consideration, so at the end of the offering phase, more than one Bidder agent could
claim the object on sale. Thus, the Auctioneer sends aninform communicative act
to the possible winning agents that contains their number, then, after determining
the real winner, sends anotherinform message declaring who is the winner. We
can see this mechanism in the interaction protocol of Figure 5.3.

58 CHAPTER 5. ANALYSIS AND DESIGN OF AUCTION MECHANISMS

Figure 5.2: English auction mechanism with continuous bidding

5.3. COMMUNICATION PROTOCOLS 59

Figure 5.3: English auction mechanism with rounds

60 CHAPTER 5. ANALYSIS AND DESIGN OF AUCTION MECHANISMS

5.4 Design of auction mechanisms

The next step in our analysis was to describe the behavior of Auctioneers and Bid-
ders of each auction mechanism, and we decided that Pascal pseudo-code was the
right tool for this activity.

5.4.1 Registration phase

The registration phase is common to all mechanisms, so it is reasonable to treat it on
its own. In our implementation, the Auctioneer agent sets a Registration-span vari-
able to some value that indicates how long this phase will last in minutes, then it cal-
culates the end of the Registration phase and puts it in theEnd-registration
variable: we suppose that the Auctioneer has made public this information such that
any agent could use it to register. We suppose also that the functionnow() returns
the present time.

Listing 5.1: Auctioneer: Registration phase

1 R e g i s t r a t i o n−span := . . . ;
R e g i s t e r e d− l i s t := empty− l i s t ;

3 End− r e g i s t r a t i o n := now () + R e g i s t r a t i o n−span ;
wh i l e (now () < End− r e g i s t r a t i o n)

5 do
i f (r e c e i v e (’ r e q u e s t ’ , ” R e g i s t e r ” , Sender))

7 t hen
i f a c c e p t (Sender)

9 t hen
add Sender t o R e g i s t e r e d− l i s t ;

11 send (’ conf i rm ’ , ” R e g i s t e r e d ” , Sender) ;
e l s e

13 send (’ r e f u s e ’ , ” F a i l e dR e g i s t r a t i o n ” , Sender) ;
e n d i f

15 endw

The Auctioneer waits until End-registration, looking forrequest messages that
asks for registration; then it discriminates between acceptable and not acceptable
Bidder agents, and adds the first ones to the Registered-list. As we said before, the
accept() that varies from auctioneer to auctioneer and we do not define here. On
the other hand (Listing 5.2), the Bidder agent always tries to register, then waits for
a message from the Auctioneer: if a message of confirmation arrives, it participates
to the auction, otherwise it can get either arefuse message or no message at all,

5.4. DESIGN OF AUCTION MECHANISMS 61

in such case it stops interacting with this Auctioneer agent and look for another
auction.

Listing 5.2: Bidder: Registration phase
R e g i s t e r e d := f a l s e ;

2

send (’ r e q u e s t , ” r e g i s t e r ” , a u c t i o n e e r) ;
4 whi le (now () < R e g i s t r a t i o n−t ime)

do
6 i f (r e c e i v e (’ conf i rm ’ , ” R e g i s t e r e d ” , a u c t i o n e e r))

t hen
8 R e g i s t e r e d := t r u e ;

e l s e i f (r e c e i v e (’ r e f u s e ’ , ” F a i l e dR e g i s t r a t i o n ” , a u c t i o n e e r))
10 t hen

look f o r a n o t h e r a u c t i o n ;
12 e n d i f

endw

5.4.2 Sealed-bid auction mechanisms

Both implemented sealed-bid mechanisms (first-price and second-price) share the
same design. After the registration phase, the Auctioneer agent calculates the time
when the offering phase should finish (End-Auction) and then sends a message
to all registered Bidders to inform that the auction has started, thatBidder-Number
Bidders are participating and that the minimal acceptable offer isreservation-price
(Listing 5.3). The information on the number of participants is useful to each Bidder
to determine its (possibly optimal) strategy.

Listing 5.3: Sealed-bid Auctioneer : Offering phase
16

Auct ion−span := . . . ;
18 Reserve−p r i c e := . . . ;

Bid− l i s t := empty− l i s t ;
20 End−a u c t i o n := now () + Auct ion−span ;

Bidder−number := l e n g t h (R e g i s t e r e d− l i s t) ;
22 m u l t i c a s t (’ in form ’ ,

” s t a r t (Reserve−p r i c e , End−a u c t i o n , Bidder−number) ” ,
24 R e g i s t e r e d l i s t) ;

26 whi le (now () < End−a u c t i o n)
do

62 CHAPTER 5. ANALYSIS AND DESIGN OF AUCTION MECHANISMS

28 i f r e c e i v e (’ propose ’ , ” o f f e r (Newbid) ” , Sender)
t hen

30 add (New−bid , Sender) t o Bid− l i s t ;
e n d i f

32 endw
m u l t i c a s t (’ in form ’ , ”End−a u c t i o n ” , R e g i s t e r e dl i s t) ;

34

(Winning−bid , To−pay−bid , Winner− l i s t) :=
36 eva l−o f f e r (Bid− l i s t , Reserve−p r i c e) ;

Then the Auctioneer loops until the auction time expires, storing all the offers re-
ceived in a list (Bid-list line 30). When the auction time finishes, the Auctioneer
evaluates all the offers contained in theBid-list and chooses the best ones (lines
35-36), determining the bidders, the offered price and the price they would have to
pay if they really win the auction. In the second-price sealed-bid auction the price
to pay is the second best offer, while in the first-price sealed-bid auction the price
to pay is equal to the offered price.

Listing 5.4: Sealed-bid Auctioneer : object attribution phase

38 i f (l e n g t h (Winner− l i s t) == 0)
then

40 Winner := n u l l ;
e l s e i f (l e n g t h (Winner− l i s t) == 1)

42 t hen
Winner := Winner− l i s t [0] ;

44 e l s e
m u l t i c a s t (’ in form ’ ,

46 ” w inne rs (Winning−bid , To−pay−bid , Winner− l i s t) ” ,
Winner− l i s t) ;

48 Winner := l o t t e r y−e x t r a c t i o n (Winner− l i s t) ;

50 e n d i f
m u l t i c a s t (’ in form ’ , ” r e a l w i n n e r (Winner) ” , R e g i s t e r e dl i s t) ;

52

i f (Winner == n u l l)
54 t hen

r e s t a r t a u c t i o n wi th a d i f f e r e n t Reserve−p r i c e
56 e l s e

Wait−con f i rm := now () + Confirm−span ;

5.4. DESIGN OF AUCTION MECHANISMS 63

58 Conf i rmed := f a l s e ;
wh i l e (now () < Wait−con f i rm)

60 do
r e c e i v e (’ conf i rm ’ , ” winner−con f i rm (S i g n a t u r e) ” , Winner)

62 i f (v e r i f y (S i g n a t u r e , Winner))
t hen

64 Conf i rmed := t r u e ;
e n d i f

66 endw

68 i f Conf i rmed
then

70 a u c t i o n ends c o r r e c t l y
e l s e

72 r e s t a r t a u c t i o n
e n d i f

74 e n d i f

Next, as we can see in Listing 5.4 the Auctioneer agent counts how many Bidder
agents offered the best bid:

• if no offer was made, theWinner variable is set to null

• if only one Bidder agent made the best offer, theWinner variable is set to
its name

• if more than one Bidder made an equivalent best offer, the Auctioneer has to
determine the winner with a lottery (see line 48).

The lottery could be implemented in many ways, giving more probability of win-
ning to the agents with better reputations, for example.
After informing every registered agent on the identity of the winner, the Auctioneer
waits for a message of confirmation from the winner, obviously only if theWinner
variable is different from null. We believe that this confirmation should be a formal
commitment and, as such, should be signed with a cryptographic system, PGP for
example [ASZ91].
Listing 5.5 shows the pseudo code for a Bidder agent.

Listing 5.5: Bidder: Offering phase
d e f i n e Value−model ;

16 O f f e r i n g c h a n c e := f a l s e ;

64 CHAPTER 5. ANALYSIS AND DESIGN OF AUCTION MECHANISMS

18 i f (no t R e g i s t e r e d)
then

20 l ook f o r a n o t h e r a u c t i o n ;
e l s e

22 whi le (t r u e)
s w i t c h r e c e i v e (Message)

24 case (’ in form ’ ,
” s t a r t (Reserve−p r i c e , Bidder−number , End−a u c t i o n ” ,

26 a u c t i o n e e r)
O f f e r i n g c h a n c e := t r u e ;

28

case (’ in form ’ , ” end−a u c t i o n ” , a u c t i o n e e r)
30 O f f e r i n g c h a n c e := f a l s e ;

32 case (’ in form ’ , ” w inners (WinBid , WinL is t) ” , a u c t i o n e e r)
update−va lue−model (WinBid , WinList , Value−model) ;

34

case (’ in form ’ , ” r e a l w i n n e r (Winner) ” , a u c t i o n e e r)
36 update−va lue−model (WinBid , [Winner] , Value−model) ;

B idder−name := getmy name () ;
38 i f (Winner == Bidder−name)

then
40 c r e a t e s i g n a t u r e (S i g n a t u r e) ;

send (’ conf i rm ’ ,
42 ” winner−con f i rm (S i g n a t u r e) ” , a u c t i o n e e r) ;

e n d i f
44 e x i t wh i l e ;

46 e l s e
i f (O f f e r i ng−chance)

48 t hen
New−b id := eva l−o f f e r (Reserve−p r i c e , Value−model ,

50 Bidder−number , End−a u c t i o n) ;
i f (b e t t e r (New−bid , Reserve−p r i c e)

52 t hen
send (’ propose ’ , ” o f f e r (New−b id) ” , a u c t i o n e e r) ;

54 Of fe r i ng−chance := f a l s e ;
e n d i f

56 endc
endw

58 e n d i f

5.4. DESIGN OF AUCTION MECHANISMS 65

The first thing that a Bidder does is to define its value model: this can be a private-
value model or a common-value model, as we explained in Chapter 3. In the first
case, the Bidder defines directly the worth of the object, while in the second case
the function to evaluate the object is common knowledge and the Bidder calculates
this function using his own information (that can be incomplete or inaccurate). The
value model permits to the Bidder to evaluate the object’s price, therefore to evaluate
the offer to bid.
If the Bidder is registered then it enters a loop where it processes the received mes-
sages and reacts accordingly. In a sealed-bid auction, the Bidder has only one
chance of offering: this chance is given at every loop with a call to the function
eval-offer , it is enabled when the Bidder receives thestart message and dis-
abled when it receivesend-auction . Once offered, there is no way of retouching
the offer, as we see in line 54. The functioneval-offer depends strictly from
theValue-Model which in turn depends on the knowledge of the Bidder and this
knowledge depends on experience too: once the Bidder receives awinners or a
real winner message, it could update its value model to reflect what happened
in the auction.
When the Bidder receives areal winner , it compares its name with the winner’s
name: if it matches, it sends a signed confirmation message to the Auctioneer. Then,
the Bidder exits the loop.

5.4.3 English auction mechanisms with continuous bidding

After the registration phase, common to all the mechanisms (see Subsection 5.4.1),
the Auctioneer calculates all the timings: start of the auction, end of the auction
and alarm. While the first two have the same meaning as in the sealed-bid auctions,
the alarm is a new feature: we specify a period of time, specifically from the alarm
to the end of the auction (line 20 in Listing 5.6), in which any new received offer
will cause an extension of the auction time. The reason for the introduction of this
feature is that, if a Bidder makes an offer in a period near the end of the auction,
maybe the question of the object’s price is still not settled: thus we set another
period of time (whose value is contained in theExtension-span variable) in
which the Bidders can submit new bids (see line 37 in Listing 5.6).
The Auctioneer then starts the auction sending a message to all the registered Bid-
ders, containing how many of them are participating, when the auction ends and the
value of the reservation price. Then the Auctioneer sets thePresent-bid vari-
able to the reservation price: this variable will be used throughout all the auction to

66 CHAPTER 5. ANALYSIS AND DESIGN OF AUCTION MECHANISMS

represent the last highest bid offered by the Bidders.
The Auctioneer then proceeds to the real offering phase: it loops until the end of the
auction, receiving offer messages and evaluating them. If an offer is better than the
last highest offer, then the Auctioneer informs the winner (line 44 in Listing 5.6),
assigns the new bid to the present highest bid and warns all the other Bidders that
the highest bid has changed (line 46). Moreover, if the offer arrives after the alarm
time, the Auctioneer extends the auction time and warns all the Bidders of this event
by sending a message with the new end of the auction (line 36-41).

Listing 5.6: English auction with continuous bidding: Auctioneer’s offering phase

Auct ion−span := . . . ;
14 Alarm−span := . . . ;

Ex tens ion−span := . . . ;
16 Reserve−p r i c e := . . . ;

18 S t a r t−t ime := now () ;
End−a u c t i o n := S t a r t−t ime + Auct ion−span ;

20 Alarm−t ime := End−a u c t i o n − Alarm−span ;

22 Bidder−number := l e n g t h (R e g i s t e r e d− l i s t) ;
m u l t i c a s t (’ in form ’ ,

24 ” s t a r t (R e s e r v eP r i c e , Bidder−number , End−a u c t i o n) ” ,
R e g i s t e r e d l i s t) ;

26 m u l t i c a s t (” p r e s e n t−b id (Reserve−p r i c e) ” , R e g i s t e r e dl i s t) ;
P r e s e n t−b id = Reserve−P r i c e ;

28 Extended := f a l s e ;
Winner := Nu l l ;

30

whi le (now () < End−a u c t i o n)
32 do

i f (r e c e i v e (’ propose ’ , ” o f f e r (New−b id) ” , Sender) and
34 b e t t e r−b id (New−bid , P r e s e n t−b id))

t hen
36 i f (now () > Alarm−t ime and no t Extended)

then
38 End−a u c t i o n := End−a u c t i o n + Ex tens ion−span ;

m u l t i c a s t (’ in form ’ , ” a u c t i o n−ex tend (End−a u c t i o n) ” ,
40 R e g i s t e r e d l i s t) ;

Extended := t r u e ;
42 e n d i f

Winner := Sender ;

5.4. DESIGN OF AUCTION MECHANISMS 67

44 send (’ in form ’ , ” you−win ” , Winner) ;
P r e s e n t−b id := New−Bid ;

46 m u l t i c a s t (’ in form ’ , ” p r e s e n t−b id (New−b id) ” ,
R e g i s t e r e d− l i s t) ;

48 e n d i f
endw

50 m u l t i c a s t (’ in form ’ , ” r e a l w i n n e r (Winner) ” , R e g i s t e r e dl i s t) ;

The last part of the Auctioneer’s code is identical to the one in the sealed-bid auction
mechanism (see Listing 5.4).
Listing 5.7 shows the Bidder’s code. After the Registration phase, the Bidder waits
for a message containing the reservation price of the auction, so it can calculate the
first offer to make. Then waits for thestart message to make the first bid. Next,
it starts to loop until it gets anend-auction message. In the loop, the Bidder
reacts in this way:

• If it receives a message that containsextend-auction(Extended-Auction) ,
then it updates theEnd-Auction variable to the new end of auction (line
31);

• if it receives apresent-bid(Bid) message and it has not received a
you win message previously, then it updates thePresent-Bid value and
it evaluates and submits a new offer, if it is better than the present best bid
(lines 38-48);

• if it gets ayou-win message, then it updates theI-win value such that it
will not offer again until the best bid changes (lines 49-54).

Each time the Bidder receives ayou-win or a present-bid messages, it
updates itsValue-Model because this new information could influence the eval-
uation of the object’s price.

Listing 5.7: English auction with continuous bidding: Bidder’s offering phase

b l o c k i n g r e c e i v e (’ in form ’ , ” r e s e r v e p r i c e (P r i c e) ” , a u c t i o n e e r) ;
19 P r e s e n t−b id := P r i c e ;

S t a r t−b id := eva l−o f f e r (P r e s e n t−bid , Value−model ,
21 Bidder−number , End−a u c t i o n) ;

23 b l o c k i n g r e c e i v e (’ in form ’ , ” s t a r t (B idder−number ,
End−a u c t i o n ”) , a u c t i o n e e r)

25 i f (b e t t e r (New−bid , P r e s e n t−Bid)

68 CHAPTER 5. ANALYSIS AND DESIGN OF AUCTION MECHANISMS

t hen
27 send (’ propose ’ , ” o f f e r (S t a r t−b id) ” , a u c t i o n e e r) ;

e n d i f
29 I−win := f a l s e ;

31 whi le (no t r e c e i v e (’ in form ’ , ” end−a u c t i o n ” , a u c t i o n e e r))
do

33 i f (r e c e i v e (’ in form ’ , ” a u c t i o n−ex tend (Extended−a u c t i o n) ” ,
a u c t i o n e e r))

35 t hen
End−a u c t i o n := Extended−t ime ;

37 e n d i f
i f (r e c e i v e (’ in form ’ , ” p r e s e n t−b id (Bid) ” , a u c t i o n e e r)

39 and no t I−win)
then

41 P r e s e n t−b id := Bid ;
update−va lue−model (Bid , [] , Value−model) ;

43 New−b id := eva l−o f f e r (P r e s e n t−bid , Value−model ,
B idder−number , End−a u c t i o n) ;

45 i f (b e t t e r (New−bid , P r e s e n t−Bid)
t hen

47 send (’ propose ’ , ” o f f e r (New−b id ” , a u c t i o n e e r) ;
e n d i f

49 e l s e i f (r e c e i v e (’ in form ’ , ” you−win ” , a u c t i o n e e r))
t hen

51 I−win := t r u e ;
b lock ing−r e c e i v e (’ in form ’ , ” p r e s e n t−Bid (Bid) ” , a u c t i o n e e r) ;

53 P r e s e n t−b id := Bid ;
update−va lue−model (Bid , Bidder−name , Value−model) ;

55 e n d i f

57 endw

When the offering phase is finished, the Bidder waits for a message that indicates
who gets the object, it compares its name with the winner’s name and, if it matches,
sends a signed confirmation message to the Auctioneer. This can be seen in Listing
5.8.

Listing 5.8: English auction with continuous bidding: Bidder’s object attribution

5.4. DESIGN OF AUCTION MECHANISMS 69

phase
57 endw

59 b l o c k i n g r e c e i v e (’ in form ’ , ” r e a l w i n n e r (Winner) ” , a u c t i o n e e r) ;

61 i f (Winner == Bidder−name)
then

63 c r e a t e s i g n a t u r e (S i g n a t u r e) ;
send (’ conf i rm ’ ,

65 ” winner−con f i rm (S i g n a t u r e) ” , a u c t i o n e e r) ;
e n d i f

5.4.4 English auction mechanism with rounds

The main reason for implementing a different type of English auction mechanism
is that the continuous bidding version relies on time to determine the winner. Let
us suppose that two Bidders submit the same bid, and it is the best bid offered until
now: only the Bidder owner of the message that arrives first will be acknowledged
of the best offer by the Auctioneer. This means that, in a simulated environment,
the scheduler must be fair and must activate randomly the Bidders, otherwise some
of them would be given a not justifiable advantage over the others.
Instead, in the round with rounds, the Auctioneer (see Listing 5.9) accepts all the
offers submitted in a predetermined interval of time (that we callround) and only
at its end the offers are evaluated: in this way, the Auctioneer needs to store a
list of possible winners that is updated each round. At the end of the auction, the
Auctioneer agent makes a lottery extraction over the Bidder agents acknowledged of
the best offer and chooses the winning Bidder randomly, exactly as in a sealed-bid
auction.

Listing 5.9: English auction with round bidding: Auctioneer’s code
R e g i s t r a t i o n−span := . . . ;

2 R e g i s t e r e d− l i s t := empty− l i s t ;
End− r e g i s t r a t i o n := now () + R e g i s t r a t i o n−span ;

4 whi le (now () < End− r e g i s t r a t i o n)
do

6 i f (r e c e i v e (’ r e q u e s t ’ , ” R e g i s t e r ” , Sender))
t hen

8 i f a c c e p t (Sender)

70 CHAPTER 5. ANALYSIS AND DESIGN OF AUCTION MECHANISMS

t hen
10 add Sender t o R e g i s t e r e d− l i s t ;

send (’ conf i rm ’ , ” R e g i s t e r e d ” , Sender) ;
12 e l s e

send (’ r e f u s e ’ , ” F a i l e dR e g i s t r a t i o n ” , Sender) ;
14 e n d i f

endw
16

Auct ion−span := . . . ;
18 Alarm−span := . . . ;

Extended−span := . . . ;
20 Round−span := . . . ;

Reserve−p r i c e := . . . ;
22

S t a r t−t ime := now ()
24 End−a u c t i o n := S t a r t−t ime + Auct ion−span ;

Alarm−t ime := End−a u c t i o n − Alarm−span ;
26

Bidder−number := l e n g t h (R e g i s t e r e d− l i s t) ;
28 m u l t i c a s t (” s t a r t (B idder−number , End−a u c t i o n) ” , R e g i s t e r e dl i s t) ;

P r e s e n t−b id = Reserve−P r i c e ;
30 m u l t i c a s t (” p r e s e n t−b id (Reserve−p r i c e) ” , R e g i s t e r e dl i s t) ;

Extended := f a l s e ;
32 Winner := Nu l l ;

34 whi le (now () < End−a u c t i o n)
do

36 Round−t ime = now () + Roundspan ;
Last−winner− l i s t := Winner− l i s t ;

38 P r e s e n t−b id := Winning−b id ;

40 whi le (now () < Round−t ime)
do

42 i f (r e c e i v e (” o f f e r (New−b id) ” , Sender))
t hen

44 i f (now () > Alarm−t ime and no t Extended)
then

46 End−a u c t i o n := End−a u c t i o n + Extended−t ime ;
m u l t i c a s t (” a u c t i o n−ex tend (End−a u c t i o n) ” ,

48 R e g i s t e r e d l i s t) ;
Extended := t r u e ;

5.4. DESIGN OF AUCTION MECHANISMS 71

50 e n d i f
add (New−bid , Sender) t o Bid− l i s t ;

52 e n d i f
endw

54

(Winning−bid , Winner− l i s t) :=
56 eva l−o f f e r (Bid− l i s t , Last−winner− l i s t , P r e s e n t−b id) ;

58 s w i t c h (l e n g t h (Winner− l i s t))
case 0 :

60 Winner = ” none ” ;

62 case 1 :
Winner = Winner− l i s t [0] ;

64

e l s e
66 m u l t i c a s t (” w inners (Num−winners) ” , Winner− l i s t) ;

endsw
68

endw
70 m u l t i c a s t (” End−a u c t i o n ” , R e g i s t e r e dl i s t) ;

72 Winner = l o t t e r y−e x t r a c t i o n (Winner− l i s t) ;
send (” r e a l w i n n e r (Winner , P r e s e n t−b id) ” , R e g i s t e r e d− l i s t) ;

74

i f (Winner == n u l l)
76 t hen

r e s t a r t a u c t i o n wi th a d i f f e r e n t Reserve−p r i c e
78 e l s e

Wait−con f i rm := now () + Confirm−span ;
80 Conf i rmed := f a l s e ;

wh i l e (now () < Wait−con f i rm)
82 do

r e c e i v e (’ conf i rm ’ , ” winner−con f i rm (S i g n a t u r e) ” , Winner)
84 i f (v e r i f y (S i g n a t u r e , Winner))

t hen
86 Conf i rmed := t r u e ;

e n d i f
88 endw

90 i f Conf i rmed

72 CHAPTER 5. ANALYSIS AND DESIGN OF AUCTION MECHANISMS

t hen
92 a u c t i o n ends c o r r e c t l y

e l s e
94 r e s t a r t a u c t i o n

e n d i f
96 e n d i f

The Bidder agent’s code is identical to the one produced for the English auction
mechanism with continuous bidding except that, at the end of the offering phase,
the Bidder waits for awinners message that contains the best bid and the list of
agents that submitted it. This information could be useful for the Bidder to be used
in case of future auctions with the same type of object on sale (this information
modifies the Bidder’s value model, as we see in Listing 5.10 on lines 60).

Listing 5.10: English auction with continuous bidding: Bidder’s code

d e f i n e Value−model ;
2 Bidder−name = getmy name () ;

4 R e g i s t e r e d := f a l s e ;

6 send (’ r e q u e s t ’ , ” r e g i s t e r ” , a u c t i o n e e r) ;
wh i l e (now () < R e g i s t r a t i o n−t ime)

8 do
i f (r e c e i v e (’ conf i rm ’ , ” R e g i s t e r e d ” , a u c t i o n e e r))

10 t hen
R e g i s t e r e d := t r u e ;

12 e l s e i f (r e c e i v e (’ r e f u s e ’ , ” F a i l e dR e g i s t r a t i o n ” , a u c t i o n e e r))
t hen

14 l ook f o r a n o t h e r a u c t i o n ;
e n d i f

16 endw

18 b l o c k i n g r e c e i v e (’ in form ’ , ” r e s e r v e p r i c e (P r i c e) ” , a u c t i o n e e r) ;
P r e s e n t−b id := P r i c e ;

20 S t a r t−b id := eva l−o f f e r (P r e s e n t−bid , Value−model ,
B idder−number , End−a u c t i o n) ;

22

b l o c k i n g r e c e i v e (’ in form ’ , ” s t a r t (B idder−number ,
24 End−a u c t i o n ”) , a u c t i o n e e r)

i f (b e t t e r (New−bid , P r e s e n t−Bid)
26 t hen

send (’ propose ’ , ” o f f e r (S t a r t−b id) ” , a u c t i o n e e r) ;

5.4. DESIGN OF AUCTION MECHANISMS 73

28 e n d i f
I−win := f a l s e ;

30

whi le (no t r e c e i v e (’ in form ’ , ” end−a u c t i o n ” , a u c t i o n e e r))
32 do

i f (r e c e i v e (’ in form ’ , ” a u c t i o n−ex tend (Extended−a u c t i o n) ” ,
34 a u c t i o n e e r))

t hen
36 End−a u c t i o n := Extended−t ime ;

e n d i f
38 i f (r e c e i v e (’ in form ’ , ” p r e s e n t−b id (Bid) ” , a u c t i o n e e r)

and no t I−win)
40 t hen

P r e s e n t−b id := Bid ;
42 update−va lue−model (Bid , [] , Value−model) ;

New−b id := eva l−o f f e r (P r e s e n t−bid , Value−model ,
44 Bidder−number , End−a u c t i o n) ;

i f (b e t t e r (New−bid , P r e s e n t−Bid)
46 t hen

send (’ propose ’ , ” o f f e r (New−b id ” , a u c t i o n e e r) ;
48 e n d i f

e l s e i f (r e c e i v e (’ in form ’ , ” you−win ” , a u c t i o n e e r))
50 t hen

I−win := t r u e ;
52 b lock ing−r e c e i v e (’ in form ’ , ” p r e s e n t−Bid (Bid) ” , a u c t i o n e e r) ;

P r e s e n t−b id := Bid ;
54 update−va lue−model (Bid , Bidder−name , Value−model) ;

e n d i f
56

endw
58

b l o c k i n g r e c e i v e (’ in form ’ , ” w inners (WinBid , WinL is t) ” , a u c t i o n e e r) ;
60 update−va lue−model (WinBid , WinList , Value−model) ;

62 b l o c k i n g r e c e i v e (’ in form ’ , ” r e a l w i n n e r (Winner) ” , a u c t i o n e e r) ;

64 i f (Winner == Bidder−name)
then

66 c r e a t e s i g n a t u r e (S i g n a t u r e) ;
send (’ conf i rm ’ ,

68 ” winner−con f i rm (S i g n a t u r e) ” , a u c t i o n e e r) ;

74 CHAPTER 5. ANALYSIS AND DESIGN OF AUCTION MECHANISMS

e n d i f

Chapter 6

Simulating auction mechanisms

6.1 Introduction

Each auction mechanism in our library is implemented as a JADE-based application
compounded by five agents. The files that contain the auctioneer agents’ codes
are named ’AUCTtype.pl’ while the files with the bidder agents’ code are named
’GX type.pl’, wheretyperefers to the auction mechanism andX is an integer. The
code of the agents is in Appendix A.
The agents are implemented in tuProlog in the DCaseLP environment on the JADE
platform, thanks to the integration of logic agents into DCaseLP [Gun05]. There-
fore, to simulate an auction, it is necessary to start a JADE platform and to create
all the agents with classtuPInJADE.JShell42PCycleGui . The auctioneer
must be started first, then all the bidders can be started and the auction begins.
In this chapter we will show how to simulate auction using the implemented agents.
The implemented auction mechanisms are made to sell a single indivisible object,
but there are many other characteristics that can be modified to simulate different
situations of sale; let us see them in details.

6.2 Customizable characteristics of the implemented
mechanisms

auctioneers Registration time.It is the duration of the registration phase in minutes.
It is contained by the atomreg span(Time) .
Acceptance of registration.The user can customize the predicateaccept bidder
to define the rules by which an agent can be accepted as a bidder. These rules can
be private of the auctioneer or depend on an external reputation system.

75

76 CHAPTER 6. SIMULATING AUCTION MECHANISMS

Auction time. It is the duration of the offering phase in minutes. It is contained by
the atomtime span(Time) .

Alarm time. Only in the English auctions. It is the interval of time at the end of the
offering phase, during which any new offer will trigger the extension of the auction
time. It is contained by the atomalarm span(Time) .

Extension time. Only in the English auctions. It is the interval of time that the
auctioneer adds to the auction time if any offer has arrived during the alarm time. It
is contained by the atomext span(Time) .

Wait time. It is the interval of time that the auctioneer waits for a message of
confirmation from the winning bidder. It is contained bywait span .

reservation price. The reservation price is the lowest bid accepted by the auction-
eer to sell the object. It is contained by the atomreservation price() and
can be modified to reflect the need of the simulation. The reservation price can be
also a list of values, thus creating a multi-dimensional auction; it is necessary to
modify also the bid comparison feature.

Bid comparison. The auctioneer must choose if a new bid is better than another.
The user can customize this feature to reflect the preferences of the auctioneer over
offers by rewriting thebetter-bid predicate. Modifying this predicate and the
reservation price accordingly, the user can simulate a multi-dimensional auction.

Attribution of the object. In case the auction ends with two or more bidders own-
ing the best offer, the auctioneer must decide who is the real winner using a lottery.
This lottery can be customized rewriting the predicatelottery .

Bidders

Value Model. The value model of a bidder determines its object’s monetary worth
(see Section 3.2). The default value model implemented in our bidders is the private
one: the bidder asserts a static value for the object in the atomobject value(Value) .
The user can customize this feature, definingobject value(Value) as a pred-
icate that calculates the object’s worth for the bidder using both private and public
information.

Strategy. The strategy of a bidder determines the value and the time of its offers. It
depends mainly on the value model and on other bidder’s behavior, but other aspects
can be considered, like time and information from sources external to the auction.
To modify a bidder’s strategy, the user should modify the predicateeval offer .

6.3. TESTING THE PROTOTYPES 77

6.3 Testing the prototypes

Our aim in this section is to test our implementation, thus we ran all the mechanisms
of our library with the same parameters to show that they satisfy the fundamental
Revenue Equivalence Theorem (see Theorem 7).
These are the parameters of every test that we made:

• the reservation price is set to50 coins;

• the duration of the auction is set to5 minutes;

• the registration span is set to1 minute;

• there are four different bidder agent with private independent values;

• the bidder agents have private values for the object on sale that are taken from
a uniform distribution in the interval[100, 400] (in our run, the first bidder
agent has a value of100 coins, the second of200, the third of300 and the
fourth of400);

• each bidder makes offer as fast as it can.

These parameters are equivalent to the hypothesis under which the RET theorem is
valid.
In the next subsections, we will show the text output and the Sniffer’s graphical
output obtained running each auction mechanism implemented and we will examine
the results.
In each auction, the name of the auctioneer agent is of the form ’auct mech’
wheremech is the type of auction mechanism while the names of the bidder agents
are of the form ’gX mech’ whereX is a integer in the interval[1, 4] andmech is the
type of auction mechanism. The complete address will bename@Vento:1099/JADE
since all the agents are deployed on a single computer called ’Vento ’. In the text
output, each agent’s output can be recognized by its address at the beginning of the
line.

78 CHAPTER 6. SIMULATING AUCTION MECHANISMS

6.3.1 First-price sealed-bid auction

In a first-price sealed-bid auction, the winner of the object pays as much as it offered
for it: this means that each bidder must choose between making an high offer (thus
incrementing the probability of winning) and getting an high payoff (thus diminish-
ing the probability of winning). Moreover, each bidder can make only one offer:
this means that each bidder must try to estimate the private values of the others to
beat them.
Supposing that the bidders know that the private values are uniformly distributed,
the optimal strategy for each bidder is to offer a bid equal to(1− 1

n
)x (see Chapter

3), wherex represents the private value of the bidder andn is the number of the
bidder participating to the auction. This strategy is possible only if the number of
participants is common knowledge.
With this strategy, if the bidder’s private value is the highest, its bid will be equal to
the second-highest private value (given that private values are uniformly distributed
among the participants), so it will certainly gain the object and obtain the highest
payoff possible.
We programmed all the bidders to offer using this strategy. In fact, as can be seen
in Figure 6.1, bidderg1 offered75, bidderg2 offered150, bidderg3 offered225
while g4 offered300: clearly, the winner has to beg4 .
The winner of the auction is agentg4 fp with a bid of300.

In Figure 6.2 it is shown the output of the Sniffer agent. Comparing it with the
communication protocol of Figure 5.1 confirms that the requirements of the analysis
are fulfilled by the implementation.

6.3. TESTING THE PROTOTYPES 79

Figure 6.1: First-price sealed-bid shell output.

80 CHAPTER 6. SIMULATING AUCTION MECHANISMS

Figure 6.2: Fisrt-price sealed-bid auction: output of Sniffer agent.

6.3. TESTING THE PROTOTYPES 81

6.3.2 Second-price sealed-bid auction

The second-price sealed-bid auction is identical to first-price one, except that the
winner pays as much as the highest bid made by the other bidders: this means that
the winning bid does not influence the selling price. This pushes the bidders to offer
a bids equivalent to their private values (see Chapter 3 for demonstration).
Thus, we used bidders with a truth-telling strategy and the results are shown in
Figure 6.3.

Figure 6.3: Secod-price sealed-bid auction

The winner of the auction is agentg4 with a bid of400, while the payment owed is
300.
The output of the sniffer agent is identical to the one of first-price auction (Figure
6.2), thus confirming that, as we said in Chapter 5, the two sealed-bid auction share
the same communication protocol.

6.3.3 English auction with continuous bidding

Game theory suggests that, in an English auction with private values, the best strat-
egy for any bidder is to remain in the competition, making small raising, until the
price reaches his evaluation of the object, then drop out of the auction: in this way
the winner will get the object at a price just a little higher than the second-highest
private value (see Section 3.3)
In our implementation, each bidder uses this strategy:

82 CHAPTER 6. SIMULATING AUCTION MECHANISMS

Figure 6.4: English auction with continuous bidding: offering phase

eval_offer(New_bid) :-
object_value(Value), present_bid(Present_bid),
Present_bid < Value, New_bid is Present_bid + 1,!.

As we showed in Chapter 5, the bidder makes the evaluation of a new offer each time
the auctioneer inform all the participants that the present winning price is changed.
With this strategy, every bidder (except the one who made the last winning bid)
makes the same offer as soon as they get the message: being in a English auction
with continuous bidding, the auctioneer will accept the first arrived offer as the
temporary winning bid (in fact, it bested the old one by1 coin) and discard all the
subsequent identical offer made by other bidders.
The messages on line 318,319,320,321 of Figure 6.4 areinform messages that
contain the present temporary best offer. As soon as they get this message, all the
bidders (exceptg1 who was the present winner) sendpropose messages (line
322,323,324) containing new identical offers calculated with theeval offer
predicate seen before. The auctioneer gets the first offer (line 322), sees that it
is better than the last winning bid and take it as the new winning bid (at line 325):
when the auctioneer examines the other offers, it finds that they areequal to the

6.3. TESTING THE PROTOTYPES 83

present winning bid, so it discards them.
In Figure 6.5, we can see that, at the end of the auction, agentg4 eng c wins with
an offer of301. We can also note that the auction time was expired before the real
conclusion of the competition and this has triggered the extension mechanism that
permits to establish the final price of the object; in fact, at the end of the auction
time the winner was agentg3 eng c with a bid of300.
From the theorical point of view, if an English auction has no limits of time, the best
selling price will emerge for sure, but a more realistic approach suggests to limit the
duration of the auction, like we did. This can create consequences: for example,
if the private value of at least two bidder is much bigger than the reservation price,
the extended time could expire before the competition is over, thus denying the
individuation of the best offer and not attributing the object to the bidder with the
highest private value.
This fact is inevitable but we realized that, in this implementation, the order in
which the bidders register to the auction influences the order in which they bid, thus
giving advantage to a bidder that registered earlier than another: this leads to an
unfair attribution of the object.
Hence, we decided to implement another version of the English auction that could
change this behavior.

6.3.4 English auction with rounds

The implementation with rounds of an English auction differs from the one with
continuous bidding in the way in which equivalent offers are treated: if the auc-
tioneer receives more than one equivalent offer from different bidders in the same
round, it takes all of them in consideration, disregarding the order of arrival.
In Figure 6.6, each text line represents a round. We can see that until the offer
is less or equal to100, all four bidders are listed as temporary auction winners,
while once the offer becomes greater than100, the g1 eng r is not listed any
more: it has reached its private value. Figure 6.7 confirms this observation: on lines
597,598,599,600 there are still four offers, while in the next round onlyg2 ,g3 and
g4 (lines 610,611,612).
This means that, if the auction time expires before the auction arrives to the select
a unique winner, all the bidders that have made the last (temporary winning) offer
will participate to a lottery to determine the final winner.
In this auction, all the bidders use this offering strategy:

eval_offer(New_bid) :-
num_winners(N), N =\= 1,

84 CHAPTER 6. SIMULATING AUCTION MECHANISMS

Figure 6.5: English auction with continuous bidding: shell output.

Figure 6.6: English auction with rounds: text output.

6.3. TESTING THE PROTOTYPES 85

Figure 6.7: English auction with rounds: Sniffer’s output

86 CHAPTER 6. SIMULATING AUCTION MECHANISMS

present_bid(Present_bid), object_value(Value),
Present_bid < Value, New_bid is Present_bid + 1,!.

eval_offer(New_bid) :-
New_bid = no.

If the number of temporary winners (contained in the variableN) is different from1
and the temporary winning bid (contained in the variablePresent bid) is strictly
less than the private value of the bidder (contained in the variableValue), then the
new offer of the bidder will be temporary winning bid plus1, otherwise the bidder
will not make any offer (New bid = no).
Note that a bidder using this strategy prefer to make an offer (thus reducing its
payoff) to accept a lottery extraction.
In Figure 6.8, we can see that the auction finishes with agentg4 eng r as winner
at the best bid of301.

6.3.5 Results

We run all four auction mechanisms implemented under common conditions to ver-
ify the Revenue Equivalence Theorem. Examining all the auction run, we can notice
that every one of them terminated with agentg4 eng r as winner, thus demon-
strating to be efficient auctions. The two sealed bid mechanisms individuated an
auctioneer’s revenue of300, while for the two English mechanisms the revenue was
of 301: this difference is caused by thediscrete biddingstrategy that our bidders
use. In fact, if the strategy in the English auctions had been to raise the last winning
price by0.1, then the difference between the revenues would have been not1 but
0.1; if the strategy had been to raise the price by0.01, then difference would have
been0.01; and so on. Thus, we can say that our implementation verifies the RET.

6.3. TESTING THE PROTOTYPES 87

Figure 6.8: Conclusion of English auction with rounds: text output.

88 CHAPTER 6. SIMULATING AUCTION MECHANISMS

Conclusions and future work

In this thesis, we have described the work done to develop a library of agents for
simulating auction mechanisms. We have analyzed and implemented four different
mechanisms:

• the first-price sealed-bid auction mechanism,

• the second-price sealed-bid auction mechanism,

• the open English auction mechanism with continuous bidding,

• the open English auction mechanism with rounds.

For each auction mechanism, the interaction between auctioneer and bidder has
been analyzed and an Interaction Protocol has been produced. In the design phase,
the internal behavior of each type of agent has been studied and their customizable
features have been highlighted. Each agent’s behavior has been written down in a
pseudo-Pascal listing.
At last, each agent has been implemented with tuProlog in the DCaseLP environ-
ment, thus achieving the goal of providing customizable tools for simulating auction
mechanisms. For example, modifying the reservation price of the English auction-
eer and the value model of the related bidders, it is possible to simulate English
multi-dimensional auctions. Moreover, DCaseLP and JADE supply many tools for
analyzing message exchange and debugging agent behaviors, thus helping the user
in the analysis of the bidders’ strategy.
In the last chapter, we have ran all the implemented mechanism using risk-neutral
bidders with independent private value taken from a uniform distribution. Under
these hypothesis, Game Theory demonstrated that there exist an optimal bidder’s
strategy for each of the implemented mechanism: we programmed our test bidders
with these strategies and we verified that all the simulated auctions gave the same
revenue to the auctioneer and the same payoff to the bidders.
Hence, we can say that the implemented auction mechanisms respect the Revenue
Equivalence Theorem.

89

90 CHAPTER 6. SIMULATING AUCTION MECHANISMS

There are many possibility and directions that can be taken to extend this work.
Some of them are briefly described here in the following:

• analyze and implement other less common but interesting auction mecha-
nisms, like double auctions and all-pay auctions,

• build a society of agents, with ’advertising’ agents that contain information
(like starting and ending time, type of object on sale, type of auction mecha-
nism) on the auctions that are going to be held and ’searcher’ agents that look
for interesting auction using user’s preferences and informs the bidder.

• implement a reputation system, where reliable ’notarial’ agents calculates the
reputation of the subscribers using other agents’ opinions and past behaviors
and makes it public to the agent community.

Appendix A

Implemented agents for auction
mechanisms

A.1 First-Price Sealed-Bid Auction Agents

Listing A.1: First-Price Sealed-Bid Auctioneer
1 main :−

s t a r t u p , r e g i s t r a t i o n , g e to f f e r , f i n a l .
3

f i r s t t i m e .
5 b i d l i s t ([]) .

p r e s e n t b i d (5 0) .
7 w i n n e r l i s t ([]) .

a u c t i o n s p a n (5) .
9 r e g s p a n (1) .

w a i t s p a n (1) .
11 my name (” auct fp@Vento : 1 0 9 9 / JADE ”) .

b i d d e r s ([]) .
13

agent msg (Text) :−
15 my name (Name) , w r i t e (Name) , w r i t e (” : ”) , w r i t e (Text) .

17 b r o a d c a s t (P e r f o r m a t i v e , TermMsg) :−
b i d d e r s (L i s t) ,

19 pack (TermMsg , Msg) ,
m u l t i c a s t (P e r f o r m a t i v e , Msg , L i s t) .

21

23 m u l t i c a s t (P e r f o r m a t i v e , Message , []) .

25 m u l t i c a s t (P e r f o r m a t i v e , Message , [H| T a i l]) :−

91

92 APPENDIX A. IMPLEMENTED AGENTS FOR AUCTION MECHANISMS

send (P e r f o r m a t i v e , Message ,H) ,
27 m u l t i c a s t (P e r f o r m a t i v e , Message , T a i l) .

29

t i m e r (Name , Length , Hour , Min) :−
31 a s s e r t (s t a r t (Name , Hour , Min)) ,

Tmp F in i sh t ime i s Min + Length ,
33 Hour A f te r i s Tmp F in i sh t ime d iv 60 ,

F in i sh M in i s Tmp F in i sh t ime mod 60 ,
35 F in i sh H i s Hour + Hour Af te r ,

a s s e r t (end (Name , F in ishH , F in i sh M in)) .
37

39 s t a r t u p :−
f i r s t t i m e ,

41 r e t r a c t (f i r s t t i m e) ,
j a v a o b j e c t (” j a v a . u t i l . Date ” , [] , Date) ,

43 Date<−ge tM inu tes r e t u r n s TimeMin ,
Date<−ge tHours r e t u r n s TimeH ,

45

r e g s p a n (RegLen) ,
47 agent msg (’ I n i z i o R e g i s t r a z i o n e : ’) ,

w r i t e (Time H) , w r i t e (’ : ’) , w r i t e (Time Min) , n l ,
49 t i m e r (r e g i s t r a t i o n , RegLen , Time H , Time Min) ,

end (r e g i s t r a t i o n , EndReg H , End Reg Min) ,
51 agent msg (’ F ine R e g i s t r a z i o n e : ’) ,

w r i t e (End Reg H) , w r i t e (’ : ’) , w r i t e (End Reg Min) , n l ,
53

a u c t i o n s p a n (Auct Len) ,
55 agent msg (’ I n i z i o Asta : ’) ,

w r i t e (End Reg H) , w r i t e (’ : ’) , w r i t e (End Reg Min) , n l ,
57 t i m e r (a u c t i o n , AuctLen , End Reg H , End Reg Min) ,

end (a u c t i o n , F i n i sht im e H , F i n i s h t i m e M i n) ,
59 agent msg (’ F ine Asta : ’) ,

w r i t e (F i n i s h t i m e H) , w r i t e (’ : ’) , w r i t e (F i n i s h t i m e M i n) , n l .
61

s t a r t u p .
63

r e g i s t r a t i o n :− e n d r e g .
65

r e g i s t r a t i o n :−
67 j a v a o b j e c t (” j a v a . u t i l . Date ” , [] , Date) ,

Date<−ge tM inu tes r e t u r n s NowMin , Date<−ge tHours r e t u r n s NowH ,
69 end (r e g i s t r a t i o n , FinH , Fin Min) , c h e c k t i m e (Fin H , Fin Min , Now H , Now Min) ,

hand le msgs , loop2 (0 , 1 0 0 0 0) , ! .
71

r e g i s t r a t i o n :−

A.1. FIRST-PRICE SEALED-BID AUCTION AGENTS 93

73 a s s e r t (e n dr e g) , b i d d e r s (BL is t) , l e n g t h (BLis t , B L i s tl e n) ,
end (a u c t i o n , F i n i sht im e H , F i n i s h t i m e M i n) ,

75 b r o a d c a s t (’ INFORM’ , s t a r t (F i n i sht im e H , F in i sh t ime Min , B L i s t l e n)) ,
agent msg (’ F ine r e g i s t r a z i o n e ’) , n l , ! .

77

g e t o f f e r :− end reg , g e t o f f e r i n g , ! .
79

g e t o f f e r .
81

g e t o f f e r i n g :−
83 j a v a o b j e c t (” j a v a . u t i l . Date ” , [] , Date) ,

end (a u c t i o n , F i n i sht im e H , F i n i s h t i m e M i n) ,
85 Date<−ge tM inu tes r e t u r n s Nowmin , Date<−ge tHours r e t u r n s Nowhour ,

c h e c k t i m e (F i n i s h t im e H , F in i sh t ime Min , Now hour , Now min) ,
87 hand le msgs , loop2 (0 , 1 0 0 0 0) , ! .

89 g e t o f f e r i n g :− f i n i s h e d , ! .

91 g e t o f f e r i n g :−
b i d l i s t (B i d L i s t) , p r e s e n t b i d (Pr B id) , w i n n e r l i s t (L i s t) ,

93 max o f f e r (B idL i s t , Pr Bid , L i s t) ,
p r e s e n t b i d (WinBid) , w i n n e r l i s t (WinL is t) ,

95 agent msg (” Agen t i i n l o t t e r i a ”) ,
w r i t e (WinL is t) , w r i t e (” con o f f e r t a v i n c e n t e : ”) ,

97 w r i t e (WinBid) , n l , n l ,
b r o a d c a s t (’ INFORM’ , w inners (WinBid , WinL is t)) ,

99 l o t t e r y (WinList , Winner) ,
a s s e r t (w i n n e ri s (Winner)) ,

101 agent msg (” Agente v i n c e n t e ”) , w r i t e (Winner) , n l ,
b r o a d c a s t (’ INFORM’ , r e a lw i n n e r (WinBid , Winner)) ,

103 a s s e r t (f i n i s h e d) , a s s e r t (w a i tc o n f i r m) , s e t w a i t .

105 s e t w a i t :−
j a v a o b j e c t (” j a v a . u t i l . Date ” , [] , Date) ,

107 Date<−ge tM inu tes r e t u r n s TimeMin ,
Date<−ge tHours r e t u r n s TimeH ,

109 w a i t s p a n (Wait Len) ,
t i m e r (wai t , Wait Len , Time H , Time Min) ,

111 end (wai t , F i n i sh t im e H , F i n i s h t i m e M i n) .

113 f i n a l :− f i n i s h e d , w a i t c o n f i r m , c o n f i r m c y c l e .

115 f i n a l .

117 c o n f i r m c y c l e :−
j a v a o b j e c t (” j a v a . u t i l . Date ” , [] , Date) ,

119 end (wai t , F i n i sh t im e H , F i n i s h t i m e M i n) ,

94 APPENDIX A. IMPLEMENTED AGENTS FOR AUCTION MECHANISMS

Date<−ge tM inu tes r e t u r n s Nowmin , Date<−ge tHours r e t u r n s Nowhour ,
121 c h e c k t i m e (F i n i s h t im e H , F in i sh t ime Min , Now hour , Now min) ,

hand le msgs , loop2 (0 , 1 0 0 0 0) , ! .
123

c o n f i r m c y c l e :− agent msg (’ Nessuna conferma ’) , r e t r a c t (w a i tc o n f i r m) .
125

h a n d l e m s g s f :−
127 b l o c k i n g r e c e i v e (P e r f o r m a t i v e , Message , Winner) ,

s e l e c t f (P e r f o r m a t i v e , Message , Winner) , ! .
129

h a n d l e m s g s f :− agent msg (” nessun messagg io a r r i v a t o ”) .
131

s e l e c t f (P e r f o r m a t i v e , Message , Sender) :−
133 bound (P e r f o r m a t i v e) ,

bound (Message) ,
135 unpack (Message , TermMsg) ,

h a n d l e f (P e r f o r m a t i v e , TermMsg , Sender) .
137

s e l e c t f (, ,) .
139

h a n d l e f (’CONFIRM’ , winner , Sender) :−
141 w i n n e r i s (Sender) ,

agent msg (” Conferma avvenu ta ”) , ! .
143

l o t t e r y ([] , ” Nessuno ”) .
145

l o t t e r y ([Winner] , Winner) :− ! .
147

l o t t e r y ([X | L i s t] , S e l e c t e d) :−
149 l e n g t h ([X| L i s t] , L i s t L e n g t h) ,

Seed i s L i s t L e n g t h− 1 , r a n d i n t (Seed , Numext) ,
151 P o s i t i o n i s Numext + 1 , e lemen t (P o s i t i o n , [X| L i s t] , S e l e c t e d) .

153

max o f f e r ([(Bid , B idder)| BL is t] , MaxBid , MaxList) :−
155 Bid > MaxBid , max o f f e r (BLis t , Bid , [B idder]) , ! .

157 max o f f e r ([(Bid , B idder)| BL is t] , MaxBid , MaxList) :−
Bid = MaxBid , append ([B idder] , MaxList , NewMaxList) ,

159 max o f f e r (BLis t , MaxBid , NewMaxList) , ! .

161 max o f f e r ([(Bid , B idder)| BL is t] , MaxBid , MaxList) :−
Bid < MaxBid , max o f f e r (BLis t , MaxBid , MaxList) , ! .

163

max o f f e r ([] , MaxBid , MaxList) :−
165 r e t r a c t (p r e s e n tb i d ()) , a s s e r t (p r e s e n tb i d (MaxBid)) ,

r e t r a c t (w i n n e r l i s t ()) , a s s e r t (w i n n e rl i s t (MaxList)) .

A.1. FIRST-PRICE SEALED-BID AUCTION AGENTS 95

167

l oop2 (S t a r t , Stop) :− S t a r t =< Stop , ! , N e w s t a r t i s S t a r t + 1 ,
169 l oop2 (New s ta r t , Stop) .

171 l oop2 (S t a r t , Stop) .

173 l oop (Num) :−
r e t r a c t (c o n t a (A t t u a l e)) , A t t u a l e =< Num, ! , Nuovo i s A t t u a l e + 1 ,

175 a s s e r t (c o n t a (Nuovo)) , l oop (Num) .

177 l oop (Num) :− r e t r a c t (c o n t a ()) .

179

c h e c k t i m e (F in h , Fin min , Now h , Now min):− Now h < Fin h , ! .
181

c h e c k t i m e (F in h , Fin min , F in h , Now min):− Now min =< Fin min , ! .
183

c h e c k t i m e (X,Y, Z ,K) :− f a i l .
185

187 hand le msgs :−
r e c e i v e (P e r f o r m a t i v e , Message , Sender) ,

189 s e l e c t (P e r f o r m a t i v e , Message , Sender) , ! .

191 hand le msgs .

193

s e l e c t (P e r f o r m a t i v e , Message , Sender) :−
195 bound (P e r f o r m a t i v e) ,

bound (Message) ,
197 unpack (Message , TermMsg) ,

hand le (P e r f o r m a t i v e , TermMsg , Sender) .
199

s e l e c t (, ,) :− t r u e .
201

203 hand le (’PROPOSE’ , o f f e r (Newbid) , Sender) :−
agent msg (” Nuova o f f e r t a da p a r t e d i : ”) , w r i t e (Sender) , n l , b i dl i s t (BL is t) ,

205 append ([(Newbid , Sender)] , BLis t , NewBList) ,
r e t r a c t (b i d l i s t ()) , a s s e r t (b i d l i s t (New BList)) , ! .

207

hand le (’REQUEST’ , r e g i s t e r , Sender):−
209 agent msg (” R i c h i e s t a d i r e g i s t r a z i o n e da p a r t e d i : ”) ,

w r i t e (Sender) , n l , b i d d e r s (L i s t) ,
211 append ([Sender] , L i s t , NewLis t) ,

r e t r a c t (b i d d e r s ()) , a s s e r t (b i d d e r s (NewLis t)) ,
213 pack (r e g i s t e r e d , Msg) , send (’CONFIRM’ , Msg , Sender) , ! .

96 APPENDIX A. IMPLEMENTED AGENTS FOR AUCTION MECHANISMS

215 hand le (’CONFIRM’ , winner , Sender) :−
w a i t c o n f i r m ,

217 w i n n e r i s (Sender) ,
agent msg (” Conferma avvenu ta ”) , r e t r a c t (w a i tc o n f i r m) , ! .

Listing A.2: First-Price Sealed-Bid Bidder
main :−

2 r e g i s t e r , hand lemsgs , o f f e r i n g , f i n a l .

4

my name (” g1 fp@Vento : 1 0 9 9 / JADE ”) .
6 o b j e c t v a l u e (1 0 0) .

no reg .
8

agent msg (Text) :−
10 my name (Name) , w r i t e (Name) , w r i t e (” : ”) , w r i t e (Text) , n l .

12 r e g i s t e r :− no reg ,
pack (r e g i s t e r ,X) , send (’REQUEST’ ,X, ” auctfp@Vento : 1 0 9 9 / JADE ”) , r e t r a c t (noreg) .

14

r e g i s t e r .
16

hand le msgs :−
18 b l o c k i n g r e c e i v e (P e r f o r m a t i v e , Message , Sender) ,

s e l e c t (P e r f o r m a t i v e , Message , Sender) , ! .
20

hand le msgs :− agent msg (” nessun messagg io ”) .
22

s e l e c t (P e r f o r m a t i v e , Message , Sender) :−
24 bound (P e r f o r m a t i v e) ,

bound (Message) ,
26 unpack (Message , TermMsg) ,

hand le (P e r f o r m a t i v e , TermMsg , Sender) .
28

s e l e c t (, ,) .
30

hand le (’CONFIRM’ , r e g i s t e r e d , ” auctfp@Vento : 1 0 9 9 / JADE”) :−
32 agent msg (” r e g i s t r a t o ”) , a s s e r t (r e g i s t e r e d) , ! .

34 hand le (’ INFORM’ , s t a r t (TimeH , Time Min , Num Bidders) , ” auct fp@Vento : 1 0 9 9 / JADE”) :−
agent msg (” a s t a i n i z i a t a ”) ,

36 a s s e r t (s t a r t (TimeH , Time Min)) , a s s e r t (numb idders (NumBidders)) ,
a s s e r t (c a no f f e r) , ! .

A.2. SECOND-PRICE SEALED-BID AUCTION AGENTS 97

38

hand le (’ INFORM’ , w inners (WinBid , WinL is t) , ” auctfp@Vento : 1 0 9 9 / JADE”) :−
40 a s s e r t (w inners (WinBid , WinL is t)) , ! .

42 hand le (’ INFORM’ , r e a l w i n n e r (WinBid , Winner) , ” auctfp@Vento : 1 0 9 9 / JADE”) :−
a s s e r t (r e a lw i n n e r (WinBid , Winner)) , myname (Winner) , a s s e r t (iw i n) ,

44 agent msg (” Vinco i o ”) , r e t r a c t (s t a r t (,)) .

46 hand le (, ,) .

48 o f f e r i n g :−
s t a r t (,) , c a n o f f e r , r e g i s t e r e d ,

50 e v a l o f f e r (New bid) , o f f e r (New bid) ,
agent msg (” O f f e r t a : ”) , w r i t e (New bid) , n l , r e t r a c t (c a no f f e r) , ! .

52

o f f e r i n g .
54

e v a l o f f e r (New bid) :−
56 num bidders (NumBidders) , o b j e c t v a l u e (Value) ,

New bid i s (Value∗ (Num Bidders−1)) / Num Bidders , ! .
58

60 o f f e r (Bid) :−
pack (o f f e r (Bid) ,X) ,

62 send (’PROPOSE’ ,X, ” auctfp@Vento : 1 0 9 9 / JADE ”) .

64 f i n a l :− i w in , pack (winner , Msg) ,
send (’CONFIRM’ , Msg , ” auctfp@Vento : 1 0 9 9 / JADE ”) .

66

f i n a l .

A.2 Second-Price Sealed-Bid Auction Agents

Listing A.3: Second-Price Sealed-Bid Auctioneer
1 main :−

s t a r t u p , r e g i s t r a t i o n , g e to f f e r , f i n a l .
3

f i r s t t i m e .
5 b i d l i s t ([]) .

p r e s e n t b i d (5 0) .
7 w i n n e r l i s t ([]) .

98 APPENDIX A. IMPLEMENTED AGENTS FOR AUCTION MECHANISMS

a u c t i o n s p a n (1) .
9 r e g s p a n (1) .

w a i t s p a n (1) .
11 my name (” auctsp@Vento : 1 0 9 9 / JADE ”) .

b i d d e r s ([]) .
13

agent msg (Text) :−
15 my name (Name) , w r i t e (Name) , w r i t e (” : ”) , w r i t e (Text) .

17 b r o a d c a s t (P e r f o r m a t i v e , TermMsg) :−
b i d d e r s (L i s t) ,

19 pack (TermMsg , Msg) ,
m u l t i c a s t (P e r f o r m a t i v e , Msg , L i s t) .

21

23 m u l t i c a s t (P e r f o r m a t i v e , Message , []) .

25 m u l t i c a s t (P e r f o r m a t i v e , Message , [H| T a i l]) :−
send (P e r f o r m a t i v e , Message ,H) ,

27 m u l t i c a s t (P e r f o r m a t i v e , Message , T a i l) .

29

t i m e r (Name , Length , Hour , Min) :−
31 a s s e r t (s t a r t (Name , Hour , Min)) ,

Tmp F in i sh t ime i s Min + Length ,
33 Hour A f te r i s Tmp F in i sh t ime d iv 60 ,

F in i sh M in i s Tmp F in i sh t ime mod 60 ,
35 F in i sh H i s Hour + Hour Af te r ,

a s s e r t (end (Name , F in ishH , F in i sh M in)) .
37

39 s t a r t u p :−
f i r s t t i m e ,

41 a s s e r t (s e c o n db i d (0)) ,
r e t r a c t (f i r s t t i m e) ,

43 j a v a o b j e c t (” j a v a . u t i l . Date ” , [] , Date) ,
Date<−ge tM inu tes r e t u r n s TimeMin ,

45 Date<−ge tHours r e t u r n s TimeH ,

47 r e g s p a n (RegLen) ,
agent msg (’ I n i z i o R e g i s t r a z i o n e : ’) ,

49 w r i t e (Time H) , w r i t e (’ : ’) , w r i t e (Time Min) , n l ,
t i m e r (r e g i s t r a t i o n , RegLen , Time H , Time Min) ,

51 end (r e g i s t r a t i o n , EndReg H , End Reg Min) ,
agent msg (’ F ine R e g i s t r a z i o n e : ’) ,

53 w r i t e (End Reg H) , w r i t e (’ : ’) , w r i t e (End Reg Min) , n l ,

A.2. SECOND-PRICE SEALED-BID AUCTION AGENTS 99

55 a u c t i o n s p a n (Auct Len) ,
agent msg (’ I n i z i o Asta : ’) ,

57 w r i t e (End Reg H) , w r i t e (’ : ’) , w r i t e (End Reg Min) , n l ,
t i m e r (a u c t i o n , AuctLen , End Reg H , End Reg Min) ,

59 end (a u c t i o n , F i n i sht im e H , F i n i s h t i m e M i n) ,
agent msg (’ F ine Asta : ’) ,

61 w r i t e (F i n i s h t i m e H) , w r i t e (’ : ’) , w r i t e (F i n i s h t i m e M i n) , n l .

63 s t a r t u p .

65 r e g i s t r a t i o n :− e n d r e g .

67 r e g i s t r a t i o n :−
j a v a o b j e c t (” j a v a . u t i l . Date ” , [] , Date) ,

69 Date<−ge tM inu tes r e t u r n s NowMin , Date<−ge tHours r e t u r n s NowH ,
end (r e g i s t r a t i o n , FinH , Fin Min) , c h e c k t i m e (Fin H , Fin Min , Now H , Now Min) ,

71 hand le msgs , loop (0 , 1 0 0 0 0) , ! .

73 r e g i s t r a t i o n :−
a s s e r t (e n dr e g) , b i d d e r s (BL is t) , l e n g t h (BLis t , B L i s tl e n) ,

75 end (a u c t i o n , F i n i sht im e H , F i n i s h t i m e M i n) ,
b r o a d c a s t (’ INFORM’ , s t a r t (F i n i sht im e H , F in i sh t ime Min , B L i s t l e n)) ,

77 agent msg (’ F ine r e g i s t r a z i o n e ’) , n l , ! .

79 g e t o f f e r :− end reg , g e t o f f e r i n g , ! .

81 g e t o f f e r .

83 g e t o f f e r i n g :−
j a v a o b j e c t (” j a v a . u t i l . Date ” , [] , Date) ,

85 end (a u c t i o n , F i n i sht im e H , F i n i s h t i m e M i n) ,
Date<−ge tM inu tes r e t u r n s Nowmin , Date<−ge tHours r e t u r n s Nowhour ,

87 c h e c k t i m e (F i n i s h t im e H , F in i sh t ime Min , Now hour , Now min) ,
hand le msgs , loop (0 , 1 0 0 0 0) , ! .

89

g e t o f f e r i n g :− f i n i s h e d , ! .
91

g e t o f f e r i n g :−
93 b i d l i s t (B i d L i s t) , p r e s e n t b i d (Pr B id) , w i n n e r l i s t (L i s t) ,

max o f f e r (B idL i s t , Pr Bid , 0 , L i s t) ,
95 p r e s e n t b i d (WinBid) , w i n n e r l i s t (WinL is t) ,

agent msg (” Agen t i i n l o t t e r i a ”) ,
97 w r i t e (WinL is t) , w r i t e (” con o f f e r t a v i n c e n t e : ”) ,

w r i t e (WinBid) , n l , n l ,
99 b r o a d c a s t (’ INFORM’ , w inners (WinBid , WinL is t)) ,

l o t t e r y (WinList , Winner) ,
101 a s s e r t (w i n n e ri s (Winner)) ,

100APPENDIX A. IMPLEMENTED AGENTS FOR AUCTION MECHANISMS

agent msg (” Agente v i n c e n t e ”) , w r i t e (Winner) , n l ,
103 s e c o n d b i d (SecBid) , agentmsg (” Prezzo da paga re : ”) , w r i t e (SecBid) , n l ,

b r o a d c a s t (’ INFORM’ , r e a lw i n n e r (WinBid , SecBid , Winner)) ,
105 a s s e r t (f i n i s h e d) , a s s e r t (w a i tc o n f i r m) , s e t w a i t .

107 s e t w a i t :−
j a v a o b j e c t (” j a v a . u t i l . Date ” , [] , Date) ,

109 Date<−ge tM inu tes r e t u r n s TimeMin ,
Date<−ge tHours r e t u r n s TimeH ,

111 w a i t s p a n (Wait Len) ,
t i m e r (wai t , Wait Len , Time H , Time Min) ,

113 end (wai t , F i n i sh t im e H , F i n i s h t i m e M i n) .

115 f i n a l :− f i n i s h e d , w a i t c o n f i r m , c o n f i r m c y c l e .

117 f i n a l .

119 c o n f i r m c y c l e :−
j a v a o b j e c t (” j a v a . u t i l . Date ” , [] , Date) ,

121 end (wai t , F i n i sh t im e H , F i n i s h t i m e M i n) ,
Date<−ge tM inu tes r e t u r n s Nowmin , Date<−ge tHours r e t u r n s Nowhour ,

123 c h e c k t i m e (F i n i s h t im e H , F in i sh t ime Min , Now hour , Now min) ,
hand le msgs , loop (0 , 1 0 0 0 0) , ! .

125

c o n f i r m c y c l e :− agent msg (’ Nessuna conferma ’) , r e t r a c t (w a i tc o n f i r m) .
127

h a n d l e m s g s f :−
129 b l o c k i n g r e c e i v e (P e r f o r m a t i v e , Message , Winner) ,

s e l e c t f (P e r f o r m a t i v e , Message , Winner) , ! .
131

h a n d l e m s g s f :− agent msg (” nessun messagg io a r r i v a t o ”) .
133

s e l e c t f (P e r f o r m a t i v e , Message , Sender) :−
135 bound (P e r f o r m a t i v e) ,

bound (Message) ,
137 unpack (Message , TermMsg) ,

h a n d l e f (P e r f o r m a t i v e , TermMsg , Sender) .
139

s e l e c t f (, ,) .
141

h a n d l e f (’CONFIRM’ , winner , Sender) :−
143 w i n n e r i s (Sender) ,

agent msg (” Conferma avvenu ta ”) , ! .
145

l o t t e r y ([] , ” Nessuno ”) :−
147 agent msg (” Non e ’ s t a t o r a g g i u n t o i l p rezzo d i r i s e r v a ”) , n l .

A.2. SECOND-PRICE SEALED-BID AUCTION AGENTS 101

149 l o t t e r y ([Winner] , Winner) :− ! .

151 l o t t e r y ([X | L i s t] , S e l e c t e d) :−
l e n g t h ([X| L i s t] , L i s t L e n g t h) ,

153 Seed i s L i s t L e n g t h− 1 , r a n d i n t (Seed , Numext) ,
P o s i t i o n i s Numext + 1 , e lemen t (P o s i t i o n , [X| L i s t] , S e l e c t e d) .

155

157 max o f f e r ([(Bid , B idder)| BL is t] , MaxBid , SecBid , MaxList) :−
Bid > MaxBid , max o f f e r (BLis t , Bid , MaxBid , [B idder]) , ! .

159

max o f f e r ([(Bid , B idder)| BL is t] , MaxBid , SecBid , MaxList) :−
161 Bid = MaxBid , append ([B idder] , MaxList , NewMaxList) ,

max o f f e r (BLis t , MaxBid , MaxBid , NewMaxList) , ! .
163

max o f f e r ([(Bid , B idder)| BL is t] , MaxBid , SecBid , MaxList) :−
165 Bid < MaxBid , Bid =< SecBid , max o f f e r (BLis t , MaxBid , SecBid , MaxList) , ! .

167 max o f f e r ([(Bid , B idder)| BL is t] , MaxBid , SecBid , MaxList) :−
Bid < MaxBid , Bid > SecBid , max o f f e r (BLis t , MaxBid , Bid , MaxList) , ! .

169

max o f f e r ([] , MaxBid , SecBid , MaxList) :−
171 r e t r a c t (s e c o n db i d ()) , a s s e r t (s e c o n db i d (SecBid)) ,

r e t r a c t (p r e s e n tb i d ()) , a s s e r t (p r e s e n tb i d (MaxBid)) ,
173 r e t r a c t (w i n n e r l i s t ()) , a s s e r t (w i n n e rl i s t (MaxList)) .

175 l oop (S t a r t , Stop) :− S t a r t =< Stop , ! , N e w s t a r t i s S t a r t + 1 ,
loop (New s ta r t , Stop) .

177

l oop (S t a r t , Stop) .
179

c h e c k t i m e (F in h , Fin min , Now h , Now min):− Now h < Fin h , ! .
181

c h e c k t i m e (F in h , Fin min , F in h , Now min):− Now min =< Fin min , ! .
183

c h e c k t i m e (X,Y, Z ,K) :− f a i l .
185

187 hand le msgs :−
r e c e i v e (P e r f o r m a t i v e , Message , Sender) ,

189 s e l e c t (P e r f o r m a t i v e , Message , Sender) , ! .

191 hand le msgs .

193

s e l e c t (P e r f o r m a t i v e , Message , Sender) :−
195 bound (P e r f o r m a t i v e) ,

102APPENDIX A. IMPLEMENTED AGENTS FOR AUCTION MECHANISMS

bound (Message) ,
197 unpack (Message , TermMsg) ,

hand le (P e r f o r m a t i v e , TermMsg , Sender) .
199

s e l e c t (, ,) :− t r u e .
201

203 hand le (’PROPOSE’ , o f f e r (Newbid) , Sender) :−
agent msg (” Nuova o f f e r t a da p a r t e d i : ”) , w r i t e (Sender) , n l , b i dl i s t (BL is t) ,

205 append ([(Newbid , Sender)] , BLis t , NewBList) ,
r e t r a c t (b i d l i s t ()) , a s s e r t (b i d l i s t (New BList)) , ! .

207

hand le (’REQUEST’ , r e g i s t e r , Sender):−
209 agent msg (” R i c h i e s t a d i r e g i s t r a z i o n e da p a r t e d i : ”) ,

w r i t e (Sender) , n l , b i d d e r s (L i s t) ,
211 append ([Sender] , L i s t , NewLis t) ,

r e t r a c t (b i d d e r s ()) , a s s e r t (b i d d e r s (NewLis t)) ,
213 pack (r e g i s t e r e d , Msg) , send (’CONFIRM’ , Msg , Sender) , ! .

215 hand le (’CONFIRM’ , winner , Sender) :−
w a i t c o n f i r m ,

217 w i n n e r i s (Sender) ,
agent msg (” Conferma avvenu ta ”) , r e t r a c t (w a i tc o n f i r m) , ! .

Listing A.4: Second-Price Sealed-Bid Bidder
main :−

2 r e g i s t e r , hand lemsgs , o f f e r i n g , f i n a l .

4

my name (” g1 sp@Vento : 1 0 9 9 / JADE ”) .
6 o b j e c t v a l u e (1 0 0) .

no reg .
8

agent msg (Text) :−
10 my name (Name) , w r i t e (Name) , w r i t e (” : ”) , w r i t e (Text) , n l .

12 r e g i s t e r :− no reg ,
pack (r e g i s t e r ,X) , send (’REQUEST’ ,X, ” auctsp@Vento : 1 0 9 9 / JADE ”) , r e t r a c t (noreg) .

14

r e g i s t e r .
16

hand le msgs :−
18 b l o c k i n g r e c e i v e (P e r f o r m a t i v e , Message , Sender) ,

s e l e c t (P e r f o r m a t i v e , Message , Sender) , ! .

A.2. SECOND-PRICE SEALED-BID AUCTION AGENTS 103

20

hand le msgs :− agent msg (” nessun messagg io ”) .
22

s e l e c t (P e r f o r m a t i v e , Message , Sender) :−
24 bound (P e r f o r m a t i v e) ,

bound (Message) ,
26 unpack (Message , TermMsg) ,

hand le (P e r f o r m a t i v e , TermMsg , Sender) .
28

s e l e c t (, ,) .
30

hand le (’CONFIRM’ , r e g i s t e r e d , ” auctsp@Vento : 1 0 9 9 / JADE”) :−
32 agent msg (” r e g i s t r a t o ”) , a s s e r t (r e g i s t e r e d) , ! .

34 hand le (’ INFORM’ , s t a r t (TimeH , Time Min , Num Bidders) , ” auct sp@Vento : 1 0 9 9 / JADE”) :−
agent msg (” a s t a i n i z i a t a ”) ,

36 a s s e r t (s t a r t (TimeH , Time Min)) , a s s e r t (numb idders (NumBidders)) ,
a s s e r t (c a no f f e r) , ! .

38

hand le (’ INFORM’ , w inners (WinBid , WinL is t) , ” auctsp@Vento : 1 0 9 9 / JADE”) :−
40 a s s e r t (w inners (WinBid , WinL is t)) , ! .

42 hand le (’ INFORM’ , r e a l w i n n e r (WinBid , P r i ce , Winner) , ” auctsp@Vento : 1 0 9 9 / JADE”) :−
a s s e r t (r e a lw i n n e r (WinBid , P r i ce , Winner)) , myname (Winner) , a s s e r t (iw i n) ,

44 agent msg (” Vinco i o ”) , r e t r a c t (s t a r t (,)) .

46 hand le (, ,) .

48 o f f e r i n g :−
s t a r t (,) , c a n o f f e r , r e g i s t e r e d ,

50 num bidders (NumBidders) , e v a l o f f e r (New bid) , o f f e r (New bid) ,
agent msg (” O f f e r t a : ”) , w r i t e (New bid) , n l , r e t r a c t (c a no f f e r) , ! .

52

o f f e r i n g .
54

e v a l o f f e r (New bid) :−
56 o b j e c t v a l u e (Value) , Newbid i s Value , ! .

58

o f f e r (Bid) :−
60 pack (o f f e r (Bid) ,X) ,

send (’PROPOSE’ ,X, ” auctsp@Vento : 1 0 9 9 / JADE ”) .
62

f i n a l :− i w in , pack (winner , Msg) , send (’CONFIRM’ , Msg , ” auctsp@Vento : 1 0 9 9 / JADE ”) .
64

f i n a l .

104APPENDIX A. IMPLEMENTED AGENTS FOR AUCTION MECHANISMS

A.3 English auction with continuous bidding

Listing A.5: English auction with continuous bidding: Auctioneer

2 main :−
s t a r t u p , r e g i s t r a t i o n , g e to f f e r , f i n a l .

4

6 r e s e r v e p r i c e (5 0) .
r e g s p a n (1) .

8 a u c t i o n s p a n (2) .
a l a r m s p a n (1) .

10 e x t e n s i o n s p a n (3) .

12 f i r s t t i m e .
my name (” auct eng c@Vento : 1 0 9 9 / JADE ”) .

14 p r e s e n t w i n n e r (nobody) .
p ropose (no) .

16 n a la rm (0) .
b i d d e r s ([]) .

18

agent msg (Text) :−
20 my name (Name) , w r i t e (Name) , w r i t e (” : ”) , w r i t e (Text) , n l .

22 a g e n t w r i t e (Text):−
w r i t e (Text) .

24

b r o a d c a s t (P e r f o r m a t i v e , TermMsg) :−
26 b i d d e r s (L i s t) ,

pack (TermMsg , Msg) ,
28 m u l t i c a s t (P e r f o r m a t i v e , Msg , L i s t) .

30

m u l t i c a s t (P e r f o r m a t i v e , Message , []) .
32

m u l t i c a s t (P e r f o r m a t i v e , Message , [H| T a i l]) :−
34 send (P e r f o r m a t i v e , Message ,H) ,

m u l t i c a s t (P e r f o r m a t i v e , Message , T a i l) .
36

t i m e r (Name , Length , Hour , Min) :−
38 a s s e r t (s t a r t (Name , Hour , Min)) ,

A.3. ENGLISH AUCTION WITH CONTINUOUS BIDDING 105

Tmp F in i sh t ime i s Min + Length ,
40 Hour A f te r i s Tmp F in i sh t ime d iv 60 ,

F in i sh M in i s Tmp F in i sh t ime mod 60 ,
42 F in i sh H i s (Hour + Hour A f te r) mod 24 ,

a s s e r t (end (Name , F in ishH , F in i sh M in)) .
44

s t a r t u p :−
46 f i r s t t i m e ,

r e t r a c t (f i r s t t i m e) ,
48

j a v a o b j e c t (” j a v a . u t i l . Date ” , [] , Date) ,
50 Date<−ge tM inu tes r e t u r n s TimeMin ,

Date<−ge tHours r e t u r n s TimeH ,
52 agent msg (’ I n i z i o R e g i s t r a z i o n e : ’) ,

a g e n t w r i t e (Time H) , a g e n t w r i t e (’ : ’) , a g e n t w r i t e (Time Min) , n l ,
54

r e g s p a n (RegLen) ,
56 t i m e r (r e g i s t r a t i o n , RegLen , Time H , Time Min) ,

end (r e g i s t r a t i o n , EndReg H , End Reg Min) ,
58 agent msg (’ I n i z i o Asta : ’) ,

w r i t e (End Reg H) , w r i t e (’ : ’) , w r i t e (End Reg Min) , n l ,
60

a u c t i o n s p a n (Len) ,
62 t i m e r (a u c t i o n , Len , EndReg H , End Reg Min) ,

end (a u c t i o n , F in ishH , F in i sh M in) ,
64 agent msg (’ F ine a s t a : ’) ,

a g e n t w r i t e (F in i sh H) , a g e n t w r i t e (’ : ’) , a g e n t w r i t e (F in i sh M in) , n l ,
66

a l a r m s p a n (Alarm) ,
68 t i m e r (alarm , Len− Alarm , End Reg H , End Reg Min) ,

end (alarm , AlarmH , Alarm Min) ,
70 agent msg (’ A l la rme : ’) ,

a g e n t w r i t e (Alarm H) , a g e n t w r i t e (’ : ’) , a g e n t w r i t e (Alarm Min) , n l ,
72

e x t e n s i o n s p a n (Len ex t) ,
74 t i m e r (ex t , Len + Lenext , End Reg H , End Reg Min) ,

end (ext , Ext t ime H , Ex t t ime Min) ,
76 agent msg (’ E s t e n s i o n e : ’) ,

a g e n t w r i t e (Ex t t ime H) , a g e n t w r i t e (’ : ’) , a g e n t w r i t e (Ex t t ime Min) , n l , ! .
78

s t a r t u p .
80

r e g i s t r a t i o n :− e n d r e g .
82

r e g i s t r a t i o n :−
84 j a v a o b j e c t (” j a v a . u t i l . Date ” , [] , Date) ,

Date<−ge tM inu tes r e t u r n s NowMin , Date<−ge tHours r e t u r n s NowH ,

106APPENDIX A. IMPLEMENTED AGENTS FOR AUCTION MECHANISMS

86 end (r e g i s t r a t i o n , FinH , Fin Min) , c h e c k t i m e (Fin H , Fin Min , Now H , Now Min) ,
hand le msgs , loop2 (1 , 1 0 0 0 0 0) , ! .

88

r e g i s t r a t i o n :−
90 r e s e r v e p r i c e (Pr) , b r o a d c a s t (’ INFORM’ , r e s e r v ep r i c e (Pr)) ,

a s s e r t (p r e s e n tb i d (Pr)) ,
92 b i d d e r s (BL is t) , l e n g t h (BLis t , B L i s tl e n) ,

end (a u c t i o n , F i n i sht im e H , F i n i s h t i m e M i n) ,
94 b r o a d c a s t (’ INFORM’ , s t a r t (F i n i sht im e H , F in i sh t ime Min , B L i s t l e n)) ,

a s s e r t (e n dr e g) , a s s e r t (a u c tg o i n g) ,
96 agent msg (’ F ine r e g i s t r a z i o n e ’) , n l , ! .

98 g e t o f f e r :− a u c t g o i n g , g e t o f f e r i n g , ! .

100 g e t o f f e r .

102 g e t o f f e r i n g :−
j a v a o b j e c t (” j a v a . u t i l . Date ” , [] , Date) ,

104 Date<−ge tM inu tes r e t u r n s Nowmin ,
Date<−ge tHours r e t u r n s Nowhour ,

106 end (a u c t i o n , F i n i sht im e H , F i n i s h t i m e M i n) ,
c h e c k t i m e (F i n i s h t im e H , F in i sh t ime Min , Now hour , Now min) ,

108 hand le msgs ,
check a la rm (Now hour , Now min) ,

110 r e t r a c t (p ropose ()) ,
a s s e r t (p ropose (no)) ,

112 l oop2 (1 , 1 0 0 0 0) , ! .

114 g e t o f f e r i n g :−
n a la rm (X) ,X =\= 0 , r e t r a c t (n a la rm ()) , n l ,

116 agent msg (” Es tendo l ’ a s t a ”) , n l ,
r e t r a c t (end (a u c t i o n , F i n i sht im e H , F i n i s h t i m e M i n)) ,

118 end (ext , Ext t ime H , Ex t t ime Min) ,
a s s e r t (end (a u c t i o n , Extt ime H , Ex t t ime Min)) , ! .

120

g e t o f f e r i n g :−
122 agent msg (” Asta f i n i t a ”) , r e t r a c t (a u c tg o i n g) , a s s e r t (a u c te n d) .

124 g e t o f f e r i n g .

126 l oop2 (S t a r t , Stop) :− S t a r t =< Stop , ! , N e w s t a r t i s S t a r t + 1 ,
loop2 (New s ta r t , Stop) .

128

l oop2 (S t a r t , Stop) .
130

132 c h e c k t i m e (F in h , Fin min , Now h , Now min):− F in h > Now h , ! .

A.3. ENGLISH AUCTION WITH CONTINUOUS BIDDING 107

134 c h e c k t i m e (F in h , Fin min , F in h , Now min):− Fin min >= Now min , ! .

136 c h e c k t i m e (0 , , Now h ,):− Now h >= 12 .

138 c h e c k t i m e (X,Y, Z ,K) :− f a i l .

140

check a la rm (Time h , Time min) :−
142 propose (yes) , end (alarm , AlarmH , Alarm Min) ,

c h e c k t i m e (Time h , Time min , Alarm H , Alarm Min) ,
144 r e t r a c t (n a la rm (Num)) , Newnum i s Num + 1 , a s s e r t (na la rm (Newnum)) , ! .

146 check a la rm (,) .

148

hand le msgs :−
150 r e c e i v e (P e r f o r m a t i v e , Message , Sender) ,

s e l e c t (P e r f o r m a t i v e , Message , Sender) ,
152 ! .

154 hand le msgs .

156

s e l e c t (P e r f o r m a t i v e , Message , Sender) :−
158 bound (P e r f o r m a t i v e) ,

bound (Message) ,
160 unpack (Message , TermMsg) ,

hand le (P e r f o r m a t i v e , TermMsg , Sender) .
162

s e l e c t (, ,) :− t r u e .
164

166

hand le (’PROPOSE’ , o f f e r (Newbid) , Sender) :−
168 r e t r a c t (p ropose ()) ,

a s s e r t (p ropose (yes)) ,
170 p r e s e n t b i d (P r b i d) ,

compare (Newbid , P r b id , Sender) .
172

hand le (’REQUEST’ , r e g i s t e r , Sender):−
174 agent msg (” R i c h i e s t a d i r e g i s t r a z i o n e da p a r t e d i : ”) ,

w r i t e (Sender) , n l , b i d d e r s (L i s t) ,
176 append ([Sender] , L i s t , NewLis t) ,

r e t r a c t (b i d d e r s ()) , a s s e r t (b i d d e r s (NewLis t)) ,
178 pack (r e g i s t e r e d , Msg) , send (’CONFIRM’ , Msg , Sender) , ! .

108APPENDIX A. IMPLEMENTED AGENTS FOR AUCTION MECHANISMS

180

182 compare (New , Old , Sender) :−
b e t t e r b i d (New , Old) ,

184 r e t r a c t (p r e s e n tb i d ()) , a s s e r t (p r e s e n tb i d (New)) ,
r e t r a c t (p r e s e n tw i n n e r ()) , a s s e r t (p r e s e n tw i n n e r (Sender)) ,

186 agent msg (” O f f e r t a v i n c e n t e : ”) , a g e n tw r i t e (New) , a g e n t w r i t e (” d i ”) ,
a g e n t w r i t e (Sender) , n l ,

188 pack (you win , Msg) , send (’ INFORM’ , Msg , Sender) ,
b r o a d c a s t (’ INFORM’ , p r e s e n tb i d (New)) , ! .

190

compare (New , Old , Sender) .
192

b e t t e r b i d (NewB, OldB) :− NewB > OldB .
194

f i n a l :− auc t end ,
196 r e s e r v e p r i c e (R e s p r i) , p r e s e n t b i d (Bid) , R e s p r i > Bid ,

p r e s e n t w i n n e r (Winner) ,
198 b r o a d c a s t (’ INFORM’ , a u c te n d) , r e t r a c t (a u c te n d) ,

agent msg (” La m i g l i o r e o f f e r t a non ha r a g g i u n t o i l p rezzo d i r i s e r v a . ”) ,
200 Bid = 0 ,

b r o a d c a s t (’ INFORM’ , r e a lw i n n e r (Winner , Bid)) , w r i t e (” F ine Asta ”) , n l , ! .
202

f i n a l :− auc t end ,
204 p r e s e n t b i d (Bid) , p r e s e n t w i n n e r (Winner) ,

b r o a d c a s t (’ INFORM’ , a u c te n d) , r e t r a c t (a u c te n d) ,
206 nl , a g e n t w r i t e (” Vince l ’ a s t a l ’ a g e n t e ”) ,

w r i t e (Winner) , w r i t e (” con o f f e r t a d i ”) , w r i t e (Bid) , n l ,
208 b r o a d c a s t (’ INFORM’ , r e a lw i n n e r (Winner , Bid)) , w r i t e (” F ine ”) , n l .

210 f i n a l .

Listing A.6: English auction with continuous bidding: Bidder
main :−

2 r e g i s t e r , hand lemsgs , o f f e r i n g .

4 my name (” g1 eng c@Vento : 1 0 9 9 / JADE ”) .
i w i n (f a l s e) .

6 o b j e c t v a l u e (1 0 0) .
no reg .

8

agent msg (Text) :−
10 my name (Name) , w r i t e (Name) , w r i t e (” : ”) , w r i t e (Text) , n l .

A.3. ENGLISH AUCTION WITH CONTINUOUS BIDDING 109

12 r e g i s t e r :− no reg ,
pack (r e g i s t e r ,X) , send (’REQUEST’ ,X, ” aucteng c@Vento : 1 0 9 9 / JADE ”) ,

14 r e t r a c t (no reg) .

16 r e g i s t e r .

18 hand le msgs :−
b l o c k i n g r e c e i v e (P e r f o r m a t i v e , Message , Sender) ,

20 s e l e c t (P e r f o r m a t i v e , Message , Sender) , ! .

22 hand le msgs .

24 s e l e c t (P e r f o r m a t i v e , Message , Sender) :−
bound (P e r f o r m a t i v e) ,

26 bound (Message) ,
unpack (Message , TermMsg) ,

28 hand le (P e r f o r m a t i v e , TermMsg , Sender) .

30 s e l e c t (, ,) .

32 hand le (’CONFIRM’ , r e g i s t e r e d , ” aucteng c@Vento : 1 0 9 9 / JADE”) :−
agent msg (” r e g i s t r a t o ”) , a s s e r t (r e g i s t e r e d) , ! .

34

hand le (’ INFORM’ , r e s e r v ep r i c e (Pr) , ” auct eng c@Vento : 1 0 9 9 / JADE”):−
36 a s s e r t (p r e s e n tb i d (Pr)) .

38 hand le (’ INFORM’ ,
s t a r t (F i n i sh t im e H , F in i sh t ime Min , B L i s t l e n) ,

40 ” auct eng c@Vento : 1 0 9 9 / JADE”) :−
a s s e r t (s t a r t (F i n i sht im e H , F i n i s h t i m e M i n)) ,

42 a s s e r t (numb idders (NumBidders)) , ! .

44 hand le (’ INFORM’ , p r e s e n tb i d (Bid) , ” auct eng c@Vento : 1 0 9 9 / JADE”) :−
c h a n g e b i d (Bid) ,

46 r e t r a c t (i w i n ()) , a s s e r t (i w i n (f a l s e)) , ! .

48 hand le (’ INFORM’ , you win , ” auct eng c@Vento : 1 0 9 9 / JADE”) :−
r e t r a c t (i w i n ()) , a s s e r t (i w i n (t r u e)) , ge t w b id , ! .

50

hand le (, ,) .
52

c h a n g e b i d (Bid) :−
54 r e t r a c t (p r e s e n tb i d ()) , a s s e r t (p r e s e n tb i d (Bid)) .

56 g e t w b i d :−
b l o c k i n g r e c e i v e (P e r f o r m a t i v e , Message , Sender) , bound (P e r f o r m a t i v e) ,

58 bound (Message) , unpack (Message , TermMsg) , ge tw aux (TermMsg) , ! .

110APPENDIX A. IMPLEMENTED AGENTS FOR AUCTION MECHANISMS

60 ge t w aux (p r e s e n tb i d (Bid)) :− c h a n g e b i d (Bid) .

62 o f f e r i n g :−
r e g i s t e r e d , s t a r t (,) , i w i n (f a l s e) ,

64 e v a l o f f e r (New bid) , o f f e r (New bid) , ! .

66 o f f e r i n g .

68 e v a l o f f e r (New bid) :−
o b j e c t v a l u e (Value) , p r e s e n tb i d (P r e s e n tb i d) , P r e s e n tb i d < Value ,

70 New bid i s P r e s e n tb i d + 1 , ! .

72 e v a l o f f e r (P r e s e n tb i d , New bid) :− New bid = no ,
agent msg (” non posso p e r m e t t e r m e l o ”) .

74

o f f e r (no) :− ! .
76

o f f e r (Bid) :−
78 pack (o f f e r (Bid) ,X) ,

send (’PROPOSE’ ,X, ” aucteng c@Vento : 1 0 9 9 / JADE ”) .

A.4 English auction with rounds

Listing A.7: English auction with rounds: Auctioneer
1

main :−
3 s t a r t u p , r e g i s t r a t i o n , g e to f f e r , f i n a l .

5

r e s e r v e p r i c e (5 0) .
7 r e g s p a n (1) .

a u c t i o n s p a n (5) .
9 a l a r m s p a n (1) .

e x t e n s i o n s p a n (2) .
11 t i m e s t e p (1) .

13 f i r s t t i m e .
my name (” auc t eng r@Vento : 1 0 9 9 / JADE ”) .

15 propose (no) .
n a la rm (0) .

A.4. ENGLISH AUCTION WITH ROUNDS 111

17 b i d d e r s ([]) .
p r e s e n t w i n n e r ([]) .

19

agent msg (Text) :−
21 my name (Name) , w r i t e (Name) , w r i t e (” : ”) , w r i t e (Text) , n l .

23 a g e n t w r i t e (Text):−
w r i t e (Text) .

25

b r o a d c a s t (P e r f o r m a t i v e , TermMsg) :−
27 b i d d e r s (L i s t) ,

m u l t i c a s t (P e r f o r m a t i v e , TermMsg , L i s t) .
29

m u l t i c a s t (P e r f o r m a t i v e , Message , []) .
31

m u l t i c a s t (P e r f o r m a t i v e , Message , [H| T a i l]) :−
33 pack (Message , Msg) ,

send (P e r f o r m a t i v e , Msg ,H) ,
35 m u l t i c a s t (P e r f o r m a t i v e , Message , T a i l) .

37 t i m e r (Name , Length , Hour , Min) :−
a s s e r t (s t a r t (Name , Hour , Min)) ,

39 Tmp F in i sh t ime i s Min + Length ,
Hou r A f te r i s Tmp F in i sh t ime d iv 60 ,

41 F in i sh M in i s Tmp F in i sh t ime mod 60 ,
F in i sh H i s (Hour + Hour A f te r) mod 24 ,

43 a s s e r t (end (Name , F in ishH , F in i sh M in)) .

45

s t a r t u p :−
47 f i r s t t i m e ,

r e t r a c t (f i r s t t i m e) ,
49

j a v a o b j e c t (” j a v a . u t i l . Date ” , [] , Date) ,
51 Date<−ge tM inu tes r e t u r n s TimeMin ,

Date<−ge tHours r e t u r n s TimeH ,
53 agent msg (’ I n i z i o R e g i s t r a z i o n e : ’) ,

a g e n t w r i t e (Time H) , a g e n t w r i t e (’ : ’) , a g e n t w r i t e (Time Min) , n l ,
55

r e g s p a n (RegLen) ,
57 t i m e r (r e g i s t r a t i o n , RegLen , Time H , Time Min) ,

end (r e g i s t r a t i o n , EndReg H , End Reg Min) ,
59 agent msg (’ I n i z i o Asta : ’) ,

w r i t e (End Reg H) , w r i t e (’ : ’) , w r i t e (End Reg Min) , n l ,
61

a u c t i o n s p a n (Len) ,
63 t i m e r (a u c t i o n , Len , EndReg H , End Reg Min) ,

112APPENDIX A. IMPLEMENTED AGENTS FOR AUCTION MECHANISMS

end (a u c t i o n , F in ishH , F in i sh M in) ,
65 agent msg (’ F ine a s t a : ’) ,

a g e n t w r i t e (F in i sh H) , a g e n t w r i t e (’ : ’) , a g e n t w r i t e (F in i sh M in) , n l ,
67

a l a r m s p a n (Alarm) ,
69 t i m e r (alarm , Len− Alarm , End Reg H , End Reg Min) ,

end (alarm , AlarmH , Alarm Min) ,
71 agent msg (’ A l la rme : ’) ,

a g e n t w r i t e (Alarm H) , a g e n t w r i t e (’ : ’) , a g e n t w r i t e (Alarm Min) , n l ,
73

e x t e n s i o n s p a n (Len ex t) ,
75 t i m e r (ex t , Len + Lenext , End Reg H , End Reg Min) ,

end (ext , Ext t ime H , Ex t t ime Min) ,
77 agent msg (’ E s t e n s i o n e : ’) ,

a g e n t w r i t e (Ex t t ime H) , a g e n t w r i t e (’ : ’) , a g e n t w r i t e (Ex t t ime Min) , n l , ! .
79

81 s t a r t u p .

83 r e g i s t r a t i o n :− e n d r e g .

85 r e g i s t r a t i o n :−
j a v a o b j e c t (” j a v a . u t i l . Date ” , [] , Date) ,

87 Date<−ge tM inu tes r e t u r n s NowMin , Date<−ge tHours r e t u r n s NowH ,
end (r e g i s t r a t i o n , FinH , Fin Min) , c h e c k t i m e (Fin H , Fin Min , Now H , Now Min) ,

89 hand le msgs , loop2 (1 , 1 0 0 0 0 0) , ! .

91 r e g i s t r a t i o n :−
r e s e r v e p r i c e (Pr) , b r o a d c a s t (’ INFORM’ , r e s e r v ep r i c e (Pr)) ,

93 a s s e r t (p r e s e n tb i d (Pr)) ,
b i d d e r s (BL is t) , l e n g t h (BLis t , B L i s tl e n) ,

95 end (a u c t i o n , F i n i sht im e H , F i n i s h t i m e M i n) ,
b r o a d c a s t (’ INFORM’ , s t a r t (F i n i sht im e H , F in i sh t ime Min , B L i s t l e n)) ,

97 a s s e r t (e n dr e g) , a s s e r t (a u c tg o i n g) ,
agent msg (’ F ine r e g i s t r a z i o n e ’) , n l , ! .

99

101 g e t o f f e r :−
l oop (1 , 1 0 0 0 0) ,

103 hand le msgs ([] , O f f e r L i s t) , p r e s e n tb i d (Pr B id) , p r e s e n t w i n n e r (L i s t) ,
max o f f e r (O f f e r L i s t , Pr Bid , L i s t) ,

105 j a v a o b j e c t (” j a v a . u t i l . Date ” , [] , Date) ,
end (a u c t i o n , F i n i sht im e H , F i n i s h t i m e M i n) ,

107 Date<−ge tM inu tes r e t u r n s Nowmin ,
Date<−ge tHours r e t u r n s Nowhour ,

109 check a la rm (Now hour , Now min) ,
c h e c k t i m e (F i n i s h t im e H , F in i sh t ime Min , Now hour , Now min) ,

A.4. ENGLISH AUCTION WITH ROUNDS 113

111 r e t r a c t (p ropose ()) ,
a s s e r t (p ropose (no)) ,

113 ! .

115 g e t o f f e r :−
n a la rm (X) ,X =\= 0 , r e t r a c t (n a la rm ()) ,

117 agent msg (” Es tendo l ’ a s t a ”) , n l ,
r e t r a c t (end (a u c t i o n , F i n i s ht im e H , F i n i s h t i m e M i n)) ,

119 end (ext , Ext t ime H , Ex t t ime Min) ,
a s s e r t (end (a u c t i o n , Extt ime H , Ex t t ime Min)) , ! .

121

g e t o f f e r :− a u c t g o i n g , n l , agentmsg (” Asta f i n i t a ”) ,
123 r e t r a c t (a u c t g o i n g) , a s s e r t (a u c te n d) .

125 g e t o f f e r .

127 l oop (S t a r t , Stop) :− S t a r t =< Stop , ! , N e w s t a r t i s S t a r t + 1 ,
loop (New s ta r t , Stop) .

129

l oop (S t a r t , Stop) .
131

133 w a i t i n g (Date , Endhour , End min) :−
l oop (1 0 0 0) ,

135 Date<−ge tM inu tes r e t u r n s Nowmin , Date<−ge tHours r e t u r n s Nowhour ,
c h e c k t i m e (End hour , End min , Now hour , Now min) ,

137 w a i t i n g (Date , Endhour , End min) .

139 w a i t i n g (, ,) .

141

c h e c k t i m e (F in h , Fin min , Now h , Now min):− F in h > Now h , ! .
143

c h e c k t i m e (F in h , Fin min , F in h , Now min):− Fin min >= Now min , ! .
145

c h e c k t i m e (X,Y, Z ,K) :− f a i l .
147

149 check a la rm (Time h , Time min) :− propose (yes) ,
m alarm (Alarm min) , h a la rm (Alarm h) ,

151 c h e c k t i m e (Time h , Time min , Alarm h , Alarm min) ,
r e t r a c t (n a la rm (Num)) , Newnum i s Num + 1 , a s s e r t (na la rm (Newnum)) , n l ,

153 w r i t e (” A l la rme : ”) , a g e n t w r i t e (New num) , n l , ! .

155 check a la rm (,) .

157

114APPENDIX A. IMPLEMENTED AGENTS FOR AUCTION MECHANISMS

hand le msgs (L i s t , L i s t R e s) :−
159 r e c e i v e (P e r f o r m a t i v e , Message , Sender) ,

s e l e c t (P e r f o r m a t i v e , Message , Sender , L i s t , L is tApp) ,
161 hand le msgs (ListApp , L i s t R e s) , ! .

163 hand le msgs (L i s t , L i s t) .

165

s e l e c t (P e r f o r m a t i v e , Message , Sender , L , LRes) :−
167 bound (P e r f o r m a t i v e) ,

bound (Message) ,
169 unpack (Message , TermMsg) ,

hand le (P e r f o r m a t i v e , TermMsg , Sender , L , LRes) .
171

s e l e c t (, ,) :− t r u e .
173

175 hand le (’PROPOSE’ , o f f e r (Newbid) , Sender , L , LRes) :−
r e t r a c t (p ropose ()) ,

177 a s s e r t (p ropose (yes)) ,
append ([(Newbid , Sender)] , L , LRes) .

179

hand le (’REQUEST’ , r e g i s t e r , Sender , L , LRes):−
181 agent msg (” R i c h i e s t a d i r e g i s t r a z i o n e da p a r t e d i : ”) ,

w r i t e (Sender) , n l , b i d d e r s (L i s t) ,
183 append ([Sender] , L i s t , NewLis t) ,

r e t r a c t (b i d d e r s ()) , a s s e r t (b i d d e r s (NewLis t)) ,
185 pack (r e g i s t e r e d , Msg) , send (’CONFIRM’ , Msg , Sender) , ! .

187 e v a l o f f e r ([]) .

189 e v a l o f f e r ([(NewBid , Sender)| L i s t]) : −
p r e s e n t b i d (PrBid) , b e t t e r b i d (NewBid , PrBid) ,

191 r e t r a c t (p r e s e n tb i d ()) , a s s e r t (p r e s e n tb i d (NewBid)) ,
r e t r a c t (p r e s e n tw i n n e r ()) , a s s e r t (p r e s e n tw i n n e r ([Sender])) ,

193 e v a l o f f e r (L i s t) , ! .

195 e v a l o f f e r ([(NewBid , Sender)| L i s t]) : −
p r e s e n t b i d (PrBid) , e q u a l b i d (NewBid , PrBid) ,

197 r e t r a c t (p r e s e n tw i n n e r (WinnerL i s t)) ,
append ([Sender] , WinnerL is t , NewWinnerList) ,

199 a s s e r t (p r e s e n tw i n n e r (NewWinnerList)) ,
e v a l o f f e r (L i s t) , ! .

201

e v a l o f f e r ([(NewBid , Sender)| L i s t]) : − e v a l o f f e r (L i s t) , ! .
203

A.4. ENGLISH AUCTION WITH ROUNDS 115

205 b e t t e r b i d (NewBid , OldBid) :− NewBid > OldBid .

207

e q u a l b i d (NewBid , OldBid) :− NewBid == OldBid .
209

211 max o f f e r ([(Bid , B idder)| BL is t] , MaxBid , MaxList) :−
Bid > MaxBid , max o f f e r (BLis t , Bid , [B idder]) , ! .

213

max o f f e r ([(Bid , B idder)| BL is t] , MaxBid , MaxList) :−
215 Bid = MaxBid , append ([B idder] , MaxList , NewMaxList) ,

max o f f e r (BLis t , MaxBid , NewMaxList) , ! .
217

max o f f e r ([(Bid , B idder)| BL is t] , MaxBid , MaxList) :−
219 Bid < MaxBid , max o f f e r (BLis t , MaxBid , MaxList) , ! .

221 max o f f e r ([] , MaxBid , MaxList) :−
r e t r a c t (p r e s e n tb i d ()) , a s s e r t (p r e s e n tb i d (MaxBid)) ,

223 r e t r a c t (p r e s e n tw i n n e r ()) , a s s e r t (p r e s e n tw i n n e r (MaxList)) .

225

f i n a l :− a u c t g o i n g ,
227 r e s e r v e p r i c e (n u l l) , p r e s e n tb i d (Bid) ,

agent msg (” O f f e r t a v i n c e n t e : ”) , a g e n tw r i t e (Bid) , n l ,
229 p r e s e n t w i n n e r (Winners) ,

a g e n t w r i t e (” d e i s e g u e n t i a g e n t i : ”) , a g e n tw r i t e (Winners) , n l , ! .
231

f i n a l :− auc t end ,
233 r e s e r v e p r i c e (R e s p r i) , p r e s e n t b i d (Bid) , R e s p r i > Bid ,

agent msg (” La m i g l i o r e o f f e r t a non ha r a g g i u n t o i l p rezzo d i r i s e r v a . ”) ,
235 b r o a d c a s t (’ INFORM’ , a u c te n d) , r e t r a c t (a u c te n d) , ! .

237 f i n a l :− a u c t g o i n g ,
p r e s e n t b i d (Bid) , a g e n t w r i t e (” O f f e r t a v i n c e n t e : ”) , a g e n tw r i t e (Bid) ,

239 p r e s e n t w i n n e r (Winners) ,
a g e n t w r i t e (” d e i s e g u e n t i a g e n t i : ”) , a g e n tw r i t e (Winners) , n l , n l ,

241 l e n g t h (Winners , Numwin) , m u l t i c a s t (’ INFORM’ , you win (Num win , Bid) , Winners) ,
b r o a d c a s t (’ INFORM’ , p r e s e n tb i d (Bid)) .

243

f i n a l :− auc t end ,
245 p r e s e n t b i d (Bid) , a g e n t w r i t e (” O f f e r t a v i n c e n t e : ”) , a g e n tw r i t e (Bid) ,

p r e s e n t w i n n e r (Winners) ,
247 a g e n t w r i t e (” d e i s e g u e n t i a g e n t i : ”) , a g e n tw r i t e (Winners) , n l ,

b r o a d c a s t (’ INFORM’ , a u c te n d) , r e t r a c t (a u c te n d) ,
249 l e n g t h (Winners , Numwin) , m u l t i c a s t (’ INFORM’ , l a s t w i n (Num win , Bid) , Winners) ,

a g e n t w r i t e (” Vince l a l o t t e r i a l ’ a g e n t e ”) ,
251 l o t t e r y (Winners , Winner) , w r i t e (Winner) , n l ,

116APPENDIX A. IMPLEMENTED AGENTS FOR AUCTION MECHANISMS

b r o a d c a s t (’ INFORM’ , r e a lw i n n e r (Winner , Bid)) , w r i t e (” F ine ”) , n l .
253

f i n a l .
255

257 l o t t e r y ([] , ” Nessuno ”) .

259 l o t t e r y ([Winner] , Winner) .

261 l o t t e r y ([X | L i s t] , S e l e c t e d) :−
l e n g t h ([X| L i s t] , L i s t L e n g t h) , Seed i s L i s t L e n g t h− 1 ,

263 r a n d i n t (Seed , Numext) , P o s i t i o n i s Numext + 1 ,
e lemen t (P o s i t i o n , [X| L i s t] , S e l e c t e d) .

Listing A.8: English auction with rounds: Bidder
main :−

2 hand le msgs , o f f e r i n g .

4

i w i n (f a l s e) .
6 my name (” g1 eng r@Vento : 1 0 9 9 / JADE ”) .

o b j e c t v a l u e (1 0 0) .
8 num winners (0) .

10 agent msg (Text) :−
my name (Name) , w r i t e (Name) , w r i t e (” : ”) , w r i t e (Text) .

12

14 hand le msgs :−
b l o c k i n g r e c e i v e (P e r f o r m a t i v e , Message , Sender) ,

16 s e l e c t (P e r f o r m a t i v e , Message , Sender) , ! .

18 hand le msgs .

20 s e l e c t (P e r f o r m a t i v e , Message , Sender) :−
bound (P e r f o r m a t i v e) ,

22 bound (Message) ,
unpack (Message , TermMsg) ,

24 hand le (P e r f o r m a t i v e , TermMsg , Sender) .

26 s e l e c t (, ,) .

28 hand le (’ INFORM’ , r e s e r v ep r i c e (Pr) , Sender):−
a s s e r t (p r e s e n tb i d (Pr)) .

A.4. ENGLISH AUCTION WITH ROUNDS 117

30

hand le (’ INFORM’ , s t a r t (TimeH , Time Min ,Num) , Sender) :−
32 a s s e r t (s t a r t (TimeH , Time Min)) , a s s e r t (numwinners (Num)) , ! .

34 hand le (’ INFORM’ , p r e s e n tb i d (Bid) , Sender) :−
c h a n g e b i d (Bid) ,

36 r e t r a c t (i w i n ()) , a s s e r t (i w i n (f a l s e)) , ! .

38 hand le (’ INFORM’ , you win (Num, Bid) , Sender) :−
Num = 1 ,

40 r e t r a c t (numwinners ()) , a s s e r t (numwinners (Num)) ,
r e t r a c t (i w i n ()) , a s s e r t (i w i n (t r u e)) ,

42 b l o c k i n g r e c e i v e (P e r f o r m a t i v e , Message , OSender) ,
c h a n g e b i d (Bid) , ! .

44

hand le (’ INFORM’ , you win (Num, Bid) , Sender) :−
46 r e t r a c t (numwinners ()) , a s s e r t (numwinners (Num)) ,

r e t r a c t (i w i n ()) , a s s e r t (i w i n (f a l s e)) ,
48 b l o c k i n g r e c e i v e (P e r f o r m a t i v e , Message , OSender) ,

c h a n g e b i d (Bid) , ! .
50

hand le (’ INFORM’ , l a s t w i n (Num, Bid) , Sender) :−
52 r e t r a c t (numwinners ()) , a s s e r t (numwinners (Num)) ,

r e t r a c t (i w i n ()) , a s s e r t (i w i n (t r u e)) ,
54 c h a n g e b i d (Bid) , ! .

56 hand le (’ INFORM’ , r e a l w i n n e r (Winner , Bid) , Sender) :−
my name (Winner) , r e t r a c t (iw i n ()) , a s s e r t (i w i n (t r u e)) .

58

hand le (’ INFORM’ , auc t end , Sender) :−
60 a s s e r t (a u c te n d) .

62 hand le (, ,) .

64

c h a n g e b i d (Bid) :−
66 r e t r a c t (p r e s e n tb i d ()) , a s s e r t (p r e s e n tb i d (Bid)) .

68 g e t w b i d :−
b l o c k i n g r e c e i v e (P e r f o r m a t i v e , Message , Sender) , bound (P e r f o r m a t i v e) ,

70 bound (Message) , unpack (Message , TermMsg) , ge tw aux (TermMsg) , ! .

72 ge t w aux (p r e s e n tb i d (Bid)) :− c h a n g e b i d (Bid) .

74

o f f e r i n g :− a u c t e n d .
76

118APPENDIX A. IMPLEMENTED AGENTS FOR AUCTION MECHANISMS

o f f e r i n g :−
78 s t a r t (,) , i w i n (t r u e) , ! .

80 o f f e r i n g :−
s t a r t (,) , e v a l o f f e r (New bid) , o f f e r (New bid) , ! .

82

o f f e r i n g .
84

e v a l o f f e r (New bid) :−
86 num winners (N) , N =\= 1 , p r e s e n t b i d (P r e s e n tb i d) , o b j e c t v a l u e (Value) ,

P r e s e n t b i d =< Value − 1 , New bid i s P r e s e n tb i d + 1 , ! .
88

e v a l o f f e r (New bid) :−
90 New bid = no .

92

o f f e r (no) :− ! .
94

o f f e r (Bid) :−
96 pack (o f f e r (Bid) , Msg) ,

send (’PROPOSE’ , Msg , ” auc teng r@Vento : 1 0 9 9 / JADE ”) .

Bibliography

[AMMM02] R. Albertoni, M. Martelli, V. Mascardi, and S. Miglia. Specifica, im-
plementazione ed esecuzione di un prototipo di sistema multi–agente
in DCaseLP . In Proc. of WOA 2002, Milano, Italy, 2002. Pitagora
editrice, Bologna.

[ASZ91] D. Atkins, W. Stallings, and P. Zimmermann. Pgp message exchange
formats.RFC, 1991.

[BCTR04] F. Bellifemine, G. Caire, T. Trucco, and G. Rimassa.JADE PRO-
GRAMMERS GUIDE. Tilab (Telecom Italia Lab), 2004.

[BDM+99] M. Bozzano, G. Delzanno, M. Martelli, V. Mascardi, and F. Zini.
Multi–agent systems development as a software engineering enter-
prise. In G.Gupta, editor,Proc. of First International Workshop on
Practical Aspects of Declarative Languages (PADL’99), pages 46–
60, San Antonio, Texas, 1999. Springer-Verlag.

[Bin92] K. Binmore.Fun and games. D.C. Heath and Company, 1992.

[BMO01] B.Bauer, J. P. Mller, and J. Odell. chapter Agent UML: A Formalism
for Specifying Multiagent Interaction. Springer-Verlag, 2001.

[CH04] L. Cabral and A. Hortacsu. The dynamics of seller reputation: Theory
and evidence fromeBay. NBER Working Paper, 2004.

[Del97] G. Delzanno. Logic & Object-Oriented Programming
In Linear Logic. PhD thesis, University of Pisa, 1997.
ftp://ftp.disi.unige.it/person/DelzannoG/papers/thesis.ps.gz.

[DKM +99] P. Dart, E. Kazmierczak, M. Martelli, V. Mascardi, L. Sterling, V.S.
Subrahmanian, and F. Zini. Combining logical agents with rapid pro-
totyping for engineering distributed applications. In S. Tilley and

119

120 BIBLIOGRAPHY

J. Verner, editors,Proceedings of the Nineth International Confer-
ence of Software Technology and Engineering (STEP’99), pages 40–
49, Pittsburgh, PA, 1999. IEEE Computer Society Press.

[DOR01] E. Denti, A. Omicini, and A. Ricci. tuprolog: A light-weight pro-
log for internet applications and infrastructures. In I. V. Ramakr-
ishnan, editor,Proc. of the 3rd International Symposium on Prac-
tical Aspects of Declarative Programming (PADL01), pages 184–
198, Las Vegas, NV, U.S.A., 2001. Springer–Verlag. Home Page:
http://lia.deis.unibo.it/research/tuprolog/.

[FG98] J. Ferber and O. Gutknecht. A meta-model for the analisys of organi-
zations in multi-agent systems. InProceeding 3rd International Con-
ference on Multi-Agent Systems (ICMAS-98), pages 128–135, Paris,
France, 1998.

[FH] E. Friedman-Hill.JessTM, the rule engine for the java platform. Home
Page: http://herzberg.ca.sandia.gov/jess/index.shtml.

[FIP] FIPA (The Foundation for Intelligent Physical Agents).AUML.
Agent–based Unified Modeling Language. Home Page:
http://www.auml.org/.

[Fis79] Peter Fishburn.Utility Theory for Decision Making. Krieger, Hunt-
ington (NY),, 1979.

[GLS67] J.H. Griesmer, R.E. Levitan, and M. Shubik. Towards a study of bid-
ding process: part iv.Naval research logistics quarterly, 14:415–33,
1967.

[GMP02] F. Giunchiglia, J. Mylopoulos, and A. Perini. The tropos software
development methodology: processes, models and diagrams. InAA-
MAS02 workshop on Agent Oriented Software Engineering (AOSE-
2002), pages 63 – 74, 2002.

[Gun05] I. Gungui. Integrating logical agents intoDCaseLP . Master’s thesis,
DISI, University of Genoa, Italy, 2005.

[Har68] J. Harsanyi. Games with incomplete information played by bayesian
players.Management Science, 14, 1967–1968.

[Hug02] M-P. Huget. Model checking agent uml protocol diagrams. Technical
report, CS Department, University of Liverpool, UK, 2002.

BIBLIOGRAPHY 121

[Koh90] E. Kohlberg. Refinement of the nash equilibrium: the main ideas. In
T. Ichiishi A. Neyman Y. Tauman, editor,Game theory and applica-
tions. Academic Press, 1990.

[Kre88] David Mark Kreps.Notes on the Theory of Choice. Princeton Uni-
versity Press, 1988.

[LM95] T. Finin Y. Labrou and J. Mayfield. Kqml as an agent communication
language. In J. Bradshaw, editor,Software Agents, pages 265–284.
MIT Press, 1995.

[Mae94] Pattie Maes. Agents that reduce work and information overload.Com-
munications of the ACM, 37, 1994.

[Mar99] S. Marini. Specifica di sistemi multi-agente eterogenei. Master’s
thesis, DISI, University of Genoa, Italy, 1999.

[Mas02] V. Mascardi. Logic-Based Specification Environments for Multi-
Agent Systems. PhD thesis, University of Genova, 2002.
ftp://ftp.disi.unige.it/person/MascardiV/Tesi/mythesis.ps.gz.

[Mig02] S. Miglia. Specifica ed implementazione di ruoli e protocolli dinter-
azione per agenti inDCaseLP . Master’s thesis, DISI, University of
Genoa, Italy, 2002.

[MMMZ00] S. Marini, M. Martelli, V. Mascardi, and F. Zini. Hemasl: A flexible
language to specify heterogeneous agents. In A. Corradi A. Omicini
and A. Poggi, editors,Proc. of WOA ’00. Dagli Oggetti Agli Agenti,
pages 76–81, Parma, Italy, 2000. Pitagora editrice, Bologna.

[MMZ99] M. Martelli, V. Mascardi, and F. Zini. Specification and simulation
of multi–agent systems inCaseLP4. In Proc. of Appia-Gulp-Prode,
L’Aquila, Italy, 1999.

[MW82] P. Milgrom and R.J. Weber. A theory on auctions and competitive
bidding. Econometrica, 50:1089–1122, 1982.

[Mye81] R.B. Myerson. Optimal auction design.Mathematics of Operations
Research, 6:58–73, 1981.

[Mye91] R.B. Myerson.Game Theory. Analysis of conflict. Harvard University
Press, 1991.

122 BIBLIOGRAPHY

[NAS] NASAs Johnson Space Center.CLIPS: A Tool for Building Expert
Systems. Home Page: http://www.ghg.net/clips/CLIPS.html.

[Nas51] J. Nash. Non–cooperative games.Annals of Mathematics, 54:286–
295, 1951.

[NM44] J. Von Neumann and O. Morgenstern.The theory of games and eco-
nomic behaviour. Westview Press, 1944.

[Rod01] J. A. Rodriguez. On the design and construction of agent-mediated
electronic institutions.IIIA Monographs, 14, 2001.

[RS81] J.G. Riley and W.F. Samuelson. Optimal auctions.American eco-
nomic review, 71:381–92, 1981.

[RSGJ03] S. D. Ramchurn, C. Sierra, L. Godo, and N. R. Jennigs. A computa-
tional trust model for multiagent interactions based on confidence and
reputation. InProceedings of International Workshop on Deception,
Trust, and Fraud, AAMAS03, pages 69 – 75, 2003.

[SA03] F. Stolzenburg and T. Arai. From the specification of multi–agent sys-
tems by statecharts to their formal analysis by model–checking: To-
wards safety-critical applications. In J. Muller M.Schillo M.Klusch
and H.Tianfield, editors,Proc. of the First German Conference on
Multiagent System Technologies, pages 131–143. Springer-Verlag,
2003.

[Sab03] J. Sabater. Trust and reputation for agent societies. InIIIA Mono-
graphs, CSIC: Barcelona, volume 20, 2003.

[SIC] SICS. (SWEDISH INSTITUTE OF COMPUTER
SCIENCE). SICStus Prolog. Home Page:
http://www.sics.se/isl/sicstuswww/site/index.html.

[Sie04] C. Sierra. Agent-mediated electronic commerce.Autonomous Agents
and Multi-Agent Sytems, 9:285–301, 2004.

[Sun] Sun Microsystems.Java, trademark of Sun Microsystems. Home
Page: http://www.sun.com/.

[Til] Tilab (Telecom Italia Lab). Java Agent DEvelopment Framework,
an Open Source platform for peer-to-peer agent based applications.
Home Page: http://jade.tilab.com/.

BIBLIOGRAPHY 123

[Vic61] W. Vickrey. Counterspeculation, auctions and competitive sealed ten-
ders.Journal of Finance, 16:8–37, 1961.

[Vic62] W. Vickrey. Auction and bidding games. InRecent advances in Game
Theory, pages 15–27. Princeton University Conference, 1962.

[Wil69] R. Wilson. Competitive bidding with disparate information.Manage-
ment Science, 15:446–48, 1969.

[WJK00] M. Wooldridge, N. R. Jennings, and D. Kinny. TheGaia methodol-
ogy for agent–oriented analysis and design.J. of Auton. Agents and
Multi-agent Syst., 3(3):285–312, 2000.

