
Integrazione di Agenti Logici in
DCaseLP

Anno Accademico 2003/2004

Tesi di Laurea
presentata all’Università degli studi di Genova

Facoltà di Scienze Matematiche Fisiche e Naturali
Dipartimento di Informatica e Scienze

dell’Informazione (DISI)

22 Marzo 2005

Candidata: Ivana Gungui

Relatori: Prof. Maurizio Martelli

Dott. Viviana Mascardi

Co-relatrice: Prof. Gianna Reggio

Ringraziamenti

I miei ringraziamenti dovrebbero in realtá occupare pagine e pagine di questa
tesi, ma purtroppo devo essere breve, cosa che non mi riesce mai e poi mai.
Vediamo cosa riesco a fare.....

Le prime persone che voglio ringraziare sono (e poteva essere diversa-
mente?!?) i miei familiari che, nonostante non sapranno mai quanto l’universitá
sia molto diversa dal liceo, a loro modo mi hanno sostenuto e mi vogliono molto
bene.

Un grazie enorme va soprattutto a mio padre, Salvatore, che nel suo modo
tutto particolare mi ha aiutato un sacco.

Mia madre, Sheila, se ne merita davvero tanti di ringraziamenti e co-
munque non sarebbero mai abbastanza!

Alle mie sorelle, mia nonna, Stefano, Vale, i miei zii e tutta la famiglia dico
“GRAZIE” e li abbraccio tutti.

I miei piú sinceri ringraziamenti vanno ai miei relatori, Maurizio e Vi-
viana, perché mi hanno dato la massima fiducia e guidata in quest’avventura
finale. Un grazie, ovviamente, anche alla mia correlatrice. A Viviana, peró,
vanno maggiori ringraziamenti perché anche in momenti critici ha trovato il
tempo di pensare alla mia tesi e incoraggiarmi.

A questo punto, viene la parte piú difficile perché non ho idea da chi com-
inciare e non vorrei MAI dimenticare qualcuno ...
Forse un elenco é davvero la soluzione migliore!
Vorrei dire grazie a:

• Stefano perché é stato il mio piú caro amico, siamo cresciuti insieme, ha
sempre avuto fiducia in me anche quando io ero la prima a dubitare di
me stessa e, infine, é anche grazie a lui se sono arrivata ad Informatica;

• Cristina perché abbiamo passato momenti indimenticabili e ci siamo
davvero divertite e confortate quando necessario;

• Diana e Franco per tutte le sere passate insieme;

• Antonella perché la nostra é una vera amicizia e, anche se le sembrerá
strano, i complimenti piú belli li ho ricevuti proprio da lei;

• Maura e Catuscia per avermi fatto decidere di rimanere al DISI, ma
soprattutto un enorme grazie lo devo a Maura perché si é dimostrata
davvero un’amica oltre che ottima insegnante;

• Monica perche’ e’ una carissima amica e studiare con lei é stata una
bella esperienza;

• Stefano, Gabriele e parenti perché mi hanno fatto sentire parte della
loro famiglia;

• Giulio perché, anche se discutiamo spesso, cerca sempre di sostenermi;

• Cri perché é la Chichi e mi fa sorridere sempre;

• Massimo e Chiara per il passato;

• Paola perché se non ci facciamo i dispetti non siamo contente, e in questi
ultimi giorni si é persa molto sonno per colpa mia: GRAZIE!!!!;

• Mirko e Ombretta perché sono cari amici e ci sono sempre quando ho
bisogno (anche se mipiacerebbe che imparassero ad essere puntuali!);

• Vale, Maury e Roby perché con loro mi sono divertita tanto, insieme
anche a Luca e Paola e Daniela;

• i professori al DISI e le ragazze delle pulizie perché mi hanno fatto sentire
a casa;

• Claudio per il sostegno in chat;

• Luca ed Alessio e tutta la compagnia dei ”comici” perché in questo
ultimo anno grazie a loro ho riso tanto;

• Federico perché é l’unico che non vedeva l’ora di leggere la mia tesi.

Ho senza dubbio dimenticato qualcuno e mi dispiace.

Infine, ci tengo a dimostrare tantissima gratitudine a:

Introduzione 1

Introduzione

In questa tesi, il termine senza dubbio più citato è agente, quindi sembra
naturale introdurre il nostro lavoro parlando di ciò che esso indica e del motivo
per cui gli “ingegneri del software” si dedicano allo sviluppo di sistemi che sono
costituiti da uno o più agenti.

Negli ultimi vent’anni, il concetto di agente intelligente/autonomo è stato
soggetto a varie interpretazioni nel campo dell’informatica: in questa intro-
duzione ne vedremo solo alcune.

Lo scopo di questa introduzione è di dare a chi la legge un’idea generale di
concetti che sono argomenti fondamentali in questa tesi.

Agenti software intelligenti

Fin dagli anni ’80, gli agenti software ed i sistemi multi-agente (spesso abbre-
viati con MAS da “Multi-Agent System”) sono divenuti un’importante area
di ricerca nella comunità informatica. Gli agenti ed i MAS sono ormai con-
siderati una nuova tecnologia software, la cosiddetta tecnologia ad agenti,
argomento ormai molto popolare nelle pagine Web riguardanti l’informatica o
la robotica.

Il concetto di agente (intelligente) è nato nel campo dell’Intelligenza Arti-
ficiale, l’area dell’informatica che tratta la progettazione di sistemi software in
grado di comportarsi in modo “intelligente”.

In altre parole, il termine agente è stato scelto per indicare un programma
software od un sistema costruiti in modo tale che il loro comportamento sia
simile a quello dell’essere umano.

Inaspettatamente, tale termine ha ottenuto successo anche in altri campi
informatici, e può essere incontrato in diversi contesti.

Pur essendo ampiamente usato da molte persone che lavorano in aree stret-
tamente correlate, tale termine non possiede una definizione che sia univer-
salmente accettata. Ancora oggi rimane aperto il dibattito su questa materia,

Ivana Gungui Integrazione di Agenti Logici in DCaseLP

2 Introduzione

ma sembra che una caratteristica fondamentale degli agenti sia l’autonomia.
Il problema principale è che gli agenti possono essere considerati in molti

domini differenti che, a loro volta, possono richiedere ad ogni agente abilità
diverse.

Sono in molti a credere che la grande crescita della rete globale Internet
abbia aiutato la larga diffusione degli agenti in molti domini di applicazione.
Una definizione usuale che si può trovare proprio in Internet è la seguente:

“Un agente (intelligente) è un programma che recupera informazio-
ni o effettua altre azioni senza l’intervento di una persona. Tipica-
mente, un agente usa parametri che gli sono stati precedentemente
forniti (manualmente od automaticamente) per ricercare in tutta
la rete Internet, od una sua parte, informazioni di interesse per
l’utente, e gliele restituisce periodicamente.”. [Wha]

Una tale definizione, però, è parziale, non include altri aspetti su cui, invece,
si è concentrata la comunità informatica, e non rispecchia nessuna delle tante
definizioni che sono state date nell’ultimo decennio; si può dire che essa descrive
semplicemente un tipo di agente.

Una definizione molto famosa e più generale della precedente è quella data da
N. R. Jennings, K. Sycara e M. Wooldridge in [JSW98]:

“. . . un sistema computerizzato, situato in un qualche ambiente
e capace di azioni autonome e flessibili, allo scopo di ottenere
gli scopi prefissati.”

Situato vuole indicare che il sistema è in grado di ricevere informazioni da
sensori collocati nell’ambiente circostante, e di eseguire azioni che in qualche
modo modificano l’ambiente stesso.

Autonomo e flessibile includono nel loro significato la capacità di decidere,
in base alle circostanze, quali azioni intraprendere senza che vengano coinvolte
persone o altri agenti.

Esistono molte varianti di agente: agenti autonomi, agenti mobili, agenti
distribuiti, agenti che apprendono, agenti pianificatori, agenti mediatori, agenti
di visualizzazione personalizzati, e molti altri ancora, a seconda dell’area in cui
sono impiegati.
Alcune persone considerano l’intelligenza come una caratteristica implicita
nell’“autonomia”; infatti, i termini “agente intelligente”, “agente autonomo”
e “agente software intelligente” sono spesso usati come sinonimi.

Ivana Gungui Integrazione di Agenti Logici in DCaseLP

Introduzione 3

Gli agenti software possono anche essere caratterizzati attraverso “compor-
tamenti”, quali per esempio: reattivo, deliberativo, guidato dallo scopo, adat-
tivo, autonomo, comunicativo, proattivo, competitivo e collaborativo.

Reagire ad eventi che accadono nell’ambiente viene considerato un com-
portamento reattivo. La capacità di intraprendere, nel corso del tempo, azioni
coordinate è un comportamento deliberativo. Agire, invece, per ottenere un
determinato scopo è un comportamento guidato dallo scopo.

La capacità di imparare ad adattarsi a nuove circostanze viene reputato
un comportamento adattivo. Un comportamento comunicativo o sociale, al
contrario, denota la capacità di interagire , quando opportuno, con altri agenti
artificiali oppure esseri umani.

Il comportamento proattivo corrisponde all’agire in funzione di scopi futuri
o, meglio, al pianificare le azioni; in realtà è una combinazione di quello reattivo
e quello guidato dallo scopo.

Infine, il comportamento competitivo è quello per cui l’agente è in grado
di competere con altri agenti, umani o non, per ottenere risorse condivise
oppure un proprio scopo; quello collaborativo, invece, corrisponde alla capacità
di cooperare insieme ad altri agenti per raggiungere un obiettivo comune.

La realizzazione di agenti che posseggano tutti questi comportamenti è,
senza dubbio, un compito non facile, soprattutto perchè spesso un comporta-
mento intelligente è in realtà costituito dalla combinazione non precisabile di
tali comportamenti. Alcuni ricercatori si sono concentrati nella realizzazione
di strutture software caratterizzate solo da alcuni di tali comportamenti, de-
finendo cos̀i particolari architetture di agenti. Alcuni riferimenti a documenti
su architetture per agenti sono forniti alla fine della sezione seguente.

Un altro fattore che va considerato riguardo agli agenti è: per quanto tempo
debbano rimanere in esecuzione. L’istanza di un agente può rimanere in ese-
cuzione per sempre oppure indefinitamente, cercando di conseguire continua-
mente i suo obiettivi, ma potrebbe anche terminare la sua esistenza una volta
che i suoi scopi sono stati raggiunti oppure quando essi non sono più necessari.

Dopo questa introduzione generale al concetto di agente, passiamo a spiegare
cosa intendiamo per comunità di agenti, spesso anche chiamata sistema multi-
agente: più agenti indipendenti che cooperano e/o competono per realizzare
gli obiettivi comuni e/o quelli individuali.

Un MAS può essere costituito da agenti stabiliti al momento della pro-
gettazione oppure può essere “aperto” a nuovi agenti esterni. Un concetto
fondamentale del MAS è l’interazione tra agenti : essi devono essere in

Ivana Gungui Integrazione di Agenti Logici in DCaseLP

4 Introduzione

grado di cooperare, coordinarsi e negoziare quando necessario.

Ingegneria del software basata sugli agenti
(AOSE, “Agent-Oriented Software Engineering”)

L’ingegneria del software è un’area informatica che studia il processo di svilup-
po di un prodotto software — soprattutto sistemi grandi e complessi —, per
renderlo economico e breve. Prima tratta la progettazione, poi l’implementazio-
ne e, infine, la consegna e la “manutenzione” del prodotto in questione.

In quest’area, gli strumenti (software) CASE (“Computer Aided Software
Engineering”, ingegneria del software supportata dal computer) sono quelli che
cercano di aiutare tale processo con l’ausilio dei calcolatori e, oramai, hanno
acquisito una grande rilevanza, avendo automatizzato molte delle attività coin-
volte nelle varie fasi della produzione del sistema, rendendone più efficiente lo
sviluppo.

Gli strumenti software di sviluppo automatizzati solitamente sono imple-
mentati da organizzazioni che vogliono aumentare la produtività, diminuire i
costi, migliorare i controlli del progetto ed aumentare la qualità del prodotto.

Il modello tradizionale del processo di ingegneria del software suggerisce
di organizzare lo sviluppo del software in fasi successive. Nella prima fase
vengono analizzati i requisiti del sistema, poi la struttura fondamentale viene
progettata attraverso la decomposizione in componenti facili da modellare.

Tali componenti prima di essere integrate e testate in un’unica entità, ven-
gono implementate e testate separatamente, per facilitare il rilevamento di loro
comportamenti non voluti o, addirittura, errati. L’ultima fase del processo è

dedicata alla manutenzione del software installato.
Questo modello, il cosiddetto modello a cascata, proposto nel 1970 da

W.W.Royce [Roy70], presenta alcuni difetti, il più importante dei quali è la
mancanza di interazione con le fasi precedenti.

Durante l’analisi o la progettazione lo sviluppatore può introdurre errori
che possono non essere rilevati fino alla fase di testing ed, in tal caso, la loro
correzione risulta essere molto costosa.

Già diversi anni fa sono stati proposti nuovi modelli migliori, tra i quali
meritano di essere menzionati la prototipazione ed il modello a spirale —
quest’ultimo ideato da B.Boehm nel 1986 [Boe86] — che incoraggiano un ap-
proccio incrementale: creare un prototipo “leggero” ma eseguibile, in grado di
rilevare malfunzionamenti già in fase di progettazione, e da cui sia possibile
ricavare informazioni utili al suo miglioramento per poi testarlo nuovamente,
e cos̀i via.

Ivana Gungui Integrazione di Agenti Logici in DCaseLP

Introduzione 5

Questo innovativo ciclo di prototipazione viene ripetuto fino a quando il
software è terminato oppure la poca disponibilità di tempo/soldi permette
solo di consegnare una versione con limitate capacità.

Molto noto nella comunità informatica e quella industriale è l’approccio
orientato agli oggetti dell’ingegneria del software, che ha portato alla OOSE
(“Object-Oriented Software Engineering”,ingegneria del software orientata agli
oggetti). L’approccio orientato agli oggetti consiste nel modellare un sistema
tramite oggetti che interagiscono e che possono avere determinati schemi di
comportamento: persone, oggetti reali e non, possono essere tutti modellati
come oggetti.

Gli oggetti sono dotati sia di struttura sia di comportamento: la struttura
rappresenta le informazioni sull’oggetto e le sue proprietà statiche, mentre il
comportamento rappresenta le sue proprietà dinamiche.

La proprietà di cui si parla di più, ma non per questo la più importante,
riguardo agli oggetti è l’ereditarietà: nell’informatica funziona più o meno come
l’ereditarietà che esiste in natura. Come i bambini ereditano la struttura (ad
es. lo scheletro, i muscoli, ecc.) ed il comportamento (abitudini, preferenze,
ecc.) dai loro genitori, allo stesso modo gli oggetti ereditano la struttura
(metodi, attributi, ecc.) e comportamento (un diagramma di un automa a
stati, per es.) dagli oggetti di cui sono eredi. Il meccanismo dell’ereditarietà
permette di risparmiare tempo e denaro durante lo sviluppo di prodotti nuovi
od aggiornati.

Gli agenti software sono il passo evolutivo successivo agli oggetti ed ai
programmi. Le ragioni per l’attuale grande interesse nei confronti degli agenti
sono molte, ma certamente una delle più importanti è che il concetto di agente
come sistema autonomo, capace di interagire con altri agenti allo scopo di
soddisfare i suoi obiettivi, risulta essere un concetto naturale ai progettisti di
software.

L’ingegneria del software orientata agli agenti (AOSE, “Agent-Oriented
Software Engineering”) è uno dei campi più recenti dell’ingegneria del software:
risulta molto stimolante per gli ingegneri del software il compito di analizzare,
progettare ed implementare software che sia costituito da un insieme di agenti
autonomi che interagiscono.

Questo approccio ha diversi vantaggi rispetto ad altri approcci di sviluppo
del software esistenti, in primo luogo la capacità degli agenti di rappresentare
astrazioni ad alto livello di entità attive in un sistema.

Gli oggetti tendono ad essere passivi, essendo attivo un solo oggetto alla
volta, e “nascosto” in programmi. I programmi, a loro volta, tendono ad
essere relativamente statici, quindi diventa difficile progettare computazioni

Ivana Gungui Integrazione di Agenti Logici in DCaseLP

6 Introduzione

distribuite con un numero indeterminato di programmi collaboranti.
Gli agenti, invece, sono dinamici perchè mostrano un certo grado di attività

piuttosto che la fornitura passiva di servizi. Gli agenti software offrono oppor-
tunità sia per il parallelismo sia per la collaborazione tra programmi su larga
scala in un modo facile, robusto, affidabile, flessibile e sicuro.

Un’altra differenza rilevante tra gli oggetti e gli agenti è che i primi sono
controllati dall’esterno (come una scatola trasparente), mentre i secondi hanno
un comportamento autonomo che non può essere direttamente controllato
dall’esterno (come una scatola nera).

I linguaggi basati sulla logica sono più adatti, rispetto a quelli orientati
agli oggetti, a modellare gli agenti non solo perchè possono esprimere il com-
portamento attivo degli agenti in una maniera concisa e semplice, ma anche
perchè riescono a modellare agenti che reagiscono ad un evento — a questo
scopo possono essere usate implicazioni logiche della forma “se accade l’evento
E, allora qualcosa diventa vero” — e, infine, possono anche “ragionare” su
sofisticate conversazioni.

La tecnologia ad agenti gioca un ruolo centrale nello sviluppo di sistemi
complessi distribuiti e sistemi informatici in rete.

Un MAS, formato da più entità autonome che lavorano (o competono)
per raggiungere un dato scopo, rappresenta un modo naturale per modellare
correttamente la decentralizzazione, le prospettive multiple e gli interessi com-
petitivi dei vari agenti nel MAS, ma anche per modellare sistemi informativi
che sono distribuiti, aperti ed eterogenei.

Cos̀i, lo scopo principale dell’AOSE è quello di creare metodologie e stru-
menti che permettano, in modo economico, lo sviluppo ed il mantenimento di
software basato sugli agenti. Il software, inoltre, deve essere flessibile, facile
da usare, scalabile e di alta qualità; in altre parole, lo scopo di AOSE è simile
a quello degli altri rami dell’ingegneria del software, ma si adopera per miglio-
rare la coordinazione, la cooperazione, la comunicazione e l’intelligenza negli
agenti e nei MAS.

Linguaggi di Comunicazione per Agenti

Un altro aspetto, non meno importante, è la comunicazione tra gli agenti;
due standard che sono stati definiti per lo scambio di messaggi tra agenti
sono: KQML [FLM95] e l’ACL di FIPA (“Foundation for Intelligent Physical
Agents”) [ACL].

FIPA è un’organizzazione internazionale non a scopo di lucro che, dal 1996,
ha prodotto standard per l’interazione di agenti software eterogenei ed ha

Ivana Gungui Integrazione di Agenti Logici in DCaseLP

Introduzione 7

promosso generiche tecnologie ad agenti.
Sia KQML sia l’ACL di FIPA permettono lo scambio di messaggi che hanno

un contenuto dichiarativo e non considerano la struttura interna dell’agente
mittente/destinatario.

L’ontologia di un agente è una specifica formale che definisce il vocabo-
lario dei termini conosciuti dall’agente ed, eventualmente, una specifica del
significato di tali termini. I linguaggi per agenti implementano protocolli di
comunicazione che non conoscono nè il linguaggio usato per esprimere il con-
tenuto, nè il meccanismo per specificare l’ontologia.

Anche se non esiste un linguaggio standard di comunicazione per agenti
universalmente accettato, è interessante notare che la maggior parte di quelli
proposti condividono l’assunzione che la comunicazione tra agenti debba essere
trattata in termini di speech acts (atti comunicativi).

La nozione di speech act proviene dalla filosofia del linguaggio [Aus62,
Sea69] ed è stata adottata dagli autori di KQML e da FIPA come base per la
comunicazione tra agenti.

La teoria degli atti comunicativi è una teoria sul significato del linguaggio
molto potente e vasta; considerando la comunicazione tra agenti come una
forma di azione, rende facile e naturale inserire una componente comunicativa
nell’architettura di un agente.

Un linguaggio di comunicazione ad agenti specifica solo l’intenzione alla
base di un messaggio ed include il contenuto del messaggio come un elemento
separato: tale intenzione è specificata esplicitamente nel messaggio scambiato,
indicando un atto comunicativo standard scelto da un insieme predefinito.

In altre parole, questi linguaggi derivano le loro primitive di comunicazione
dalla teoria linguistica e distinguono varie tipologie di atti comunicativi, a
seconda dell’intento dell’agente che effettua la comunicazione.

L’insieme di standard che questi linguaggi permettono, costituisce le basi
per ogni significativo tipo di conversazione.

Il contenuto di un messaggio ACL (cioè appartenente ad uno dei linguaggi
per la comunicazione degli agenti) ricevuto da un agente può essere capito da
quest’ultimo solo se condivide una comune ontologia con l’agente mittente.

A causa della mancanza di standard universalmente accettati, uno stru-
mento di sviluppo che supporti AOSE deve offrire dei “mattoni” per alcune
architetture di agenti e il supporto per uno dei linguaggi di comunicazione per
agenti disponibili.

Un altro argomento di molto interesse nella comunità che studia gli agenti
è senza dubbio l’architettura di agenti.

L’architettura di un agente è la particolare metodologia usata per creare

Ivana Gungui Integrazione di Agenti Logici in DCaseLP

8 Introduzione

l’agente e specifica come esso possa essere decomposto in un insieme di moduli
componenti e come questi moduli dovrebbero interagire. Il lettore interessato
ad architetture di agenti — reattive, BDI, a livelli e cosı’ via — può, per
esempio visitare le seguenti pagine Web:

➥ “A Survey of Cognitive and Agent Architectures” (completato nel 1994
alla University of Michigan, Department of Electrical Engineering and
Computer Science) - http://ai.eecs.umich.edu/cogarch0/ ;

➥ “AGENT ARCHITECTURES” contiene molti riferimenti - http://www.ecs.sot
on.ac.uk/ ~mml/absd/chap2.html;

➥ “Agent Architectures” - http://www.csc.liv.ac.uk/ mjw/pubs/ker95/section3 3
.html;

➥ “Roadmap - Where we go next!” - http://www7.in.tum.de/ ~weissg/Lehre/A
osmSS02/aosm-ss02-2.slides.pdf .

Lo scopo della tesi

Lo scopo di questa tesi è:

Compiere un passo avanti verso la coesistenza di agenti etero-
genei nell’implementazione di un prototipo di un sistema multi-
agente sviluppato attraverso lo strumento software DCaseLP, inte-
grando in questo stesso ambiente software un nuovo tipo di agenti,
chiamati “agenti logici”.

DCaseLP (Distributed CaseLP) [AMMM02] e’ uno strumento CASE
che è nato come successore di un altro ambiente software, CaseLP (Complex
application specification environment based on Logic Programming) [MMZ99,
BDM+99], entrambi sviluppati dal Gruppo di Programmazione Logica del Di-
partimento di Informatica e Scienze dell’Informazione, all’ Università di Ge-
nova.

CaseLP fornisce un metodo di prototipazione ed un insieme di strumenti e
linguaggi che supportano la realizzazione di prototipi di applicazioni complesse
modellate come MAS.

Consente una specifica ed un’architettura multilinguali degli agenti ap-
partenenti al MAS sviluppato, ma non supporta un’implementazione multilin-
guale di tali agenti; in altre parole, lo sviluppatore può usare linguaggi diversi
per la specifica e l’architettura di ciascun agente, mentre solo un linguaggio è

supportato per programmare gli agenti.

Ivana Gungui Integrazione di Agenti Logici in DCaseLP

Introduzione 9

DCaseLP è nato allo scopo di eliminare i limiti di CaseLP e diventare uno
strumento di prototipazione multilinguale AOSE completo. La prima versione
di DCaseLP ha fatto un primo passo verso il raggiungimento di questo obiettivo
proponendo due linguaggi per l’implementazione degli agenti : il linguaggio
JavaTM [Mic] ed il linguaggio per sistemi esperti Jess [FH].

Sfortunatamente, la multilingualità di questa versione era ancora troppo
limitata e le funzionalità offerte da CaseLP erano ancora non utilizzabili da
esso, perchè DCaseLP non comprendeva il codice basato su Prolog e gli stru-
menti già sviluppati per CaseLP.

Quello di cui avevamo bisogno erano “agenti logici” che soddisfacessero
le seguenti proprietà:

• il loro comportamento è specificato interamente tramite un linguaggio
Prolog;

• sono in grado di “ragionare”, nel senso che possono eseguire quella che
in programmazione logica viene definita una “dimostrazione”;

• possono comunicare con agenti sviluppati con DCaseLP.

CaseLP è implementato in SICStus Prolog [SIC] ed i suoi agenti sono fon-
damentalmente codice SICStus Prolog esteso con primitive di comunicazione
ad–hoc.

Una volta che gli agenti logici saranno disponibili in DCaseLP, quelli prece-
dentemente sviluppati con CaseLP potranno essere eseguiti in un prototipo
sviluppato con DCaseLP: la sola azione necessaria sarà la traduzione degli
“agenti CaseLP” da SICStus Prolog al linguaggio Prolog usato per creare gli
agenti logici.

Riteniamo che tale traduzione sarà facilmente automatizzabile permet-
tendo, cos̀i, allo sviluppatore di usare gli strumenti sviluppati per CaseLP.

Struttura della tesi

Questa tesi é strutturata come segue. Il Capitolo 1 fornisce una descrizione
degli approcci seguiti dai ricercatori che implementano ambienti software per
lo sviluppo e l’esecuzione di sistemi multi-agente. Include anche l’analisi di tre
piattaforme esistenti che possono essere usate per creare MAS.

Il Capitolo 2 all’inizio contiene la descrizione del progetto generale, chiam-
ato ARPEGGIO, di cui DCaseLP puó essere considerato un’istanza, successi-
vamente viene spiegato il motivo per cui é nato DCaseLP; viene anche trattato
lo strumento software CaseLP, predecessore di DCaseLP.

Ivana Gungui Integrazione di Agenti Logici in DCaseLP

10 Introduzione

La piattaforma ad agenti JADE usata nell’ambiente DCaseLP per eseguire
il prototitpo di MAS sviluppato, insieme al sistema tuProlog, é descritto nel
Capitolo 3. Il sistema tuProlog é brevemente introdotto perché system solo il
suo linguaggio é stato integrato nella versione attuale di DCaseLP e lo svilup-
patore non é tenuto a conoscere come tale sistema funzioni per poter program-
mare gli agenti logici.

Nel Capitolo 4 spieghiamo come é stato possibile integrare gli agenti logici
in DCaseLP. Piú precisamente, dettagliamo il package Java che abbiamo chiam-
ato tuPInJADE e aggiunto all’ambiente per permettere all’utente di eseguire
quelli che definiamo agenti tuProlog, in altre parole agenti che in DCaseLP
sono totalmente programmati in Prolog.

Oltre a dimostrare che gli agenti tuProlog sono veramente capaci di ra-
gionare e comunicare tra di loro, nel Capitolo 5 diamo i dettagli di un semplice
MAS — contenente agenti tuProlog ed un agente Java — che abbiamo cre-
ato per testare la compatibilitá tra gli agenti Java e tuProlog in uno stesso
prototipo.

Infine, nelle Conclusioni riassumiamo il lavoro fatto in questa tesi e sug-
geriamo alcune direzioni per lavori futuri. Prima della bibliografia abbiamo
aggiunto tre Appendici.

L’Appendice A contiene il codice dei file che definiscono le classi Java
che costituiscono il package risultante dall’integrazione degli agenti logici in
DCaseLP.

L’Appendice B contiene l’elenco degli atti comunicativi disponibili e che
possono essere inseriti nei messaggi scambiati dagli agenti in JADE.

L’Appendice C contiene la serie di messaggi di errore che possono comparire
quando lo sviluppatore fa un uso non corretto dei predicati definiti nella libreria
TuJadeLibrary.

Ivana Gungui Integrazione di Agenti Logici in DCaseLP

Integrating Logical Agents Into

DCaseLP

Submitted by Ivana Gungui to

the Department of Computer Science,

University of Genova,

Italy,

as a MSc Thesis.

22nd March 2005

Principal supervisors: Prof. Maurizio Martelli
Doct. Viviana Mascardi

Co-supervisor: Prof. Gianna Reggio

To Gran and Rosy

Contents

Introduction i

1 Environments for developing MASs 1
1.1 Introduction . 1
1.2 MASs and concurrency . 2
1.3 Mobile agents . 3

1.3.1 Intelligent networks . 5
1.3.2 Agent-based management of wireless/mobile networks . . 8

1.4 The MadKit Project . 9
1.4.1 The Agent/Group/Role model 11

1.5 The Mozart Programming System 14
1.6 The Jack Platform . 19
1.7 Conclusions . 23

2 The DCaseLP environment 25
2.1 Introduction . 25
2.2 ARPEGGIO . 26

2.2.1 The general architecture 28
2.2.2 The proposed methodology 29
2.2.3 The ARPEGGIO partners 30

2.3 DCaseLP . 32
2.3.1 DCaseLP’s focuses . 32
2.3.2 CaseLP . 34
2.3.3 DCaseLP’s first release 36

2.4 DCaseLP’s current release . 44
2.5 Conclusions . 47

3 The tuProlog and JADE systems 49
3.1 Introduction . 49

3.2 The tuProlog system . 50
3.3 The JADE platform . 54

3.3.1 FIPA’s standards . 57
3.3.2 A FIPA-compliant architecture 58
3.3.3 Communication in a FIPA-compliant platform 60
3.3.4 JADE’s components . 62
3.3.5 Running the JADE platform 63
3.3.6 The main container . 65
3.3.7 Communication in JADE 67
3.3.8 Agents behaviours . 69

3.4 Conclusions . 70

4 The interface between Prolog and DCaseLP 73
4.1 Introduction . 73
4.2 The tuPInJADE package . 74

4.2.1 The ErrorMsg class . 74
4.2.2 The JadeShell42P class 79
4.2.3 The JadeShell42PGui class 83
4.2.4 The TuJadeLibrary class 86

4.3 Conclusions . 90

5 Java and tuProlog agents interacting - An example 93
5.1 Introduction . 93
5.2 A distributed marketplace scenario 94

5.2.1 The buyer agents . 95
5.2.2 The seller agents . 106

5.3 Executing the prototype . 116
5.3.1 The results . 120

5.4 Conclusions . 123

Conclusions 125

Appendix A: The tuPInJADE Java package 128

Appendix B: Available performatives in JADE 163

Appendix C: Error messages caused by misuse of predicates 165
defined in TuJadeLibrary

Bibliography 170

Introduction i

Introduction

The most mentioned term in this thesis is, without a doubt, the agent, there-
fore it seemed natural to introduce our work with an overview of what this
term indicates and why software engineers concentrate on developing software
systems composed of one or more of such entities.

Since an intelligent/autonomous agent has been, during the last two decad-
es, subject to various interpretations of its meaning in the computing field, it
has not been possible to state them all in this introduction.

With this introduction we wish to give the reader a general idea of the
subject of this thesis.

Intelligent software agents

Since the 1980s, software agents and multi-agent systems have grown into
what is now one of the most interesting research fields in the computer science
community. Agents and agent-based systems are considered as a new software
technology, the so-called agent technology, and can be found as a main topic
on the Web.

“. . . agents are here to stay, not least because of their diversity, their
wide range of applicability and the broad spectrum of companies in-
vesting in them. As we move further and further into the informa-
tion age, any information-based organisation which does not invest
in agent technology may be committing commercial hara-kiri.”
[Nwa96]

The concept of an (intelligent) agent originated from the area of Artificial
Intelligence, a very popular field in Computer Science that deals with designing
computer systems to behave intelligently. In other words, agent was the term
chosen to indicate a program or system constructed to act as similarly as a

Ivana Gungui Integrating Logical Agents Into DCaseLP

ii Introduction

human, whose behaviour is considered as intelligent. Nevertheless, the term
also gained popularity in other fields of Computer Science, being referred to
in different contexts.

Being widely used by many people working in closely related areas, does
not automatically mean that there is a single universally accepted definition of
the term. There still is an ongoing debate about this subject, but the notion of
autonomy seems to be considered as a key notion of agents. The main problem
is that agents can be applied to a lot of different domains which can require
different abilities for each agent.

Many people are of the opinion that the growth of the Internet has certainly
helped the wide spread of agents in many application domains. A common
definition that one can find on the Internet is:

“An (intelligent) agent is a program that gathers information or
performs other actions without the immediate presence of a human
being. Typically, an agent program — using parameters previously
provided to it manually or automatically — searches all or some
part of the Internet, collects information the user is interested in,
and presents it on a daily or other periodic basis. This is why it is
sometimes called a bot”. [Wha]

Such a definition, though, is partial and does not include other aspects on
which the agent community has focused attention, nor does it fully adhere
to one of the many definitions given in the last decade; it merely describes a
typology of agent.

A classical definition of intelligent agent, given by N. R. Jennings, K. Sycara
and M. Wooldridge in [JSW98], is:

“. . . a computer system, situated in some environment, that is
capable of flexible autonomous actions in order to meet its de-
sign objectives.”

Situatedness means the capability to receive input from sensors in the sur-
rounding environment and to perform actions which change the environment
itself in some way.

Flexible autonomy includes the ability to make decisions about what actions
to take, according to the circumstances, without any human or other agent
getting involved.

Ivana Gungui Integrating Logical Agents Into DCaseLP

Introduction iii

There are, indeed, many variants of agent: autonomous agents, mobile
agents, distributed agents, learning agents, planning agents, data mediation
agents, personalised visualisation agents, and many others depending on the
application in which they are involved.

In 1997, S. Franklin and A. Graesser proposed the following categorisa-
tion of the major classes of autonomous agents, that is the known families of
examples, viewed as a natural kinds taxonomy (see Figure 1).

At the root of the tree one can find autonomous agents, while at the level
below there are the biological, robotic, and computational agents since it is easy
to distinguish between animated organisms, artifacts and abstract concepts.
Computational agents are divided into software and artificial life agents — the
latter are systems frequently composed of many similar, simple organisms that
collectively exhibit life-like behaviours. Software agents can be subclassified
into task-specific agents (like email filtering agents), entertainment agents and
computer viruses.

Franklin and Graesser also proposed to further classify software agents by
considering different subclasses of agents, characterised by certain properties
such as, for instance, the ability to communicate, to learn, to plan and so forth;
this gives an idea of how many agents there can be.

Autonomous Agents

Biological AgentsComputational Agents Robotic Agents

Artificial Life AgentsSoftware Agents

Task-specific Agents Entertainment Agents Viruses

Figure 1: A Taxonomy for Autonomous Agents [FG97]

As we can see in Figure 1, they considered intelligence implicit in the concept
of autonomy. Actually, the terms “intelligent agents”, “autonomous agents”
and “software intelligent agents” are often interchangeable.

Ivana Gungui Integrating Logical Agents Into DCaseLP

iv Introduction

Software agents can also be characterised by behaviours: reactive, deliber-
ative, goal-driven, adaptive, autonomous, learning, communicative, proactive,
competitive, and collaborative are some examples.

Reacting, in a timely fashion, to events happening in the environment is
considered as a reactive behaviour. Being able to carry out coordinated actions
over time is a deliberative behaviour. Acting to obtain a certain target is a
goal-driven (or goal-directed) behaviour.

The ability to respond to changes in the environment is an adaptive be-
haviour. A learning behaviour is distinguished by being able to learn from
one’s own experience and, possibly, from others. A communicative or social
behaviour denotes the capacity to interact, when appropriate, with other ar-
tificial agents or humans.

A proactive behaviour corresponds to acting in anticipation of future goals
(i.e., making plans); it is, really, a mix of goal-driven and reactive behaviours.
Being able to compete with other agents, human or not, to obtain shared
resources, or an own aim, is a competitive behaviour. Finally, being able to
act together with other agents, human or not, is a collaborative behaviour.

Realising agents possessing all of these behaviours is not a trivial task
at all. Some researchers have concentrated their work on realising software
structures in which only some of such behaviours appear, leading to particular
agent architectures.

Another issue to consider about a software agent is how long it should run
for. It could run forever or indefinitely, continuously pursuing its goals, but
it is also possible for an instance of an agent to terminate once its goals have
been met or are no longer needed.

Now, having in mind what we consider an agent, we can speak of a community
of software agents or a multi-agent system, in which many independent agents
cooperate and/or compete in achieving common goals or, only their own. The
community may be limited to pre-planned members, or it could be open-ended
and allow arbitrary, external agents to “join”. A key concept in a multi-agent
system is the interaction between agents: they must be able to communicate
in order to cooperate, coordinate and negotiate when necessary.

Agent-Oriented Software Engineering (AOSE)

Software Engineering is a field of Computer Science that deals with the pro-
cess of developing a software product — especially large and complex systems

Ivana Gungui Integrating Logical Agents Into DCaseLP

Introduction v

— in an economic and timely manner. It starts from the inception to subse-
quently pass to the design, the implementation, and finally to the delivery and
maintenance of the software product.

In this area, the CASE (Computer-Aided Software Engineering) tools have
gained great relevance, being a class of software that automates many of the
activities involved in the various cycle phases of the system being built, there-
fore making a more efficient development. Automated development tools are
generally implemented by organisations that want to increase productivity,
decrease costs, enhance project controls, and increase product quality.

The traditional software engineering process model suggests organising the
software development in successive phases. In the first phase, the system’s
requirements are analysed, then the fundamental structure is designed by de-
composition into components that are easy to model. Such components are
implemented and tested individually before being integrated and tested as a
whole. The last phase is dedicated to the maintenance of the installed software.

This model — the so-called waterfall model proposed in 1970 by W. W.
Royce [Roy70] — has some drawbacks, above all a missing feedback to prior
phases. During the analysis or the design the developer can introduce errors
that may not be discovered until the testing phase, in such a case correcting
them would be at a high cost.

Improved or new models have already emerged, many years ago, among
them prototyping and the spiral model — the latter proposed by B.Boehm in
1986 [Boe86] —, they both foster an incremental approach: creating a thin
but executable prototype that reveals deficiencies at an early stage, and from
which it is possible to gather information to improve the prototype, verify it
again, and so on.

This evolutionary prototyping cycle is repeated until the software is finished
or a shortage in time or money allows delivery of at least one version with
limited capabilities.

Very well known, not only in the Computing but also in the Business
community, is the Object-Oriented approach to software engineering that has
led to the OOSE (Object-Oriented Software Engineering) subfield.

Object-orientation models a system as objects that interact and thus trigger
certain patterns of behaviour: persons, real world subjects, or imaginary things
may all be objects. Objects incorporate both structure and behaviour: the
structure represents the object’s data and the static properties of an object,
while behaviour represents the dynamic properties of an object.

The most discussed but not most important property of objects is inher-

Ivana Gungui Integrating Logical Agents Into DCaseLP

vi Introduction

itance: in computer science it works similar to that in nature. As children
inherit structure (e.g. skeleton, muscles, . . .) and behaviour (e.g. habits,
preferences, . . .) from their parents, in the same way objects inherit structure
(e.g. methods, attributes, . . .) and behaviour (e.g. a state machine diagram)
from their parent objects. The inheritance mechanism allows money and time
saving when developing new or evolved products.

Software agents are the next evolutionary step beyond objects and pro-
grams. There are many reasons for the current intensity of interest, but cer-
tainly one of the most important is that the concept of an agent as an au-
tonomous system, capable of interacting with other agents in order to satisfy
its design objectives, is a natural one for software designers.

AOSE (Agent-Oriented Software Engineering) is one of the most recent
contributions to the field of Software Engineering: analysing, designing and
implementing software as a collection of interacting and autonomous agents
represents a challenging task for software engineering.

It has several benefits compared to existing software development approach-
es, especially the ability to let agents represent high-level abstractions of active
entities in a system. Software Engineering with Agents, Agent-Based Software
Engineering, Multi-agent Systems Engineering (MaSE) and AOSE can be
considered semantically equivalent terms.

Objects tend to be passive, with only one object active at a time, and
“hidden” inside programs. Programs tend to be relatively static and design-
ing a distributed computation with an indeterminate number of collaborating
programs is not an easy task. Agents are dynamic because they can exercise
some degree of activity, rather than passively providing services.

Software agents offer opportunities for parallelism and inter-program col-
laboration not only on a large scale, but also in an easy, robust, reliable,
flexible, and secure manner. Another relevant difference between objects and
agents is: the former are controlled from the outside (whitebox control), while
the latter have autonomous behaviour which cannot be directly controlled from
the outside (blackbox control).

Logic-based languages are more suitable for model agents than object-
oriented languages because: not only can they express the active behaviour
of agents in a concise and simple way, but model agents that react to an event
— logical implications of the form “if the event E took place then something
becomes true ” can also be used for this purpose — and to reason about
sophisticated conversations.

The agent technology plays a central role in the development of complex

Ivana Gungui Integrating Logical Agents Into DCaseLP

Introduction vii

distributed systems, networked information systems, and computer interfaces.
A MAS, formed by several autonomous acting entities working together (or
competing) to reach a given goal, can naturally represent not only decentral-
isation, multiple perspectives and competing interests, but also information
systems that are distributed, open and heterogeneous.

So, the main purpose of Agent-Oriented Software Engineering is to create
methodologies and tools that enable inexpensive development and maintenance
of agent-based software. In addition, the software should be flexible, easy-to-
use, scalable and of high quality. In other words, its research issue is quite
similar to the one of other branches of software engineering, as for example
object-oriented software engineering, but it focuses on improving coordination,
cooperation, communication and artificial intelligence in agents and agent sys-
tems.

Agent Communication Languages

A side issue, nevertheless not less important, is the communication among
agents: two well-known standards, called “agent communication languages” or
ACLs, that have been defined for message-passing between agents are KQML
(Knowledge Query and Manipulation Language [FLM95]) and FIPA’s ACL
[ACL].

FIPA is an international non-profit organisation that, since 1996, has pro-
duced standards for the interaction of heterogeneous software agents and has
promoted generic agent technologies. Both KQML and FIPA’s ACL allow the
exchanging of messages that have a declarative content and do not take into
account the internal structure of the agent sender/receiver.

An agent ontology is a formal specification that defines the vocabulary of
terms known by the agent and, possibly, a specification of the meaning of such
terms. ACLs implement a communication protocol that is unaware both of
the content language used and of the ontology specification mechanism. Even
though there is not a universally accepted standard ACL, it is interesting to
note that all major proposals share the assumption that agent communication
should be dealt with in terms of speech acts.

The notion of a speech act comes from the philosophy of language [Aus62,
Sea69]. Speech acts have been adopted as the base of agent communication
by the proposers of KQML as well as by FIPA.

The speech act theory is a powerful, deep and remarkably comprehensive
theory of language semantics so, regarding agent communication as a form of

Ivana Gungui Integrating Logical Agents Into DCaseLP

viii Introduction

action, makes it easy and natural to embed a communicative component in an
agents architecture.

An ACL only specifies the basic intention of a message and includes the
content as a separate element: such intention is explicitly specified in the
message exchanged, stating one of a small set of standard speech acts. In other
words, these languages derive their primitives from the linguistic theory of
speech acts and distinguish various “performatives”, depending on the intent
of the agent that performes the so-called speech act.

The list of standard performatives that they allow gives the agents the
chance to carry out every significant kind of conversation.

The content of an ACL message received by an agent can be understood
only if it shares a common ontology with the agent that sent the message.

Due to the lack of universally accepted standards, a development tool for
supporting AOSE is a software providing “building blocks” for some agent
architectures and support for one of the basic ACLs. There is another subject
of interest in the agent community: agent architectures. An agent architecture
is the particular methodology used to build the agent and specifies how it
can be decomposed into a set of component modules and how these modules
should interact. Any reader interested in agent architectures — reactive, BDI,
layered and so forth — can visit, for example, the following links:

➥ “A Survey of Cognitive and Agent Architectures” (a work carried out in
1994 at the University of Michigan, Department of Electrical Engineering
and Computer Science) - http://ai.eecs.umich.edu/cogarch0/ ;

➥ “AGENT ARCHITECTURES” contains many references - http://www.ecs.sot
on.ac.uk/ ~mml/absd/chap2.html;

➥ “Agent Architectures” - http://www.csc.liv.ac.uk/ mjw/pubs/ker95/section3 3
.html;

➥ “Roadmap - Where we go next!” - http://www7.in.tum.de/ ~weissg/Lehre/A
osmSS02/aosm-ss02-2.slides.pdf .

Ivana Gungui Integrating Logical Agents Into DCaseLP

Introduction ix

The aim of the thesis

The aim of this thesis is:

To make a step forward towards the engineering of heteroge-
neous agents and multilingual agent systems by integrat-
ing “logical agents” into the existing prototyping environment
DCaseLP.

DCaseLP (Distributed CaseLP) [AMMM02] is a CASE tool that originated
as the successor to CaseLP (Complex application specification environment
based on Logic Programming) [MMZ99, BDM+99], both developed by the
Logic Programming Group at the Department of Computer Science of the
University of Genova in Italy.

CaseLP offers a prototyping method and a set of tools and languages to sup-
port the realisation of prototypes of complex applications modelled as MASs.

By using CaseLP, the developer has the possibility to choose the most suit-
able language for specifying different aspects of the MAS. The set of available
languages includes Ehhf [Del97] and HEMASL (HEterogeneous Multi-Agent
Systems Language) [Mar99, MMMZ00a, MMMZ00b].

Ehhf is an executable linear logic programming language very useful not
only for describing the overall system at an abstract level, but also for de-
scribing, at a lower level, the internal components of the agents and their
interactions.

HEMASL, on the other hand, is an imperative meta-language for specifying
different agent architectures and the configuration of the MAS.

Ehhf specifications can be tested and/or verified, and HEMASL descriptions
can be translated in sets of clauses.

Semi-automatic compilers that translate the specifications given in these
languages into SICStus Prolog [SIC] are part of the environment. SICStus
Prolog (extended with ad-hoc communication primitives) is, on the contrary,
the unique implementation language available.

So, choosing SICStus Prolog as the implementation language for proto-
types, presented many advantages that were, briefly speaking, due to the fol-
lowing reasons:

• logic-based languages are very suitable for MAS prototyping, since inter-
active development and testing of agent-based applications are easier to

Ivana Gungui Integrating Logical Agents Into DCaseLP

x Introduction

carry out. The specifications can be straightforwardly executed, thus di-
rectly offering the prototype, and properties of the code can be formally
verified.

• the linear logic-based and the rule-based specification languages provided
to describe the MAS are easy to translate into a logic programming lan-
guage.

On the other hand, though, such choice has caused some drawbacks: the
most immediate is a low degree of portability, since logic programming lan-
guages are not much supported in commercial applications, and not less rele-
vant is that most of the programmers find the logic paradigm not easy to use
and lacking concurrency support.

DCaseLP came into being with the aim of extending the set of imple-
mentation languages of CaseLP and becoming a complete multilingual AOSE
prototyping tool. The first release of DCaseLP began the process of achiev-
ing this aim by proposing two implementation languages : the JavaTM [Mic]
language and the Jess [FH] expert system language.

Although the first release of DCaseLP overcame many limitations of Case-
LP, it could not offer all the functionalities existing in its predecessor, because
it did not include the Prolog-based code and instruments already developed for
CaseLP.

At this point, the need of integrating “logical agents” into DCaseLP
arose, in order for the environment to provide the MAS developer with the
logic-based tools that were, indeed, available in CaseLP and not in the first
version of DCaseLP. The logical agents must show the following features:

• their behaviour is fully specified by a Prolog-like language;

• they are able to “reason”, in the sense that they can perform what is
called a resolution in logic programming;

• they can communicate with other agents developed with DCaseLP, name-
ly those implemented in Java and Jess.

The aim of this thesis is thus to integrate these logical agents into DCaseLP
and test their interoperability with other type of agents developed with DCase-
LP.

Ivana Gungui Integrating Logical Agents Into DCaseLP

Introduction xi

Structure of the thesis

This thesis is structured as follows. Chapter 1 gives an overview of approaches
followed by researchers that implement software environments for developing
and executing multi-agent systems. It includes the analysis of three available
platforms that can be used to build MASs.

Chapter 2 initially deals with the description of the general project, AR-
PEGGIO, of which DCaseLP can be viewed as an instance, then it explains
the reason why DCaseLP has come into being; CaseLP, the software tool that
is the predecessor of DCaseLP, is also overviewed.

The agent platform JADE used in the DCaseLP environment in order to
execute the developed MAS prototype, together with the tuProlog system, is
described in Chapter 3. The tuProlog system is briefly introduced since only
its language has been integrated into the current version of DCaseLP and it is
not necessary for the developer to be aware of the functioning of that system
in order to program the logical agents.

In Chapter 4 we explain how we have carried out the integration of the
logical agents into DCaseLP. More precisely, we detail the Java package tuPIn-
JADE that we have added to the environment in order to allow the user to
run what we call tuProlog agents, namely agents that are totally programmed
in Prolog, in DCaseLP.

Besides demonstrating that the tuProlog agents are really able to reason
and communicate with each other, in Chapter 5 we give details of the simple
MAS — containing both tuProlog agents and a Java agent — that we have
created to test the compatibility in the same prototype of Java agents with
tuProlog agents.

Finally, in Conclusions we summarise the work of this thesis and suggests
some directions of future work. Before the Bibliography we have added three
Appendices.

Appendix A contains the code of the files that define the Java classes that
constitute the package resulting from the integration of logical agents into
DCaseLP.

Appendix B contains the list of available performatives that can be inserted
into messages exchanged by agents in JADE.

Appendix C contains the series of error messages that can be displayed
when the predicates defined in the TuJadeLibrary are misused by the devel-
oper.

Ivana Gungui Integrating Logical Agents Into DCaseLP

xii Introduction

Ivana Gungui Integrating Logical Agents Into DCaseLP

1

Chapter 1

Environments for developing
MASs

1.1 Introduction

The real strength of agents today is based not only on them as being part of
a community, a multi-agent system (MAS), but also on the negotiation
mechanisms and coordination facilities that they imply. A multi-agent system
is a dynamic federation of software agents, coupled by common environments,
goals or plans, which cooperate with each other or coordinate their actions.

Dividing functionality among many agents provides modularity, flexibility,
modifiability, and extensibility.

MASs provide a better support to applications requiring distributed com-
puting, since agents can be designed as fine-grained autonomous components
acting in parallel.

However, in order to provide a MAS-building toolkit, an appropriate envi-
ronment must be available: an infrastructure that, besides specifying commu-
nication and interaction protocols, is open and not centralised, and can contain
autonomous, adaptive and cooperative agents.

Before describing our software environment for prototyping Multi-Agent
Systems, DCaseLP [Mig02, AMMM02], we want to give general insights into
other relevant issues that have attracted the agent community in the last years,
and briefly present three software tools for creating MASs and characterise
their main features. Those that we present in this chapter have been chosen
among many available in the Internet.

These software tools are more likely to be considered Agent Frameworks

Ivana Gungui Integrating Logical Agents Into DCaseLP

2
Environments for developing MASs -

MASs and concurrency

than real AOSE (Agent-Oriented Software Engineering) “development tools”,
since they are programming tools for constructing agents or MASs, and do not
present a real AOSE methodology to guide the developer during the different
phases that lead to the final software system.

As we will stress in the next chapters, we have concentrated our interest
on tools that support rapid prototyping since we believe it offers a means
by which to emphasise and show the essential features of a proposed system
and, among all, really facilitate the work of software engineers.

Rapid prototyping can be summarised as promoting early experimentation
with alternative design choices, thus allowing the software developers to pursue
different solutions without having to deal with efficiency concerns. This is the
reason why prototyping has a key role in the software engineering methodology.

Nevertheless, in this chapter, we want to show other “views” of MASs that
have been proposed by agent researchers and still concern agent technology,
especially those known as mobile agency and concurrent systems modelled as
MASs.

1.2 MASs and concurrency

In the agent community has also come into being a particular characterisation
of MASs according to which they are regarded as a special kind of concurrent
systems, where the role previously played by processes is now played by agents.

MASs imply a high degree of concurrency, while most of the conventional
programming languages — and, therefore, the agent frameworks built upon
them — have only limited support for concurrent systems.

Even the common thread-based model imposes many restrictions on the
agent developer, leading to systems which do not provide maximum concur-
rency due to technical limitations. Additionally, a lot of syntactical or man-
agement overhead is needed when implementing concurrent systems using such
techniques, which does not bring into focus the view on the essential concur-
rency and synchronisation concepts.

MASs differ from ordinary concurrent applications in the type of inter-
actions that exist among their components. The interactions inside a MAS
have a higher level of sophistication than those inside concurrent systems: the
reader might just, for instance, imagine the interactions that take place during
an electronic auction or a negotiation.

Moreover, the components of MASs are characterised by reasoning capa-

Ivana Gungui Integrating Logical Agents Into DCaseLP

Environments for developing MASs -
Mobile agents 3

bilities that “decide” their behaviour according to interactions and any in-
formation on the environment. The programming languages and systems for
prototyping concurrent applications are not directly applicable to MASs be-
cause the interactions among components in ordinary concurrent systems are
too simple and mostly exchange information rather than more complex knowl-
edge representations.

Another noticeable difference between them is the lower level of abstraction
that characterises the development of a concurrent system: more concern is
usually given to the underlying protocols and message-passing services. As an
example of environment supporting the development of “concurrent MASs”, we
show the Mozart specifically designed to create highly concurrent applications,
including MASs.

1.3 Mobile agents

The increasing popularity of the Internet and, as a consequence, of search
engines, distributed computing, and e-commerce, has led to more requests for
excellent services from it. To achieve this aim, the Internet as been virtualised
as a whole, where software agents can freely move over the entire network,
leading to what are now called mobile agents.

The interest in mobile agents is quite easily explained: mobile agents wan-
dering around the Internet can search for information, find great deals on
goods and services on behalf of the users, and interact with other agents that
also wander around networks (and meet in some place) or remain bound to a
particular machine.

Thus, in recent years significant research and development have been car-
ried out in the area of mobile agency, so many mobile agent architectures are
now available.

Some architectures use custom scripting languages, while others use Java
which helps to solve the problem of portability.

Most of the available distributed systems today are based on the client/serv-
er model, which is implemented through some form of remote procedure calls,
or remote objects in the case of the object-based model. The client/server
paradigm, however, has some limitations.

A mobile agent is a term used to indicate a software entity that can travel
freely among the hosts in a heterogeneous network, interact with other agents
or share resources.

Ivana Gungui Integrating Logical Agents Into DCaseLP

4
Environments for developing MASs -

Mobile agents

A mobile agent is a special agent, in the sense that, besides autonomy, re-
activity, proactivity and reasoning (considered basic characteristics), expresses
mobility as well, which means it moves independently from computer to com-
puter in the network and completes the task assigned to it by the user.

The mobility shown in a heterogeneous network environment also means the
capacity of the software agent to dynamically adapt to the changing network
environment in distributed computing. Additionally, it must be able to find
other agents, since they might appear, disappear, or move at any time, and
must be able to interact with them.

Mobile agents are an approach that is becoming a new paradigm for dis-
tributed computing and are considered very interesting since reliability of the
network connection is not crucial in their case.

Mobile agents can be thought of as resulting from combining software agent
technology and distributed computing technology. What changes substantially
is the traditional network computing model since mobile agents have nothing
to do with Remote Procedure Calls (RPCs).

While mobile agents can move continuously from one node to another, and
travel according to their own needs and choices, that is not true for the ordinary
migration processes that, in fact, cannot decide themselves where/when to go.

Additionally, mobile agents are different from Java applets, since applets
can only travel one-way from server to client, while mobile agents can move
bi-directionally: from server to client and vice versa. A mobile agent-based ap-
plication consists of a group of mobile agents: each mobile agent moves to the
node that has resources for computing, according to its own goal and environ-
ment, and may cooperate with other mobile agents during the computation.

The whole computing process can be divided into several steps: after each
single step is completed, the mobile agent will choose its next action indepen-
dently and will continue to do so until all the tasks have been carried out.

The ordinary distributed computing model typically uses RPC, process
immigration and Client/Server architecture, but all these computing models
have limitations: among all, the most important is that all the nodes involved
in computing have to be available in the network at the same time during the
interaction and, if a required resource is not accessible, the whole computing
process will fail.

The mobile agent technology allows communication among computers, so
the distributed computing is not any more a service request made by a com-
puter to another computer, but it also provides executable computing processes
to other machines.

Ivana Gungui Integrating Logical Agents Into DCaseLP

Environments for developing MASs -
Mobile agents 5

Moreover, data is not the only information exchanged over the network,
since even computing processes and the state of their computing can be trans-
ferred.

The mobile agent technology helps reduce network load significantly. Dis-
tributed systems often rely on communication protocols involving multiple
interactions to accomplish a given task. The result is a lot of network traffic.

The technical difficulties that can arise with this technology are mainly:

❏ portability - since Internet is a heterogeneous environment, a mobile
agent must be able to run on many different platforms, so it must be
written in a machine independent language;

❏ security - agents are executed on remote machines, so there must be
some mechanism that guarantees they will not do any harm to the servers
they are executed on, and also they will not be damaged by malicious
agents while roaming the network.

Mobile agent technology has already moved from the stage of theory to prac-
tical usage, and some mature development platforms and execution environ-
ments keep coming out. Theoretically, mobile agents can be written in any
language (such as C/C++, Java, Perl, Tcl and Python) and can be executed
on any computer.

Since mobile agents must support different software and hardware environ-
ments, the development platform must be independent of specific languages.
Java is an ideal language to develop mobile agents. After the compilation, Java
binary code can be executed by any Java interpreter, which is cross-platform.

Mobile agent technology has been studied for many years, but the real
applicable mobile agent system did not become available until 1996.

1.3.1 Intelligent networks

It is the ability to communicate, coordinate, and cooperate that makes agents
and MASs a worthwhile metaphor in computing and that makes them attrac-
tive when it comes to dealing with some of the requirements in next-generation
telecommunications systems.

In order to realise the potential created by technological innovations, some
important requirements for the next generation of networks need to be satisfied:

Ivana Gungui Integrating Logical Agents Into DCaseLP

6
Environments for developing MASs -

Mobile agents

➤ ubiquitous personal assistance and reachability anywhere at anytime, so
users will have at their disposal added-value and help in navigating
through the massive content and service offerings;

➤ intelligent user interfaces over multiple devices, like mobile phones, next
generation Personal Digital Assistants (PDAs), web pads, and PCs can
support the users in exploiting the potential of multimedia, large band-
width access to content and services;

➤ more security mechanisms will have to be incorporated into intelligent
telecommunication infrastructures, since security issues will become more
critical, due to the fact that more devices carry personal information
(such as user profiles) and computers are turning into personal assistants
that carry out legally relevant transactions (such as purchasing or signing
contracts);

➤ new ways of designing and managing networks are needed since networks
are becoming more complex and dynamic: support for scalability through
self-organisation and for hand-over between different networks is lacking.

Mobile agents distribute code to proxies in the network as well as to mobile
devices: thus, the number of network transactions necessary to provide a ser-
vice can be reduced by local processing as well as local service customisation.

This, in turn, might lead to less bandwidth consumption and lower latency.
Different real mobile agent platforms have already been proposed: they
are software intended to manage the mobility and task execution of the agents.

Exmaples of agent platforms are, for instance, MOLE [MOL], IBM Aglets
[IBM], Objectspace Voyager [RS], the OMG-MASIF initiative [OMGa], Grash-
opper [IKV], Semoa [IGD] and Swarm [Gro].

Furthermore, the ACTS (Advanced Communications Technologies and
Services) EU program [ACT] has featured a cluster of agent-based telecommu-
nications projects, named CLIMATE (Cluster for Intelligent Mobile Agents
for Telecommunication Environments). Each single project in CLIMATE has
been organised according to the following topics:

✴ intelligent networks and mobility

✴ communication and management

✴ agent systems

Ivana Gungui Integrating Logical Agents Into DCaseLP

Environments for developing MASs -
Mobile agents 7

✴ agent platforms

The CLIMATE projects involve strong industrial participation, including Vo-
dafone/Mannesmann, Motorola, Siemens, Sony, DTAG, NEC, Alcatel, Hitachi,
British Telecom, Swisscom, and Philips.

The desired role of agent technology in telecommunications is to be a key
vehicle for:

✲ achieving enriched, higher level communication;

✲ enabling more intelligence in providing services and network management
(for instance, by personalising and integrating different services to value-
added services and negotiation of quality of service);

✲ dealing with the increasing amount of information and functions, and

✲ allow self-organising networks.

In order to be able to achieve these goals, agents need to communicate to
discover their peers, to negotiate and to cooperate in open environments where
everybody can add their contribution when and how it seems appropriate.

Most importantly, agent systems will have to interface with a variety of
existing and upcoming developments and standards at the underlying network
systems level, including support for a wide range of devices.

Therefore, the network systems level needs to offer some degree of pro-
grammability. Programmable networking aims at opening low-level access to
network elements (routers, switches, base stations) by defining appropriate in-
terfaces accessable by various entities (protocols, agents), which offer advanced
and customisable services.

This concept can then be extended with (agent-based) mechanisms for
distributing and executing code which programs the interfaces on behalf of
individual applications (including those running on end systems). The new
paradigm has been called active networking.

Some researchers are convinced that agent-based active networking could
influence the design of the next generation of wireless packet networks.

Ivana Gungui Integrating Logical Agents Into DCaseLP

8
Environments for developing MASs -

Mobile agents

1.3.2 Agent-based management of wireless/mobile net-
works

Mobile agents appear to be an interesting combination of current research
on network management and agent-related research. On the one hand, the
research on network management is focused on finding new ways to overcome
the limitations of current client-server technology, on the other, research on
mobile agents and peer computing provides technologies and architectures to
enable decentral, peer-to-peer communication.

In the last years, distributed programming has become more and more
popular, especially due to the widespread of the Internet that provides the
first steps towards a global infrastructure for distributed applications: a global
namespace (URLs) and a global communications protocol (TCP/IP). Plat-
forms based on the Java language and on the CORBA standard take advantage
of this infrastructure and have become widely-used.

Distributed programming is still a hard task: writing efficient, open, and
robust distributed applications remains much harder than writing centralised
applications. Moreover, if the distributed applications also have to guarantee
security, then the difficulty increases.

The abstractions offered by Java and CORBA, for example the notion of
distributed object, provide only rudimentary help, since the programmer must
still strongly concern about distribution and fault-tolerance.
The main advantages of agent technology are the following:

❀ Distribution of management code : instead of carrying large amoun-
ts of management data to stations via the network, mobile agents can
transport network management code to the Simple Network Management
Protocol (SNMP) agents. This saves bandwidth, reduces bottlenecks,
and makes the architecture more scalable, a very important feature since
in a wireless network the resources are a few.

❀ Decentralisation : mobile agents can effectively decentralise network
management functions. They can proactively and autonomously carry
out administration tasks such as installing and upgrading software, or
periodically monitor the network. Decentralisation is more interesting
in a network scenario where the traffic needed for management must be
minimised.

❀ Dynamically changing network policies: as networks dynamically
change, the rules underlying network management (the so-called policies)

Ivana Gungui Integrating Logical Agents Into DCaseLP

Environments for developing MASs -
The MadKit Project 9

need to be changed from time to time. In current network management
systems, this is done following a complete “rewrite, compile, run” cycle;
using agents, these changes can be done dynamically and incrementally,
by replacing agents or agent functions one at a time.

❀ Network monitoring : mobile agents are beneficial for surveillance of
SNMP variables and long-term monitoring of network elements. This is
important for wireless networks as the node configuration might change
over time (considering, for example, ad-hoc networks or a variable num-
ber of users in a single cell of a cellular network).

❀ Data collection : agents can search, collect and filter network data.
They can be used to process data-intensive requests from network ele-
ments. In this case, the agent acts as a “smart query” that visits the
data and performs the necessary computation locally, instead of passing
large chunks of data over the network.

❀ Reactiveness : agents can quickly react to local events, such as the
breakdown of a link.

❀ Robustness : agents can, at least to a degree, perform their tasks even
if parts of the network are not temporarily reachable. This makes them
particularly valuable for mobile computing, where links are expensive
and unstable.

1.4 The MadKit Project

MadKit (a Multi-Agent Development Kit) [GF00] is a highly customisable,
scalable, generic multi-agent distributed platform for developing and executing
distributed applications.

This platform is based on the AALAADIN project [FG98] (designed by
the same authors of MadKit), namely a meta-model used to structure MASs,
considered as characterised by different forms of artificial organisations. This
meta-model is the means by which MadKit provides agent heterogeneity in
languages, applications and architectures.

The main goal of the platform is to constitute a foundation layer for
various agent models, as well as offering basic services completely extensi-
ble and replaceable. It is written in Java and based on an organisational-

Ivana Gungui Integrating Logical Agents Into DCaseLP

10
Environments for developing MASs -

The MadKit Project

oriented paradigm, the AGR (Agent/Group/Role) paradigm, according to
which agents belong to groups and play roles (see Subsection 1.4.1).

In business environments, it is often needed to consider the behaviour of
the global system and incorporate collective characteristics designed from a
top-down perspective; in other words, the organisational design must be able
to consider characteristics of the organisation, not easy to gather from a model
taking into account only the behaviours of the individual agents.

Multi-agent systems, or agent societies, represent the interactions between
agents and are as such the virtual counterpart of real-life societies and organ-
isations. The proposed multi-agent paradigm uses agents, groups and roles as
the basic standpoint for building complex applications, but the developer can
create the MAS without taking into account the organisations of agents.

MASs are described on the basis of social structures built from groups
and roles, independently from the actual nature of the agents, so the internal
architecture of agents is totally up to the developer that is free to implement
whichever agent architecture he/she prefers.

MadKit general architecture is based on micro-kernels which provide
only the basic facilities: messaging to local agents, management of groups
and roles, launching and killing of agents. All the other features — as distant
messages, display, monitoring and control of agents — are performed by agents.

The underlying mechanism that allows MadKit to implement distributed
applications does not rely on remote access techniques as RMI or CORBA,
but still allows efficient communication. The communication inside MadKit
is based on a peer-to-peer mechanism so, together with the simplicity of the
platform, it allows the users to quickly develop distributed applications using
multi-agent principles.

MadKit provides a full set of management facilities/agents for launching,
displaying, developing and monitoring agents and organisations, including mes-
sage passing, agent lifecycle management and distribution.

The micro-kernels are intended to incorporate a number of key facilities
that allow the efficient deployment of agent toolkits.

Agents in MadKit may be programmed in different languages: Java, Scheme
(Kawa), Jess (a rule-based engine), BeanShell (interpreted Java), Pyhton (Jy-
thon) or any script language may be easily added.

MadKit can also be used as a GUI-oriented platform or as a server, and
has an easy to use interface, from which it is possible to launch, display and
monitor agents.

MadKit is also provided with a set of “containers” (intending execution

Ivana Gungui Integrating Logical Agents Into DCaseLP

Environments for developing MASs -
The MadKit Project 11

environments for running applications), so it can run in different contexts: as
a development environment or as an embedded tool for applications (in JSP,
Applet, Console mode, GUI desktop, etc.). Since the platform is implemented
in Java, it is a “cross-platform”, meaning that it can be run on Win XX,
Linux, Mac Os, and other Unix based operating systems that provide a Java
interpreter.

MadKit is a free software based on the GPL/LGPL license; the current
version is 4.0.9 (Enchanted Lands) and has been released January 2005.

1.4.1 The Agent/Group/Role model

The AALAADIN model is a formal model oriented to software design, im-
plemented and used in the MADKIT tool. An organisation is considered as a
framework for activity and interaction that is defined through groups, roles and
their relationships. By avoiding an agent-oriented viewpoint, an organisation
is regarded as a structural relationship between a collection of agents.

The model is not a static description of an agent organisation, in fact it
allows to define rules to specify the dynamics of the organisation. It is based
on three core concepts that are used to describe and model social and spatial
structures of a real system:

Agent An agent is only specified as an active communicating entity which
plays roles within groups. The designer will choose the most adequate internal
architecture for the agent, since it is not considered by this model.

Role A role is an abstraction representing what function/service or identi-
fication the agent has as a member of a group. Each agent can play multiple
roles: each role is local to a group. The candidate agent must request to han-
dle a role in a group, and this role is not necessarily assigned to it. Roles,
therefore, define abstract communication schemes.

Group A group is defined as a set of agents that can interact. One group
cannot contain other groups, but groups can overlap since an agent can belong
to one or more groups. When necessary, a member of a group is chosen as the
“representative” role of the group and acts as the proxy for the whole group in
the external world. A group has the purpose of describing collective structures
by means of behaviour types that are represented by roles. Agents that play

Ivana Gungui Integrating Logical Agents Into DCaseLP

12
Environments for developing MASs -

The MadKit Project

the same collective behaviour type differ according to their individual features.

The particular mechanism for role access within a group is not defined, in order
to allow more flexibility.

Thus, an organisation can be described only on the basis of its structure,
namely by the way groups and roles are “arranged to form a whole”, without
being concerned about the way agents actually behave. This implies MASs
being analysed from the “outside”, as a set of interaction modes, and the
specific architecture of agents is purposely not addressed.

Moreover, groups are dynamic structures since agents can enter/leave them
by acquiring/resigning a role, and they represent organisational levels, while
roles represent functions within these levels.

The aim of the Agent-Group-Role formalism is to “resolve” the inherent
duality between individual and collective levels of a system.

This approach supports heterogeneous languages, applications and archi-
tectures in the design of complex multi-agent software.

Support to MAS development in MadKit

MadKit is built from a set of Java packages that implement the agent kernel,
the various libraries of messages and agents, including a graphical development
environment and standard agent models.

The generic agent is a class defining a basic abstract life-cycle — what to
do upon activation, execution, and termination. A subclass extending that
agent has the aim of adding support for concurrent, thread-based execution,
which is the natural model for a collaborative or cognitive agent.

Additional subclasses implement synchronous execution through an exter-
nal scheduler, focused on reactive or hybrid architectures. Communication is
achieved through asynchronous message passing: a primitive is used to directly
send a message to an agent identified by its unique identifier. There also is a
higher-level version that sends or broadcasts to one/all agents having a given
role in a specific group. Groups and roles requests and actions are also defined
at this level.

The agent developer is completely free to define the agent behaviour, but
the organisational view will be always available to structure the MAS. Various
specific agent models have been built upon this generic architecture by the
developers of MadKit: Jess1 agents, reactive systems, componential architec-

1an expert system shell and scripting language written in Java and based on the Clips

Ivana Gungui Integrating Logical Agents Into DCaseLP

Environments for developing MASs -
The MadKit Project 13

tures.
MadKit provides a set of tools which are useful to the developer of multi-

agent applications, like the following:

❃ System agents: are the main tools that a MadKit developer uses to
explore, launch, visualise and trace agents.

❃ Communicator: an agent which allows to build distributed applica-
tions without being concerned about distribution (in the last version it
is substituted by the more flexible NetCom).

❃ JSynEdit: an “agentified” version of an editor which has been in-
tegrated into MadKit and may be used to edit and launch Java and
Scripted agents.

❃ SEdit: is both an editor and animator of diagrams that can be used to
view and manipulate information represented as graphs.

❃ PluginManager: can be used to install, update and configure MadKit
as needed.

Finally, a “graphic shell” called the MadKit desktop or desktop for short,
launches the kernel and loads the interfaces for the various agents managing
them in a global GUI.

Multilinguality in MadKit

It is possible to program MadKit agents in several languages: Java, Python,
Scheme (Kawa), BeanShell and Jess. More languages will be added in the fu-
ture, but it is actually quite straightforward to add a new scripting language in
MadKit (the reader is referred to the MadKit Development Guide available
online at the url: http://www.madkit.org/madkit/doc/devguide/devguide.html).

Java is the main language of MadKit because the platform has been pro-
grammed in Java. However, because Java is a compiled language, it is some-
how more difficult to develop agents in Java because the code needs to be
compiled, put into a Jar, placed in a specific location, and then MadKit has
to be restarted to execute the agents.

Conversely, if the developer uses one of the available scripting languages —
for instance, Python, Scheme (Kawa), BeanShell and Jess —, the agent can

rule system

Ivana Gungui Integrating Logical Agents Into DCaseLP

14
Environments for developing MASs -

The Mozart Programming System

quickly be executed. The only drawback is that Java agents are more efficient.
So, it is up to the developer to choose which of the available languages to use
for the agents.

Support to AOSE in MadKit

One of the software tools provided by MadKit is SEdit that stands for Struct-
ure Editor. This tool allows the design and animation of structured diagrams.
A diagram contains nodes and arrows, that are called elements : an arrow
connects two nodes.

A diagram can be compared to a directed graph in graph theory. Diagrams
are categorised into types called formalisms : in SEdit a formalism describes
both the structural aspect (the types of nodes and arrows, their relationship
and their behaviour) and the graphical aspect (the way nodes and arrows are
graphically represented on the editor) of diagrams.

There is a set of pre-defined formalisms, but users can describe their own
formalism. A formalism is a model definition that represents domain-specific
nodes and links (for instance, UML models, Petri nets, logical gates, etc.).

The pre-defined formalisms may be directly used or exploited for defining
more specific formalisms. Some predefined formalisms are:

✺ Automaton: it allows the user to describe and simulate finite state
automata.

✺ Petri: can be used to describe and simulate Petri nets (also coloured
Petri nets).

✺ Bric: it allows to build and simulate the behaviour of MadKit agents
using an extension of coloured Petri nets.

Diagrams may be displayed, arranged and modified in various ways using
the editor diagram. In order to animate the diagrams, the user must associate
Java classes to arrows and nodes and to the diagram (seen as a whole).

1.5 The Mozart Programming System

The Mozart Programming System [Con] is an advanced development
platform for intelligent, distributed applications. It has come into being af-
ter a long-term effort of the Mozart Consortium, a research collaboration

Ivana Gungui Integrating Logical Agents Into DCaseLP

Environments for developing MASs -
The Mozart Programming System 15

between the German Research Center for Artificial Intelligence (DFKI) in
Germany, the Swedish Institute of Computer Science (SICS) in Sweden, the
Université Catholique de Louvain (UCL) in Belgium, and the Universität des
Saarlandes (UdS) in Germany. The project started in 1991, while the work
on distribution started in 1995. The first public release was in January 1999
(http://www.mozart-oz.org).

The developers of Mozart, whose current release is 1.3.1 dated July 2004,
have dedicated their research to programming language design and imple-
mentation, constraint-based inference, distributed computing, and human-
computer interfaces.

It has an interactive incremental development environment runnable on
Unix, Windows, MacOS X and other operating systems. The full source code
of Mozart is free of charge and all use is allowed, including commercial use;
it provides support in two areas: open distributed computing and constraint-
based inference.

It is a platform for developing both general-purpose distributed applica-
tions and applications for hard problems requiring sophisticated optimisation
and inferencing abilities. Many applications have been developed with Mozart,
including sophisticated collaborative tools, MASs and digital assistants, as well
as applications in natural language understanding and knowledge representa-
tion, in scheduling and time-tabling.

The Mozart system implements Oz 3, the latest in the Oz family of multi-
paradigm languages based on the concurrent constraint model. Oz 3 is almost
completely upward compatible with its predecessor Oz 2.

Oz 3 is a concurrent language since users can dynamically create any num-
ber of sequential threads that can interact with each other. However, it differs
from conventional concurrent languages in the fact that each Oz thread is a
dataflow thread, so an Oz statement is executed only when all real dataflow
dependencies on the variables involved are resolved.

In Mozart, a process belonging to the operating system is called site. So, a
distributed program is a program partitioned between sites that are not nec-
essarily running on the same machine. The Mozart system supports network-
transparent distribution of Oz computations, meaning that multiple Oz sites
can connect together and automatically behave like a single Oz computation,
sharing variables, objects, classes, and procedures.

Sites disconnect automatically when references between entities on different
sites stop existing.

The primary aim of Mozart is to separate the fundamental aspects of pro-

Ivana Gungui Integrating Logical Agents Into DCaseLP

16
Environments for developing MASs -

The Mozart Programming System

gramming a distributed system: application functionality, distribution struc-
ture, fault tolerance, security, and open computing.

The current Mozart release completely separates application functionality
from distribution structure, also providing primitives for fault-tolerance, open
computing, and partial support for security.

The OPI (Oz Programming Interface) is the primary tool for interaction
with the Mozart development system: it offers special support for editing Oz
code, running Mozart as a sub-process, and interacting with the development
tools provided by Mozart.

Essentially all the distribution features of Mozart are given by four modules:

• Connection : this module provides the basic mechanism (known as tick-
ets) for active applications to connect with each other.

• Remote : it is used by an active application to create a new site, that
is a local or remote operating system process, and connect with it. The
site may be on the same machine or a remote machine.

• Pickle : it is exploited by an application to store and retrieve arbitrary
stateless data from files and URLs.

• Fault : it includes the basic primitives for fault detection and handling.

The first three modules are extremely simple to use, since they have just a
few basic operations. For example, Connection has just two basic operations:
offering a ticket and collecting a ticket. The fourth module, Fault, is the one
supporting the creation of fault-tolerant abstractions.

Recent projects involving the use of Mozart and concerning problems deriv-
ing from the real world can be found listed at the following url http://www.moza
rt-oz.org/archive.cgi. Mozart and Oz are being used in research, education, and
industry in many areas, including distributed programming, software engineer-
ing, programming languages, constraint programming, simulation, graphical
user interfaces, security, and artificial intelligence.

Support to MAS development in Mozart

By combining concurrent and distributed programming with logical constraint-
based inference, Oz becomes a candidate for developing multi-agent systems.
The developer implementing distribution must not be concerned with details
regarding the underlying network, that is open and fault-tolerant. It is a

Ivana Gungui Integrating Logical Agents Into DCaseLP

Environments for developing MASs -
The Mozart Programming System 17

platform characterised by an efficient implementation, it is portable, open
source, has simple formal semantics and flexibility (with few limits).

The aspects that make it a candidate for developing agent applications are:

✹ concurrency ;

✹ inferencing ;

✹ distribution ;

✹ graphical user interfaces;

✹ components and agents ;

✹ formal semantics.

The system supports distributed and networked applications: it is possible
to connect Oz computations located on different sites, resulting in a single
network-transparent computation.

Moreover, Mozart allows users to dynamically create any number of sequen-
tial threads (more precisely, dataflow threads) and each one, while executing
an operation, can suspend until all the needed operands have a well-defined
value.

The network transparency to the user implies that a program will perform
exactly the same computation, independently of how it is divided between a
set of operating system processes.

The underlying representation of the language entities is inaccessible to the
programmer, therefore Oz provides language security: all language entities, in
fact, are created and passed explicitly, so an application cannot make references
nor access references that have not been explicitly given to it.

Multilinguality in Mozart

Mozart is based on the Oz language, a multiparadigm high-level program-
ming language which supports declarative programming, object-oriented pro-
gramming, constraint programming, and concurrency. Oz is designed for ad-
vanced, concurrent, intelligent, networked, soft real-time, parallel, interactive,
pro-active and reactive applications, providing fundamental features of object-
oriented programming.

Ivana Gungui Integrating Logical Agents Into DCaseLP

18
Environments for developing MASs -

The Mozart Programming System

All versions of Oz are based on a concurrent constraint programming model,
extended to support stateful computations, in other words computations on
mutable objects.

The original Oz computation model, Oz 1 (released in 1995), supported a
fine-grained notion of concurrency where each statement could potentially be
executed concurrently. Oz 1 showed that its model, even though theoretically
appealing, made it very hard for the programmer to control the resources of
the application under development. Additionally, debugging programs was
very hard and the object model tended to become unnecessarily awkward.

Oz 2 originated to overcome these problems: it used a thread-based concur-
rency model, with explicit creation of threads. A powerful new object system
was designed and traditional exception handling constructs were added. In
addition, the constraint solving and search capabilities were greatly enhanced.

Oz 3 (from now on abbreviated with Oz) is the current language of the system
and conservatively extends Oz 2 with two concepts:

■ functor : it is a kind of software component that specifies a module in
terms of the other modules it needs, supporting incremental construction
of programs from components that may be addressable over the Internet
by URLs.

■ future : it is a logic variable that can be read but not written, allowing
safe dataflow synchronisation over the Internet.

Oz provides programmers and system developers with a wide range of program-
ming abstractions to enable them to develop complex applications quickly and
robustly. It merges the several benefits of the various programming paradigms
— object-oriented, functional and constraint logic programming — into one
design.

It offers the most interesting features of object-oriented programming : state,
abstract data types, classes, objects, and inheritance.

Whereas, from functional programming it derives a compositional syntax,
first-class procedures, and lexical scoping: in fact, every Oz entity is first class,
including procedures, threads, classes, methods, and objects.

Finally, from logic programming and constraint programming it exploits
logic variables, disjunctive constructs, and programmable search strategies.

Furthermore, besides supporting many programming styles, Oz even sup-
ports combinations of them.

Ivana Gungui Integrating Logical Agents Into DCaseLP

Environments for developing MASs -
The Jack Platform 19

Support to AOSE in Mozart

The Mozart system mainly supports concurrency and distribution. From the
logic and constraint programming paradigms it inherits the possibility to im-
plement complex behaviours, whereas from the object-oriented paradigm it
can obtain abstraction.

Graphical tools for modelling the MAS or for animating diagrams describ-
ing the architecture of the MAS are not supported. The underlying language
seems to offer a wide range of programming abstractions to enable the pro-
grammers to quickly and robustly develop complex applications, but the vari-
ous phases of the software engineering methodology do not seem to have been
taken into account, or at least they are not explicitly supported by the plat-
form.

It does not address issues as formal verification and validation, even though
the presence of a logic and constraint programming paradigm in Oz should
allow at least simple forms of verification of properties of the system being
developed.

1.6 The Jack Platform

JACK (Java Agent Compiler and Kernel) Intelligent AgentsTM [JACa,
JACb] is an agent-oriented development environment created by the Agent
Oriented Software Pty Ltd. JACK has been conceived to be an environment for
creating, running and integrating commercial Java-based multi-agent software
using a component-based approach.

Systems based on JACK are commercially deployed worldwide and are
composed of reasoning entities that cooperate to achieve their goals.

It is built on top of Java and is fully compatible with other Java programs.
The target application domains for JACK are: distributed business systems,
command and control, intelligent applications and simulation.

The most important element in JACK is the JACK Agent Language, that is
a programming language extending Java with agent-oriented concepts. Some
of the Java classes defined in this language are:

❀ Agent : an instance of this class represents a JACK intelligent agent
and implements all the functionality associated with it. An agent is
composed of capabilities, plans, databases, and events. An agent can

Ivana Gungui Integrating Logical Agents Into DCaseLP

20
Environments for developing MASs -

The Jack Platform

address other agents and post events to them, thus modelling inter-agent
communication.

❀ Capability : an instance of this class represents a functional aspect of
an agent that can be plugged into it as required.

❀ Event : an instance of this class represents an event, that causes an
activity within JACK; it is distinguished in normal or BDI event. It
arises internally to an agent as reasoning progresses, as a result in a
change in the beliefs of the agent, or on receiving a communication from
another agent.

❀ Plan : an instance of this class describes a sequence of actions that an
agent can take in response to an event occurred.

❀ BeliefSet : an instance of this class represents the maintenance of agent
beliefs that are central to the notion of BDI.

One approach to agent-oriented systems, corresponding to the BDI architec-
ture, views the system as a rational agent having certain mental attitudes of
Belief, Desire and Intention (BDI). These mental attitudes determine the
behaviour of the system and are critical for achieving adequate or optimal per-
formance when deliberation is subject to limitations imposed by the resources.
Each agent has, in fact:

✲ a set of beliefs about the world (its data set);

✲ a set of events that it will respond to;

✲ a set of goals that it may desire to achieve (either at the request of an
external agent, reacting to an event, or when one or more of its beliefs
change);

✲ a set of plans that describe how it can handle the goals or events that
may occur.

JACK implements BDI agents since their reasoning behaviour follows the
theoretical BDI model of artificial intelligence. A JACK agent is a software
component that can exhibit both a pro-active (or goal-directed) and reactive
(event-driven) behaviour.

Besides supporting the BDI agent model, it also supports Simple Team,
an extension that allows team-based reasoning. A generic software system

Ivana Gungui Integrating Logical Agents Into DCaseLP

Environments for developing MASs -
The Jack Platform 21

implementing a BDI agent is an event-driven program: in reaction to an event,
for instance a change in the environment or in its own beliefs, a BDI agent
adopts a plan as one of its intentions.

A step of a plan can consist of adding a goal (that is, a desire to achieve
a certain objective) to the agent itself, changing its beliefs, interacting with
other agents, and any other atomic action on the state of the agent or on the
external world.

The agent executes the steps of the plans until further deliberation is re-
quired; this may happen because of new events or the failure or successful
conclusion of existing intentions.

An agent can be compared to a person having certain plans to achieve its
goals, in particular a JACK agent is able to exhibit the following properties
associated with rational behaviour:

Goal-directed focus The agent focuses on the objective and not on the
way to achieve it.

Real-time context sensitivity The agent remembers which options are
applicable at each given moment, and then makes decisions about what to try
and retry according to present conditions.

Real-time validation of approach The agent will perform certain actions
only while specific maintenance conditions are true.

Concurrency The agent system is multi-threaded. If new goals and events
arise, the agent will be able to shift priority between them and multi-task as
needed.

The three main extensions to Java introduced by JACK are:

❂ syntactical extensions: keywords to refer to the main components of
an agent (like agent, plan and event) and various statements for defining
and manipulating such components;

❂ an ad-hoc compiler to convert the above components into ordinary
Java classes, in order that they can be used by other Java code;

Ivana Gungui Integrating Logical Agents Into DCaseLP

22
Environments for developing MASs -

The Jack Platform

❂ the kernel, namely a collection of classes that implements the run-
time needed by the generated code, including a high performance infras-
tructure implementing concurrency management and communication in
multi-agent applications.

Support to MAS development in JACK

JACK is a system that provides programming constructs for representing and
implementing reasoning.

Its framework supplies a high performance, lightweight implementation of
the BDI architecture, and can be easily extended to support different agent
models or specific application requirements.

Moreover, JACK provides the core architecture and infrastructure for de-
veloping and running software agents in distributed applications.

The BDI model has demonstrated itself to be well suited for modelling
intelligent behaviour in rapidly changing worlds, in fact it has been successfully
adopted in different fields as simulation of military tactics, applications of
business rules in workflows, and others.

A JACK agent is a computational implementation of the BDI model and
as such it provides a reasoning framework with a specific set of language con-
structs. These constructs are just one possible implementation of the BDI
model but provide the programmer with a modelling framework that is a mix
of the high-level representational abstraction of the BDI model and the low
level detail of the Java language.

Since it is based on Java, it allows an easy integration with legacy software.

BDI systems able to operate in dynamic, volatile, or real-time environments
can be constructed by adding an operational semantics associated to plans and
consistent with the notions of bounded or limited resources.

Multilinguality in JACK

JACK does not use a specific communication language and lacks a strong
communication model. Java is the only language provided to implement the
agents: both their knowledge and their behaviour.

The underlying Java infrastructure certainly makes it easier to integrate
the system with other systems or languages, but such integration must be
made by the developer.

Ivana Gungui Integrating Logical Agents Into DCaseLP

Environments for developing MASs -
Conclusions 23

Support to AOSE in JACK

The BDI approach offers a way to verify and validate the model of the appli-
cation. The JACK Development Environment (JDE) offers a high-level
design tool, a graphical plan editor and graphical tracing of plan execution,
that provide a powerful and flexible program development environment.

The JDE also allows non-programmers to specify high-level agent reasoning
methods that can then be produced by programmers. Team plans can contain
graphical reasoning methods.

The agent-oriented model used in JACK is an extension of the encapsula-
tion that is defined in the object-oriented model: the aim of the former model
is to include a higher level representation of behaviour.

JACK offers easy integration and reuse since it allows modular design using
plugins that can be added to the system extending it.

1.7 Conclusions

Since the introduction of powerful abstractions by means of the object-oriented
programming paradigm, the inherent complexity of software systems has been
dealt with more easyly and software engineering has greatly improved.

On the other hand, the agent-based computing has become a promising
approach to developing various complex, typically distributed, computer sys-
tems. Agent-based solutions have already been developed for many different
application domains, too.

The main characteristic that distinguishes agents from other software com-
ponents is their autonomy : an agent has the ability to independently decide
what to do in order to meet a purpose. However, agents usually do not exist
“alone” but interact with other entities by exchanging messages, by means
of asynchronous communication, and are able to collaborate while preserving
their autonomy.

Agents are not native concepts of the language chosen to implement a MAS,
but are higher level entities that use specific communication and execution
mechanisms in order to conform with the agent paradigm.

Nowadays, the MAS topic is being dealt with in many disciplines outside of
Artificial Intelligence, as for instance: biology, sociology, economics, complex
systems, and philosophy.

Models, technologies and even methodologies are thus needed in order to
support the developers to engineer MASs in a robust, reliable, and even re-

Ivana Gungui Integrating Logical Agents Into DCaseLP

24
Environments for developing MASs -

Conclusions

peatable fashion. Therefore, to facilitate the development of MASs, researchers
create infrastructures that provide communication languages, interaction pro-
tocols and agent architectures.

Examples of “popular” agent frameworks that have been presented in the
past years (late 1997) are: Voyager [RS], Aglets [IBM] and Odyssey [Mag].

Many methodologies and models borrowing abstractions and concepts from
the organisation and sociology disciplines have been proposed to understand,
model, reason, analyse and design MASs.

The point is that, although these models and methodologies all view a
MAS as an organised society of agents, the organisation abstractions, con-
cepts, assumptions and models of it are actually different. In fact, different
methodologies and models have different purposes and assumptions about or-
ganisation, model the MAS at different levels, use different organisational and
social concepts that are used at different stages in the software engineering
lifecycle, and therefore have different application domains.

In addition, the same concept may have various interpretations and defini-
tions in models and methodologies.

In this chapter, we have chosen to describe a few of the different approaches
followed by creators of tools supporting the development of MASs: one focuses
on concurrency between the agents while the other one on distribution.

As an example, we have also briefly introduced three software platforms
that are specifically designed for building MASs (or can be used to this purpose
as well), and analysed the aspects that we think should be taken into account
when creating these tools:

✷ support to MAS developing;

✷ support to multilinguality (at any level);

✷ support to the AOSE process.

In the next chapter we describe our approach, which focuses on tools for
rapid prototyping of MASs composed of heterogeneous agents.

Ivana Gungui Integrating Logical Agents Into DCaseLP

25

Chapter 2

The DCaseLP environment

2.1 Introduction

DCaseLP [Mig02, AMMM02] stands for Distributed CaseLP, where CaseLP
[MMZ99, BDM+99] is the acronym for Complex application specification en-
vironment based on Logic Programming.

DCaseLP is a software environment designed and developed by the Logic
Programming Group at the Department of Computer Science of the University
of Genova in Italy, with the aim of providing a development tool for specify-
ing, implementing, executing and debugging prototypes of multi-agent systems
(abbreviated with MASs).

DCaseLP has originated from the intention of overcoming the deficiencies
present in a previously developed software tool, namely CaseLP, which pro-
vides a prototyping method and a set of tools and languages to support the
realisation of prototypes of complex applications.

Correctness and reliability of a developed software are diffiult to be guar-
anteed, particularly for distributed software systems where a set of entities
have to cooperate and coordinate in order to exchange information. More-
over, many distributed systems must use existing software modules and, con-
sequently, must integrate information from a potentially large number of dif-
ferent sources.

Thus, integration and reuse of different kinds of information and soft-
ware tools constitute an urgent need that new software products must satisfy.
CaseLP came into being with the purpose of helping the developer of MASs
to accomplish these tasks.

In this chapter we first introduce the ARPEGGIO (Agent based Rapid

Ivana Gungui Integrating Logical Agents Into DCaseLP

26 The DCaseLP environment - ARPEGGIO

Prototyping Environment Good for Global Information Organisation) frame-
work [DKM+99], which proposes a general open approach for the specification,
rapid prototyping and engineering of agent-based software.

ARPEGGIO encourages the use of logics and logic programming in re-
alising an open MAS: logic-based formalisms are considered suitable for the
specification, direct execution and verification of the prototype. CaseLP was,
indeed, created as an instance of this general framework.

After introducing ARPEGGIO, we will outline the advantages and disad-
vanteges of CaseLP first, and then of the first release of DCaseLP, ending with
the rationale of integrating into it “logical agents”, proceeding towards the
current release of DCaseLP.

2.2 ARPEGGIO

The ARPEGGIO framework [DKM+99] proposes an open approach based on
Logic Programming that has been set up with the aim of providing tools
and methodologies to support a software engineer realise new distributed and
heterogeneous software applications modelled as MASs.

In other words, the objective of the framework is to provide the build-
ing blocks for the development of a hybrid, customisable AOSE methodology,
without forcing the resulting system to be hybrid.
Three international research groups:

❏ the Logic Programming Group at the Department of Computer Science
of the University of Maryland in USA,

❏ the Logic Programming and Software Engineering Group at the Depart-
ment of Computer Science and Software Engineering of the University
of Melbourne in Australia,

❏ and the Logic Programming Group at the Department of Computer Sci-
ence of the University of Genova in Italy,

decided to pool their experiences in logic programming to reach the goal of
creating a unique “development model” characterised by a modular AOSE
approach and by the property of being open, both to existing software and to
its distribution.

In the ARPEGGIO’s philosophy, rapid prototyping is considered to be a
fundamental activity in the software development process because it combines
execution with debugging.

Ivana Gungui Integrating Logical Agents Into DCaseLP

The DCaseLP environment - ARPEGGIO 27

Refinement

LnL1 L2

 Specification languages

(not-executable and executable)

Specification of

 the MAS

 Execution of

the specification

 External software

 specification

Agent Agent
1 2 m

Agent

Executable prototype

 of the MAS
 Legacy software

and external executable

 specifications

Figure 2.1: The ARPEGGIO’s Approach

A well-established method is needed not only to develop applications whose
components have complex interaction, but also to provide modelling techniques
and tools that allow testing, verification, refinement of (partial) specifications
and prototypes, at different levels of detail.

The intended approach (see Figure 2.1) is one that simultaneously carries
out specification and prototyping, in order to obtain an iterative and incre-
mental development of a final validated formal specification.

The focus is on the realisation of an environment capable of supporting the
complementary techniques of animating parts of the specification and provid-
ing specification-based testing and formal verification of correctness.

With the term “animation” we intend making the (declarative) specifica-
tions executable, offering in this way a type of throw-away prototype and the
possibility to interactively test a model and its properties. There are very good
reasons to be interested in this process of animation, mainly being: it can be

Ivana Gungui Integrating Logical Agents Into DCaseLP

28 The DCaseLP environment - ARPEGGIO

highly automated, it is cheap to perform and, through the static analysis of
its results, provides important information about the model so far developed
and that is usually implicit, as assumptions and implications.

Animation brings a formal specification to life in the sense that, in an in-
teractive way, it validates the software engineers’ current understanding of the
system against that of the client, enabling both to provide valuable feedback.

The first step of software engineering — the requirements analysis — can,
therefore, be completed through experimentation by means of animation, ob-
taining more information on the system than that available from the client’s
model. It certainly helps, in this matter, the fact that a client is more likely
to understand an animation than a formal specification.

For what we have said until now, it should be clear that the approach
followed within the framework is a testing oriented one.

2.2.1 The general architecture

The ARPEGGIO’s architecture is as general as possible, but it has been con-
ceived to be open, so it also takes into account logic programming, or more
generally declarative programming, beside the more popular graphical lan-
guages (like UML) and imperative languages.

Logic programming has many interesting features: for instance, it is a
high level programming paradigm that can help to make specifications and
code seem alike, and it can provide the right combination of formalism and
experimentation.

Since a logic program can be viewed as an executable specification, the logic
paradigm constitutes a step forward for rapid prototyping. The metaprogram-
ming features of logic programming contribute to the “open” property of the
MAS since they allow the definition, in a flexible way, of agents with different
architectures and control, suitable for different tasks, to be easily added to the
system.

A fundamental aim of ARPEGGIO is to create an environment that pro-
vides a set of different languages for specifying particular aspects of the MAS’s
architecture and behaviour: the developer will then choose the most useful be-
tween the available, non-executable and executable, specifications.

For every specification language, there must exist a (semi-)automatic com-
piler that can produce an executable form of any specified agent, in a logic
programming target language. If architectural details of the agents are not
included in the specification, then such (semi-)automatic tools will add the

Ivana Gungui Integrating Logical Agents Into DCaseLP

The DCaseLP environment - ARPEGGIO 29

default details for building an executable prototype.

Once a prototype of the MAS has been created by compiling the various
components of the specification, tests can be carried out in order to detect
problems with the specification itself.

Using an executable specification language means being able not only to
directly interpret the given specification before compiling and animating it,
but also to analyse the specification behaviour and to refine it without having
to develop the prototype. Both, direct execution and animation, have the
purpose of providing a better understanding of the system, thus facilitating
the refinement of the specification, until the obtained executable prototype
behaves exactly as expected.

It should be possible to integrate into the prototype legacy software, data
and, perhaps, also external specifications.

Agents are distinguished from external legacy modules since the latter are
software components that provide functionality without communication capa-
bility, autonomy, or intelligence and can only be inserted into a MAS if there
are agents that can interface with them.

Thus, specification languages can be used not only for defining agents, but
also for describing the behaviour of an external module. When dealing with
not-executable languages, an ad-hoc compilation process can be applied to
create an animated form of the specification.

Finally, the executable MAS prototype should be implemented in the most
appropriate programming language from those available.

The agents specified with different languages, and then compiled into ex-
ecutable forms, are able to communicate with each other because the target
language in which they are compiled is either the same or an interface can
easily be defined between them so they can interact without losing efficiency.

The communication between the agents is accomplished through a common
agent communication language.

2.2.2 The proposed methodology

So, the methodology proposed by the ARPEGGIO framework can be sum-
marised as follows:

➤ specification step: lists the agents that compose the MAS, the services
they provide, which services they require, and the communication chan-
nels that exist between agents. During this phase the most appropriate

Ivana Gungui Integrating Logical Agents Into DCaseLP

30 The DCaseLP environment - ARPEGGIO

architecture for each agent in the system is decided — for example, re-
active, proactive or BDI. This stage also describes the agents behaviour,
in the sense that it states how they operate;

➤ animation step: serves to analyse how the previously specified system
behaves. In this stage the specification is tested and/or analysed and
verified to check how much it corresponds to the requirements. Testing
can take place only if the specification is executable;

➤ refinement step: analysis, verification and testing can give feedback to
the previous steps so, exploiting the results obtained by the animation,
this step refines the specification, perhaps choosing another specification
language and/or modelling lower-level details or different aspects from
those described before;

➤ improvement step: the system is improved by resolving the problems
that were encountered by animating the refined specification;

➤ execution step: the prototype is executed and tested with respect to
“real” communication among agents and actual interaction with legacy
programs, data or specifications. Any error or misbehaviour found in
this step may require a revision of the choices made in the previous
steps. After some revisions, the behaviour of the implemented prototype
will match all the initial requirements.

2.2.3 The ARPEGGIO partners

The Logic Programming Group at the Department of Computer Science of
the University of Maryland in USA has worked for years on semantically in-
tegrating different, and possibly heterogeneous, information sources and rea-
soning systems. They accomplished such a task by executing programs —
the mediators — written in the HERMES (A HEterogeneous Reasoning
and Mediator System [LNS96, AS95]) system they developed, based on the
theory of Hybrid Knowledge Bases. A very interesting project is also IM-
PACT (Interactive Maryland Platform for Agents Collaborating Together
[ESP99, ES99, AEK+99]); it includes both a theory as well as a software im-
plementation, that facilitates the creation, deployment, interaction, and collab-
orative aspects of software agents in a heterogeneous, distributed environment.

Ivana Gungui Integrating Logical Agents Into DCaseLP

The DCaseLP environment - ARPEGGIO 31

The Logic Programming and Software Engineering Group at the Department
of Computer Science and Software Engineering of the University of Melbourne
in Australia has developed great experience in the animation of logic speci-
fications, in order to execute and test them [SCT96], in particular with the
PipeDream project (PrototypIng sPEcifications, Design and REquirements
At Melbourne). PipeDream aims to improve the outcomes of requirements
analysis by using formal methods, or more precisely mathematical modelling,
to determine, analyse and verify requirements. Logic programming can provide
the basis for a light weight approach to achieving better analysis of specifica-
tions.

Finally, the Logic Programming Group at the Department of Computer Science
of the University of Genova in Italy has developed CaseLP, an experimental
environment for building prototypes of complex and distributed applications
modelled as MAS. The CaseLP tool allows to specify agents using logic lan-
guages (such as Ehhf [Del97]), its implementation is based on Prolog and has
been developed as an instance of the ARPEGGIO framework. During the de-
velopment of the tool, much work has been done to integrate more widely used
specification languages with logic ones, in order to take advantage of the ben-
efits of logics and logic programming and to reach a wider group of potential
users.

Moreover, within the ARPEGGIO framework, the Italian and Australian
groups have defined a new AOSE approach with the purpose of creating and
reusing already existing AOSE methodologies in a modular way.

What is interesting about a modular approach is that it enables develop-
ers to build custom project-specific methodologies from AOSE features just
like applications are built from reusable off-the-shelf components. The inter-
ested reader can find a conceptual framework for creating and reusing modular
methodologies in [JMMS03].

Such conceptual framework is based on the definition of an AOSE feature,
which performs one or more development activities, such as analysis, and ad-
dresses one or more software quality attributes, such as privacy. An AOSE fea-
ture encapsulates software engineering techniques and models, together with
supporting CASE tools, and development knowledge such as design patterns.

The applicability of this approach has been demonstrated by modular-
ising into AOSE features four existing methodologies, Prometheus [PW02],
ROADMAP [JPS02], CaseLP and the conventional Object-Oriented approach.

Ivana Gungui Integrating Logical Agents Into DCaseLP

32 The DCaseLP environment - DCaseLP

2.3 DCaseLP

Now we will talk about the main subject of this thesis: DCaseLP (Distributed
CaseLP) [Mig02, AMMM02], a rapid prototyping software environment that
supports the development of MASs and, as its predecessor CaseLP (Complex
application specification environment based on Logic Programming) [MMZ99,
BDM+99], has been designed and developed by the Logic Programming Group
at the Department of Computer Science of the University of Genova in Italy.

DCaseLP aims at providing the developer of a MAS with an AOSE method-
ology and a software environment to be used during the requirements analysis,
the design and the development of a working prototype. A fundamental goal
is to support the development of MASs consisting of multilingual agents.

More precisely, more than one language must be available not only to spec-
ify the agents belonging to the system, but also to define their architecture,
behaviour and state, allowing both the existence and communication in the
environment of agents created using such different languages.

As its name emphasises, DCaseLP has not been created from scratch, but
has come into being to overcome deficiencies present in its predecessor CaseLP:
the latter supports multilingual agents at the specification level, but not at a
lower level, since all the agents are coded in the logic programming language
Prolog.

The previous, and first, release of DCaseLP [AMMM02] overcame most of
CaseLP’s limitations but did not allow to develop a completely multilingual
prototype.

The work described in this thesis — the integration of logical agents — has
lead to the current working version of DCaseLP, which provides an additional
language to implement agents in the MAS but is not, yet, the final version
since it is an ongoing work and can be subject to additional integrations.

2.3.1 DCaseLP’s focuses

It is quite clear that the development of a working prototype of a MAS can
require a long time and different skills, and is more complicated if the system
is composed of heterogeneous agents. During prototyping, the heterogeneity of
agents emerges from three different features:

• the specification language;

• the architecture;

Ivana Gungui Integrating Logical Agents Into DCaseLP

The DCaseLP environment - DCaseLP 33

• the implementation language.

Specification language: during the specification stage, the developer might
need, maybe for only some of the agents, to emphasise particular features of
their behaviour and, to do so, would like to use one or more different specifi-
cation languages than the one currently in use and probably satisfactory for
specifying other agents in the system.

Architecture: it determines the way the agent reasons, represents its knowl-
edge, plans its behaviour and makes decisions. The developer must be able to
choose from the variety of architectures that have been defined in the agent
community, in order to maintain the differences existing between the agents
being modelled.

Implementation language: the developer should be able to define the be-
haviour and the state of each agent using the more appropriate language,
taking into account the architecture of the agent itself or the particular appli-
cation domain, instead of being forced to implement all the agents with the
same language. By integrating into the same running prototype different im-
plementation languages, some of which directly executable, it is also possible
to directly implement some of the agents, skipping the specification stage when
this one is not relevant.

A software environment claiming to integrate heterogeneous agents must show
the basic attribute of multilingualism in all these three aspects, and this is
what DCaseLP wants to accomplish.

The development strategy that DCaseLP proposes (refer to [Mig02] for de-
tails) is that one of specifying each “view” of the MAS — as, for example,
the MAS’ architecture, the interaction protocols between agents, the internal
architecture and functioning of each agent — using the language that is most
suitable for the current description, and to subsequently verify, execute, or ani-
mate the obtained specifications. These specifications are checked not through
formal validation and verification methods (not yet dealt with in DCaseLP)
but by producing an executable code and running the developed prototype.

It should be clear by now that the methodology proposed by DCaseLP,
together with the feature of providing more than one language to define dif-
ferent aspects of an agent, allow to consider it an instance of the ARPEGGIO
framework, as its predecessor CaseLP.

Ivana Gungui Integrating Logical Agents Into DCaseLP

34 The DCaseLP environment - DCaseLP

Agents need to interact and exchange information in order to cooperate
or compete for the control of shared resources; this interaction may follow
sophisticated communication protocols to which the developed prototype must
adhere.

Such interaction protocols are considered a basic matter in DCaseLP and,
as detailed further in this chapter, DCaseLP provides the developer with the
means to exactly specify which agents can take part to a“conversation” and in
which order they interact, making the debugging of the prototype much easier.

Before describing DCaseLP, it is best to detail the features characterising
CaseLP, so the reader will have a better understanding of the DCaseLP envi-
ronment and of the overall ideas behind it that have brought it into existence.

2.3.2 CaseLP

CaseLP[MMZ99, BDM+99] provides a well-defined prototyping method, as
well as a set of tools and languages which support the developer during the re-
alisation of the MAS prototype and are helpfull in testing distributed software
applications.

A logic programming language has been chosen as the basis for the pro-
totyping environment because it is powerful, declarative and an executable
specification language and, together with the agent technology, can play a
very effective role in the rapid prototyping, testing and refinement of a wide
spectrum of software applications.

At the system specification level, an architectural description language can
be adopted to describe the prototype in terms of agents classes, their instances,
the services they provide/require and their communication “links”.

At the agent specification level, a rule-based, not executable language can be
used to easily define reactive and proactive agents. An executable, linear logic
language can define more sophisticated agents and the system in which they op-
erate. Furthermore, an imperative language, HEMASL [Mar99, MMMZ00a,
MMMZ00b], can describe both the agents architectures, the agents classes,
their instances and the environment in which they are embedded.

Finally, at the implementation level, a Prolog-like language, extended with
additional primitives, has been used. Obviously, in order to really be a support-
ing development environment, CaseLP also offers simulation tools to visualise
the execution of the prototype and to collect statistics about it.

In Figure 2.2 the reader can see the main languages that CaseLP offers to
the developers.

Ivana Gungui Integrating Logical Agents Into DCaseLP

The DCaseLP environment - DCaseLP 35

The communication among agents takes place through message passing and
the agent communication language used is KQML [FLM95] based on speech-
acts, although any other communication language can be easily adopted by
the agents.

CaseLP

Prolog

Specification

languages

Implementation

languages

Agent

Rules
HEMASL

Figure 2.2: The main languages available in the CaseLP environment.

The Limitations

By providing a set of specification languages for the definition of the behaviour
of the agents, as well as a methodology to translate/integrate them into a
unique executable specification, CaseLP has succeeded in obtaining multilin-
gualism in both the specification and the architecture of the agents, though
missing the multilingualism in the implementation language.
Besides this lack, CaseLP also has other limitations:

① centralisation;

② poor support to concurrency;

③ limited portability.

Centralisation
In CaseLP, the prototype is executed through a centralised round-robin sched-
uler that activates all the agents in turn in the MAS, following a fixed cyclic
order. Once an agent is activated, it behaves accordingly to the rules that
define the actions it should take, and when it has terminated the scheduler
activates the next agent. The scheduler controls the global clock of the MAS
by managing the simulation time, and also handles the exchange of messages
between agents.

Ivana Gungui Integrating Logical Agents Into DCaseLP

36 The DCaseLP environment - DCaseLP

Concurrency
CaseLP does not allow the real concurrent execution of agents, since there is
no way to have more than one agent activated in the MAS at the same time.
As we have said above, the CaseLP’s scheduler activates only one agent at a
time, and it is not possible to have more than one scheduler running in the
MAS: concurrency among agents is only simulated.

Portability
CaseLP was initially developed as an extension of a constraint logic program-
ming language with theories, communication predicates and “safe” state up-
date predicates (that guarantee no permanent effect in case of failure), there-
fore it has been implemented in Prolog. Unfortunately, at present Prolog is
not widely used as a programming language for (commercial) applications,
thus there is not a Prolog interpreter to consider “portable” to the systems
available in the industry domain.

These features are, nowadays, a must for the majority of commercial (and
not) applications, thus they had to be added in some way. Since it did not
seem easy to achieve such characteristics directly from the Prolog infrastruc-
ture on which CaseLP is built upon, the adopted solution has been to develop
a totally new environment, DCaseLP indeed, based on another programming
language (JavaTM [Mic]) widely used nowadays, with the intention of realising
the same project from which CaseLP originated.

2.3.3 DCaseLP’s first release

The first version of DCaseLP has been developed mainly concentrating on
overcoming the three above-cited lacks: such purpose has been fulfilled through
the introduction of JADETM (Java Agent DEvelopment Framework [Til]),
a software framework fully implemented in the JavaTM [Mic] programming
language and whose minimal system requirement is the version 1.4 of the Java
run-time environment (more details on JADE can be found in the next chapter,
in Section 3.3).

Since JADE runs as a Java application, it runs in a JVM (Java Virtual
Machine) and, therefore, is portable on most of the available operating sys-
tems. Agents in JADE are implemented with Java threads, thus it is possible
to execute, while the JADE platform is running, more than one agent simulta-
neously achieving the aimed concurrency. Distribution comes directly from the

Ivana Gungui Integrating Logical Agents Into DCaseLP

The DCaseLP environment - DCaseLP 37

possibility of distributing JVMs and from Java’s Remote Method Invocation
(RMI) mechanism.

This release of DCaseLP represented a step forward towards realising the
aimed multilingualism since it proposed two implementation languages: the
Java language and the Jess [FH] expert system language.

Unfortunately, the multilingualism of this version was still too limited and
CaseLP’s languages/tools were quite far from being exploitable by it.

As far as the multilingualism at the specification level is concerned, this
release offered the possibility to specify some aspects of the MAS using AUML
(Agent-based Unified Modelling Language) [AUM], and automatically create
Jess agents from the AUML specification.

In Figure 2.3, we have shown the languages available in the DCaseLP en-
vironment.

Specification

languages

Jess Java

DCaseLP (first release)

Implementation

languages

Middleware

AUML

JADE

Figure 2.3: The languages available in the first release of the DCaseLP envi-
ronment.

The new agents: Java and Jess

The introduction of the JADE platform has, at first, lead to the new type of
agents executable in a prototype of MAS: the Java agents.

Ivana Gungui Integrating Logical Agents Into DCaseLP

38 The DCaseLP environment - DCaseLP

JADE is a framework for implementing working MASs and provides many
functionalities that facilitate the management of all the agents that constitute
the system. As it is, it cannot be considered a real software development tool for
MASs because it does not support the entire software engineering process: it
does not provide any means by which to create an abstract model of the system
to develop, nor by which to easily pass from the designed components/agents
to the software objects.

It supplies many Java packages among which there are the ones containing
the classes to use to implement agents, their ontologies and their behaviours.
An agent is created extending an appropriate class that allows to take basic
actions and to define new ones (more details can be found in JADE’s docu-
mentation downloadable from http://jade.tilab.com/). Both the knowledge and
the behaviour of these agents are entirely implemented in Java, and this is why
they are called Java agents.

Beside the Java agents, another type of agents was introduced in the first
version of DCaseLP: the Jess agents.

Their behaviour and knowledge is represented using declarative rules writ-
ten in Jess, a rule engine and scripting language entirely written in Java. Jess
is a language inspired by the CLIPS [Cen] expert system shell: it allows to
create a knowledge base and to interact with it through the use of an inference
engine; in other words, it adds to applications the capacity to reason using
knowledge supplied in the form of declarative rules.

A Jess agent is a JADE agent extended in order to embed a Jess inter-
preter and Jess rules. The architecture is a deliberative one: it is composed
of a list of Jess rules defining the behaviour of the agent, a list of Jess facts
representing its internal state and a Jess interpreter that represents the core
of the agent.

Once the rules representing the behaviour of an agent have been specified,
it is possible to create a Jess agent embedding such rules and then run it in
the JADE platform (more details can be found in [AMMM02]).

As it will be detailed forward, DCaseLP provides a semi-automised mech-
anism that can transform graphical diagrams (describing the behaviour of an
agent) into the Jess agent to be run in the platform.

Introducing an expert system language as implementation language

Expert systems were the most important AI technology of the 1980s: they are
programs that emulate human expertise in well defined problem domains, with

Ivana Gungui Integrating Logical Agents Into DCaseLP

The DCaseLP environment - DCaseLP 39

the purpose of solving problems or giving advice.

An expert system closely resembles human logic in its implementation and
is, therefore, easier to develop and maintain than a usual software system.
The languages or tools used to build them exploit techniques which allow the
modelling of information at higher levels of abstraction. The simplest expert
system uses facts, symbolically represented, to derive some conclusion.

A common technique used for developing expert systems is the “rule-based”
programming: it uses rules to represent heuristics — commonsense sets of rules
intended to increase the probability of solving some problems — and to specify
a set of actions to be performed for a given situation.

A “rule” is, basically, a conditional statement in which the “if” portion is
a series of patterns which specify the facts (or data) that cause the rule to be
applicable, while the “then” portion is the set of actions to be executed when
the rule is applicable. The process of matching facts, currently present in
the knowledge base, to patterns is called pattern matching and always occurs
whenever changes are made to such facts.

An expert system tool provides a mechanism — the inference engine —
which automatically matches facts against patterns and determines which rules
are applicable. An inference engine constitutes the “reasoning mechanism” of
the system.

The most important distinction between agents and expert systems is that
the latter are inherently disembodied: they do not interact directly with
any environment and their information is obtained not through sensors, but
through a user acting as an intermediary.

In the same way, they do not act on any environment, but rather give
feedback or advice to a third party. In addition, co-operation is usually not
considered by expert systems.

To understand the advantage deriving from implementing agents with a
language for expert systems, it should be mentioned that a declarative knowl-
edge, compared to an imperative one, is:

• reusable;

• more modular and flexible;

• has better semantics;

• makes detecting and correcting contradictory knowledge easier;

• provides an abstraction of the (real) world in a natural way.

Ivana Gungui Integrating Logical Agents Into DCaseLP

40 The DCaseLP environment - DCaseLP

In addition, the use of meta-programming techniques in a declarative setting
provides a support for the integration of different kinds of knowledge.
Therefore, the introduction of the Jess language in DCaseLP has made possible
the explicit representation of the knowledge of the agent and, as a consequence,
has made possible in the overall MAS to:

✴ model rationality of the agent;

✴ verify system’s properties;

✴ enhance knowledge sharing and communication between agents.

Jess was chosen because it is small, light, one of the fastest rule engines avail-
able and is written in Java. Moreover, being a ruled-based language, Jess is
suitable for representing both the event-driven and the goal-driven behaviours
of the agents.

The development of Jess Agents

Using the standard Object modelling language UML (OMG’s Unified Modell-

ing Language [OMGb]) and other languages, it is possible to specify the ar-
chitecture of an agent — in other words, its internal structure and functioning
—, the roles played by the agent classes, the interaction protocols between
agent roles, the ontologies 1 known by the agents, the associations between
roles and agent classes and instances of agent classes.

The role played by an agent defines an interaction protocol to which the
agent must adhere: it establishes which received messages the agent can “un-
derstand”, what kind of messages can be used to reply, and the order with
which the message exchanging must take place with other roles. The roles are
the entities taking part to the communication in a protocol and must not be
confused with the agent instances.

An agent can play more than one role, the collection of which characterises
its “social ability”. Roles are, therefore, fundamental not just for the function-
ing of individual agents, but also for the overall communication in the MAS
since they dominate it.

An agent class groups together all the agents that play identical roles, have
the same architecture and ontologies; those belonging to an agent class are,

1 Even though included in the descriptive characterisation of an agent and conceptu-

ally integrated, ontologies have not yet been explicitly integrated in DCaseLP and are still

implicit in the code of the agents.

Ivana Gungui Integrating Logical Agents Into DCaseLP

The DCaseLP environment - DCaseLP 41

therefore, equal in their behaviour but different in the data that represent their
knowledge. Interaction is easier between agents that have the same “ontolo-
gies”, since they have in common the way in which knowledge is represented
and structured.

In the specification stage, especially to describe these interaction protocols
that the agents must follow, DCaseLP also allows the use of AUML (Agent-
based Unified Modelling Language) [AUM], an extension of UML to represent
agents and their interactions, developed by the FIPA (The Foundation for
Intelligent Physical Agents) [FIP] Modelling Technical Committee. Particu-
larly useful are the protocol diagrams proposed by AUML, but in DCaseLP it
has been necessary to impose some restrictions to their use:

✲ there can only be one role beginning the communication in the protocol;

✲ a protocol regarding more than two roles should be divided in sub-
protocols, each dealing with only two roles;

✲ a protocol containing a concurrent sending of messages is represented in
an explicit way, in order to emphasise the fact that the thread is divided
in sub-threads, and each of these sends a message.

The choice of UML and AUML, initially developed for documentation pur-
poses, to represent interaction protocols in DCaseLP is motivated by the wide
support that they are obtaining from the agent research community. AUML
cannot be considered a standard agent modelling language yet, but it has many
chances to become such.

The UML/AUML diagrams corresponding to an agent class are automati-
cally translated by DCaseLP into a set of Jess rules; these rules, though, must
be manually completed with the details not included in the specifications but
necessary for executing the prototype as, for example, some kind of constraints,
the initial state of each agent instance and so on.

The Jess rules, obtained by the automatic translation process supplied by
the environment, are only partially istantiated because the protocol diagrams
used in DCaseLP only specify the flow of the messages exchanged and not
under which conditions such messages must be sent/blocked. Completing these
rules, the developer creates a collection of Jess facts that constitutes the initial
state of each agent instance.

Ivana Gungui Integrating Logical Agents Into DCaseLP

42 The DCaseLP environment - DCaseLP

Since both Jess and JADE are implemented in Java, the Jess agents thus
obtained can be easily executed in the JADE platform and, using JADE’s
tools, monitored and debugged in order to perform the “coherence check”: the
results of the execution runs are compared to the “interaction specifications”
to see if the “conversations” described in the latter are respected throughout
the various executions of the prototype.

Since it is not possible yet to carry out, a priori, a formal proof of proper-
ties of the resulting system, the research group that has developed DCaseLP is
investigating how to integrate formal methods to perform validation tests, in-
cluding checking if the AUML descriptions adhere to the specifications derived
from the requirements analysis.

By using DCaseLP, therefore, the developer can create in a semi-automatic
way agents that satisfy the interaction protocols and the UML/AUML dia-
grams and, by executing the prototype, can check if the requirements analysis
has been correctly carried out.

The idea of translating UML and AUML diagrams into a formalism and
checking their properties by either animating or formally verifying the resulting
code is shared by many researchers working in the AOSE field [Hug02, MEH02,
SA03].

The reader interested in more detail on the passages that lead to the Jess
agents (starting from the diagrams) is referred to [AMMM02, AMMR03].

As it can be seen in Fig.2.4, the semi-automatic translation from UML/
AUML diagrams into Jess agents is achieved by exploiting two different con-
figuration files that are written in the XSL format, which is normally exploited
to express style sheets. These configuration files have been developed as part
of the work of the master thesis described in [Mig02].

Ivana Gungui Integrating Logical Agents Into DCaseLP

The DCaseLP environment - DCaseLP 43

a configuration file
in XSL format

a configuration file
in XSL format

UML

 internal
intermediate
 format

XMI

Jess

Java

a CASE tool that
exports UML
diagrams into XMI

Figure 2.4: The semi-automatic translation process that transforms UML di-
agrams into Jess agents.

The Limitations

Two are the missing features of the first release of DCaseLP on which we have
focused our attention on:

❀ the possibility to reuse the Prolog-based code and instruments already
developed for CaseLP;

❀ the ability to reason about properties of the interactions occurring be-
tween the agents.

This thesis work, that deals with the integration of tuProlog into DCaseLP,
represents a step forward towards recuperating the functionalities offered by
CaseLP. CaseLP is implemented in SICStus Prolog [SIC] and its agents are
mainly SICStus Prolog code extended with ad–hoc communication primitives.

A lot of work has been done to study and define semi-automatic translators
from high-level specification languages to CaseLP’s implementation language:

Ivana Gungui Integrating Logical Agents Into DCaseLP

44 The DCaseLP environment - DCaseLP’s current release

the environment contains tools that semi-automatically translate Ehhf [Del97],
HEMASL [Mar99, MMMZ00a, MMMZ00b] and AgentRules [Mas02] into
Prolog.

Ehhf has been, for example, used to model high-level interaction protocols
in applications developed with CaseLP.

2.4 DCaseLP’s current release

In the current release of DCaseLP, in which we have added the tuProlog
[DOR01] logic programming language, there are now three kinds of agent that
can be run in a developed prototype:

❀ Java agents

❀ Jess agents

❀ tuProlog agents

tuProlog is a declarative logical language for which there exists an inference
engine written in Java. The tuProlog agents are “logical agents” intended as
logic programs: the behaviour of these agents (as well as their knowledge) is,
in fact, implemented by a Prolog theory.

We will detail these agents in Chapter 4, while the tuProlog and JADE
systems are dealt with in Chapter 3. The tuProlog agent is the result of this
thesis work and was, therefore, not present in the first version of DCaseLP.

Their integration into the DCaseLP environment does not affect Java/Jess
agents developed with the previous version of the tool.

A developer that has more skills in logic programming rather than in object-
oriented programming, can code agents belonging to the MAS entirely in Pro-
log now.

The next step to take to achieve the aim is to recuperate (from CaseLP)
the use of Ehhf , AgentRules and HEMASL: we think that having added Prolog
to DCaseLP, this task will be more easy to accomplish.

Verification of specifications

By executing the Ehhf specification of the MAS, the prototype can be tested
and its correctness verified by using the Ehhf interpreter. CaseLP is, thus,
capable of providing a limited support to formal verification of specifications.

Ivana Gungui Integrating Logical Agents Into DCaseLP

The DCaseLP environment - DCaseLP’s current release 45

Without introducing the Prolog language, all that work would have not
been exploitable from DCaseLP. The ability to specify agents as Prolog theo-
ries, should make it easier to use the tools available in CaseLP, since the latter
is totally implemented in a logic programming language.

Reasoning about interaction protocols means to check if a certain set of
properties holds after a conversation has taken place. This can, for instance,
allow to determine which protocol (from a set of available ones) satisfies a
goal of interest, or it can help to find out which protocols can be combined to
accomplish complex tasks.

After proving desired properties of the interaction protocols, the developer
can animate them through the facilities offered by DCaseLP.

Furthermore, we have also discussed (not as part of this thesis) about the
advantages of adding to our environment an agent programming language,
called DyLOG [BGMP, BBMP03, BBG+05], which allows to reason about
actions and change [BBG+04].

Since DyLOG is based on modal logic, it can be exploited both as an
implementation language and for verifying properties. DyLOG is considered
particularly helpful in this matter, since it makes possible to formally prove if
every conversation generated by a DyLOG program is correct with respect to
a specification expressed by an AUML diagram.

In the first release of DCaseLP, AUML’s interaction protocols could only
be translated into Jess code and, thereby, could not be formally verified but
just executed.

Adopting the DyLOG language in DCaseLP, we offer the developer the
possibility of converting AUML’s sequence diagrams into a DyLOG program,
automatically verify if the latter is consistent with the AUML specifications
and if it satisfies certain properties.

The existing DyLOG interpreter, implemented in SICStus Prolog, is the
means by which a developer can carry out such formal proofs.

The integration of DyLOG into DCaseLP is, for now, “methodological”:
it extends the set of languages supported by DCaseLP during the MAS engi-
neering process and augments the verification capabilities of such environment,
without requiring any “real” integration of the DyLOG interpreter.

Initially, DyLOG was implemented in SICStus Prolog (as CaseLP); cur-
rently, the designers of DyLOG have developed an implementation of the lan-
guage, including its communication kit, totally based on the Java language
[SLBB04].

Moreover, DyLOG’s new implementation exploits classes offered by the

Ivana Gungui Integrating Logical Agents Into DCaseLP

46 The DCaseLP environment - DCaseLP’s current release

tuProlog system and a Java interpreter of DyLOG programs is being developed.
This “use” of tuProlog by Dylog’s implementation seems to suggest that a
physical integration of DyLOG into DCaseLP should not be too difficult: the
tuProlog agents can be exploited as an interface.

In Figure 2.5 we have shown the languages available in the current release
of DCaseLPand those that will be in the future: the two dotted arrows that
point from DyLOG to Prolog and Java, respectively, represent the future work
of integrating DyLOG into tuProlog agents as well as into Java agents.

Once the physical integration into DCaseLP will be completed — namely
DyLOG’s Java interpreter will be available together with its integration into
JADE — it will be possible to animate complete DyLOG agents into DCaseLP,
ending with agents specified in Jess, Java, tuProlog and DyLOG all runnable
on the same platform and all able to communicate.

Specification

languages

Middleware

Implementation

languages

DCaseLP

JavaJessProlog

JADE

AUMLDyLOG

Agent

Rules

HEMASL

Figure 2.5: The languages available in the current and future release of the
DCaseLP environment: the dotted lines are part of the future work.

Ivana Gungui Integrating Logical Agents Into DCaseLP

The DCaseLP environment - Conclusions 47

2.5 Conclusions

In this chapter it has been outlined the “evolution” of the CASE tool DCaseLP:
more precisely, it has been shown that DCaseLP is the result of a work concen-
trated on optimising a previously developed prototyping environment, CaseLP,
which is the instance of a more general framework, namely ARPEGGIO.

As it has been mentioned, CaseLP was the first tool developed by the
Logic Programming Group at the Department of Computer Science of the
University of Genova in Italy, in order to provide support to the developer of
a MAS during all the phases of software engineering.

It originated as an experimental logic-based prototyping environment for
MASs and, by allowing different specification languages — referred as mul-
tilingualism at the specification level — for modelling different aspects of the
MAS, it provides the flexibility needed to describe a MAS from different points
of view.

In time, the researchers became aware that, even though CaseLP proved
to be very useful in developing real applications run by industries, it lacked
multilingualism at the implementation level.

So, to overcome the main limitations of CaseLP, the Logic Programming
Group developed DCaseLP: the latter is not implemented by a logic program-
ming language as the former, but instead it is built upon the Object-Oriented
programming language Java. The latter did, indeed, overcome the former’s
limitations but, unfortunately, it lost the ability of exploiting all the languages
available in the former.

Finally, we have extended the first release of DCaseLP obtaining a seamless
integration of a logic programming language in the Object-Oriented infrastruc-
ture, and simultaneously made a first step towards being able to use the tools
already offered by CaseLP.

Moreover, we have realised a “methodological integration” (not part of the
aim of this thesis though) of DyLOG, which can be used to formally verify
the graphical specifications produced during the development of the MAS. It
is part of the future work to complete this integration in order to include that
language as an implementation language too.

An important issue of all the work that has been done in CaseLP and in
both the releases of DCaseLP is that of not forcing the developer of the MAS
to be an expert of all the supported languages in the tool: the developer is free
to use the language he/she is more familiar with, allowing thus more reliable
specifications and implementations.

Ivana Gungui Integrating Logical Agents Into DCaseLP

48 The DCaseLP environment - Conclusions

Ivana Gungui Integrating Logical Agents Into DCaseLP

49

Chapter 3

The tuProlog and JADE
systems

3.1 Introduction

The objective of this thesis is to integrate logical agents into DCaseLP, which
means to enable the developer to implement an agent in the MAS choosing
between not only Java and Jess, as it is possible in the first version of the
environment, but also the logic programming language Prolog.

Prolog is a simple subset of predicate logic and the prime example of a
logic programming language; it has become a standard tool in Artificial In-
telligence (AI) programming since it is the most widely available in the logic
programming paradigm.

Mainly, three are the features that make Prolog a suitable language for
“facing” problems in AI:

① its syntax and semantics are much closer to formal logic, the most com-
mon means by which in the AI literature facts and reasoning methods
are represented;

② it provides automatic backtracking, making considerably easier the “sear-
ch” process, the most important of all AI techniques;

③ it supports multiway reasoning, namely, the same predicate can be used
in many ways since the input/output mode can be arbitrary assigned to
its parameters. Logic programs may be executed either in a “forward”
direction or in a “backward” direction, according to the bounding of

Ivana Gungui Integrating Logical Agents Into DCaseLP

50 The tuProlog and JADE systems - The tuProlog system

the variables during execution itself. This leads to a flexible reasoning
mechanism.

Furthermore, Prolog has find great application in the processing of natural
language since it has a high ability in manipulating symbols. It has also
gain popularity for planning and control involving backtrack searching and
incomplete searching.

So, to integrate the Prolog language in the tool, we had to integrate a Prolog
interpreter: we have chosen the one available with the tuProlog [DOR01]
system, whose features are forward described in section 3.2.

Both the tuProlog and JADE systems are run from a Java Virtual Machine
(JVM), so they can be executed from any operating system that supports the
Java technology: the Java Runtime Environment is sufficient, so J2SE (Java
2 Platform, Standard Edition) is the least required.

This chapter is organised as follows: first, there is a brief description of the
tuProlog system, then insights into the JADE platform are given, since it
constitutes the backbone of the DCaseLP environment.

3.2 The tuProlog system

tuProlog [DOR01] is a Java-based Prolog system that provides a bidirectional
interface between Java and Prolog :

❃ Prolog FROM Java: a Java-based Prolog virtual machine and an ad-
hoc Java API (Application Program Interface) allow the use of Prolog
from a Java program;

❃ Java FROM Prolog: the JavaLibrary provided by the tuProlog
system allows a tuProlog theory to contain predicates that are able to
access a Java entity, since the latter can be represented as a Prolog term.

The Java API that builds the system is composed of three packages:

• alice.tuprolog,

• alice.tuprologx and

• alice.util .

Ivana Gungui Integrating Logical Agents Into DCaseLP

The tuProlog and JADE systems - The tuProlog system 51

The name “alice” appears in the name of the packages because aliCE is the
name of the research team that has developed the system.

The alice.tuprolog package can be considered the basic API since it contains
the major classes needed to create Prolog terms from inside Java code.

By importing classes from such package, a Java application is able to create
a Prolog engine, a Prolog theory, and solve a Prolog goal making the engine
attempt to prove that the goal logically follows from the theory.

The powerful characteristic of tuProlog’s API is, therefore, that it enables a
Java programmer to easily construct objects which have reasoning capabilities.

A tuProlog engine, as well as any other tuProlog term, is a normal object
within the Java code and, as a consequence, more than one tuProlog engine
can be created within a Java program and each of them configured with its
own libraries and knowledge base.

tuProlog also supports interaction via TCP/IP and RMI, and can be pro-
vided as a CORBA service: all desirable features in applications that run in
the Internet, where communication and services are key words.

From the Prolog side, Java objects can directly be used within tuProlog
code: therefore, tuProlog components can be created by choosing the most
suitable paradigm, either declarative/logic or imperative/Object-Oriented.

The reasons for which tuProlog has been designated as the “ideal” candidate
for implementing logical agents in DCaseLP, among several Prolog interpreters
available and for which there exists an interface with Java, are:

❏ it offers a light-weight and easily deployable Prolog engine, entirely im-
plemented as a Java class;

❏ it is free for any non-commercial use;

❏ it is dynamically configurable.

It provides a “minimal”, but still efficient, Prolog engine that is easy deployable
since it is a light-weight Java object, accessible through a minimal interface.
Such minimality makes tuProlog suitable for building (possibly mobile) appli-
cations to run on the Internet, where overloading must be avoided.

A tuProlog engine can be extended and dynamically configured by loading/
unloading tuProlog libraries, which implement predicates, and are developed
in Java. This feature allows to develop more flexible applications that can be
adapted to different environments.

Ivana Gungui Integrating Logical Agents Into DCaseLP

52 The tuProlog and JADE systems - The tuProlog system

tuProlog can be downloaded from the Web site: http://www.lia.deis.unibo.it/tup-
rolog. The release that has been used in this thesis is 2p-1.2.0.

The tuProlog’s GUI

The tuProlog system offers a graphic environment from which the user can
issue queries, view the substitutions applied to the variables in the solution of
a goal, load a theory, and so on.
Such environment is created by executing the alice.tuprologx.ide.GUICo-
nsole class from a JVM. If the path of the tuProlog library 2p.jar has been
included in the environment variable CLASSPATH, the GUI is launched by
executing the following command line from a JVM:

java alice.tuprologx.ide.GUIConsole

Figure 3.1 is a snapshot of the GUI: as an example, we have solved the goal:

?- X is 5,Y is 6,Z is X+Y.

by typing it in the Query frame.
As it can be seen in the Answer frame, the resolution has succeeded, yielding
the answer “yes” and the variables substitutions that the Prolog interpreter
has applied to the goal.

So, launching this GUI, it is possible to interact with a tuProlog engine,
modify its knowledge base, solve goals and view the solutions.

Moreover, tuProlog libraries can be dynamically loaded/unloaded using
the appropriate predicates provided by the system (the reader is referred to
the manual of tuProlog for a complete list of the available tuProlog’s built-in
predicates).

Ivana Gungui Integrating Logical Agents Into DCaseLP

The tuProlog and JADE systems - The tuProlog system 53

Figure 3.1: The graphic interface to tuProlog created by executing the al-
ice.tuprologx.ide.GUIConsole class.

Ivana Gungui Integrating Logical Agents Into DCaseLP

54 The tuProlog and JADE systems - The JADE platform

The tuProlog’s console

Alternatively, a user can execute the alice.tuprologx.ide.CUIConsole class
from a JVM, which loads the tuProlog’s console. If the path of the tuProlog
library 2p.jar has been included in the environment variable CLASSPATH, the
console is launched by executing the following command line from a JVM:

java alice.tuprologx.ide.CUIConsole

Figure 3.2 shows a snapshot of this console: as an example, we have tried
to solve the same goal that we have solved in the GUI (nl is the “new line”
predicate that is defined in the tuProlog library IOLibrary).

The IOLibrary is one of the libraries that are loaded by default in the
tuProlog interpreter that runs inside the console. It defines the Prolog predi-
cates that enable interaction between Prolog programs and external resources,
typically files and I/O channels.

The predicate nl fails only when it is not possible to add a new line control
character on the current output stream.

In the example, the predicate succeeded everytime yielding the “yes” an-
swer on a new line, and not on the goal’s following line as it usually happens.

From inside the GUI or the console, it is possible to load a Prolog theory as a
text file and then solve a goal within that theory.

As it will be detailed, the integration of the logical agents in DCaseLP has
been carried out without using the GUI or the console, but just exploiting
some Java classes available in the tuProlog packages.

The Prolog syntax supported by the tuProlog engine is almost ISO com-
pliant: it does not support ISO exceptions, ISO I/O predicates and some ISO
directives.

In order to program the tuProlog agents, the developer of the MAS does not
have to know the tuProlog system, but just the logic programming paradigm
and what standard Prolog predicates are available in tuProlog.

3.3 The JADE platform

JADE (Java Agent DEvelopment Framework) [Til] is a middleware for the
development of distributed multi-agent applications: it is a free software dis-
tributed in open source under the terms of the LGPL (Lesser General Public
License Version 2) by TILAB, the copyright holder.

Ivana Gungui Integrating Logical Agents Into DCaseLP

The tuProlog and JADE systems - The JADE platform 55

Figure 3.2: The tuProlog “console” created executing the alice.tuprologx.ide
.CUIConsole class.

Ivana Gungui Integrating Logical Agents Into DCaseLP

56 The tuProlog and JADE systems - The JADE platform

The current growth of network-based applications has lead to an increasing
importance of middleware technologies. In a distributed computing system,
middleware is defined as the software layer that lies between the operating
system and the applications on each site of the system.

Middleware is comparable to a “black box”: it helps a programmer get
the job done quicker and not have to worry about unnecessary details. Most
application programmers can keep such black box “closed”: all they need is
to know how to make “calls” to the box and get results back, but not to
understand how the box works.

JADE is a software framework, fully implemented in the Java language,
built with the purpose of simplifying the implementation of MASs, offering a
set of graphical tools to support the debugging and deployment phases.

Moreover, each agent executed in the platform adheres to the FIPA’s spec-
ifications and can rely on a library of FIPA’s interaction protocols ready to be
used, where FIPA (The Foundation for Intelligent Physical Agents) [FIP] is
an international organisation that promotes agent technologies.

A JADE-based application consists of one or more agents that can com-
municate with each other through a message exchange mechanism which is at
disposal through the environment embedding them. The agents can “act” on
such environment and “perceive” events from it, as requested by the general
“situatedness” feature of intelligent agents.

Intelligence, initiative, information, resources and control can be fully dis-
tributed on mobile terminals as well as on computers belonging to a hard-wired
network.

JADE allows to build distributed peer-to-peer applications in wired/wire-
less networks: as opposed to the traditional “client/server” model, the infor-
mation, the resources and the control can be distributed among the entities of
the system, allowing each of them to connect and directly exchange data.

According to the needs of the application, the environment can dinamically
evolve, implying agents appearing or disappearing from it. Any agent running
in a wired or wireless network can start a communication with another agent
or respond to it.

A description of the FIPA’s standard architecture is now presented to the
reader, before showing how the JADE platform is run.

Ivana Gungui Integrating Logical Agents Into DCaseLP

The tuProlog and JADE systems - The JADE platform 57

3.3.1 FIPA’s standards

FIPA’s main concern is to create and maintain specifications, and such work is
carried out by Technical Committees. The various standards proposed by the
organisation are grouped according to their subject; the subjects dealt with
are:

❏ Applications

❏ Abstract Architecture

❏ Agent Communication

❏ Agent Management

❏ Agent Message Transport

The Applications specifications provide examples of areas in which FIPA agent-
s can be deployed. Every specification describes an ontology for the particular
domain and the agents that compose the overall system.

The Agent Communication specifications describe the structure of the mes-
sages that are exchanged, the interaction protocols used, the kind of commu-
nicative actions carried out by the agents — based on the theory of speech
acts — and the content language representations.

The Agent Management specifications describe what is considered essential in
controlling and managing agents residing in the same platform or distributed
in more platforms. They propose an agent management model that includes a
list of the basic services and define open standard interfaces for accessing such
services.

The model provides a standard framework within which FIPA-compliant
agents exist and operate: it supplies a logical model for the creation, registra-
tion, location, communication, migration and the termination of agents.

The entities that appear in the model are logical services and do not imply
any physical configuration. Moreover, the implementation details of individual
agent platforms and agents are matters that must be dealt with during the
actual development of an agent system. The logical components of the model
represent services that can be implemented by one or more physical entities in
a real agent platform.

The Agent Message Transport specifications outline the transport mecha-
nism of messages among agent platforms and the representation of messages
across different network transport protocols, including wired and wireless en-
vironments.

Ivana Gungui Integrating Logical Agents Into DCaseLP

58 The tuProlog and JADE systems - The JADE platform

3.3.2 A FIPA-compliant architecture

The FIPA Abstract Architecture Specification (downloadable from http://www.fi
pa.org/specs/fipa00001/) defines which are the main architectural elements in
an agent system and their relationships.

Such an architecture cannot be directly implemented, but it should be
used as a basis by developers of concrete architectural specifications which
describe in detail how to construct an agent system, including the agents and
the services that they rely upon, in terms of concrete software components,
such as programming languages, applications programming interfaces, network
protocols, operating system services, and so forth.

It does not characterise a unique real architecture but multiple concrete
realisations : in fact, it merely addresses how interoperable features should be
implemented but does not forbid additional features.

The developers of concrete specifications of FIPA-compliant agent systems,
willing to provide specifications with appropriate levels of interoperability,
must ensure that their work conforms to such abstract architecture.

Similarly, developers specifying applications that will run on FIPA-complia-
nt agent systems, will have to know what services and features they can exploit
from their applications.

The internal design and implementation of agents and agent management
infrastructure are not dealt with in this specification, as well as elements in-
herently coupled with specific implementations of the architecture.

The main concern of the FIPA Abstract Architecture is to represent a stan-
dard for agent systems that describes a semantically meaningful message ex-
change between agents regardless of the means of transport used for messages,
the communication language that represents the messages and, the content
languages with which the information is encoded.

In order to create agent systems deployable in commercial settings, it is
important to understand and to use existing software environments.

The overall goal is, in fact, to support the creation of agent systems that
can seamlessly be integrated within a specific computing environment while in-
teroperating with other agent systems situated in separate environments.

To encourage interoperability and reusability it is necessary to identify “ar-
chitectural abstractions” that can be formally related to every valid imple-
mentation.

An abstract description of agent systems gives more insights into the rela-
tionships between their fundamental elements: from the set of abstract archi-

Ivana Gungui Integrating Logical Agents Into DCaseLP

The tuProlog and JADE systems - The JADE platform 59

tectural elements and relations it is possible to derive a collection of possible
concrete architectures that will be able to interoperate with each other because
they share a common abstract design.

So, a concrete architectural specification that is FIPA-compliant satisfies cer-
tain properties and provides the following mechanisms:

✺ agent registration

✺ agent discovery

✺ inter-agent message transfer.

The components of the Abstract Architecture are the minimum required ele-
ments of an agent system: their realisation is totally up to the designer of the
concrete architecture who just defines them in terms of concrete architectural
terms.

This architecture avoids issues regarding the internal structure of an agent
and all the details concerning the services offered by agents: they are all dealt
with by the concrete architectures.

In addition to a number of standard services, including agent-directory
services and message-transport service, the Abstract Architecture defines a
general services model that includes a service-directory service. The way in
which these services are supplied is not a matter of concern at the abstract
level: they may be implemented either as agents or as software that is accessed
via method invocation or programming interfaces.

Agent-directory service: the basic role of this abstract element is to offer
a registration mechanism to agents, in order to make it easy for agents to
“locate” agents with which they wish to interact. It is a shared information
repository in which agents may “register” themselves and in which they may
search for other agents.

Service-directory service: the basic role of this abstract element is to help
agents/services to find services. More precisely, the service-directory service
is “where” agents/services register the descriptions of the services to be used
inside the platform and “where” agents/services can look for a service they
need. It differs from the agent-directory service since it finds services and not
agents. A service-directory service is also used to store the service descriptions

Ivana Gungui Integrating Logical Agents Into DCaseLP

60 The tuProlog and JADE systems - The JADE platform

of application-oriented services, such as commercial and business-oriented ser-
vices.

Message-transport service: the basic role of this abstract element is to
support the sending and receiving of messages between agents by managing
all the details regarding the actual transportation.

At an abstract level, two agents willing to interact with each other need at
first to locate one another before they can communicate: that is why they
must register themselves and, finally, they can communicate through message
passing.

3.3.3 Communication in a FIPA-compliant platform

The kind of “conversations” that agents have between them are very often
much complex and the simple request-response communication, typical of the
client-server model, is not sufficient.

Agents communicate by exchanging messages which represent speech acts,
and which are encoded in an agent communication language (ACL).

In agent communication there are three fundamental aspects to consider:
the structure of the messages sent/received, their representation and their
transport.

The various Agent Communication specifications have been grouped ac-
cording to the aspect of communication that they deal with, namely the fol-
lowing:

• Communicative Acts

• Content Languages

• Interaction Protocols

Communicative Acts
The Communicative Acts (CAs) specifications beside providing a library for
communicative acts and requirements for new ones, formally define the commu-
nication language and its semantics. The formal definitions provide a clear and
unambiguous way for expressing the standardised meaning of the communica-
tive actions carried out by the agents, mainly the messages they exchange and
the protocols they use. For more details, see the “FIPA Communicative Act
Library Specification” downloadable from http://www.fipa.org/specs/fipa00037/ .

Ivana Gungui Integrating Logical Agents Into DCaseLP

The tuProlog and JADE systems - The JADE platform 61

Content Languages
The Content Language (CL) specifications deal with different representations
of the content of messages and describe the SL content language. SL stands
for Semantic Language and is the formal language used to define the seman-
tics of FIPA’s Agent Communication Language (ACL). A concrete syntax
for the SL language is presented: such syntax and its associated semantics
are suggested as a candidate content language for the ACL. For more de-
tails, see the “FIPA SL Content Language Specification” downloadable from
http://www.fipa.org/specs/fipa00008/ .

Interaction Protocols
The Interaction Protocols (IPs) specifications deal with pre-agreed message
exchange protocols for ACL messages. They constitute frameworks for the
communicative acts defined in the CAs specifications. Every IP specification
describes the flow of messages exchanged by the participants to the particular
kind of conversation that the IP is meant to detail. The various IP specifica-
tions are viewable at http://www.fipa.org/repository/ips.php3.

A message represents a communicative act of an agent towards another or
more agents. To realise a communicative act it is necessary to encode in some
way the message and then transmit it to the destination(s).

The so-called ACL message is the entity that is transferred among the agen-
ts: the description of its structure can be found in “FIPA ACL Message Struc-
ture Specification” (downloadable from http://www.fipa.org/specs/fipa00061/).

In order to accomplish “sensible” conversations, agents must share a com-
mon vocabulary so they can understand the meaning of the terms, objects,
relations and so on, represented in the exchanged messages.

An ontology actually provides such a vocabulary. It allows to represent
and communicate knowledge regarding some topic and a set of relationships
and properties that hold for the entities denoted by its vocabulary. It is a
collection of symbols that have a corresponding interpretation associated to
them which may be shared by some agents or services: such symbols usually
refer to objects and relationships regarding the subject domain.

An ACL message contains the message, called content, together with ad-
ditional information like the type of communicative act that it represents (for
instance, a request), the sender and receivers and, the ontologies to use to
interpret the content.

Obviously, the parameters needed to effectively communicate vary accord-

Ivana Gungui Integrating Logical Agents Into DCaseLP

62 The tuProlog and JADE systems - The JADE platform

ing to the application domain, so the only parameter that is required in all the
messages is the performative, although presumably most of the messages will
also contain an indication regarding the sender, receivers and the content. The
messages transmitted within specific implementations can include user-defined
parameters in addition to the ones proposed by FIPA’s standard.

The content of an ACL message refers to a domain or topic area and is
expressed using a content language. The content of the message is understood
by the receivers with the aid of one or more ontologies.

FIPA’s standard does not impose any content language nor its encoding.
The way in which a message is encoded depends on the concrete architecture.

3.3.4 JADE’s components

The JADE 1 framework is composed of various Java packages containing the
classes necessary to develop agents to run in the platform, together with the
run-time environment from which the basic services and other useful classes
are available in the development of a MAS.

JADE’s packages

Among the various Java packages that “constitute” JADE, there are:

✹ jade.core: it implements the “core” of the system, especially the Agent
class that must be extended by developers in order to create JADE
agents.

✹ jade.lang.acl: it is necessary to process Agent Communication Lan-
guage according to FIPA’s standard specifications (see Section 3.3.3).

✹ jade.content: its aim is to support user-defined ontologies and content-
languages.

✹ jade.domain: it enables the creation of all the elements needed for the
agent management, including the entities defined by FIPA’s standard.

✹ jade.gui: it contains classes useful in creating GUIs that can display
and edit agent identifiers, agent descriptions, ACL messages, etc. .

1 The release used during the development of the thesis is JADE 3.0b1, last updated

27th February 2003.

Ivana Gungui Integrating Logical Agents Into DCaseLP

The tuProlog and JADE systems - The JADE platform 63

✹ jade.mtp: it supplies a Java interface that every Message Transport
Protocol should implement to be easily integrated into the JADE frame-
work.

✹ jade.proto: it offers classes to use to model standard interaction pro-
tocols or to create new ones.

✹ jade.wrapper: it provides wrappers for JADE’s elements that imple-
ment higher-level functionalities in order to allow the use of JADE as a
library by Java applications that can, therefore, launch JADE agents or
platforms.

✹ jade.tools: it simplifies the platform administration and application
development by providing ad-hoc tools, most of which are very easy-to-
use graphical interfaces.

3.3.5 Running the JADE platform

Before running a JADE platform, it is necessary to make sure that the following
JAR files — the JavaTM ARchive file format that enables to bundle multiple
files into a single file — have been added to the CLASSPATH environment
variable (explanations about JAR files and how to manage them can be found
at http://java.sun.com/docs/books/tutorial/jar/basics/index.html):

❄ Base64.jar

❄ http.jar

❄ iiop.jar

❄ jade.jar

❄ jadeTools.jar

The fundamental Java class is with no doubt the Boot class in the jade

package since it implements the JADE’s run-time environment, namely the
means by which JADE agents “live”: every JADE platform must run at least
one instance of this class.

The term container is used to refer to any instance of the class Boot
because it can contain agents, while main container only refers to the first
one that is launched in order to start the platform.

So, a JADE platform is a collection of containers in which there is only
one main container: the containers can run in JVMs deployed anywhere in a

Ivana Gungui Integrating Logical Agents Into DCaseLP

64 The tuProlog and JADE systems - The JADE platform

network to which the main container belongs and, are not forced to run in the
same environment of the main container.

The main container has a special role because it is always active in the
platform and has additional responsibilities, like keeping track of which con-
tainers are active in the platform, where they are deployed in the network, and
so on.

A container that is not the main one is launched with the -container
option following java jade.Boot, whereas the main one is launched simply
with java jade.Boot or with the -main option.

Loading agents into containers

There are three different ways to load agents into a container:

❀ from the command line:

★ java jade.Boot [options] [list of agents]

The user can directly load the agents into the container at the
moment in which the latter is started. In the command line
issued to the JVM, the user must specify the list of agents:
it is a sequence of strings (separated by a blank space), each
representing an agent to load in the platform (in Chapter 4,
this matter will be detailed while presenting how the tuProlog
agents are loaded into DCaseLP).

★ java jade.Boot -gui [options]

Launching the container with the -gui option causes a graphi-
cal user-friendly interface (GUI), called RMA (Remote Monit-
oring Agent), to appear (see Figure 3.3). From this GUI the
user is then able to load any JADE agent.

❀ from a Java application:

• invoking the static method instance of the jade.core.Runtime class,
the application is able to obtain the single instance of such class;

• calling the method createMainContainer or createAgentContain-
er on the Runtime instance, the application obtains an instance of
the class jade.wrapper.AgentContainer, which allows to access most
of the functionalities available in an agent container;

Ivana Gungui Integrating Logical Agents Into DCaseLP

The tuProlog and JADE systems - The JADE platform 65

• calling the method createNewAgent on the AgentContainer instance
the application is able to load an agent into the container.

For more details, the reader is referred to the “JADE programmers guide”
viewable at http://jade.cselt.it/doc/programmersguide.pdf .

Figure 3.3: The graphical user-friendly interface RMA obtained issuing the
-gui option when launching an agent container.

3.3.6 The main container

The role of every container is to provide an homogeneous layer upon which ex-
ecute the agents and to manage the complexity and diversity of the underlying
tiers (hardware, operating systems, networks, etc.) on behalf of the developers
of the agents.

Any container belonging to the platform must register with the main con-
tainer when it is executed: the user must input to it the host and the port
number of the main container upon which it “depends”.

Only one container can run in a JVM but it is sufficient as a stand-alone en-
vironment for executing several agents and allowing their concurrent execution
on the same host.

A host can simultaneously run more than one JVM, implying that more
agent containers can be launched on the same host. All the containers, remote

Ivana Gungui Integrating Logical Agents Into DCaseLP

66 The tuProlog and JADE systems - The JADE platform

or not, that connect themselves with the same main container are part of the
same agent platform.

What distinguishes the main container from the other ones is that two
agents are automatically run when it start its execution: the AMS (Agent
Management System) and the DF (Directory Facilitator).

The AMS is fundamental for the management of the agents belonging to
the platform: it provides the naming service (ensuring that each agent in the
platform has a unique name) and represents the administrator of the platform
since it can create/kill either agents on remote containers or the containers
themselves.

Therefore, there is only one AMS in a platform and controls any kind of
access to the platform. It provides a White Pages service and manages the
life-cycle of the agents by maintaining a directory of agent identifiers (AIDs)
and agents state; each agent, in fact, must register with an AMS in order to
get a valid AID.

After connecting to the main container, the other agent containers can
provide a complete run-time environment for the execution of any set of JADE
agents.

The DF implements a Yellow Pages service: it stores a list of descriptions
of services that agents in the platform offer to other agents.

An agent publishes/registers one or more services by providing their de-
scriptions to the DF.

To every published service the DF associates a description including:

• the AID of the agent providing the service;

• the list of languages and ontologies that the other agents must know to
interact with the agent that realises the service;

• the service type;

• the service name;

• service-specific properties.

Useful classes in creating such descriptions and their contents can be found in
the jade.domain.FIPAAgentManagement package.

When an agent terminates its execution, it should de-register services that
it has published and not already de-registered.

Ivana Gungui Integrating Logical Agents Into DCaseLP

The tuProlog and JADE systems - The JADE platform 67

An agent looking for services must provide the DF with a template descrip-
tion. As a result of the search, the DF returns to the agent the list of all the
descriptions that match the provided template.

A description matches the template if all the fields specified in the template
are present in the description and contain the same values that are specified
in the template.

Other DF agents can be activated in the platform and several DF agents
(including the default one created with the main container) can be federated,
thus providing a single distributed Yellow Pages Catalogue.

Moreover, if an agent wishes to be notified as soon as a certain service is
published, JADE allows it to subscribe to the DF for such notification.

3.3.7 Communication in JADE

Since the agents belonging to a JADE platform can be distributed over a
network, a communication mechanism for a distributed environment is neces-
sary in order to effectively implement interaction between such agents: Java’s
RMI (Remote Method Invocation) mechanism is used, so there is no need for
additional software since it is included in the Java language.

The AMS and DF agents are not the only entities automatically created
when the main container is loaded: the other object that comes into being is,
indeed, the RMI registry which represents the platform’s RMI server and
must reside on the host on which the main container runs.

RMI is used for intra-platform communication, whereas CORBA or HTTP
are used for inter-platform communication.

FIPA’s MTS (Message Transport System), also called ACC (Agent Com-
munication Channel), is the software component to which is assigned the task
of controlling the exchange of messages both within the platform and between
(remote) platforms.

Furthermore, the physical transfer of messages between two ACCs is achiev-
ed through the MTP (Message Transport Protocol) protocol.

Since an ACC is delegated to the delivery of a message, it is not unusual
for it to access information provided by other services (such as the AMS and
DF) that reside on other platforms.

According to FIPA’s standard, agents do not directly communicate with
each other: an agent can either communicate with its ACC or with the re-
ceiver’s ACC.

Ivana Gungui Integrating Logical Agents Into DCaseLP

68 The tuProlog and JADE systems - The JADE platform

JADE fully complies with FIPA’s architecture and when one of its platforms
is launched, the AMS and DF are immediately created together with the ACC
module which is set to allow message communication.

The ACC does not interpret the content of messages: its role is to deliver
the message to the agent receiver, relieving the developer from the burden of
dealing with all the transfer details.

The communication paradigm adopted in JADE is the asynchronous mes-
sage passing. The agent sender/receiver of a message is specified by its name,
since in a JADE platform agents are identified by a unique name.

If an agent wants to interact with another agent, regardless of its actual
location — the same container, a different container of the same platform or
another platform —, all it needs is just to know the name of such agent.

A name is a string composed of a “nickname” (usually chosen when the
agent is loaded into the platform) and an “address” separated by the “at” (@)
sign: for instance, RMA@ai:1099/JADE is an agent whose nickname is RMA
and whose address is ai:1099/JADE.

The addresses are in RMI format, namely they consist of a host name (ai)
in the example shown above) and, a port on which the RMI naming service is
active (1099 is the default one for RMI).

In the example, the host name does not specify the domain but a full name
is also valid as a JADE address.

The ending string “/JADE” distinguishes the RMI invocations made by a
JADE entity from others made by RMI services that have nothing to do with
JADE.

For each agent, the run-time environment keeps a message queue where
it “piles” the messages received by the agent considered. An agent is notified
each time that a message is put into the queue: it is totally up to the developer
of the agent to establish if and when the agent will process that message.

Agents belonging to the same platform may be subject to different policies
regarding the “collecting” and “processing” of their messages, depending on
the developer’s choices.

So, JADE creates and manages the queue of incoming ACL messages, pri-
vate to each agent and, offers the agents different access modes to such queue:
blocking, polling, timeout or based on pattern matching.

Not only the full FIPA’s communication model has been implemented, but
JADE’s transport mechanism adapts to different situations by choosing the
best available protocol among Java RMI, event-notification, HTTP, IIOP, and
user-defined protocols.

Ivana Gungui Integrating Logical Agents Into DCaseLP

The tuProlog and JADE systems - The JADE platform 69

JADE offers classes/interfaces that can be used within the framework to
implement most of FIPA’s interaction protocols, the SL language and the agent
management ontology, as well as user-defined content languages and ontologies.

3.3.8 Agents behaviours

Agents are subject to various external events and often have to carry out
several concurrent tasks in response to them. Therefore, each agent running
in JADE is implemented as a single Java thread, which means that it can
exploit the multi-thread solution offered by the JAVA language.

Furthermore, in order to improve the parallel execution of the tasks of
an agent, JADE has implemented a scheduling of cooperative behaviours, and
Behaviour is the class whose instances represent and implement the tasks of
the agent.

The developer can implement multi-threaded JADE agents, but the frame-
work does not supply specific support for them, except for the synchronisation
of the ACL message queue associated to each agent.

JADE keeps a list of tasks for each agent and the developer is able to add
tasks to it since the framework offers more than one “skeleton” as a basis for
creating not only common behaviours in agent programming but also totally
new ones.

A scheduler, implemented by the agent but hidden to the programmer,
pursues a round-robin non-preemptive scheduling policy between all available
behaviours (which form the ready queue), executing one behaviour at a time.

The done method of the Behaviour class is invoked by the scheduler in
order to know if the task has been completed or not: if the behaviour has not
finished, then it will be rescheduled at the next round. When a behaviour has
terminated its job, the scheduler removes it from the ready queue.

The entire computation state of a behaviour must be stored in instance vari-
ables belonging to the behaviour. To avoid wasting CPU time, every behaviour
can block its computation and enter the “blocked queue”, and is rescheduled
as soon as a new message arrives.

Moreover, if needed, a behaviour can block itself for a certain amount of
time, specified by the programmer.

Since the scheduling policy of the behaviours is non-preemptive, the devel-
oper must be careful not to create behaviours that are endless loops or that
perform long operations, otherwise such a behaviour could stop the others
associated to the same agent.

Ivana Gungui Integrating Logical Agents Into DCaseLP

70 The tuProlog and JADE systems - Conclusions

If an agent behaviour is blocked for some reason, the behaviours of another
agent will carry on achieving their aims due to the fact that agents run in
different Java threads.

So, there is no way of interrupting a behaviour to let the agent execute
another behaviour and to then start the previous from the point it was inter-
rupted.

One of JADE’s most interesting features that is worth taking into account
and has not been particularly highlighted here is the possibility for the admin-
istrator of the MAS to remotely control the whole platform.

It should also be remembered that all the administration activities within
the platform are made much easier with the aid of the GUIs offered by the
JADE framework.

3.4 Conclusions

This chapter has been dedicated to briefly introducing the essential features
of the tuProlog system and, on the contrary, to describing in more detail the
JADE system that constitutes the backbone of the DCaseLP environment.

As it will be clear in the next chapter, the developer of tuProlog agents
in DCaseLP only needs logic programming skills rather than having a good
familiarity with the tuProlog system itself.

JADE and tuProlog have, indeed, a common aspect: many of their inter-
esting properties are directly derived from features of the language with which
both are implemented, the Java programming language.

JADE is an agent platform that was already present in the first release of
DCaseLP: this chapter has just recalled its main characteristics in order to
make it easier for the reader to understand the integration of tuProlog into
DCaseLP (dealt with in the next chapter) and the general mechanism that
determines the behaviour of the agents in the platform.
The main qualities of JADE can be summarised as follows:

■ it is a middleware for the development and deployment of distributed
multi-agent applications;

■ it is portable, since it is fully implemented in the Java language;

■ it is FIPA-compliant;

■ it offers GUIs to ease the debugging and monitoring of agents/containers;

Ivana Gungui Integrating Logical Agents Into DCaseLP

The tuProlog and JADE systems - Conclusions 71

■ it provides mechanisms to remotely administrate the platform.

tuProlog, on the other hand, has been chosen to implement the logical agents
because:

❉ it provides an easy deployable Prolog engine implemented as a light-
weight Java object, accessible through a minimal interface;

❉ the tuProlog engine can be dynamically extended and configured by load-
ing/unloading tuProlog libraries, which can be implemented in Java or
in tuProlog;

❉ the tuProlog system provides packages that allow a bidirectional use of
Prolog : “Java in Prolog code” and “Prolog in Java code”.

Furthermore, both JADE and tuProlog are free for non-commercial use.
In the next chapter the reader will finally see how the “tuProlog agents” were
created and how JADE agents are really shells for agents implemented in
languages that can interface with Java.

Ivana Gungui Integrating Logical Agents Into DCaseLP

72 The tuProlog and JADE systems - Conclusions

Ivana Gungui Integrating Logical Agents Into DCaseLP

73

Chapter 4

The interface between Prolog
and DCaseLP

4.1 Introduction

The solution we developed satisfies two important requirements: it is a trans-
parent integration and guarantees the communication between Java, Jess and
logical agents.

The term “transparent” has a different meaning in computing to that nor-
mally intended: it does not mean the quality of being easily seen through, but
indicates instead the property of being invisible. Normally, a transparent inte-
gration is one that is undetectable in subsequent uses of the system involved,
so our integration allows already developed MASs with the first release of
DCaseLP to still be executed without the need of making any modification to
their code.

The result of our work is the Java tuPInJADE package: it contains the
classes that implement what we call tuProlog agents, to be run in the JADE
environment, and whose behaviour is fully specified by means of the tuProlog
language.

We use the term “logical” to refer to the tuProlog agents because we want
to stress the fact that these agents not only have an inference engine, but also
a rational behaviour incorporated in them that is the result of a resolution or
proof technique.

We will now fully detail the contents of the Java package tuPInJADE that
represents an interface between tuProlog and JADE, whereas in Chapter 5 we
will give an example of the tuProlog agents use.

Ivana Gungui Integrating Logical Agents Into DCaseLP

74
The interface between Prolog and DCaseLP -

The tuPInJADE package

4.2 The tuPInJADE package

The tuPInJADE package contains the following files:

✷ ErrorMsg.java: it defines the Java class ErrorMsg that is used by
the tuProlog agents with the aim of displaying a pop-up window with
error and failure messages, since the JADE platform does not provide its
agents with a similar mechanism.

✷ JadeShell42P.java: this represents a tuProlog agent and, as the name
suggests, it behaves as a general “agent shell” for a tuProlog agent
in JADE that incorporates a Prolog inference engine (implemented by
tuProlog) and, when launched in a JADE platform, needs an input file
containing the Prolog theory defining the agent behaviour.

✷ JadeShell42PGui.java: is similar to the JadeShell42P class, but dif-
fers from it since when loading the agent it displays an additional GUI
from which the user can browse the file system and select the theory file
to input to the agent.

✷ TuJadeLibrary.java: it is a tuProlog library (developed entirely in
Java) necessary for a tuProlog agent to communicate in a JADE platform
since it defines the communicative predicates based on the facilities that
JADE offers to its agents for communication in a platform and with other
platforms.

We will now detail every class belonging to this package.

4.2.1 The ErrorMsg class

tuProlog does not support exceptions so when goals fail because of exceptions,
they simply end up being false. JADE does not provide a mechanism for
handling exceptions: it just reports them.

This class implements a dialog window that is used by the tuProlog agents
during their execution to inform the user/administrator of the platform about
awkward situations that have occurred. For instance, the failure of a goal
present in the main predicate that determines the agent behaviour, causes
this window to appear.

To display any message, the agent invokes the method write of this class,
with two strings as arguments: the first string is the title to display on the bar

Ivana Gungui Integrating Logical Agents Into DCaseLP

The interface between Prolog and DCaseLP -
The tuPInJADE package 75

of the window, while the second is the message that will be displayed in the
text area of the window.

Once this window has popped-up, the agent stops its execution and remains
in an idle state.

In Figure 4.1 we can see the window that the tuProlog agent named
my2Pagent raised because its main goal has failed. The theory file given in
input to the agent just contained “main:-fail.” that, in fact, forces the
goal to fail.

Figure 4.1: The ErrorMsg GUI that the tuProlog agent my2Pagent pops-up
since its main goal fails.

Here is the list of the possible messages that a tuProlog agent may display:

Title Bar Message displayed Explanation

The Theory Of

Agent AGENT is

Missing

Agent AGENT has no

theory specified.

It appears if the agent
agent is launched with
no arguments, while the
name of the theory file is
expected.

Too Many Inputs

For Agent AGENT

You can input only

ONE theory file of

agent AGENT.

It appears if the agent
agent is launched with
more than one argument,
while only one file is ex-
pected to contain the the-
ory.

Ivana Gungui Integrating Logical Agents Into DCaseLP

76
The interface between Prolog and DCaseLP -

The tuPInJADE package

Title Bar Message displayed Explanation

Error Loading The

TuJadeLibrary Of

Agent AGENT

The TuJadeLibrary

is not a valid

tuProlog library.

It appears if errors occur
while loading the Tu-
JadeLibrary (included
in the tuPInJADE
package) into the agent
agent.

Error Loading The

Theory Of Agent

AGENT

Cannot find the

theory file FILE of

agent AGENT.

It appears if the sys-
tem cannot find the the-
ory file whose name file

has been given in in-
put when launching the
agent agent.

Error Opening The

Theory File Of

Agent AGENT

A security error

occurred opening

the theory file

FILE of agent

AGENT.

It appears if the sys-
tem encounters a prob-
lem while opening the
theory file file.

Error Opening The

Theory File Of

Agent AGENT

An error occurred

opening the theory

file FILE of agent

AGENT.

It appears if the system
encounters an I/O prob-
lem while reading the
theory file file.

Error In Theory

Of Agent AGENT

The file FILE does

not contain a

tuProlog theory.

An error was

detected while

parsing line LINE.

It appears if the theory
file file does not con-
tain a tuProlog theory.

Cannot Close

Theory File Of

Agent AGENT

Cannot close the

theory file FILE of

agent AGENT.

It appears if the system
encounters an I/O error
or a problem while clos-
ing the theory file file.

Ivana Gungui Integrating Logical Agents Into DCaseLP

The interface between Prolog and DCaseLP -
The tuPInJADE package 77

Title Bar Message displayed Explanation

Error Loading The

Theory Of Agent

AGENT

There is an error

in line LINE of

the tuProlog theory

contained in file

FILE.

It appears if in line
line of the theory file
file the tuProlog en-
gine encountered an er-
ror.

Syntax Error In

Theory File Of

Agent AGENT

The theory file

FILE of agent AGENT

does not begin with

a word.

It appears if the theory
file file of the agent
agent does not begin
with a word, whereas
the word main is ex-
pected.

Syntax Error In

Theory File Of

Agent AGENT

In the theory file

FILE of agent AGENT

the key word main is

not followed by :-.

It appears if in the
theory file file of the
agent agent the key
word main is not fol-
lowed by the characters
:-.

Syntax Error In

Theory File Of

Agent AGENT

In the theory file

FILE of agent AGENT

the key character :

is not followed by

-.

It appears if in the
theory file file of the
agent agent the key
character : is not fol-
lowed by the character
-.

Syntax Error In

Theory File Of

Agent AGENT

In the theory file

FILE of agent AGENT

there is another

character following

main where : is

expected.

It appears if in the
theory file file of the
agent agent the key
word main is not fol-
lowed by the character
:.

Ivana Gungui Integrating Logical Agents Into DCaseLP

78
The interface between Prolog and DCaseLP -

The tuPInJADE package

Title Bar Message displayed Explanation

Syntax Error In

Theory File Of

Agent AGENT

The theory file

FILE of agent AGENT

begins with a word

that is not main.

It appears if the theory
file file of the agent
agent begins with a
word that is not main.

Syntax Error In

Theory File Of

Agent AGENT

An error occurred

while reading the

theory file FILE of

agent AGENT.

It appears if the sys-
tem encounters an er-
ror while reading the
theory file file of the
agent agent.

Error Obtaining

The TuJadeLibrary

From Agent AGENT

The TuJadeLibrary

was not loaded in

agent AGENT.

It appears if the system
encounters a problem
loading the tuProlog li-
brary TuJadeLibrary in
the agent agent.

Error Solving The

‘‘main’’ Goal Of

Agent AGENT

A message stating the
error encountered while
evaluating a predicate de-
fined in TuJadeLibrary,
during the demonstration
of the main goal of the
agent agent

It appears when the
demonstration of the
main goal of the agent
agent fails because of
the failure of a pred-
icate defined in Tu-
JadeLibrary.

Theory Of Agent

AGENT Must Be

Selected In GUI

The theory of agent

AGENT should not

be specified as

an argument but

should be selected

from the GUI that

pops-up when the

agent is launched.

It appears if an argu-
ment is specified when
launching the agent
agent since the theory
file is expected to be
selected in the GUI.

Ivana Gungui Integrating Logical Agents Into DCaseLP

The interface between Prolog and DCaseLP -
The tuPInJADE package 79

Title Bar Message displayed Explanation

Theory Of

Agent AGENT Not

Selected

No theory has been

selected in the GUI

displayed for agent

AGENT.

It appears if the
user/administrator of
the platform does not
select the theory file of
agent agent.

The only information provided to the user, as can be seen by the messages
listed above, concerns I/O errors regarding the theory file, or the failure of the
demonstration of the goal (main) representing the agent behaviour. The mes-
sage displayed normally reports the error encounted by the tuProlog engine
while carrying out the resolution.

4.2.2 The JadeShell42P class

“JADE PROGRAMMER’S GUIDE” and “JADE ADMINISTRATOR’S GUIDE”,
both downloadable from http://jade.cselt.it/doc/index.html, contain instructions
on how to use the platform, together with useful implementation guidelines
that the developer should follow in order to code (Java) agents executable in
a JADE agent container.

JADE provides packages that define various classes specifically designed to
be extended by the developers and that implement basic functionalities.

In the JADE framework, any instance of a Java class that extends the Agent
class defined in the jade.core package is considered an agent. By extend-
ing the jade.core.Agent class, any agent inherits the features (ready-to-use)
by which it can carry out basic interactions with the agent platform — such
as registration, configuration, remote management, etc. — and a basic set
of methods that can be called to implement the actions of the agent — like
sending/receiving messages, using standard interaction protocols and so on.

The JadeShell42P class that we have developed represents a shell for an agent
programmed in tuProlog: it is like an oyster to which the programmer provides
the pearl (see Figure 4.2 and Figure 4.3).

Ivana Gungui Integrating Logical Agents Into DCaseLP

80
The interface between Prolog and DCaseLP -

The tuPInJADE package

Figure 4.2: The JadeShell42P
agent before it is loaded in the
JADE platform

Figure 4.3: The JadeShell42P agent
once it has been loaded in the JADE
platform

This shell incorporates a tuProlog engine, implemented by the alice.tupro-
log.Prolog class, and is, therefore, capable of making demonstrations of goals
(those defined in logic programming).
More precisely, when loading this agent in JADE the user must complete it
by giving in input the name of the file containing a tuProlog theory that
determines the behaviour (this will be explained later) of the agent.
Such a theory, besides being compliant with tuProlog syntax, must satisfy only
one constraint: it has to begin with the definition of the main/0 predicate.
The JadeShell42P agent can be loaded in two ways:

① from the RMA GUI

By clicking the “Start New Agent” item from the “Actions” menu in the
title bar, or the button shown in the image on the right of Figure 4.4,
the window shown in Figure 4.5 is displayed on the screen.
After having inputted the appropriate parameters, the new agent is cre-
ated in the selected agent container (the “Main-Container” in the two
images of Figure 4.4).
The parameters that the user must input are: the local name of the
agent, the fully qualified name of the Java class implementing the agent
(tuPInJADE.JadeShell42P) and the path of the theory file (in the
Arguments field visible in the GUI of Figure 4.5).

Ivana Gungui Integrating Logical Agents Into DCaseLP

The interface between Prolog and DCaseLP -
The tuPInJADE package 81

Figure 4.4: They show the two ways offered by the RMA GUI to start a new
agent.

Figure 4.5: GUI that pops-up when the user creates a new agent in the con-
tainer selected in the RMA GUI.

② when launching an agent container from the command line, by
adding the following string

agent name:tuPInJADE.JadeShell42P(theory file)

agent name is a word indicating, indeed, the agent name that is local to
the platform in which it is loaded; the globally unique name that JADE
assigns to it is a string formed by concatenating this local name, the
symbol ”@” and the platform’s identifier, respectively (for more details
the reader is referred to JADE manuals).

Ivana Gungui Integrating Logical Agents Into DCaseLP

82
The interface between Prolog and DCaseLP -

The tuPInJADE package

theory file is the name (or the entire path when necessary) of the file
containing the tuProlog theory defining the main predicate.

One can specify more than one agent when launching the container: it is
sufficient to separate each string of this form by a blank space (as with
non-tuProlog agents).

When this agent is loaded into JADE, its first action is to check if the user has
inputted the name of the file that defines the main predicate: if the file has
not been specified or the system has problems finding/opening/reading it, an
error message is displayed by an ad-hoc window (similar to the one shown in
Figure 4.1) and the agent is “killed”.

If, however, the file can be opened and read by the system, then the agent
checks if it begins with “main:-” (only lower-case letters are valid in the word
main) and if it also contains a valid tuProlog theory.

A theory file containing the fact “main.” and no other definition of the
main predicate is valid, but the corresponding agent does not ever do anything.

If any of the previous checks ends negatively, then the user is made aware
of it by the above-mentioned error window, and the agent “dies”.

On the other hand, if these checks end positively, the tuProlog engine is cre-
ated and, by default, it contains the standard tuProlog libraries (implemented
in Java):

✵ BasicLibrary: is implemented by the alice.tuprolog.lib.BasicLib-
rary class and allows the use of common Prolog built-in predicates, func-
tors and operators, except for predicates regarding I/O;

✵ IOLibrary: is implemented by the alice.tuprolog.lib.IOLibrary class
and contains some of the basic and common I/O predicates;

✵ ISOLibrary: is implemented by the alice.tuprolog.lib.ISOLibrary
class and defines those predicates that are part of the ISO standard and
not present in the previous libraries;

✵ JavaLibrary: is implemented by the alice.tuprolog.lib.JavaLibrary
class and provides predicates that allow to create and/or access Java
objects and classes.

These libraries are fully detailed in the “tuProlog Users Guide” that is available
in the documentation provided with the tuProlog system, or in the “API docu-

Ivana Gungui Integrating Logical Agents Into DCaseLP

The interface between Prolog and DCaseLP -
The tuPInJADE package 83

mentation for tuProlog J2SE version 1.2.0” downloadable from http://lia.deis.un
ibo.it/research/tuprolog/ .

The agent so far created is a “logical” one since it is able to carry out logic
reasoning when a query is submitted to it. After adding the inference engine,
the agent tries to extend it with the tuPInJADE.TuJadeLibrary (detailed
in this section): if it succeeds, the agent can now communicate with any agent
running in JADE platforms by using the communicative predicates that we
have developed, otherwise it terminates its life cycle.

A tuProlog theory is represented by text consisting of a series of clauses
and/or directives, each followed by “.” and the blank space.

The text file inputted to the agent and containing a tuProlog theory finally
completes the agent since it determines its knowledge base and the rules by
which it accomplishes demonstrations.

What happens now is that every time that JADE schedules the agent, the
latter proves the “main.” goal. If, at any time during the agent life cycle, the
resolution does not succeed, then an error message is displayed to the user.

A typical behaviour of a tuProlog agent may be to read a new message from
its messages queue (automatically created by JADE for each agent), handle
it and take some action (such as the update of its knowledge and/or message
delivery) according to the facts and rules currently present in its theory.

The demonstration process is not visible to the programmer: to see the
bindings of the variables made during the resolution, the programmer of the
agent has to explicitly write the variables on the standard output or in files.

So, the behaviour of every logical agent is to prove the main predicate, but
they can differ in the facts and clauses that rule their reasoning. Comparing
them to the other kind of agents runnable in JADE, the tuProlog agents have
only one activity to fulfil, that is the demonstration.

4.2.3 The JadeShell42PGui class

This class extends the JadeShell42P class: it has the same functionalities, but
differs in the way the theory file is given in input to the agent.

When loading an agent implemented by JadeShell42P, the text file contain-
ing the tuProlog theory must be inputted as an argument, whereas this agent
does not expect any input when loaded because it displays a GUI (see Figure
4.7) with which the user/administrator can browse the file system and select

Ivana Gungui Integrating Logical Agents Into DCaseLP

84
The interface between Prolog and DCaseLP -

The tuPInJADE package

from the list of files the above-mentioned file.
So, to load this agent in a JADE platform there are two ways:

① from the RMA GUI
When the GUI for inputting the parameters needed to create the agent is
displayed (see subsection 4.2.2 for details), the only information that the
user/administrator has to input are the local name of the agent and the
fully qualified name of the Java class implementing the agent (tuPInJA-
DE.JadeShell42PGui), as shown in the example of Figure 4.6.
The Arguments field, visible in the GUI of Figure 4.6, must not be
filled since the theory file defining the behaviour of the agent is inputted
through the GUI that appears straight afterwards (shown in Figure 4.7).

If no file is selected from such GUI, an error message is displayed and
the agent “dies”.

② when launching an agent container from the command line, by
adding the following string

agent name:tuPInJADE.JadeShell42PGui

Figure 4.6: GUI that pops-up when the user creates a new agent using the
RMA GUI.

Once the theory file has been inputted, this agent behaves exactly as a JadeShel-
l42P agent: it solves the “main.” goal. If the resolution succeeds, no message
is displayed on the screen and the agent solves that goal every time that it is
scheduled by the JADE platform, otherwise the error that caused the failure
(if detected by the tuProlog inference engine) is included in the error message.

Ivana Gungui Integrating Logical Agents Into DCaseLP

The interface between Prolog and DCaseLP -
The tuPInJADE package 85

Figure 4.7: GUI that pops-up when a JadeShell42PGui agent is loaded in
JADE.

Ivana Gungui Integrating Logical Agents Into DCaseLP

86
The interface between Prolog and DCaseLP -

The tuPInJADE package

4.2.4 The TuJadeLibrary class

The previously mentioned classes, JadeShell42P and JadeShell42PGui, imple-
ment the tuProlog agent, but without the predicates defined in the TuJadeLi-
brary class the agent would not be able to communicate with other agents
(Java, Jess or tuProlog) in JADE.

This class implements a tuProlog library defining predicates that allow the
logical agents to send/receive messages to/from other agents running in JADE.

To develop Java libraries that can be loaded into the tuProlog engine, and
thus added to its current theory, it is necessary to extend the alice.tuprolog.
Library class, and then define appropriate methods corresponding to the
desired predicates.

The method defining a predicate must have a default signature: it must
return a boolean value, its name must be formed concatenating the predicate
symbol, an underscore and the number of arguments taken by the predicate
and, finally, its argument must be an object of the alice.tuprolog.Struct
class.

The alice.tuprolog.Struct class represents a compound Prolog term or an
atom: here, it is used to retrieve the arguments of the predicate when it is
“solved” by the engine.

The methods (corresponding to tuProlog predicates) that we have included in
this class are:

- public boolean send_3 (Struct g);
- public boolean receive_3 (Struct g);
- public boolean blocking_receive_3 (Struct g);
- public boolean blocking_receive_4 (Struct g);
- public boolean pack_2 (Struct g);
- public boolean unpack_2 (Struct g).

Besides the predicates for sending and receiving messages, there are two pred-
icates for converting strings into tuProlog terms and vice versa.

The ordinary content of a JADE message is a string, even though an object
can be used instead. We have chosen to make the logical agents send messages
whose content is a string in order to maintain the lightweight mechanism of
messaging provided by the JADE framework: this is why we have added the
pack and unpack predicates.

So, on the one hand, when the tuProlog agent has to send a message, the

Ivana Gungui Integrating Logical Agents Into DCaseLP

The interface between Prolog and DCaseLP -
The tuPInJADE package 87

developer includes a call to the pack predicate first, and then the call to send.

On the other hand, when a tuProlog agent has to receive a message, the
developer includes the call to the receive predicate and, afterwards, converts
the content of the message into a tuProlog term by calling the unpack predicate;
then, the agent will be able to reason over the received content as it usually
does with ordinary terms.

We will now detail, for each predicate, their arguments and on which of these
the predicates are evaluated in the true/false value:

• send/3

This predicate is the Prolog counterpart of the Java send method (avail-
able to any agent running in JADE) for sending a message. The use of
the send method implies creating the message, “filling in” the necessary
details (as one would do with an envelope) and then passing the mes-
sage to the method as an input parameter. In our case, the message is
automatically created and only the performative, the content and the
address/addresses of the receiver/receivers are necessary.
The call to the goal send(Performative,Content,Receiver)
succeeds if, and only if:

* the Performative term is a string that corresponds to (or a term
that unifies with) one of the available performatives of an ACLMes-
sage in JADE (the reader is referred to Appendix B for a complete
list of such performatives);

* the Content term is a string (or a term that unifies with a string)
that does not contain just the Prolog anonymous variable (“ ”);

* the Receiver term is a string/list of strings that corresponds to
(or a term that unifies with) a valid (not necessarily corresponding
to an “existing”) JADE address/list of JADE addresses.

When the goal succeeds, the agent — the one containing the tuPro-
log engine that evaluates the predicate — sends a message to the agent
whose address is represented by Receiver. The content and the per-
formative of the sent message are Content and Performative, re-
spectively. In case Performative is not a valid one, the goal still
is successful, but the message that is sent has the default performative
NOT UNDERSTOOD.

The address of the sender is automatically inserted into the message.

Ivana Gungui Integrating Logical Agents Into DCaseLP

88
The interface between Prolog and DCaseLP -

The tuPInJADE package

If, on the other hand, the call fails, an error message is displayed by the
agent.

• receive/3
This predicate is the Prolog counterpart of the Java receive method
(available to any agent running in JADE) for receiving a message. The
use of the receive method implies taking out a message from the message
queue belonging to the agent and then “reading” the relevant information
contained in the message; whereas, if the message queue is empty, the
method returns a null message. In our case, when there is at least one
message in the queue, it is automatically read and the performative, the
content and the address of the sender are made available to the agent;
on the contrary, if the queue is empty, the goal still succeeds, but its
arguments remain unbound variables.
The call to the goal receive(Performative,Content,Sender)
succeeds if, and only if:

* the Performative term is a variable not bound yet;

* the Content term is a variable not bound yet;

* the Sender term is a variable not bound yet;

If the goal is successful, there are two possible situations:

– the message queue contained at least a message: in this case, the
Performative, Content and Sender variables are bound to
the performative, the content and the address of the sender of the
message, respectively;

– the message queue was empty : the Performative, Content and
Sender variables remain unbound.

On the other hand, if it fails, an error message is displayed by the agent.

• blocking_receive/3

This predicate is the Prolog counterpart of the Java blockingReceive
method (available to all the agents running in JADE) for blocking the
agent until it reads a message from its message queue. In our case, as
soon as a message is available in the queue, it is automatically “read”
and the performative, the content and the address of the sender are made
available to the agent.

Ivana Gungui Integrating Logical Agents Into DCaseLP

The interface between Prolog and DCaseLP -
The tuPInJADE package 89

The call to the goal blocking_receive(Performative,Content,
Sender) if, and only if:

* the Performative term is a variable not yet bound;

* the Content term is a variable not yet bound;

* the Sender term is a variable not yet bound;

If the goal is successful, the Performative, Content and Sender
variables are bound to the performative, the content and the address of
the sender of the message received, respectively.

On the other hand, if it fails, an error message is displayed by the agent.

• blocking_receive/4
This predicate is the Prolog counterpart of the Java blockingReceive

method (available to all the agents running in JADE) for blocking the
agent, for a specified amount of time expressed in milliseconds, until it
reads a message from its message queue. In our case, if a message is
available in the queue, before the specified time has passed, it is auto-
matically “read” and the performative, the content and the address of
the sender are made available to the agent.

The call to the goal blocking_receive(Performative,Content,
Sender,Msec) succeeds if, and only if:

* the Performative term is a variable not yet bound;

* the Content term is a variable not yet bound;

* the Sender term is a variable not yet bound;

* the Msec term is a number or a term that unifies with a number;

When the goal is successful: if the agent does not receive a message
during the specified time, the Performative, Content and Sender
variables remain unbound, otherwise they are bound to the performative,
the content and the address of the sender of the message, respectively.

On the other hand, if it fails, an error message is displayed by the agent.

• pack/2

The developer should use this predicate to convert a tuProlog term into

Ivana Gungui Integrating Logical Agents Into DCaseLP

90
The interface between Prolog and DCaseLP -

Conclusions

a string to insert it as the content inside a message: it is usually eval-
uated before the send predicate mentioned above. The call to the goal
pack(Term,StrTerm) succeeds if, and only if the string representa-
tion of the Term term can be unified to the StrTerm term.
If it fails, an error message is displayed by the agent.

• unpack/2
The developer should use this predicate to convert a string into a tuPro-
log term: it is normally evaluated after one of the receive predicates
mentioned above. The call to the goal unpack(StrTerm,Term) suc-
ceeds if, and only if the StrTerm term representing a string can be
unified to the Term term.
If it fails, an error message is displayed by the agent.

The implementation of the send and receive/blocking_receive predicates
exploits the send and receive/blocking_receive methods available to JADE
agents. Therefore, they allow communication not only between tuProlog agents,
but also between ordinary JADE agents and tuProlog agents.

It has been possible to implement these communicative predicates thanks
to the shell object, belonging to the JadeShell42P class and defined in this
library. After this library has been loaded into the tuProlog engine of a log-
ical agent, shell is the only way to refer to the agent itself from the library:
so, through the shell object the implementation of the predicates can use the
JADE communication methods.

4.3 Conclusions

This chapter has been dedicated to explaining how the logical agents have
been integrated into DCaseLP. We have described our work by describing the
tuPInJADE Java package and each class it contains.

The JadeShell42P and JadeShell42PGui classes implement the so-called
tuProlog agent and can be compared to an oyster without its pearl : this oyster
will be able to run in JADE as soon as it is provided with its pearl, that
is represented by a text file containing a tuProlog theory defining the main
predicate.

Ivana Gungui Integrating Logical Agents Into DCaseLP

The interface between Prolog and DCaseLP -
Conclusions 91

So, as it is, the behaviour of this agent is totally implemented by Prolog
and the only constraint is the definition of a main predicate that does not take
any argument. Therefore, the developer only needs logic programming skills,
not familiarity with either the tuProlog or the JADE systems, but must know
the predicates provided by tuProlog.

Moreover, these oysters are able to interact with the “rest of the world”
since, when they are loaded in the JADE framework, the tuProlog inference
engine that is part of their shell is extended with the tuProlog library TuJadeLi-
brary, containing the communicative predicates that we have developed.

These predicates use the communicative facilities offered by the underlying
JADE framework; in particular, we have not developed an ad-hoc type of mes-
sage, thus allowing any kind of agent running in JADE to deal with messages
from/to logical agents.

Finally, these agents do a little of error handling by informing the user/adm-
inistrator, through a pop-up window displaying a text message, about the
failure of the demonstration of the main predicate or about other awkward
situations.

In the next chapter we will demonstrate that tuProlog agents are able
to interact with both tuProlog and JADE agents by showing a small MAS
prototype.

Ivana Gungui Integrating Logical Agents Into DCaseLP

92
The interface between Prolog and DCaseLP -

Conclusions

Ivana Gungui Integrating Logical Agents Into DCaseLP

93

Chapter 5

Java and tuProlog agents
interacting - An example

5.1 Introduction

As mentioned before, one important requirement that our integration has to
satisfy is to allow communication: logical agents must be able to interact
not only with any other logical agent but also with any agent running in a
JADE platform.

So, as a demonstration of the real effectiveness of our work, we have de-
veloped a working prototype of a MAS representing a simple application, a
distributed marketplace scenario, and in this chapter we will give details about
it, together with the results of its execution in JADE, thanks to the monitoring
tools that it offers.

Our primary scope is to produce evidence that demonstrates that the
tuProlog agents (that are the result of the work of this thesis) actually satisfy
both the requirements submitted at the beginning of our work.

Thus, with our small example we want to show the ability of a logical
agent to “reason” and to send/receive messages to/from a tuProlog agent or a
different kind of agent running in DCaseLP (more precisely, running in JADE).

To demonstrate that a tuProlog agent is really capable of logical reasoning,
it is sufficient to show that it is able to solve logical goals; furthermore, by
dinamically asserting and retracting facts or clauses in its database, the agent
has a flexible behaviour.

Communication, compared to the reasoning ability, is easier to check, due
to the tools that one is able to exploit in the JADE platform: one has the

Ivana Gungui Integrating Logical Agents Into DCaseLP

94
Java and tuProlog agents interacting - An example

A distributed marketplace scenario

possibility to “spy” the message queues of the agents and “read” the messages
that they contain.

Therefore, proving that tuProlog agents can send messages to each other
and that a tuProlog agent can send/receive a message to/from a Java agent,
has not been such a difficult task at all.

Due to lack of time, we did not develop a prototype MAS running Java, Jess
and tuProlog agents, but there seems to be no reason for it not to be possible,
since the Jess agents have already been integrated into JADE [Mig02].

5.2 A distributed marketplace scenario

The MAS prototype that we have designed is as simple as possible: we have
imagined that in our marketplace there are two agents playing the roles of
“fruit buyers”, and three agents playing the roles of “fruit sellers”.

The fruit these agents are interested in are: oranges, apples and kiwi.

So, the five agents interacting in our MAS are:

* buyer1 : a tuProlog agent willing to buy fruit;

* buyer2 : another tuProlog agent willing to buy fruit;

* seller : a Java agent willing to sell fruit;

* seller1 : a tuProlog agent willing to sell fruit;

* seller2 : another tuProlog agent willing to sell fruit.

The agents that sell fruit can receive two kinds of messages from those buy-
ing: these messages have the REQUEST performative, since they represent the
communicative action, made by the senders, of asking the receivers something.

The content of these “request” messages is a term consisting of either the
price or the buy predicate: in the first case, the intention of the buyer is to
ask the price of the fruit that appears as argument of price, whereas in the
second case the intention is to buy some amount of fruit, so both the amount
and the kind of fruit appear as arguments of buy.

For simplicity, the buyers try to buy only a fixed amount of fruit: such
amount differs for each type of fruit.

The replies made by the sellers are, obviously, different depending on the
type of request they receive.

Ivana Gungui Integrating Logical Agents Into DCaseLP

Java and tuProlog agents interacting - An example
A distributed marketplace scenario 95

The reply to a price request is always the same: the seller sends a message,
characterised by the INFORM performative, that informs the buyer (that has
sent the request) about the price of the fruit.

The reply to a demand for buying is always a message with an INFORM per-
formative, but the content depends on whether or not the seller has enough
fruit to sell:

• if the quantity of fruit that the buyer is willing to buy is less or equal to
that possessed by the seller, the content is the bought predicate applied
to the fruit (specified as argument) that has been sold;

• if the quantity of fruit that the buyer is willing to buy is more than that
possessed by the seller, the content is the no_more predicate applied to
the fruit (specified as argument) that cannot be sold.

The scenario that we have implemented is the following: at the beginning, each
buyer sends requests for the price of each fruit to all the sellers; once it knows
the prices of the fruit, it sends requests for buying the fruit to the agents that
sell that fruit at the cheapest prices.

The buyers keep sending messages requesting to buy fruit while they have
money and the sellers have enough fruit to sell, whereas the sellers just reply
to the messages that they receive.

We will now detail the implementation of these agents.

5.2.1 The buyer agents

As mentioned above, the two buyer agents are both logical ones so, when
they are loaded into the JADE platform, they should also receive the text file
defining the behaviour or, simply speaking, defining the “main” predicate and
all the auxiliary user-defined predicates.

Now, we will proceed by analysing the files containing the theory for the
buyer agents and explaining the meaning of the clauses and facts that they
contain.

First of all, both the files must begin with the definition of the main/0
predicate, otherwise an error is displayed in a window and the relative agent
is “killed”.

So, at the beginning of the file we find the following rule:

main :- handle_msgs,ask_prices,buy_goods.

Ivana Gungui Integrating Logical Agents Into DCaseLP

96
Java and tuProlog agents interacting - An example

A distributed marketplace scenario

The handle_msgs/0, ask_prices/0 and buy_goods/0 predicates are all
“custom”, which means that they are not predefined in tuProlog and must,
therefore, be defined somewhere inside the theory.

The facts that are initially present in the knowledge base of the agent are
only those declared in these files: they infer how much fruit in stocks the agent
can buy (buys/2), how much money it owns and it can spend (money/1),
the price at which each fruit is sold by each seller (price/3) and, finally,
if the agent has requested a particular seller for the price of a certain fruit
(asked/3).

For simplicity, we also suppose that at the beginning of the scenario the
agents do not have (goods_possessed/2) any fruit because they have not
yet started to buy.

Moreover, the cost of the fruit is intended for “transaction” and not for
quantity: we suppose that the seller applies a price for the fruit, regardless of
how much is bought by each buyer (this is obviously not true in the real world).

In the theory file corresponding to buyer1, for instance, we have defined the
following facts:

buys(goods(oranges),quantity(2)) :- true.
buys(goods(apples),quantity(3)) :- true.
buys(goods(kiwi),quantity(12)) :- true.

money(200) :- true.

price(seller,oranges,na) :- true.
price(seller1,oranges,na) :- true.
price(seller2,oranges,na) :- true.
price(seller,apples,na) :- true.
price(seller1,apples,na) :- true.
price(seller2,apples,na) :- true.
price(seller,kiwi,na) :- true.
price(seller1,kiwi,na) :- true.
price(seller2,kiwi,na) :- true.

asked(oranges,seller,no) :- true.
asked(apples,seller,no) :- true.
asked(kiwi,seller,no) :- true.
asked(oranges,seller1,no) :- true.
asked(apples,seller1,no) :- true.
asked(kiwi,seller1,no) :- true.
asked(oranges,seller2,no) :- true.

Ivana Gungui Integrating Logical Agents Into DCaseLP

Java and tuProlog agents interacting - An example
A distributed marketplace scenario 97

asked(apples,seller2,no) :- true.
asked(kiwi,seller2,no) :- true.

goods_possessed(oranges,0) :- true.

goods_possessed(apples,0) :- true.

goods_possessed(kiwi,0) :- true.

The theory file corresponding to buyer2 contains exactly the same facts, but
with different arguments, since this agent does not buy the same quantity of
fruit and owns a different amount of money than buyer1. The term goods(term)
(appearing as the first argument of the buys predicate) indicates a type of fruit,
while quantity(term) (as second argument) is used to express how many kilo-
grams of the relative fruit the agent buys.

The constant na, used in the price/3 predicate as third argument, has the
meaning of “not available” and means that the agent is not yet aware of the
price at which the fruit (specified as second argument) is sold by the agent
whose name appears as first argument.

On the other hand, the constant no, used in the asked/3 predicate as third
argument, has the meaning of “not asked” and means that the agent has not
yet asked the price of the fruit (specified as first argument) to the agent whose
name appears as second argument.

Besides these facts already mentioned, we have added the following:

address_name("seller@ai:1099/JADE",seller) :- true.

address_name("seller1@ai:1099/JADE",seller1) :- true.

address_name("seller2@ai:1099/JADE",seller2) :- true.

in order to refer to the seller agents by using the constants seller, seller1
and seller2, instead of the strings representing their JADE addresses. As fu-
ture work, we could use the Directory Facilitator agent available in JADE in
order to obtain from it the addresses of the agents offering a certain service.

The main activities carried out by the buyer agents are, in order: handling
incoming messages, asking the price of the fruit to sellers (performed until they
know the price at which each fruit is sold by every agent) and buying fruit.
We will now detail every single activity.

Ivana Gungui Integrating Logical Agents Into DCaseLP

98
Java and tuProlog agents interacting - An example

A distributed marketplace scenario

Handling messages

The code that we describe below has been used for both the buyer agents: the
theory files of these agents, in fact, only differ in the arguments of some facts.
The predicate that deals with the handling of the incoming messages does not
take any argument and is defined as follows:

handle_msgs :- receive(Performative,Message,Sender),

select(Performative,Message,Sender).

In the body of the clause we use the predicate receive/3 that is one of the
communicative predicates we have defined in the TuJadeLibrary.

The Performative, Message and Sender variables are bound only if
the agent has received a message, otherwise they remain unbound. The select
predicate has a multiple definition:

select(Performative,Message,Sender) :- bound(Performative),

bound(Message),address_name(Sender,Name),

unpack(Message,TermMsg),

handle(Performative,TermMsg,Sender).

select(_,_,_) :- true.

If the agent has received at least one message, it reads the first one appearing
in the queue1: if the sender is not one of the seller agents — in which case
the address_name(Sender,Name) check fails — then the message is dis-
carded, otherwise it is read and handled.

If, on the other hand, the agent does not have a message in the message
queue, then it proceeds evaluating the ask_prices goal.

In the body of the first clause defining the select predicate we have used
the unpack/2 predicate, defined in the TuJadeLibrary, in order to create the
TermMsg term corresponding to the string that is contained in the message.

The handle/3 predicate has four clauses defining it: the first three handle one
of the three different types of messages that the buyer agent can receive from

1The message queues belonging to the agents are directly managed by JADE.

Ivana Gungui Integrating Logical Agents Into DCaseLP

Java and tuProlog agents interacting - An example
A distributed marketplace scenario 99

the seller agents, while the last one is to force the success of the resolution of
the goal when the agent receives a not expected message.

handle("INFORM",price(Goods,Price),Sender) :-

bound(Goods),bound(Price),address_name(Sender,S),

retract(price(S,Goods,_)),assert(price(S,Goods,Price)).

This clause handles the message whose content is the price(Goods,Price)
term: it has been sent from a seller agent (whose name is S) to inform this
agent about the price (specified by Price) at which it sells a fruit (specified
by Goods).

The only action taken by this agent is to cancel the previously stored sell-
ing price, if any, of the corresponding fruit and store the price received in this
message.

To do so, we retract the price fact whose first argument corresponds to S
and second argument to Goods; since we are not interested in the old price
stored, we do not specify the third argument and let it unify with anything.

After successfully retracting this fact, we assert the price fact whose first
two arguments are still S and Goods, respectively, but the third one is Price,
that represents the received price.

handle("INFORM",bought(Goods),Sender) :-

bound(Goods),address_name(Sender,S),price(S,Goods,P),

retract(money(M)),retract(goods_possessed(Goods,X)),

buys(goods(Goods),quantity(Q)),N is X+Q,P \= na,

NM is M-P,assert(money(NM)),

assert(goods_possessed(Goods,N)).

This clause, instead, handles the message whose content is the bought(Goo-
ds) term: it has been sent from a seller agent (whose name is S) to inform
this agent that the transaction has been successfully carried out and, therefore,
this agent has bought the fruit (specified by Goods).

The resulting actions taken by this agent are to decrement the owned
amount of money and to increment the quantity of fruit that it possesses.

Ivana Gungui Integrating Logical Agents Into DCaseLP

100
Java and tuProlog agents interacting - An example

A distributed marketplace scenario

To do so, we retract the money(M) and the goods_possessed(Goods,
X) facts, taking care to store the old amount of owned money and of owned
fruit in the M and X variables, respectively.

Afterwards, we calculate the new quantity of fruit Goods belonging to the
buyer by adding the bought amount (given by the Q variable in the buys fact)
to the X variable.

Finally, we calculate the new amount of money owned by the agent by
subtracting from the M variable the selling price (given by P in the price fact)
of the fruit bought (Goods).

handle("INFORM",no_more(Goods),Sender) :-

bound(Goods),address_name(Sender,S),

retract(price(S,Goods,_)),

assert(price(S,Goods,finished)).

This last clause has the purpose of managing the message whose content is
the no_more(Goods) term: it has been sent from a seller agent (whose
name is S) to inform this agent that it can no longer sell a fruit (specified by
Goods) to this agent, since the quantity it owns is less than that able to be
bought by this buyer.

The only action taken by this agent is to cancel the previously stored sell-
ing price, if any, of the corresponding fruit and store one indicating that it can
no longer buy from the corresponding seller agent.

To do so, we retract the price fact whose first argument corresponds to S
and second argument to Goods; since we are not interested in the old price
stored, we do not specify the third argument and let it unify with anything.

After successfully retracting such fact, we assert the price fact whose first
two arguments are still S and Goods, respectively, but the third one is the
constant finished, that represents the not availability of the fruit.

handle(_,_,_) :- true.

If the received messages do not have the expected performative (INFORMA-

Ivana Gungui Integrating Logical Agents Into DCaseLP

Java and tuProlog agents interacting - An example
A distributed marketplace scenario 101

TIVE), then they will be discarded.

Now, we will analyse how the next activity of the buyer agents is implemented.

Asking prices of the fruit

We have added two more facts to the theory to make the next activities easier:
they state the list of fruit available in the market and the list of JADE ad-
dresses corresponding to the seller agents. We present them here, even though
they are part of the initial knowledge of the buyer agents, because they are
called by the goals implementing the next activities.

goods_list([oranges,apples,kiwi]) :- true.

sellers_addresses(["seller@ai:1099/JADE",

"seller1@ai:1099/JADE",

"seller2@ai:1099/JADE"]) :- true.

The predicate that “implements” the activity of asking the fruit prices, ask_pri-
ces/0, relies on the ask_prices/2 and ask_prices_to_seller/2 predicates to ac-
complish the task of sending the requests, to each seller agent, for the prices
charged for fruit.

ask_prices :- sellers_addresses(Sell),goods_list(GList),

ask_prices(Sell,GList).

ask_prices([Seller|Others],GoodsList) :-

ask_prices_to_seller(Seller,GoodsList),

ask_prices(Others,GoodsList).

ask_prices([],_) :- true.

ask_prices_to_seller(Seller,[Goods|Others]) :-

address_name(Seller,S),asked(Goods,S,no),

pack(price(Goods),Str),send("REQUEST",Str,Seller),

retract(asked(Goods,S,no)),

assert(asked(Goods,S,yes)),

ask_prices_to_seller(Seller,Others).

Ivana Gungui Integrating Logical Agents Into DCaseLP

102
Java and tuProlog agents interacting - An example

A distributed marketplace scenario

The initial action performed by the first clause defining the ask_prices_to_sell-
er goal is to check if the price of a given fruit has already been asked to the
seller agent being dealt with (whose name is S).

This check is done by evaluating the asked predicate on the fruit currently
in consideration (Goods), the seller agent (S) and the constant no, respec-
tively. If this goal succeeds, it means that the agent has yet not issued the
price request and must, therefore, do it now.

So, it evaluates the pack goal in order to convert the price(Goods) into
a string (Str) that will become the content of the message to send to the seller
agent. The message requesting the price of the fruit is then sent by calling the
send("REQUEST",Str,Seller) goal of the TuJadeLibrary that we have
developed.

The third argument on which the send predicate is evaluated is Seller
and not S, since it must be the JADE address of the agent receiving the mes-
sage and not its name.

Before sending the message, the agent must convert the price(Goods)
term into a string in order to insert it as the content of the JADE message:
this is why the pack predicate is evaluated.

If the message is successfully sent, the agent must keep track of such action
in order not to issue the request again. To do this, the asked(Goods,S,no)
fact is retracted and replaced with asked(Goods,S,yes) by the assert
predicate.

At this point, the agent passes to the next fruit sold by the same seller agent.

ask_prices_to_seller(Seller,[Goods|Others]) :-

address_name(Seller,S),price(S,Goods,X),X \= na,

ask_prices_to_seller(Seller,Others).

This clause has the purpose of checking whether the price of the given fruit is
available or not. If the price is already present in the knowledge base of the
agent, namely if X does not unify to the na constant, the agent passes to the

Ivana Gungui Integrating Logical Agents Into DCaseLP

Java and tuProlog agents interacting - An example
A distributed marketplace scenario 103

next fruit in the list of those available.

ask_prices_to_seller(Seller,[Goods|Others]) :-

address_name(Seller,S),asked(Goods,S,yes),

ask_prices_to_seller(Seller,Others).

On the other hand, if the price is still not present but it has been requested,
the agent cannot do anything regarding that fruit so, while waiting for the
agent seller to reply, it can check if it knows the price of the other fruit (by
calling the ask_prices_to_seller(Seller,Others) goal).

ask_prices_to_seller(_,[]) :- true.

This final clause is used to stop requesting fruit prices to a certain seller agent.

Buying fruit

The last activity, though still the one characterising this type of agent, is the
one of buying fruit. It is implemented by the buy_goods/0 predicate that, in
analogy with the ask_prices predicate, assigns the work to another predicate:
buy_goods/2. The latter one, on the other hand, relies on the find_min_pri-
ce/5 and the buy_from_seller/3 predicates to carry out its job.

buy_goods :- sellers_addresses(SList),goods_list(GList),

buy_goods(SList,GList).

Instead of seeing straightaway the buy_goods/2 predicate, we must explain
the find_min_price predicate, since it is used in the definition of the former.

This predicate is meant to “find” the seller agent that sells a given fruit
(Goods) at the cheapest price: after the predicate has been evaluated, that
agent will be represented by the fifth argument, though it will not unify to the
name of the agent but to its JADE address.

find_min_price([Seller|Others],Goods,Min,_,HonestSeller) :-

address_name(Seller,S),price(S,Goods,Price),

Price \= na,Price \= finished,

Price < Min,

find_min_price(Others,Goods,Price,Seller,HonestSeller).

Ivana Gungui Integrating Logical Agents Into DCaseLP

104
Java and tuProlog agents interacting - An example

A distributed marketplace scenario

The first action performed by this clause is to check if the agent already knows
the price at which the given fruit is sold by the “examined” seller agent; the
seller agent currently “examined” is the one appearing as first element in the
list that is the first argument of the predicate. This check is easily performed
by solving the price goal.

Finally, if the buyer knows the price, the latter (Price) is compared to
the current minimum found (the Min term appearing as third argument of
the predicate): if it is less than the current minimum, then the predicate is
evaluated again, but this time the current seller is discarded from the seller
list. The seller agent discarded from the list is kept, as the fourth argument,
because it is the cheapest till now.

find_min_price([Seller|Others],Goods,Min,Sel,HonestSeller) :-

address_name(Seller,S),price(S,Goods,Price),

Price \= na,Price \= finished,Price >= Min,

find_min_price(Others,Goods,Min,Sel,HonestSeller).

This clause, instead, deals with the situation in which the price charged by the
examined seller is higher or equal to the minimum present as third argument
(Min): in this case, this seller is totally ignored and the sellers remaining in
the list are examined.

find_min_price([Seller|Others],Goods,Min,Sel,HonestSeller) :-

address_name(Seller,S),price(S,Goods,na),

find_min_price(Others,Goods,Min,Sel,HonestSeller).

In the case in which this agent does not yet know the price, the seller agent
currently examined is discarded and the search is continued with the remaining
sellers in the list.

find_min_price([Seller|Others],Goods,Min,Sel,HonestSeller) :-

address_name(Seller,S),price(S,Goods,finished),

find_min_price(Others,Goods,Min,Sel,HonestSeller).

Finally, this clause is the one taking into account the case in which the exam-
ined seller agent has finished the desired fruit, so it is eliminated from the list
and the search carries on between the remaining sellers.

Ivana Gungui Integrating Logical Agents Into DCaseLP

Java and tuProlog agents interacting - An example
A distributed marketplace scenario 105

find_min_price([],_,_,Seller,Seller) :- true.

This clause is the one that terminates the search since all the seller agents
have been examined: the agent selling the desired fruit at the cheapest price,
if there is one, is represented by the last argument of the predicate.

At this point, it should be easier to understand the buy_goods/2 predicate
whose definition is as follows:

buy_goods(SList,[Goods|Others]) :- money(M),M > 0,

buys(goods(Goods),quantity(Q)),

find_min_price(SList,Goods,30000,nobody,HonestSeller),

HonestSeller \= nobody,

buy_from_seller(HonestSeller,Goods,Q),

buy_goods(SList,Others).

buy_goods(_,_) :- true.

The first action taken by this predicate is, of course, to check if the agent
has money, otherwise it does nothing.

So, once the agent has money to spend to buy fruit, the next step is to con-
sider each fruit in the list of those available in the market and looking for the
seller that charges the cheapest price for the fruit considered. Here, the find
goal to solve has the number 30000 representing the cheapest selling price for
any fruit: this is because we suppose that the seller agents will sell at a lower
price, thus it will always be possible to find the agent charging the cheapest
price, if there is one.

If the search terminates with the HonestSeller term unifying to the
nobody constant, then the agent will try and see if it can buy another fruit
and starts with the next fruit belonging to the list of those available in the
market.

On the other hand, if an agent selling the fruit at a cheap price is found,
the transaction is left up to the buy_from_seller predicate and the agent tries
to buy the other fruit in the list.

Ivana Gungui Integrating Logical Agents Into DCaseLP

106
Java and tuProlog agents interacting - An example

A distributed marketplace scenario

buy_from_seller(Seller,Goods,Quantity) :-

address_name(Seller,S),price(S,Goods,Price),

money(M),M > 0,NM is M - Price,NM >= 0,

pack(buy(Goods,Quantity),Str),

send("REQUEST",Str,Seller).

Before sending a message requesting to buy the desired fruit, the agent must
check if the money it has is enough; so, it subtracts the price of the fruit
(Price) from the money it has (M), and carries on only if the result is positive
or equal to zero.

Finally, by resolving the send predicate, the agent sends the seller agent
the message with which it requests to buy a certain quantity (specified by
Quantity) of the fruit indicated by Goods.

buy_from_seller(_,_,_) :- true.

Thanks to this last clause, if the money is not enough for buying the fruit,
the agent will pass to the next fruit belonging to the list. We must remind
the reader that if a goal in the main predicate fails, an error is displayed in a
window and the agent is “killed”, so this last clause is also necessary to force
the buy_from_seller goal never to fail.

5.2.2 The seller agents

Two of the seller agents, precisely seller1 and seller2, are logical ones, while
seller is an ordinary Java agent. We will first look at the files containing the
tuProlog theory for the logical seller agents and, afterwards, at the Java code
that implements the agent seller.

The logical seller agents

Both the theory files inputted to these tuProlog agents (when loaded into
JADE) start with the following definition:

main :- handle_msgs.

Before seeing the clauses that make up the handle_msgs/0 predicate, we

Ivana Gungui Integrating Logical Agents Into DCaseLP

Java and tuProlog agents interacting - An example
A distributed marketplace scenario 107

will list the facts that are initially present in the knowledge base of these
agents.

These facts define how much fruit these agents sell (sells/3), including
the price and the quantity they have, and if a certain fruit can be sold to a
particular buyer (available/3).

The available predicate has been introduced in order to avoid useless cal-
culations to these agents: if a buyer agent tries to buy a certain fruit and it
appears that the quantity sold by this agent is less than the quantity that
the buyer buys, then the agent is capable of remembering this information by
storing it in its knowledge base.

By doing this, next time the same buyer asks to buy the same fruit, the
agent knows that the quantity it has is less than the requested and can deny
the transaction immediately.

For simplicity, we also define facts (address_name/2) that are used to convert
the addresses of the buyer agents into their names and vice versa.

In the theory loaded into seller1, for instance, we have declared the following:

sells(goods(oranges),price(30),quantity(900)) :- true.
sells(goods(apples),price(150),quantity(40)) :- true.
sells(goods(kiwi),price(200),quantity(30)) :- true.

available(oranges,buyer1,yes) :- true.
available(oranges,buyer2,yes) :- true.
available(apples,buyer1,yes) :- true.
available(apples,buyer2,yes) :- true.
available(kiwi,buyer1,yes) :- true.
available(kiwi,buyer2,yes) :- true.

address_name("buyer1@ai:1099/JADE",buyer1) :- true.

address_name("buyer2@ai:1099/JADE",buyer2) :- true.

The theory file corresponding to seller2 contains exactly the same facts, but
with different arguments, since this agent does not have the same quantity of
fruit and sells at different prices than seller1. The term goods(term) indicates
a type of fruit, while quantity(term) is used to express how many kilograms
of the relative fruit the agent has, and price(term) to state the price at which
the fruit is sold.

Ivana Gungui Integrating Logical Agents Into DCaseLP

108
Java and tuProlog agents interacting - An example

A distributed marketplace scenario

The constant yes, used in the available/3 predicate as third argument, has
the meaning of “it is available” and means that the agent can sell the fruit
(specified as first argument) to the buyer agent whose name appears as second
argument.

The only activity carried out by the seller agents is the one of handling
incoming messages:

handle_msgs :- receive(Performative,Message,Sender),

select(Performative,Message,Sender).

By evaluating the receive predicate, the agents extract a message from their
message queue: if the queue is empty, then the Performative, Message
and Sender variables are unbound, otherwise they are bound to the perfor-
mative, the content and the address of the sender of the message, respectively.

The select predicate is declared as follows:

select(Performative,Message,Sender) :- bound(Performative),
bound(Message),address_name(Sender,S),
unpack(Message,TermMsg),
handle(Performative,TermMsg,Sender).

select(_,_,_) :- true.

If the agent has received a message, it reads the sender: if the sender is not
one of the buyer agents then the message is discarded, otherwise it is read and
handled.

In order to be able to manage the content of the received message, the
agent must convert it into a term: it does so by solving the unpack goal.

The handle/3 predicate has four clauses defining it: the first three handle the
two types of messages that the seller agent can receive from the buyer agents,
while the last one is to force the success of the resolution of the goal when the
agent receives an unexpected message.

handle("REQUEST",price(Goods),Buyer) :- bound(Goods),

sells(goods(Goods),price(Price),quantity(AQ)),

pack(price(Goods,Price),MsgString),

Ivana Gungui Integrating Logical Agents Into DCaseLP

Java and tuProlog agents interacting - An example
A distributed marketplace scenario 109

send("INFORM",MsgString,Buyer).

The purpose of this clause is to handle the message whose content is the
price(Goods) term: it has been sent from a buyer agent (whose address is
Buyer) to ask this agent the price at which it sells the fruit specified by Goods.

The only action taken by this agent (in reply to this message) is to send
back a message to the buyer whose content is the string obtained by “packing”
the price(Goods,Price) term.

handle("REQUEST",buy(Goods,Quantity),Buyer) :-

bound(Goods),bound(Quantity),address_name(Buyer,B),

available(Goods,B,yes),

sells(goods(Goods),price(Price),quantity(AQ)),

AQ >= Quantity,

retract(sells(goods(Goods),price(Price),quantity(AQ))),

NQ is AQ - Quantity,

assert(sells(goods(Goods),price(Price),quantity(NQ))),

pack(bought(Goods),MsgString),

send("INFORM",MsgString,Buyer).

This clause, instead, handles the message whose content is the buy(Goo-
ds,Quantity) term: it has been sent from a buyer agent (whose address is
Buyer) to ask this agent to buy the fruit specified by Goods. The Quantity
term indicates to this agent the amount of fruit that the buyer agent is inter-
ested in buying.

The first action performed by the agent is to check if it can sell fruit to the
buyer: this is done by solving the available goal.

If the fruit can be sold, the agent verifies if the quantity it has is greater
or equal to the one requested: if it is, the fruit can be sold, so the transaction
is carried out.

On the other hand, if the agent “knows” that it cannot sell this fruit to
this particular buyer agent, then it just ignores the message.

The amount of fruit sold (Quantity) is subtracted from the quantity
owned (AQ) before the transaction, and the new amount (NQ) that can be sold

Ivana Gungui Integrating Logical Agents Into DCaseLP

110
Java and tuProlog agents interacting - An example

A distributed marketplace scenario

is stored in the knowledge base of the agent.

handle("REQUEST",buy(Goods,Quantity),Buyer) :-

bound(Goods),bound(Quantity),address_name(Buyer,B),

available(Goods,B,yes),

sells(goods(Goods),price(_),quantity(AQ)),

AQ < Quantity,retract(available(Goods,B,yes)),

pack(no_more(Goods),MsgString),

assert(available(Goods,B,no)),

pack(bought(Goods),MsgString),

send("INFORM",MsgString,Buyer).

This clause is the one managing the case in which the fruit requested by
the buyer agent is more than what the agent has.

In this case the agent sends a message, whose content is the no_more(Goo-
ds) term, to the buyer interested in buying the fruit.

Before sending the message, though, the agent stores in its knowledge base
the fact available(Goods,B,no), where the term no is here used to indi-
cate “not possible” to sell to the buyer (whose name is B) the fruit (Goods).

handle(_,_,_) :- true.

This last clause has the purpose of forcing the success of the resolution of
the goal in the cases not dealt with by the previous clauses.

The Java seller agent

We will now detail the main parts of the content of the file Seller.java that
defines the Seller class and implements the agent seller of our example:

import jade.core.Agent;

import jade.core.AID;

import jade.core.behaviours.CyclicBehaviour;

import jade.lang.acl.ACLMessage;

As any other Java class defining an agent running in JADE, this class extends
the jade.core.Agent class.

Besides the Agent class, two more classes are imported from the jade.core

Ivana Gungui Integrating Logical Agents Into DCaseLP

Java and tuProlog agents interacting - An example
A distributed marketplace scenario 111

package of JADE: the AID class, whose instances are JADE addresses, and
the CyclicBehaviour class (defined in the behaviours subpackage), whose
instances are tasks that will be continuously repeated if added to the task
queue of the agent.

This behaviour “cycles”: once its action method is completed, it is not
discarded from the task queue, as usually happens with ordinary behaviours;
it is put at the end of the queue where it will be executed when its turn comes
round again.

For simplicity, from now on we will use “seller agent” or simply “agent” to
refer to an instance of the Seller class.

public class Seller extends Agent

{ private int oranges = 5;

private int apples = 5;

private int kiwi = 10;

These three integer fields, named with the name of the fruit, are meant to store
the quantity of fruit that the agent has: initially, the agent has 5 kilograms of
oranges, 5 kilograms of apples and 10 kilograms of kiwi.

private int orangesP = 105;

private int applesP = 80;

private int kiwiP = 100;

The three above listed integer fields, whose name is formed by the name of the
fruit and an ending P, are meant to store the price at which the agent sells
the fruit: initially, the price charged by the agent for oranges is 105, for apples
is 80 and for kiwi is 100.

private boolean orToB1 = true;

private boolean orToB2 = true;

private boolean apToB1 = true;

private boolean apToB2 = true;

private boolean kiToB1 = true;

private boolean kiToB2 = true;

These boolean fields are used to keep track as to whether a given fruit is (or is
not) sellable to the buyers. The first two letters in the name of the field indi-

Ivana Gungui Integrating Logical Agents Into DCaseLP

112
Java and tuProlog agents interacting - An example

A distributed marketplace scenario

cate the fruit: or stands for oranges, ap for apples and ki for kiwi. Whereas,
the last two letters represent the buyer: B1 stands for buyer1, while B2 stands
for buyer2. If, for instance, the value of the apToB2 field is false, then it
means that this agent cannot sell apples to buyer2. At the beginning, the
agent can sell all the fruit to all the buyers.

protected void setup()

{ SellBehaviour p = new SellBehaviour(this);

addBehaviour(p);

}

The setup method is invoked by JADE when loading the agent and usually
the developers insert the necessary code into it to “setup” the execution of the
agent. The only action that we have programmed during the setup phase is
that of adding a custom behaviour, the SellBehaviour, to the task queue.

class SellBehaviour extends CyclicBehaviour

{

public void action()

{ ACLMessage msg;

msg = myAgent.receive();

if (msg != null) handleMsg(msg);

}

The SellBehaviour behaviour is the only task that the agent has to perform
but, since it extends the CyclicBehaviour available in JADE, it is repeated
throughout the life of the agent, unless explicitly removed from the queue by
the agent.

The action method in SellBehaviour is invoked by JADE’s scheduler when
it “withdraws” such behaviour from the task queue corresponding to this agent.

So, the main task of this seller agent is to receive messages: if the message
queue is empty, it remains idle, otherwise it handles the received message by
calling the handleMsg method that we have developed, passing the message
to it as parameter.

private void handleMsg(ACLMessage msg)

{ String sender = msg.getSender().getLocalName();

if ((sender.equals("buyer1"))||(sender.equals("buyer2")))

Ivana Gungui Integrating Logical Agents Into DCaseLP

Java and tuProlog agents interacting - An example
A distributed marketplace scenario 113

{ CODE1 }

else return;

}

The first action carried out by this method is to “extract” the name of the
sender agent: if it is not one of the buyer agents, then it returns immediately,
otherwise it executes CODE1 below:

{ String perf = msg.getPerformative();

String cont = msg.getContent();

int n = cont.length();

if (!perf.equals("REQUEST")) return;

try if (cont.substring(0,5).equals("price"))

{ CODE2 }

else

if (cont.substring(0,3).equals("buy"))

CODE3

The performative and content of the message are read. First, the performative
is checked: if it is not the REQUEST performative, the method returns. So,
if the performative is the one expected, the method proceeds by checking the
content: if it is a string that does not start with the word price or buy, then
it returns without doing anything.

On the other hand, if the content begins with the word price, CODE2

below is executed:

{ String goods = cont.substring(6,n-1);

int price = price(goods);

if (price == -1) return;

msg.reset();

msg.setPerformative(ACLMessage.INFORM);

msg.setSender(myAgent.getAID());

AID receiver = new AID();

receiver.setLocalName(sender);

msg.addReceiver(receiver);

String content = new String("price("+goods+","+price+")");

msg.setContent(content);

myAgent.send(msg);

Ivana Gungui Integrating Logical Agents Into DCaseLP

114
Java and tuProlog agents interacting - An example

A distributed marketplace scenario

}

If the content of the message is the string price(elem), with the elem string
equal to oranges or apples or kiwi, then the agent sends a message to
the sender. This message has the INFORM performative and the content
“price(elem,pr)”, with the pr string equal to a number corresponding to
the selling price of elem.

In the above code, the private price method is called: it takes a String
object as an argument and returns an integer. The returned integer is -1 if the
string in input is not one of the fruit in the market, otherwise it is the value
of the field corresponding to the price of that fruit.

When the content of the message received by the agent begins with the word
buy, then CODE3 below is executed:

{ int comma = cont.indexOf(’,’);

String goods = cont.substring(4,comma);

if (n < comma+1) return;

int qtity = Integer.parseInt(cont.substring(comma+1,n-1));

if (qtity < 0) return;

if (!available(goods,qtity))

{ if (!reported(goods,sender))

{ msg.reset();

msg.setPerformative(ACLMessage.INFORM);

msg.setSender(myAgent.getAID());

AID receiver = new AID();

receiver.setLocalName(sender);

msg.addReceiver(receiver);

String content = new String("no_more("+goods+")");

msg.setContent(content);

reporting(goods,sender);

myAgent.send(msg);

}

The first four lines of CODE3 are for “parsing” the content of the message
(a string representing the buy(goods,qtity) term) and obtaining from it the
variables representing the fruit (goods) and the quantity ({code) that the
buyer agent wants to buy.

Ivana Gungui Integrating Logical Agents Into DCaseLP

Java and tuProlog agents interacting - An example
A distributed marketplace scenario 115

If the quantity of fruit that the buyer has specified in the message is not
positive, the agent does nothing.

If, on the contrary, it is positive, then the agent checks if it has enough
fruit to sell: it calls the private available method that, given the name of the
fruit and the requested quantity, returns true only if the agent has enough
fruit to sell.

If it has less fruit than the quantity requested by the buyer: it calls the
private reported method that, given the name of the fruit and the name of the
buyer agent, returns true only if the agent “believes” it can sell that fruit to
that buyer.

If the reported method returns true, it means that this is the first time
that the agent “realises” that it cannot sell the fruit to the buyer. As a result,
it not only updates the boolean value of the relative field, but also sends a
message to the buyer.

This message informs the buyer that, from now on, the seller will not be
able to provide it with the requested fruit.

When the reported method returns false, the agent does nothing.

The last case to analyse is the one corresponding to the message containing
the request for an amount of fruit available and that implies that the transac-
tion is carried out. This is the code executed in this case:

{ update_qtity(goods,qtity);

msg.reset();

msg.setPerformative(ACLMessage.INFORM);

msg.setSender(myAgent.getAID());

AID receiver = new AID();

receiver.setLocalName(sender);

msg.addReceiver(receiver);

String content = new String("bought("+goods+")");

msg.setContent(content);

myAgent.send(msg);

}

The first command is the call to the private update_qtity method that,
given the name of the fruit and the number representing the quantity that
the buyer wants, updates the field containing the quantity of fruit possessed
by the agent. Afterwards, the agent sends the buyer the message informing it
that the fruit has been bought.

Ivana Gungui Integrating Logical Agents Into DCaseLP

116
Java and tuProlog agents interacting - An example

Executing the prototype

5.3 Executing the prototype

Once all the agents have been specified using tuProlog and Java, they can
finally be loaded into JADE and we can start executing the obtained prototype.
JADE offers more than one way to debug the MAS.
For instance, the developer can exploit the Sniffer Agent, that is an agent
“enriched” with so-called sniffing features: it displays the messages exchanged
by agents selected by the user, as a sort of sequence diagram.
The Sniffer Agent can be started from the RMA GUI or from the command
line. To launch it from the RMA GUI, the user can either click on the Tools

menu and then select the Start Sniffer item from the displayed menu (shown
in Figure 5.1), or directly press the appropriate button from the menu bar
(shown in Figure 5.2).

Whereas, to start it from the command line, the user must load into the
platform an agent implemented by the jade.tools.sniffer.Sniffer
Java class.

This agent is an ad-hoc GUI from which the user can sniff an agent or
a group of agents belonging to the MAS: every message sent/received to/from
the target agent or group is observed and displayed in the GUI (see Figure
5.3).

In the window on the right of the GUI in Figure 5.3, the user can view
the “sniffed” agents and the flow of messages between them: the box labelled
“Other” represents all the agents of the platform that are not currently sniffed,
while the other boxes are labelled with the name of the sniffed agent.
Each labelled arrow represents a message sent from the agent at the tail of the
arrow to the agent at the point of the arrow.

Ivana Gungui Integrating Logical Agents Into DCaseLP

Java and tuProlog agents interacting - An example
Executing the prototype 117

Figure 5.1: One way to launch the Sniffer agent from the RMA GUI.

Figure 5.2: The other way to launch the Sniffer agent from the RMA GUI.

Figure 5.3: The GUI representing the Sniffer Agent; as an example, we have
chosen to “sniff” the RMA, DF and ams agents.

Ivana Gungui Integrating Logical Agents Into DCaseLP

118
Java and tuProlog agents interacting - An example

Executing the prototype

Figure 5.4: How to view the content of the “sniffed” messages.

To view the details of a message, right-click on the arrow representing this
message then click the View Message box that appears, like the one shown
in Figure 5.4.

After clicking View Message, a window appears, as shown in Figure 5.5:
it lists the content, the receiver, the sender, the ontology, the language of the
message, and other information.
The Sniffer Agent not only allows one to view every message, but also to save
it (or all of them) to a file that can be reloaded in this GUI at a later time.

Another interesting agent that is useful in debugging the MAS is the In-
trospector Agent. This agent is a GUI that, as the name suggests, allows a
sort of “introspection” of the single agents.

To start this agent from the RMA GUI, the user can either press the
appropriate button or click on the Tools menu and then select the Start
Introspector Agent item from the displayed menu (both ways are shown in
Figure 5.6).

One can monitor and control the life cycle of a running agent, and also
view the messages that it has sent and received. The user is able to look at
the queues of messages of the agent: there are the Incoming Messages and
the Outgoing Messages panels.

Ivana Gungui Integrating Logical Agents Into DCaseLP

Java and tuProlog agents interacting - An example
Executing the prototype 119

Figure 5.5: The Sniffer Agent also allows to “sniff” the details regarding the
message.

Figure 5.6: It shows the two ways in which the Introspector Agent can be
started from the RMA GUI.

Ivana Gungui Integrating Logical Agents Into DCaseLP

120
Java and tuProlog agents interacting - An example

Executing the prototype

Figure 5.7: The Introspector Agent.

In the Incoming Messages panel are listed the Pending and Received
messages, labelled by their performative; by right-clicking on one message, the
user can view it, remove it or remove all the messages (see Figure 5.7).

In the Outgoing Messages panel, however, the Pending and Sent mes-
sages are listed.

The Introspector Agent also offers the possibility to monitor the queue of
behaviours of an agent, including their execution step-by-step.

5.3.1 The results

By executing the five agents of our marketplace, we have obtained what we
expected. We verified that the agents could really communicate by launching
the Sniffer Agent and the Introspector Agent.
In Figure 5.8, the reader can see that the Sniffer Agent has sniffed many
messages that were exchanged between the agents belonging to the prototype.
Figure 5.9 has been obtained from Figure 5.8 and then enlarged, in order for
the reader to view it better.

During the execution of the MAS, we have been able, thanks to the func-
tionalities offered by JADE, to check if the agents behaved as they were in-
tended to, even though they were randomly started by the JADE platform.

The Sniffer Agent allowed us to verify that the messages were exchanged in

Ivana Gungui Integrating Logical Agents Into DCaseLP

Java and tuProlog agents interacting - An example
Executing the prototype 121

Figure 5.8: A screenshot of the Sniffer Agent while running in the platform of
our prototype.

Figure 5.9: A part of Figure 5.8 that we have enlarged so the reader can view
it better.

Ivana Gungui Integrating Logical Agents Into DCaseLP

122
Java and tuProlog agents interacting - An example

Executing the prototype

Figure 5.10: Details of a message sent by buyer1 to seller and whose content
is price(kiwi).

Ivana Gungui Integrating Logical Agents Into DCaseLP

Java and tuProlog agents interacting - An example
Conclusions 123

the expected order (for example, that all the buyers asked for the price of fruit
first, and only started buying fruit afterwards), while the detailed views of the
messages allowed us to verify that the content of the replies were consistent
with the content of the requests.

By viewing the messages, both with the Sniffer Agent and the Introspector
Agent, we have gathered that the messages sent from the buyers requesting
to buy fruit were actually received by the seller agents: the messages with the
INFORM performative sent from the sellers to the buyers are the proof of it.

Figure 5.10 shows the request for the price of kiwi sent from buyer1 to
seller.

Moreover, we have been able to test the proper working of the send and
receive predicates that we have developed, and not only between tuProlog
agents but also between a tuProlog and a Java agent.

In our example, in fact, the agent seller (that was the only Java agent) has
been able to receive messages from the buyers and send replies to them.

The “error handling” that we have added to our agents has been tested
as well; for example: we tried to load tuProlog agents without inputting the
theory files, then we inputted files that did not contain a tuProlog theory, we
deliberately caused the failure of a goal in order to force the failure of the
main goal, and so on.

5.4 Conclusions

In this chapter we have given a small example of a prototype of a MAS con-
sisting of two different types of agents: logical and obect-oriented ones.
The logical agents have been specified by using the tuProlog language, while
those object-oriented by the Java language.

This prototype was then executed in the DCaseLP environment and mon-
itored to check it behaved as we expected it to.

Its execution has demonstrated that the tuProlog agents are not only capa-
ble of communicating with other agents running in JADE, but also to logically
“reason”. In our example we have forced these logical agents to dinamically
modify their behaviour and their knowledge base as the result of interacting
with other agents.

All our expectations in terms of behaviour of the MAS were, at the end,
met.

Additionally, an important issue has been made clear in this example: in

Ivana Gungui Integrating Logical Agents Into DCaseLP

124
Java and tuProlog agents interacting - An example

Conclusions

order to program the tuProlog agent the developer only needs Prolog skills and
does not have to know the Java programming language.

Due to lack of time and the fact that the first release of DCaseLP [Mig02]
used an older version of JADE than the one used by us, we did not include the
Jess agents in our example, but we are confident of the fact there is no reason
why these agents should not correctly interact with the tuProlog agents.

Our confidence is justified by an important feature regarding the logical
agents: the messages they exchange are those available in JADE and not ad-
hoc or specialised ones.

Ivana Gungui Integrating Logical Agents Into DCaseLP

Conclusions 125

Conclusions

The work we have described in this thesis is a step forward towards the engi-
neering of heterogeneous agents and multilingual agent systems by the integra-
tion of “logical agents” into the existing prototyping environment DCaseLP.

More precisely, we wanted to add a logic language to DCaseLP in order
to offer the developers the possibility to choose between Java, Jess or this
logic language when implementing an agent that will run in the prototype of
the MAS, thus “incrementing” the multilinguality of our software prototyping
tool.

Since the beginning, we intended to integrate a Prolog language because,
besides the interesting features offered by this language, it was also our in-
tention to reuse the Prolog-based code and instruments already developed for
CaseLP, the predecessor of DCaseLP. Furthermore, an agent implemented by
a logic programming language naturally features a reasoning ability since it is
automatically able to carry out demonstrations of logic goals.

We chose tuProlog between various Java-based Prolog languages available
since it seemed the one meeting all our requirements.

The integration has been carried out mainly by creating a Java package to
add to our environment and containing the files defining the classes necessary
to create what we call a tuProlog agent. The classes that we have defined can
be compared to a shell of an oyster — the oyster in question represents the
agent programmed in tuProlog and running in the DCaseLP environment —,
whereas the pearl of the oyster is the tuProlog theory defining the behaviour
and the initial state of the agent.

As an oyster without a pearl is not considered valuable, the same holds
for a tuProlog agent: the developer must, when loading this agent into the
prototype, provide it with a text file containing the theory that will be used
by the inference engine incorporated in the agent. There is only one constraint
on this file: it must begin with the definition of the main/0 predicate.

The reason of this constraint is easily explained. When a tuProlog agent

Ivana Gungui Integrating Logical Agents Into DCaseLP

126 Conclusions

is executed in the prototype, it automatically solves the goal main. and will
always take this action everytime that it is scheduled by the JADE platform
in which it runs.

Additionally, we have implemented a simple form of error handling relative
to the execution of logical agents, since the JADE platform does not provide
it: any time that an awkward situation occurs (like the failure of the goal
main.) while a logical agent is running, a window containing an error message
is diplayed and the agent terminates its execution.

It is responsibility of the programmer to ensure that the main predicate
will not fail in situations that are not erroneous.

Normally, a developer of Prolog agents has mainly two ways of tracing
the communication among the developed agents during the execution of the
prototype:

• put breakpoints into the code, or

• write messages on the standard output or on a file.

CaseLP, the predecessor of DCaseLP, offers more sophisticated graphical de-
bugging tools than this “by-hand” inspection, but adopting the instruments
already present in a standard, FIPA-compliant and open-source platform, like
JADE, represents an improvement with respect to the use of the proprietary
instruments offered by CaseLP.

DCaseLP offers graphical tools (implemented in the JADE platform) to
verify the correct interaction between agents running in the prototype, there-
fore, we have also achieved to allow the programmer of logical agents to exploit
such tools and carry out some form of monitoring and debugging.

CaseLP is implemented in SICStus Prolog, extended with communicative
primitives, so it is not possible to directly “port” agents developed with CaseLP
into a MAS developed with DCaseLP. In order to fully achieve the compati-
bility between CaseLP and DCaseLP agents, the translator “SICStus Prolog
→ tuProlog” that we did not implement due to lack of time could be included
in future work.

Another direction of future work could be the physical integration of Dy-
LOG, a language based on modal logic and by means of which it is possible to
reason about actions and change, since we have already analysed a method-
ological integration into DCaseLP of this agent programming language.

Besides being another candidate for implementing agents in DCaseLP, Dy-
LOG will allow us to formally verify properties of the communication protocols
to which the agents must adhere.

Ivana Gungui Integrating Logical Agents Into DCaseLP

Conclusions 127

Reasoning about interaction protocols means to be able to check if a cer-
tain set of properties holds after a conversation has taken place. This can,
for instance, allow to determine which protocol, from a set of available ones,
satisfies a goal of interest, or it can help to find out which protocols to combine
in order to accomplish more complex tasks.

Moreover, adding the DyLOG language into DCaseLP, would offer the
developer the possibility of converting UML/AUML sequence diagrams into
a DyLOG program, automatically verify if the latter is consistent with the
AUML specifications and if it satisfies certain properties.

As soon as a Java interpreter of DyLOG programs will be available (it is an
ongoing work carried out by the designers of DyLOG) the physical integration
of DyLOG into DCaseLP should not be too difficult: the tuProlog agents could
be exploited as an interface.

Finally, we would like to verify the full compability between Jess and tuPro-
log agents running in a prototype developed with the use of the DCaseLP
environment.

Ivana Gungui Integrating Logical Agents Into DCaseLP

128 Conclusions

Ivana Gungui Integrating Logical Agents Into DCaseLP

Appendix A - The tuPInJADE Java package 129

Appendix A

The tuPInJADE Java package

This Appendix lists the classes defined in the tuPInJADE Java package that
has been developed to realise the integration of tuProlog agents in DCaseLP.
This package contains four Java files;

ErrorMsg.java

package tuPInJADE;

import java.awt.Dialog;

import java.awt.Frame;

import java.awt.FileDialog;

import java.awt.TextArea;

import java.awt.event.WindowListener;

import java.awt.event.WindowEvent;

public final class ErrorMsg implements WindowListener

{ public Frame box = new Frame();

public final Dialog error = new Dialog(box);

public final TextArea text = new TextArea("",5,150,

TextArea.SCROLLBARS NONE);

public boolean done = false;

public ErrorMsg () { super();}

public void write(String title,String msg)

{ box.setSize(350,80);

box.setLocationRelativeTo(null);

error.setModal(true);

error.setSize(350,80);

error.setResizable(false);

error.add(text);

error.setLocationRelativeTo(null);

Ivana Gungui Integrating Logical Agents Into DCaseLP

130 Appendix A - The tuPInJADE Java package

error.setTitle(title);

error.addWindowListener(this);

text.setText(msg);

text.setEditable(false);

text.setVisible(true);

error.setVisible(true);

error.show();

box.toFront();

box.addNotify();

box.pack();

}

public void windowOpened(WindowEvent e){ }

public void windowClosing(WindowEvent e)

{ box.removeNotify();}

public void windowClosed(WindowEvent e)

{ box.removeNotify();}

public void windowIconified(WindowEvent e){ }

public void windowDeiconified(WindowEvent e){ }

public void windowActivated(WindowEvent e){ }

public void windowDeactivated(WindowEvent e){ }
}

Ivana Gungui Integrating Logical Agents Into DCaseLP

Appendix A - The tuPInJADE Java package 131

JadeShell42P.java

package tuPInJADE;

import alice.tuprolog.InvalidLibraryException;

import alice.tuprolog.InvalidTheoryException;

import alice.tuprolog.Library;

import alice.tuprolog.MalformedGoalException;

import alice.tuprolog.NoMoreSolutionException;

import alice.tuprolog.NoSolutionException;

import alice.tuprolog.OutputEvent;

import alice.tuprolog.OutputListener;

import alice.tuprolog.Prolog;

import alice.tuprolog.SolveInfo;

import alice.tuprolog.Theory;

import jade.core.Agent;

import jade.core.behaviours.CyclicBehaviour;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.IOException;

import java.io.StreamTokenizer;

// The JadeShell42P class is a JADE agent that behaves as a "shell"

// for a tuProlog agent incorporating a tuProlog engine.

// This agent, when loaded in JADE, needs in input the name of a file

// containing a tuProlog theory that defines the "main/0" predicate that

// represents the behaviour of the agent.

// If the theory file cannot be opened or does not contain a correct

// tuProlog theory, the user is made aware of it by the popup of a window

// displaying an error message.

// If,on the contrary, the theory file is correct, the agent loads into

// its tuProlog engine the standard tuProlog libraries and then

// extends it by loading the TuJadeLibrary as well.

// The TuJadeLibrary is indispensable to a tuProlog agent because

// it provides the means of communication with any other agent in JADE,

// including other tuProlog agents of course.

// The TuJadeLibrary defines predicates whose goal is, respectively,

// sending/receiving ACL messages to/from agents in a JADE platform.

//

public class JadeShell42P extends Agent

{ public ErrorMsg err;

protected FileInputStream f;

protected FileReader fr;

protected Prolog core;// the Prolog engine of the agent

protected StreamTokenizer in;

protected String fileName;

Ivana Gungui Integrating Logical Agents Into DCaseLP

132 Appendix A - The tuPInJADE Java package

protected String title;

protected String errorTxt;

protected void setup()

{ err = new ErrorMsg(); // this is the frame used to inform the

// programmer about errors regarding the loading

// of the theory file or the failure of the

// "main" goal

Object[] args = getArguments();

String myName = getLocalName();

fileName = null;

if(args == null)

{ title = " The Theory Of Agent "+myName+" is Missing";

errorTxt = " Agent "+myName+" has no theory specified.";

err.write(title,errorTxt);

return;

}
else if(args.length == 1)

{ fileName = (String) args[0];

booleandone = init();

if(done)

{ core = new Prolog();

OutputListener l = new OutputListener()

{ public void onOutput(OutputEvent ev)

{ System.out.print(ev.getMsg()); }
};
core.addOutputListener(l);

Library lib = null;

try{ lib = core.loadLibrary("tuPInJADE.TuJadeLibrary");}
catch(InvalidLibraryException error)

{ title = " Error Loading The TuJadeLibrary Of Agent"

+myName;

errorTxt = "The TuJadeLibrary is not a valid tuProlog library.";

err.write(title,errorTxt);

return;

}
((TuJadeLibrary) lib).shell = this;

try{ f = new FileInputStream(fileName);}
catch(FileNotFoundException error)

{ title = " Error Loading The Theory Of Agent "+myName;

errorTxt = " Cannot find the theory file "+ fileName+" of

agent "+myName+".";

err.write(title,errorTxt);

return;

}
catch(SecurityException error)

{ title = " Error Opening The Theory File Of Agent "+

Ivana Gungui Integrating Logical Agents Into DCaseLP

Appendix A - The tuPInJADE Java package 133

myName;

errorTxt = " A security error occurred opening the theory

file "+ fileName+" of agent "+myName+".";

err.write(title,errorTxt);

return;

}
catch(IOException error)

{ title = " Error Opening The Theory File Of Agent "+

myName;

errorTxt = " An error occurred opening the theory file "+

fileName+" of agent "+myName+".";

err.write(title,errorTxt);

return;

}
Theory theory = null;

try

{ theory = new Theory(f);

f.close();

}
catch(InvalidTheoryException ex)

{ title = " Error In Theory Of Agent "+myName;

errorTxt = " The theory in file \""+
fileName+"\" is not a valid one.";

errorTxt = errorTxt.concat(" Error in line "+ex.line+".");

err.write(title,errorTxt);

try{ f.close();}
catch(IOException exc)

{ title = " Cannot Close Theory File Of Agent "+myName;

errorTxt = "Cannot close the theory file "+ fileName+"

for agent "+myName+".";

err.write(title,errorTxt);

}
return;

}
catch(IOException exc)

{ title = " Cannot Close Theory File Of Agent "+myName;

errorTxt = "Cannot close the theory file "+ fileName+

" for agent "+myName+".";

err.write(title,errorTxt);

}
try{ core.addTheory(theory);}
catch(InvalidTheoryException ex)

{ title = " Error Loading The Theory Of Agent "+myName;

errorTxt = " The theory in file "̈+fileName+"ı̈s not a valid

one.";

errorTxt = errorTxt.concat(" Error in line "+ex.line+".");

err.write(title,errorTxt);

Ivana Gungui Integrating Logical Agents Into DCaseLP

134 Appendix A - The tuPInJADE Java package

return;

}
Shell42PBehaviour behave = new Shell42PBehaviour(this,core);

addBehaviour(behave);

}
}
else

{ title = " Too Many Inputs For Agent "+myName;

errorTxt = " You can input only ONE theory file for agent"

+myName+".";

err.write(title,errorTxt);

}
}

protected boolean init()

{ boolean ok = false;

try

{ fr = new FileReader(fileName);

in = new StreamTokenizer(fr);

in.lowerCaseMode(false);

ok = checkTheory(in);

try{ fr.close();}
catch(IOException exc)

{ title = " Cannot Close Theory File Of Agent "+getLocalName();

errorTxt = "Cannot close the theory file "+ fileName+" for

agent "+getLocalName()+".";

err.write(title,errorTxt);

}
if(ok) return true;

}
catch(FileNotFoundException error)

{ title = " Cannot Find Theory File Of Agent "+getLocalName();

errorTxt = "Cannot find the theory file "+fileName+" for agent"

+getLocalName()+".";

err.write(title,errorTxt);

}
return false;

}

protected boolean checkTheory(StreamTokenizer stream)

{ int read;

String aux;

try

{ read = stream.nextToken();

if(read == StreamTokenizer.TT EOF ||

read != StreamTokenizer.TT WORD)

{ try{ fr.close();}

Ivana Gungui Integrating Logical Agents Into DCaseLP

Appendix A - The tuPInJADE Java package 135

catch(IOException exc)

{ title = " Cannot Close Theory File Of Agent "+getLocalName();

errorTxt = "Cannot close the theory file "+ fileName+" for

agent "+getLocalName()+".";

err.write(title,errorTxt);

}
aux = " does not begin with a word";

err.write("Syntax Error In Theory File "+fileName,"The theory

file for agent "+getLocalName()+aux);

return false;

}
String s = stream.sval;

if(s.equals("main.")) return true;

if(s.equals("main"))

{ stream.eolIsSignificant(true);

read = stream.nextToken();

if((read == StreamTokenizer.TT EOF)||

(read == StreamTokenizer.TT EOL))

{ try{ fr.close();}
catch(IOException exc)

{ title = " Cannot Close Theory File Of Agent "+getLocalName();

errorTxt = "Cannot close the theory file "+ fileName+

" for agent "+getLocalName()+".";

err.write(title,errorTxt);

}
aux = " the key word ’main’ is not followed by ’:-’.";

err.write("Syntax Error In Theory File "+fileName,"In the

theory file for agent "+getLocalName()+aux);

return false;

}
if(read != StreamTokenizer.TT WORD)

{ s = stream.toString();

if(s.charAt(7)==’:’)

{ stream.ordinaryChar(’ ’);

read = stream.nextToken();

s = stream.toString();

if(s.charAt(7)!=’-’)

{ try{ fr.close();}
catch(IOException exc)

{ title = " Cannot Close Theory File Of Agent "+

getLocalName();

errorTxt = "Cannot close the theory file "+ fileName+

" for agent "+getLocalName()+".";

err.write(title,errorTxt);

}
aux = " the key character ’:’ is not followed by ’-’.";

err.write("Syntax Error In Theory File "+fileName+

Ivana Gungui Integrating Logical Agents Into DCaseLP

136 Appendix A - The tuPInJADE Java package

" For Agent "+getLocalName(),"In the theory

file for agent "+getLocalName()+aux);

return false;

}
return true;

}
else

{ try{ fr.close();}
catch(IOException exc)

{ title = " Cannot Close Theory File Of Agent "+

getLocalName();

errorTxt = "Cannot close the theory file "+ fileName+

" for agent "+getLocalName()+".";

err.write(title,errorTxt);

}
aux = " there is another character following ’main’ where

there should be ’:’.";

err.write("Syntax Error In Theory File "+fileName,"In

the theory file for agent "+getLocalName()+aux);

return false;

}
}

}
else

{ try{ fr.close();}
catch(IOException exc)

{ title = " Cannot Close Theory File Of Agent "+getLocalName();

errorTxt = "Cannot close the theory file "+ fileName+

" for agent "+getLocalName()+".";

err.write(title,errorTxt);

}
aux = " begins with a word different from ’main’.";

err.write("Syntax Error In Theory File "+fileName,"The theory

file for agent "+getLocalName()+aux);

return false;

}
}
catch(IOException error)

{ try{ fr.close();}
catch(IOException exc)

{ title = " Cannot Close Theory File Of Agent "+getLocalName();

errorTxt = "Cannot close the theory file "+ fileName+" for

agent "+getLocalName()+".";

err.write(title,errorTxt);

}
aux = "An error occurred while reading the theory file for

agent ";

Ivana Gungui Integrating Logical Agents Into DCaseLP

Appendix A - The tuPInJADE Java package 137

err.write("Syntax Error In Theory File "+fileName,

aux+getLocalName()+".");

return false;

}
return false;

}
}

final class Shell42PBehaviour extends CyclicBehaviour

{ private Prolog engine;

Shell42PBehaviour(Agent a,Prolog core)

{ super(a);

engine = core;

}

public void action()

{ String agentName = myAgent.getLocalName();

String title;

String errorTxt;

try

{ SolveInfo info = engine.solve("main.");

Library lib = engine.getLibrary("tuPInJADE.TuJadeLibrary");

if(lib == null)

{ title = " Error Obtaining The TuJadeLibrary from Agent "+

agentName;

errorTxt = " The TuJadeLibrary was not loaded.";

((JadeShell42P) myAgent).err.write(title,errorTxt);

return;

}
if(!info.isSuccess())

{ if(((TuJadeLibrary) lib).errorMsg!=null)

{ title = " Error Solving The ’main’ Goal Of Agent "+agentName;

errorTxt = ((TuJadeLibrary) lib).errorMsg;

((JadeShell42P) myAgent).err.write(title,errorTxt);

return;

}
while(engine.hasOpenAlternatives())

{ info = engine.solveNext();

if(((TuJadeLibrary) lib).errorMsg!=null)

{ title = " Error Solving The ’main’ Goal Of Agent "+agentName;

errorTxt = ((TuJadeLibrary) lib).errorMsg;

((JadeShell42P) myAgent).err.write(title,errorTxt);

return;

}
if(info.isSuccess()) break;

}

Ivana Gungui Integrating Logical Agents Into DCaseLP

138 Appendix A - The tuPInJADE Java package

if(!info.isSuccess())

{ title = " Error Solving The ’main’ Goal Of Agent "+agentName;

errorTxt = " Failure solving the main goal of agent "+

agentName+".";

((JadeShell42P) myAgent).err.write(title,errorTxt);

return;

}
}

}
catch(MalformedGoalException mge)

{ title = " Error Solving The ’main’ Goal Of Agent "+agentName;

errorTxt = " The ’main’ goal isn’t a valid one.";

((JadeShell42P) myAgent).err.write(title,errorTxt);

return;

}
catch(NoMoreSolutionException error)

{ title = " Error Solving The ’main’ Goal Of Agent "+agentName;

errorTxt = " There are no more solutions.";

((JadeShell42P) myAgent).err.write(title,errorTxt);

return;

}
}

}

Ivana Gungui Integrating Logical Agents Into DCaseLP

Appendix A - The tuPInJADE Java package 139

JadeShell42PGui.java

package tuPInJADE;

import alice.tuprolog.InvalidLibraryException;

import alice.tuprolog.InvalidTheoryException;

import alice.tuprolog.Library;

import alice.tuprolog.MalformedGoalException;

import alice.tuprolog.NoMoreSolutionException;

import alice.tuprolog.NoSolutionException;

import alice.tuprolog.OutputEvent;

import alice.tuprolog.OutputListener;

import alice.tuprolog.Prolog;

import alice.tuprolog.SolveInfo;

import alice.tuprolog.Theory;

import jade.core.Agent;

import jade.core.behaviours.CyclicBehaviour;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.IOException;

import java.io.StreamTokenizer;

import java.awt.Frame;

import java.awt.FileDialog;

import java.awt.event.WindowListener;

import java.awt.event.WindowEvent;

// The JadeShell42PGui class is a JADE agent that behaves as a "shell"

// for a tuProlog agent containing a tuProlog engine.

// This agent, when loaded in JADE, launches

// a file system browser with which the user must select a file

// containing a tuProlog theory that defines the "main/0" predicate

// that represents the behaviour of the agent.

// If the theory file cannot be opened or does not contain a

// correct tuProlog theory, the user is made aware of it by the

// popup of an error message.

// If the theory file is indeed correct, the agent creates a

// tuProlog engine containing the standard tuProlog libraries and

// then it extends it by loading the TuJadeLibrary as well.

// The TuJadeLibrary is indispensable to a JadeShell42PGui agent

// because it provides the means of communication with any other

// agent in JADE, including JadeShell42PGui agents of course.

// The TuJadeLibrary defines predicates whose goal is, respectively,

// sending/receiving ACL messages to/from agents in a JADE platform.

//

public final class JadeShell42PGui extends JadeShell42P

{ protected void setup()

Ivana Gungui Integrating Logical Agents Into DCaseLP

140 Appendix A - The tuPInJADE Java package

{ Object[] args = getArguments();

err = new ErrorMsg(); // this is the frame used to inform the

// programmer about errors regarding the

// loading of the theory file or the

// solving of the "main" goal

String myName = getLocalName();

if(args != null)

{ if(args.length >= 1)

{ title = "Theory Of Agent "+myName;

errorTxt = "The theory of agent "+myName+" should not be"+

" specified in the command line:it should be "

+"selected from the GUI launched by the agent

itself.";

err.write(title,errorTxt);

return;

}
}
Selector sel = new Selector();

fileName = sel.select(myName);

if(fileName == null) // no file has been selected from the displayed

// window browsing the file system

{ title = " The Theory Of Agent "+myName+" is Missing";

errorTxt = " Agent "+myName+" has no theory specified.";

err.write(title,errorTxt);

return;

}
boolean done = init();

if(done)

{ core = new Prolog();

OutputListener l = new OutputListener()

{ public void onOutput(OutputEvent ev)

{ System.out.print(ev.getMsg()); }
};
core.addOutputListener(l);

Library lib = null;

try{ lib = core.loadLibrary("tuPInJADE.TuJadeLibrary");}
catch(InvalidLibraryException error)

{ title = " Error Trying To Load The TuJadeLibrary Of Agent"

+" "+myName;

errorTxt = "The TuJadeLibrary is not a valid tuProlog library.";

err.write(title,errorTxt);

return;

}
((TuJadeLibrary) lib).shell = this;

try{ f = new FileInputStream(fileName);}
catch(FileNotFoundException error)

{ title = " Error Trying To Load The Theory Of Agent "+myName;

Ivana Gungui Integrating Logical Agents Into DCaseLP

Appendix A - The tuPInJADE Java package 141

errorTxt = " Cannot find the theory file "+ fileName+" of"

+" agent "+myName+".";

err.write(title,errorTxt);

return;

}
catch(SecurityException error)

{ title = " Error Trying To Open The Theory File Of Agent "+myName;

errorTxt = " A security error occurred opening the theory"

+" file "+ fileName+" of agent "+myName+".";

err.write(title,errorTxt);

return;

}
catch(IOException error)

{ title = " Error Trying To Open The Theory File Of Agent "+myName;

errorTxt = " An error occurred opening the theory file "+

fileName+" of agent "+myName+".";

err.write(title,errorTxt);

return;

}
Theory theory = null;

try

{ theory = new Theory(f);

f.close();

}
catch(InvalidTheoryException ex)

{ title = " Error In Theory Of Agent "+myName;

errorTxt = " The theory in file \""+fileName+"\" is not a

valid one.";

errorTxt = errorTxt.concat(" Error in line "+ex.line+".");

err.write(title,errorTxt);

try{ f.close();}
catch(IOException exc)

{ title = " Cannot Close Theory File Of Agent "+myName;

errorTxt = "Cannot close the theory file "+ fileName+" for

agent "+myName+".";

err.write(title,errorTxt);

}
return;

}
catch(IOException exc)

{ title = " Cannot Close Theory File Of Agent "+myName;

errorTxt = "Cannot close the theory file "+ fileName+" for

agent "+myName+".";

err.write(title,errorTxt);

}
try{ core.addTheory(theory);}
catch(InvalidTheoryException ex)

Ivana Gungui Integrating Logical Agents Into DCaseLP

142 Appendix A - The tuPInJADE Java package

{ title = " Error Trying To Load The Theory Of Agent "+myName;

errorTxt = " The theory in file \""+fileName+"\" is not a

valid one.";

errorTxt = errorTxt.concat(" Error in line "+ex.line+".");

err.write(title,errorTxt);

return;

}
Shell42PBehaviourGui behave = new Shell42PBehaviourGui(this,

core);

addBehaviour(behave);

}
}

final class Selector implements WindowListener

{ public String select(String agent)

{ String directory;

StreamTokenizer input;

String theory;

Frame box = new Frame();

FileDialog dialog = new FileDialog(box);

box.setSize(425,100);

box.setLocationRelativeTo(null);

dialog.setTitle("Please Select the Theory File of Agent "+agent);

box.pack();

dialog.setVisible(true);

if(dialog.getFile()!=null)

{ directory = dialog.getDirectory();

theory = directory+dialog.getFile();

return theory;

}
return null;

}

public void windowOpened(WindowEvent e){}

public void windowClosing(WindowEvent e){ System.exit(0);}

public void windowClosed(WindowEvent e){}

public void windowIconified(WindowEvent e){ System.exit(0);}

public void windowDeiconified(WindowEvent e){}

public void windowActivated(WindowEvent e){}

public void windowDeactivated(WindowEvent e){ System.exit(0);}
}}

Ivana Gungui Integrating Logical Agents Into DCaseLP

Appendix A - The tuPInJADE Java package 143

final class Shell42PBehaviourGui extends CyclicBehaviour

{ private Prolog engine;

Shell42PBehaviourGui(Agent a,Prolog core)

{ super(a);

engine = core;

}

public void action()

{ String agentName = myAgent.getLocalName();

String title;

String errorTxt;

try

{ SolveInfo info = engine.solve("main.");

Library lib = engine.getLibrary("tuPInJADE.TuJadeLibrary");

if(lib == null)

{ title = " Error Obtaining The TuJadeLibrary from Agent "+agentName;

errorTxt = " The TuJadeLibrary was not loaded.";

((JadeShell42PGui) myAgent).err.write(title,errorTxt);

return;

}
if(!info.isSuccess())

{ if(((TuJadeLibrary) lib).errorMsg!=null)

{ title = " Error Solving The ’main’ Goal Of Agent "+agentName;

errorTxt = ((TuJadeLibrary) lib).errorMsg;

((JadeShell42PGui) myAgent).err.write(title,errorTxt);

return;

}
while(engine.hasOpenAlternatives())

{ info = engine.solveNext();

if(((TuJadeLibrary) lib).errorMsg!=null)

{ title = " Error Solving The ’main’ Goal Of Agent "+agentName;

errorTxt = ((TuJadeLibrary) lib).errorMsg;

((JadeShell42PGui) myAgent).err.write(title,errorTxt);

return;

}
if(info.isSuccess()) break;

}
if(!info.isSuccess())

{ title = " Error Solving The ’main’ Goal Of Agent "+agentName;

errorTxt = " Failure solving the main goal of agent "+agentName+".";

((JadeShell42PGui) myAgent).err.write(title,errorTxt);

return;

}
}

}

Ivana Gungui Integrating Logical Agents Into DCaseLP

144 Appendix A - The tuPInJADE Java package

catch(MalformedGoalException mge)

{ title = " Error Solving The ’main’ Goal Of Agent "+agentName;

errorTxt = " The ’main’ goal isn’t a valid one.";

((JadeShell42PGui) myAgent).err.write(title,errorTxt);

return;

}
catch(NoMoreSolutionException error)

{ title = " Error Solving The ’main’ Goal Of Agent "+agentName;

errorTxt = " There are no more solutions.";

((JadeShell42PGui) myAgent).err.write(title,errorTxt);

return;

}
block();

}
}

Ivana Gungui Integrating Logical Agents Into DCaseLP

Appendix A - The tuPInJADE Java package 145

TuJadeLibrary.java

package tuPInJADE;

package tuPInJADE;

import alice.tuprolog.*;

import jade.lang.acl.ACLMessage;

import jade.core.AID;

/**

* This class is a tuProlog Library developed to provide JadeShell42P

* agents with predicates implementing the sending and receiving

* of FIPA compliant and asynchronous messages, in other words,

* the messages exchanged in JADE platforms.

* Since the content of the messages exchanged in JADE is always a string

* and not a java Object, it has been necessary to define the predicates

* pack(Term,StrTerm) and unpack(StrTerm,Term).

* The predicate pack(Term,StrTerm) is true if and only if StrTerm

* is a string representation of the tuProlog term Term.

* The predicate unpack(StrTerm,Term) is true if and only if Term

* is the tuProlog term represented by the string StrTerm.

* Thus, if a JadeShell42P agent wishes to send a tuProlog term

* to another JadeShell42P agent, its main theory should be as

* follows:

* ".....,pack(TermToSend,StringRepresentation),

* send(...,StringRepresentation,....),.....".

*

* On the other hand, to allow a JadeShell42P agent that

* receives a message to deal with a content that is a tuProlog term,

* instead of a string, its theory should be as follows:

* ".....,receive(...,StringRepresentation,....),

* unpack(StringRepresentation,TermReceived),.....".

*

*

* Defined predicates:

* - send(Performative,Content,Receiver)

* - receive(Performative,Content,Sender)

* - blocking_receive(Performative,Content,Sender)

* - blocking_receive(Performative,Content,Sender,Millisec)

Ivana Gungui Integrating Logical Agents Into DCaseLP

146 Appendix A - The tuPInJADE Java package

* - pack(Term,StrTerm)

* - unpack(StrTerm,Term)

*/

public class TuJadeLibrary extends Library

// The shell field is used to reference the JadeShell42P

// agent, in order to be able to invoke its send and

// receive methods and the method that returns its address

// in the JADE platform.

protected JadeShell42P shell;

// The errorMsg field is the string displayed in the

// window used by the JadeShell42P agent to communicate

// with the programmer in case there are errors.

public String errorMsg = null;

public TuJadeLibrary() {}

public boolean send_3(Struct g)

{ /** Usage: send(Performative,Content,Receiver).

*

* This predicate is true if, and only if, Performative

* is a string that corresponds to one of the available

* performatives of an ACLMessage in JADE, Content is a

* string and Receiver is a string corresponding to a

* valid JADE address or a list of strings corresponding

* to a list of JADE addresses.

* Any string is a valid content of the message, except

* for the string consisting only of the anonymous

* variable ("_").

*

**/

Term arg1 = g.getTerm(0); // the term representing the performative

// of the ACLMessage to send

Term arg2 = g.getTerm(1); // the term representing the content of the

// ACLMessage to send

Term arg3 = g.getTerm(2); // the term representing the receiver or the

// list of receivers of the ACLMessage to send

String performative = check1(arg1);

Ivana Gungui Integrating Logical Agents Into DCaseLP

Appendix A - The tuPInJADE Java package 147

if (performative == null) return false; // the performative is not a

//valid one

String content = check2(arg2);

if (content == null) return false; // the content is not a valid one

AID sender = shell.getAID(); // it is the global unique identifier of

// the sender in the JADE platform, in

// other words, the address in JADE of

// the agent sender of the message

ACLMessage mail = new ACLMessage(ACLMessage.getInteger(performative));

mail.setContent(content);

mail.setSender(sender);

String receiver = check3(arg3,mail); // the global unique identifier

// of the agent in the JADE

// platform

if (receiver == null) return false;

shell.send(mail); // the message is sent invoking the send method

// of any agent in JADE

return true;

}

private String check1(Term t)

{ // It checks if the term t represents a valid performative of

// an ACLMessage in JADE.

// If it recognises a valid performative it returns the

// corresponding string.

// The null string is returned in case the term t does

// not represent a valid performative.

if (t.isCompound())

{ errorMsg = " ERROR IN SEND PREDICATE: the performative "

+t.toString()+" of the message to send is a "+

"compound term.";

return null;

}

String aux;

if (t.isVar())

{ if (!((Var) t).isBound())

{ errorMsg = " ERROR IN SEND PREDICATE: the performative "

+t.toString()+" of the message to send is an unbound variable.";

return null;

Ivana Gungui Integrating Logical Agents Into DCaseLP

148 Appendix A - The tuPInJADE Java package

}

else aux = ((Struct) (t.getTerm())).getName();

// aux is the value bound to the variable t

}

else aux = ((Struct) t).getName();

// aux is the string representing the atom t

String [] list = ACLMessage.getAllPerformativeNames();

// list contains all the possible performatives of an ACLMessage

boolean found = false;

int j = -1;

for(int i=0;i<list.length;i++)

{ if (aux.equals(list[i]))

{ j = i;

found = true;

}

}

if(!found) return "NOT_UNDERSTOOD";

// the performative is not recognised as a FIPA compliant

// one, but the message can still be sent with the default

// JADE performative NOT_UNDERSTOOD.

else return list[j];

}

private String check2(Term t)

{ // It checks if the term t represents a valid content

// of an ACLMessage in JADE.

// Any string that differs from the string containing

// exclusively the anonymous variable, "_",

// is considered as a valid content.

// The null string is returned in case the term t

// does not represent a valid content.

if (t.isCompound())

{ errorMsg = " ERROR IN SEND PREDICATE: the content "

+t.toString()+" of the message to send cannot be a compound term.";

return null;

}

String msg;

if (t.isVar())

{ if (!((Var) t).isBound())

Ivana Gungui Integrating Logical Agents Into DCaseLP

Appendix A - The tuPInJADE Java package 149

{ errorMsg = " ERROR IN SEND PREDICATE: the content "+t.toString()+

" of the message to send is an unbound variable.";

return null;

}

else msg = ((Struct) (t.getTerm())).getName();

// msg is the value bound to the variable t

}

else

{ msg = ((Struct) t).getName();

// msg is the string representing the atom t

if (msg.equals("_"))

{ errorMsg = " ERROR IN SEND PREDICATE: the anonymous variable ’_’

is not a "+"valid content of the message to send.";

return null;

}

}

return msg;

}

private String check3(Term t,ACLMessage mail)

{ // It checks if the term t represents a valid receiver

// or a valid list of receivers of an ACLMessage in JADE.

// It returns the string corresponding to the last

// receiver read if the receivers are all valid ones.

// The null string is returned in case the term t does

// not represent a valid receiver or list of receivers.

String receiver = null;

if (t.isList()) //there is a list of receivers

{ if (((Struct) t).isEmptyList())

{ errorMsg = " ERROR IN SEND PREDICATE: "+

"there is an empty list as receiver of "+"the message to send.";

return null;

}

else // the list of receivers is not empty

{ Term head = ((Struct) t).listHead();

// head is the first element in the list of receivers

Struct tail = ((Struct) t).listTail();

// tail is the list of receivers without the first element

while(!head.isNull())

Ivana Gungui Integrating Logical Agents Into DCaseLP

150 Appendix A - The tuPInJADE Java package

{ receiver = checkRec(head);

if (receiver != null)

{ AID rcvr = new AID();

rcvr.setName(receiver);

mail.addReceiver(rcvr);

// the JADE global unique identifier of one of the

// receivers is set in the message

}

else break;

// it has been read a term that does not represent a valid receiver

// of the message

head = tail.listHead();

if (!tail.isEmptyList()) tail = tail.listTail();

}

return receiver;

}

}

else // there is only one receiver of the message to send

{ receiver = checkRec(t);

AID rcvr = new AID();

rcvr.setName(receiver);

mail.addReceiver(rcvr);

// the global unique identifier in JADE of one of the receivers

// is set in the message

}

return receiver;

}

private String checkRec(Term t)

{ // It checks if the term t represents a valid receiver

// of an ACLMessage in JADE.

// It returns the string corresponding to the receiver.

// The null string is returned in case the term t does

// not represent a valid receiver.

if (t.isNumber())

{ errorMsg = " ERROR IN SEND PREDICATE: the AID "+

"(global unique identifier in JADE) "+t.toString()+" of one of the"+

" receivers of the message to send is a number "+"instead of a string.";

return null;

Ivana Gungui Integrating Logical Agents Into DCaseLP

Appendix A - The tuPInJADE Java package 151

}

if (t.isCompound())

{ errorMsg = "ERROR IN SEND PREDICATE: the AID "+

"(global unique identifier in JADE) "+t.toString()+" of one of the "+

"receivers of the message to send is a "+"compound term.";

return null;

}

String rcv;

if (t.isVar())

{ if (!((Var) t).isBound())

{ errorMsg = " ERROR IN SEND PREDICATE: the AID "+

"(global unique identifier in JADE) "+t.toString()+" of one of the "+

"receivers of the message to send is an "+"unbound variable.";

return null;

}

else rcv = ((Struct) (t.getTerm())).getName();

// the value bound to the variable

}

else if (t.isList())

{ if (((Struct) t).isEmptyList())

{ errorMsg = " ERROR IN SEND PREDICATE: one of the "+

"receivers of the message to send "+is an empty list.";

return null;

}

else

{ errorMsg = " ERROR IN SEND PREDICATE: the AID "+

"(global unique identifier in JADE) "+t.toString()+" of one of the"+

" receivers of the message to send is a list "+"it self.";

return null;

}

}

else rcv = t.toString();

rcv = rcv.substring(1,rcv.length()-1);

// it removes the first and last symbols equal to the character ’

int i = rcv.indexOf(’@’);

if (i == -1) // the AID (global unique identifier in JADE)

// of a receiver does not contain the symbol ’@’

{ errorMsg = " ERROR IN SEND PREDICATE: the symbol ’@’ is missing "+

"in the AID (global "+"unique identifier in JADE) "+t.toString()+

Ivana Gungui Integrating Logical Agents Into DCaseLP

152 Appendix A - The tuPInJADE Java package

" of one of the receivers of "+"the message to send.";

return null;

}

else

{ int j = rcv.indexOf(’:’);

if (j<i)

{ errorMsg = " ERROR IN SEND PREDICATE: the symbol ’:’ "+

"is missing, or it occurs "+"before the ’@’ symbol, in the AID "+

t.toString()+" of one of the "+"receivers of the message to send.";

return null;

}

}

return rcv;

}

public boolean receive_3(Struct g)

{ /** Usage: receive(Performative,Content,Sender)

*

* This predicate is true if, and only if, Performative is a variable bound

* to a string that corresponds to one of the available performatives of an

* ACLMessage in JADE, Content is a variable bound to a string and Sender

* is a variable bound to a string corresponding to a valid JADE address.

* The Content variable is a valid content of the message received only

* if it is bound to a string that does not just contain anonymous

* variable ("_").

*

**/

Term perf = g.getTerm(0);

// the term representing the performative of the ACLMessage received

Term msg = g.getTerm(1);

// the term representing the content of the ACLMessage received

Term sender = g.getTerm(2);

// the term representing the sender of the ACLMessage received

if (perf.isVar())

{ if (((Var) perf).isBound())

{ errorMsg = " ERROR IN RECEIVE PREDICATE: the performative "+

perf.toString()+" of the message to receive is a bound variable.";

return false;

}

Ivana Gungui Integrating Logical Agents Into DCaseLP

Appendix A - The tuPInJADE Java package 153

}

if (perf.isGround())

{ errorMsg = " ERROR IN RECEIVE PREDICATE: the performative "+

perf.toString()+" of the message to receive is a ground term "+

"instead of a variable.";

return false;

}

if (perf.isCompound())

{ errorMsg = " ERROR IN RECEIVE PREDICATE: the performative "+

perf.toString()+" of the message to receive is a compound "+

"term instead of a variable.";

return false;

}

if (msg.isCompound())

{ errorMsg = " ERROR IN RECEIVE PREDICATE: the content "+msg.toString()+

" of the message to receive is a compound term instead of a variable.";

return false;

}

if (msg.isVar())

{ if (((Var) msg).isBound())

{ errorMsg = " ERROR IN RECEIVE PREDICATE: the content "+msg.toString()+

" of the message to receive is a variable already bound.";

return false;

}

}

else

{ errorMsg = " ERROR IN RECEIVE PREDICATE: the content "+msg.toString()+

" of the message to receive is not a variable.";

return false;

}

if (sender.isCompound())

{ errorMsg = " ERROR IN RECEIVE PREDICATE: the AID (global unique "+

"identifier in JADE) "+sender.toString()+

" of the sender of the message "+

"to receive is a compound term instead of a variable.";

return false;

}

if (sender.isVar())

{ if (((Var) sender).isBound())

Ivana Gungui Integrating Logical Agents Into DCaseLP

154 Appendix A - The tuPInJADE Java package

{ errorMsg = " ERROR IN RECEIVE PREDICATE: the AID (global unique "+

"identifier in JADE) "+sender.toString()+

" of the sender of the message "+

"to receive is a variable already bound.";

return false;

}

}

else

{ errorMsg = " ERROR IN RECEIVE PREDICATE: the AID (global unique "+

"identifier in JADE) "+sender.toString()+" of the sender of the message "+

"to receive is not a variable.";

return false;

}

ACLMessage mail = shell.receive();

// the message is received invoking the receive method of any agent in JADE

if (mail!=null) // a message has actually been received

{ String performative = mail.getPerformative(mail.getPerformative());

// it reads the performative of the message received

String content = mail.getContent();

// it reads the content of the message received

String sendAddr = mail.getSender().getName();

// it reads the sender of the message received

Prolog core = getEngine();

core.unify(perf,new Struct(performative));

// it unifies the performative of the message received with the term

// representing such performative

core.unify(msg,new Struct(content));

// it unifies the content of the message received with the term

// representing such content

core.unify(sender,new Struct(sendAddr));

// it unifies the sender of the message received with the term

// representing such sender

}

return true;

}

public boolean blocking_receive_3(Struct g)

{ /** Usage: blocking_receive(Performative,Content,Sender)

*

Ivana Gungui Integrating Logical Agents Into DCaseLP

Appendix A - The tuPInJADE Java package 155

* This predicate is true if, and only if, Performative is a

* variable bound to a string that corresponds to one of the available

* performatives of an ACLMessage in JADE, Content is a variable bound

* to a string and Sender is a variable bound to a string corresponding

* to a valid JADE address.

* The Content variable is a valid content of the message received only

* if it is bound to a string that differs from the simple anonymous

* variable ("_").

*

**/

Term perf = g.getTerm(0);

// the term representing the performative of the ACLMessage received

Term msg = g.getTerm(1);

// the term representing the content of the ACLMessage received

Term sender = g.getTerm(2);

// the term representing the sender of the ACLMessage received

if (perf.isVar())

{ if (((Var) perf).isBound())

{ errorMsg = " ERROR IN BLOCKING_RECEIVE PREDICATE: "+

"the performative "+perf.toString()+" of the message to receive "+

"is a variable already bound.";

return false;

}

}

if (perf.isGround())

{ errorMsg = " ERROR IN BLOCKING_RECEIVE PREDICATE: "+

"the performative "+perf.toString()+" of the message to receive is "+

"a ground term instead of a variable.";

return false;

}

if (perf.isCompound())

{ errorMsg = " ERROR IN BLOCKING_RECEIVE PREDICATE: "+

"the performative "+perf.toString()+" of the message to receive is a"+

" compound term instead of a variable.";

return false;

}

if (msg.isCompound())

{ errorMsg = " ERROR IN BLOCKING_RECEIVE PREDICATE: the content "+

msg.toString()+" of the message to receive is a compound term "+

Ivana Gungui Integrating Logical Agents Into DCaseLP

156 Appendix A - The tuPInJADE Java package

"instead of a variable.";

return false;

}

if (msg.isVar())

{ if (((Var) msg).isBound())

{ errorMsg = " ERROR IN BLOCKING_RECEIVE PREDICATE: the content "+

msg.toString()+" of the message to receive is a variable already bound.";

return false;

}

}

else

{ errorMsg = " ERROR IN BLOCKING_RECEIVE PREDICATE: the content "+

msg.toString()+" of the message to receive is not a variable.";

return false;

}

if (sender.isCompound())

{ errorMsg = " ERROR IN BLOCKING_RECEIVE PREDICATE: the AID "+

"(global unique identifier in JADE) "+sender.toString()+" of the sender of the

message "+

"to receive is a compound term instead of a variable.";

return false;

}

if (sender.isVar())

{ if (((Var) sender).isBound())

{ errorMsg = " ERROR IN BLOCKING_RECEIVE PREDICATE: "+

"the AID (global unique identifier in JADE) "+sender.toString()+

" of the sender of the message to receive is a variable already bound.";

return false;

}

}

else

{ errorMsg = " ERROR IN BLOCKING_RECEIVE PREDICATE: the AID "+

"(global unique identifier in JADE) "+sender.toString()+

" of the sender of the message to receive is not a variable.";

return false;

}

ACLMessage mail = shell.blockingReceive();

// the message is received invoking the blockingReceive

// method of any agent in JADE

Ivana Gungui Integrating Logical Agents Into DCaseLP

Appendix A - The tuPInJADE Java package 157

if (mail!=null) // a message has actually been received

{ String performative = mail.getPerformative(mail.getPerformative());

// it reads the performative of the message received

String content = mail.getContent();

// it reads the content of the message received

String sendAddr = mail.getSender().getName();

// it reads the sender of the message received

Prolog core = getEngine();

core.unify(perf,new Struct(performative));

// it unifies the performative of the message received

// with the term representing such performative

core.unify(msg,new Struct(content));

// it unifies the content of the message received with

// the term representing such content

core.unify(sender,new Struct(sendAddr));

// it unifies the sender of the message received with

// the term representing such sender

}

return true;

}

public boolean blocking_receive_4(Struct g)

{ /** Usage: blocking_receive(Performative,Content,Sender,Millisec)

*

* This predicate is true if, and only if, Performative is a variable

* bound to a string that corresponds to one of the available

* performatives of an ACLMessage in JADE, Content is a variable

* bound to a string, Sender is a variable bound to a string

* corresponding to a valid JADE address and Millisec is a number.

* The Content variable is a valid content of the message received

* only if it is bound to a string that differs from the simple

* anonymous variable ("_").

* The Millisec variable is a number that represents the amount

* of time that the agent will remain blocked to receive a message.

*

**/

Term perf = g.getTerm(0);

// the term representing the performative of the ACLMessage received

Term msg = g.getTerm(1);

Ivana Gungui Integrating Logical Agents Into DCaseLP

158 Appendix A - The tuPInJADE Java package

// the term representing the content of the ACLMessage received

Term sender = g.getTerm(2);

// the term representing the sender of the ACLMessage received

Term milli = g.getTerm(3);

// the term representing the amount of time for which the agent

//will wait for a message to arrive

if (perf.isVar())

{ if (((Var) perf).isBound())

{ errorMsg = " ERROR IN BLOCKING_RECEIVE PREDICATE WITH "+

"TIMEOUT: the performative "+perf.toString()+

" of the message to receive is a variable already bound.";

return false;

}

}

if (perf.isGround())

{ errorMsg = " ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIMEOUT:"+

" the performative "+perf.toString()+

" of the message to receive is a ground term instead of a variable.";

return false;

}

if (perf.isCompound())

{ errorMsg = " ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIMEOUT:"+

" the performative "+perf.toString()+

" of the message to receive is a compound term instead of a variable.";

return false;

}

if (msg.isCompound())

{ errorMsg = " ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIMEOUT:"+

" the content "+msg.toString()+

" of the message to receive is a compound term instead of a variable.";

return false;

}

if (msg.isVar())

{ if (((Var) msg).isBound())

{ errorMsg = " ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIMEOUT:"+

" the content "+msg.toString()+

" of the message to receive is a variable already bound.";

return false;

}

Ivana Gungui Integrating Logical Agents Into DCaseLP

Appendix A - The tuPInJADE Java package 159

}

else

{ errorMsg = " ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIMEOUT:"+

" the content "+msg.toString()+

" of the message to receive is not a variable.";

return false;

}

if (sender.isCompound())

{ errorMsg = " ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIMEOUT:"+

" the AID (global unique identifier in JADE) "+

sender.toString()+" of the sender of the message to receive is a compound"+

" term instead of a variable.";

return false;

}

if (sender.isVar())

{ if (((Var) sender).isBound())

{ errorMsg = " ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIMEOUT:"+

" the AID (global unique identifier in JADE) "+

sender.toString()+" of the sender of the message to receive is a "+

"variable already bound.";

return false;

}

}

else

{ errorMsg = " ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIMEOUT:"+

" the AID (global unique identifier in JADE) "+

sender.toString()+" of the sender of the message to"+

" receive is not a variable.";

return false;

}

long mil = -1;

if (milli.isVar())

{ if (!((Var) milli).isBound())

{ errorMsg = " ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIMEOUT: "+

"the maximum time "+milli.toString()+" to wait for a message "+

"to arrive is an unbound variable.";

return false;

}

else mil = (new java.lang.Long(((Struct) (milli.getTerm())).

Ivana Gungui Integrating Logical Agents Into DCaseLP

160 Appendix A - The tuPInJADE Java package

getName())).longValue();

}

else

{ if (!milli.isNumber())

{ errorMsg = " ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIMEOUT: "+

"the maximum time "+milli.toString()+

" to wait for a message to arrive is not a number.";

return false;

}

else

{ if (((alice.tuprolog.Number) milli).isTypeLong())

mil =((alice.tuprolog.Long) milli).longValue();

else

{ errorMsg = " ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIMEOUT: "+

"the maximum time "+milli.toString()+

" to wait for a message to arrive is not a valid number.";

return false;

}

}

}

ACLMessage mail = shell.blockingReceive(mil);

// the message is received invoking the blockingReceive

// method of any agent in JADE

if (mail!=null) // a message has actually been received

{ String performative = mail.getPerformative(mail.getPerformative());

// it reads the performative of the message received

String content = mail.getContent();

// it reads the content of the message received

String sendAddr = mail.getSender().getName();

// it reads the sender of the message received

Prolog core = getEngine();

core.unify(perf,new Struct(performative));

// it unifies the performative of the message received with

// the term representing such performative

core.unify(msg,new Struct(content));

// it unifies the content of the message received with

// the term representing such content

core.unify(sender,new Struct(sendAddr));

// it unifies the sender of the message received with

Ivana Gungui Integrating Logical Agents Into DCaseLP

Appendix A - The tuPInJADE Java package 161

// the term representing such sender

}

return true;

}

public boolean pack_2(Struct g)

{ /** Usage: pack(Term,StrTerm)

*

* This predicate is true if, and only if, StrTerm is the string

* representation of the tuProlog term Term.

*

**/

Term term = g.getTerm(1);

Prolog core = getEngine();

core.unify(new Struct(g.getTerm(0).toString()),term);

// it tries to unify the string representation of the first

// argument to the second argument

return true;

}

public boolean unpack_2(Struct g)

{ /** Usage: unpack(StrTerm,Term)

*

* This predicate is true if, and only if, Term is the tuProlog term

* corresponding to the string StrTerm.

*

**/

String str = g.getTerm(0).toString();

if (str.charAt(0) == ’’́) str = str.substring(1,str.length()-1);

Term term = g.getTerm(1);

Prolog core = getEngine();

try { core.unify(term.parse(str),term);}

catch (InvalidTermException ecc)

{ errorMsg = " ERROR IN UNPACK PREDICATE: "+

" the string "+str+" is not a valid tuProlog term.";

return false;

}

return true;

}

Ivana Gungui Integrating Logical Agents Into DCaseLP

162 Appendix A - The tuPInJADE Java package

}

Ivana Gungui Integrating Logical Agents Into DCaseLP

Appendix B - Available performatives in JADE 163

Appendix B

Available performatives in JADE

The performatives that can characterise a JADE message are the following:

❂ ACCEPT_PROPOSAL

❂ AGREE

❂ CANCEL

❂ CFP

❂ CONFIRM

❂ DISCONFIRM

❂ FAILURE

❂ INFORM

❂ INFORM_IF

❂ INFORM_REF

❂ NOT_UNDERSTOOD

❂ PROPAGATE

❂ PROPOSE

❂ PROXY

❂ QUERY_IF

❂ QUERY_REF

Ivana Gungui Integrating Logical Agents Into DCaseLP

164 Appendix B - Available performatives in JADE

❂ REFUSE

❂ REJECT_PROPOSAL

❂ REQUEST

❂ REQUEST_WHEN

❂ REQUEST_WHENEVER

❂ SUBSCRIBE

❂ UNKNOWN

Ivana Gungui Integrating Logical Agents Into DCaseLP

Appendix C - Error messages caused by misuse of predicates
defined in TuJadeLibrary 165

Appendix C

Error messages caused by misuse of predicates

defined in TuJadeLibrary

Here is a list of the error messages that are displayed by a tuProlog agent and
are due to the misuse of the predicates defined in the TuJadeLibrary:

• ” ERROR IN SEND PREDICATE: the performative Performative
of the message to send is a compound term.”;

• ” ERROR IN SEND PREDICATE: the content Content of the msg
to send cannot be a compound term.”;

• ” ERROR IN SEND PREDICATE: the content Content of the msg
to send is an unbound variable.”;

• ” ERROR IN SEND PREDICATE: the anonymous variable ’_’ is not
a valid content of the message to send.”;

• ” ERROR IN SEND PREDICATE: there is an empty list as receiver
of the message to send.”;

• ” ERROR IN SEND PREDICATE: the AID (global unique identifier
in JADE) Receiver of one of the receivers of the message to send is a
number instead of a string.”;

• ” ERROR IN SEND PREDICATE: the AID (global unique identifier
in JADE) Receiver of one of the receivers of the message to send is a
compound term.”;

• ” ERROR IN SEND PREDICATE: the AID (global unique identifier
in JADE) Receiver of one of the receivers of the message to send is
an unbound variable.”;

Ivana Gungui Integrating Logical Agents Into DCaseLP

166
Appendix C - Error messages caused by misuse of predicates

defined in TuJadeLibrary

• ” ERROR IN SEND PREDICATE: one of the receivers of the message
to send is an empty list.”;

• ” ERROR IN SEND PREDICATE: the AID (global unique identifier
in JADE) Receiver of one of the receivers of the message to send is a
list it self.”;

• ” ERROR IN SEND PREDICATE: the symbol ’@’ is missing in the
AID (global unique identifier in JADE) Receiver of one of the receivers
of the message to send.”;

• ” ERROR IN SEND PREDICATE: the symbol ’:’ is missing, or it oc-
curs before the ’@’ symbol, in the AID Receiver of one of the receivers
of the message to send.”;

• ” ERROR IN RECEIVE PREDICATE: the performative Performa-
tive of the message to receive is a bound variable.”;

• ” ERROR IN RECEIVE PREDICATE: the performative Performa-
tive of the message to receive is a ground term instead of a variable.”;

• ” ERROR IN RECEIVE PREDICATE: the performative Performa-
tive of the message to receive is a compound term instead of a vari-
able.”;

• ” ERROR IN RECEIVE PREDICATE: the content Content of the
message to receive is a compound term instead of a variable.”;

• ” ERROR IN RECEIVE PREDICATE: the content Content of the
message to receive is a variable already bound.”;

• ” ERROR IN RECEIVE PREDICATE: the content Content of the
message to receive is not a variable.”;

• ” ERROR IN RECEIVE PREDICATE: the AID (global unique iden-
tifier in JADE) Sender of the sender of the message to receive is a
compound term instead of a variable.”;

• ” ERROR IN RECEIVE PREDICATE: the AID (global unique iden-
tifier in JADE) Sender of the sender of the message to receive is a
variable already bound.”;

Ivana Gungui Integrating Logical Agents Into DCaseLP

Appendix C - Error messages caused by misuse of predicates
defined in TuJadeLibrary 167

• ” ERROR IN RECEIVE PREDICATE: the AID (global unique iden-
tifier in JADE) Sender of the sender of the message to receive is not a
variable.”’;

• ” ERROR IN BLOCKING_RECEIVE PREDICATE: the performa-
tive Performative of the message to receive is a variable already
bound.”;

• ” ERROR IN BLOCKING_RECEIVE PREDICATE: the performa-
tive Performative of the message to receive is a ground term instead
of a variable.”;

• ” ERROR IN BLOCKING_RECEIVE PREDICATE: the performa-
tive Performative of the message to receive is a compound term in-
stead of a variable.”;

• ” ERROR IN BLOCKING_RECEIVE PREDICATE: the content
Content of the message to receive is a compound term instead of a
variable.”;

• ” ERROR IN BLOCKING_RECEIVE PREDICATE: the content
Content of the message to receive is a variable already bound.”;

• ” ERROR IN BLOCKING_RECEIVE PREDICATE: the content
Content of the message to receive is not a variable.”;

• ” ERROR IN BLOCKING_RECEIVE PREDICATE: the AID (global
unique identifier in JADE) Sender of the sender of the message to re-
ceive is a compound term instead of a variable.”;

• ” ERROR IN BLOCKING_RECEIVE PREDICATE: the AID (global
unique identifier in JADE) Sender of the sender of the message to re-
ceive is a variable already bound.”;

• ” ERROR IN BLOCKING_RECEIVE PREDICATE: the AID (global
unique identifier in JADE) Sender of the sender of the message to re-
ceive is not a variable.”;

• ” ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIME-

OUT: the performative Performative of the message to receive is a
variable already bound.”;

Ivana Gungui Integrating Logical Agents Into DCaseLP

168
Appendix C - Error messages caused by misuse of predicates

defined in TuJadeLibrary

• ” ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIME-

OUT: the performative Performative of the message to receive is a
ground term instead of a variable.”;

• ” ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIME-

OUT: the performative Performative of the message to receive is a
compound term instead of a variable.”;

• ” ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIME-

OUT: the content Content of the message to receive is a compound
term instead of a variable.”;

• ” ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIME-

OUT: the content Content of the message to receive is a variable al-
ready bound.”;

• ” ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIME-

OUT: the content Content of the message to receive is not a variable.”;

• ” ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIME-

OUT: the AID (global unique identifier in JADE) Sender of the sender
of the message to receive is a compound term instead of a variable.”;

• ” ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIME-

OUT: the AID (global unique identifier in JADE) Sender of the sender
of the message to receive is a variable already bound.”;

• ” ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIME-

OUT: the AID (global unique identifier in JADE) Sender of the sender
of the message to receive is not a variable.”;

• ” ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIME-

OUT: the maximum time Millisec to wait for a message to arrive is
an unbound variable.”;

• ” ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIME-

OUT: the maximum time Millisec to wait for a message to arrive is
not a number.”;

• ” ERROR IN BLOCKING_RECEIVE PREDICATE WITH TIME-

OUT: the maximum time Millisec to wait for a message to arrive is
not a valid number.”;

Ivana Gungui Integrating Logical Agents Into DCaseLP

Appendix C - Error messages caused by misuse of predicates
defined in TuJadeLibrary 169

• ” ERROR IN UNPACK PREDICATE: the string StrTerm is not a
valid tuProlog term.”;

Ivana Gungui Integrating Logical Agents Into DCaseLP

170 Bibliography

Ivana Gungui Integrating Logical Agents Into DCaseLP

Bibliography 171

Bibliography

[ACL] FIPA’s ACL. Agent Communication Language Specifications.
Home Page: http://www.fipa.org/repository/aclspecs.php3.

[ACT] ACTS. ACTS European program. Home Page:
http://www.infowin.org/ACTS/PROJECTS/ .

[AEK+99] K. Arisha, T. Eiter, S. Kraus, F. Ozcan, R. Ross, and V.S. Sub-
rahmanian. “IMPACT: A Platform for Collaborating Agents”.
IEEE Intelligent Systems, 14(2):64–72, 1999.

[AMMM02] R. Albertoni, M. Martelli, V. Mascardi, and S. Miglia. “Speci-
fica, Implementazione ed Esecuzione di un Prototipo di Sistema
Multi-Agente in D-CaseLP”. In Proc. of WOA 2002, Milano,
Italy, 2002. Pitagora editrice, Bologna. In Italian.

[AMMR03] E. Astesiano, M. Martelli, V. Mascardi, and G. Reggio. “From
Requirement Specification to Prototype Execution: a Combina-
tion of a Multiview Use-Case Driven Method and Agent-Oriented
Techniques”. In J. Debenham and K. Zhang, editors, Proceed-
ings of the 15th International Conference on Software Engineer-
ing and Knowledge Engineering (SEKE’03), pages 578–585. The
Knowledge System Institute, 2003.

[AS95] S. Adali and V.S. Subrahmanian. “Intelligent Caching in Hy-
brid Knowledge Bases”. In N. Mars, editor, Proc. of 1995 In-
ternational Conference on Very Large Knowledge Bases, pages
247–256, Twente, The Netherlands, 1995. IOS Press.

[AUM] AUML. An Agent-based Unified Modeling Language. by FIPA
(The Foundation for Intelligent Physical Agents). Home Page:
http://www.auml.org/.

Ivana Gungui Integrating Logical Agents Into DCaseLP

172 Bibliography

[Aus62] J. L. Austin. “How to do things with words”. Clarendon Press,
Oxford, UK, 1962.

[BBG+04] M. Baldoni, C. Baroglio, I. Gungui, A. Martelli, M. Martelli,
V. Mascardi, V. Patti, and C. Schifanella. “Reasoning about
Agents Interaction Protocols inside DCaseLP”. In J. A. Leite,
A. Omicini, P. Torroni, and P. Yolum, editors, Proc. of Sec-
ond International Workshop on Declarative Agent Languages and
Technologies (DALT2004), pages 250–265, New York, U.S.A.,
July 2004.

[BBG+05] M. Baldoni, C. Baroglio, I. Gungui, A. Martelli, M. Martelli,
V. Mascardi, V. Patti, and C. Schifanella. “Reasoning about
agents’ interaction protocols inside DCaseLP”. In J. Leite,
A. Omicini, P. Torroni, and P. Yolum, editors, Post-Proc. of
the International Workshop on Declarative Agent Languages and
Technologies DALT’04, page to appear, New York, USA, July
2005. Springer. Lecture Notes in Artificial Intelligence.

[BBMP03] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. “Reason-
ing about self and others: communicating agents in a modal
action logic”. In C. Blundo and C. Laneve, editors, Theoretical
Computer Science, 8th Italian Conference, ICTCS’2003, volume
2841 of LNCS, pages 228–241, Bertinoro, Italy, October 2003.
Springer.

[BDM+99] M. Bozzano, G. Delzanno, M. Martelli, V. Mascardi, and F. Zini.
“Multi-Agent Systems Development as a Software Engineer-
ing Enterprise”. In G.Gupta, editor, Proc. of First Interna-
tional Workshop on Practical Aspects of Declarative Languages
(PADL’99), pages 46–60, San Antonio, Texas, 1999. Springer-
Verlag. LNCS 1551.

[BGMP] M. Baldoni, L. Giordano, A. Martelli, and V. Patti. “Program-
ming Rational Agents in a Modal Action Logic”. Annals of Math-
ematics and Artificial Intelligence, Special issue on Logic-Based
Agent Implementation. To appear.

[Boe86] B Boehm. “A spiral model of software development and enhance-
ment”. SIGSOFT Softw. Eng. Notes, 11(4):14–24, August 1986.
ACM Press.

Ivana Gungui Integrating Logical Agents Into DCaseLP

Bibliography 173

[Cen] NASA’s Johnson Space Center. CLIPS: A Tool for Building
Expert Systems. Home Page: http://www.ghg.net/clips/CLIPS.html.

[Con] Mozart Consortium. The Mozart Programming System. Home
Page: http://www.mozart-oz.org/ .

[Del97] G. Delzanno. Logic & Object-Oriented Programming In Lin-
ear Logic. Ph.D. thesis TD2/97, University of Pisa, 1997.
ftp://ftp.disi.unige.it/person/DelzannoG/papers/thesis.ps.gz.

[DKM+99] P. Dart, E. Kazmierczak, M. Martelli, V. Mascardi, L. Sterling,
V.S. Subrahmanian, and F. Zini. “Combining Logical Agents
with Rapid Prototyping for Engineering Distributed Applica-
tions”. In S. Tilley and J. Verner, editors, Proceedings of the
Nineth International Conference of Software Technology and En-
gineering (STEP’99), pages 40–49, Pittsburgh, PA, September
1999. IEEE Computer Society Press.

[DOR01] E. Denti, A. Omicini, and A. Ricci. “tuProlog: A Light-
Weight Prolog for Internet Applications and Infrastructures”.
In I. V. Ramakrishnan, editor, Proc. of the 3rd International
Symposium on Practical Aspects of Declarative Programming
(PADL’01), volume 1990 of LNCS, pages 184–198, Las Ve-
gas, NV, U.S.A., March 2001. Springer-Verlag. Home Page:
http://lia.deis.unibo.it/research/tuprolog/.

[ES99] T. Eiter and V.S. Subrahmanian. “Heterogeneous Active Agents,
II: Algorithms and Complexity”. Artificial Intelligence, 108(1-
2):257–307, 1999.

[ESP99] T. Eiter, V.S. Subrahmanian, and G. Pick. “Heterogeneous Ac-
tive Agents, I: Semantics”. Artificial Intelligence, 108(1-2):179–
255, 1999.

[FG97] S. Franklin and A. Graesser. “Is it an Agent, or just a Program?:
A Taxonomy for Autonomous Agent”. In Proceedings of the
Third International Workshop on Agent Theories, Architectures,
and Languages, pages 21–35. Springer-Verlag, 1997. published
as Intelligent Agents III.

Ivana Gungui Integrating Logical Agents Into DCaseLP

174 Bibliography

[FG98] J. Ferber and O. Gutknecht. “A meta-model for the analysis and
design of organizations in multiagent systems”. In IEEE Com-
puter Society, editor, In Proceedings of Third International Con-
ference on Multi-Agent Systems (ICMAS 98), pages 128–135,
1998.

[FH] Ernest Friedman-Hill. J essTM , the rule en-
gine for the javatm platform. Home Page:
http://herzberg.ca.sandia.gov/jess/index.shtml.

[FIP] FIPA. The Foundation for Intelligent Physical Agents. Home
Page: http://www.fipa.org/.

[FLM95] T. Finin, Y. Labrou, and J. Mayfield. “KQML as an agent com-
munication language”, pages 265–284. Software Agents. J. Brad-
shaw, Cambridge, MA, mit press edition, 1995.

[GF00] O. Gutknecht and J. Ferber. “MadKit: a generic multi-agent
platform”. In AGENTS ’00: Proceedings of the fourth interna-
tional conference on Autonomous agents, volume 1-58113-230-1,
pages 78–79, Barcelona, Spain, 2000. ACM Press. Home Page:
http://www.madkit.org/.

[Gro] Swarm Development Group. Swarm. Home Page:
http://www.swarm.org.

[Hug02] M-P. Huget. M odel checking agent UML protocol diagrams.
CS Department, University of Liverpool, UK, 2002. Technical
Report.

[IBM] IBM. Aglets. Home Page: http://www.trl.ibm.com/aglets/ .

[IGD] Fraunhofer IGD. Secure Mobile Agents Project (SeMoA). Home
Page: http://www.semoa.org.

[IKV] IKV++. Grashopper Agent Platform. Home Page:
http://www.ikv.de/content/Grasshopper/Grasshopper_e.htm.

[JACa] JACK. An introduction to JACK. Home Page:
http://www.is.pku.edu.cn/dis/ .

[JACb] JACK. The Agent Oriented Software Group. Home Page:
http://www.agent-software.com/shared/home/index.html.

Ivana Gungui Integrating Logical Agents Into DCaseLP

Bibliography 175

[JMMS03] T. Juan, M. Martelli, V. Mascardi, and L. Sterling. “Customiz-
ing AOSE Methodologies by Reusing AOSE Features”. In J. S.
Rosenschein, T. Sandholm, M. Wooldridge, and M. Yokoo, ed-
itors, Proceedings of the 2nd International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS’03), pages
113–120, Melbourne, Australia, 2003. ACM Press.

[JPS02] T. Juan, A. Pearce, and L. Sterling. “ROADMAP: Extending
the Gaia Methodology for Complex Open Systems”. In Proceed-
ings of the First International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2002), pages 3–10,
Bologna, Italy, July 2002.

[JSW98] N. R. Jennings, K. Sycara, and M. Wooldridge. “A Roadmap
of Agent Research and Development”. Autonomous Agents and
Multi-Agent Systems, 1:7–38, 1998.

[LNS96] J. Lu, A. Nerode, and V. S. Subrahmanian. “Hybrid Knowledge
Bases”. IEEE Transactions on Knowledge and Data Engineering,
8(5):773–785, October 1996.

[Mag] General Magic. Odyssey. Home Page:
http://www.genmagic.com/technology/odyssey.html.

[Mar99] S. Marini. “Specifica di sistemi multi-agente eterogenei”. Mas-
ter’s thesis, DISI, University of Italy, Genova, Italy, 1999.

[Mas02] V. Mascardi. Logic-Based Specification Environments for Multi-
Agent Systems. Ph.D. thesis DISI–TH–2002–04, University of
Genova, 2002. Downloadable from ftp:
ftp://ftp.disi.unige.it/person/MascardiV/Tesi/mythesis.ps.gz.

[MEH02] H. Mazouzi, A. El Fallah-Seghrouchni, and S. Haddad. “Open
protocol design for complex interactions in multi-agent systems”.
In C. Castelfranchi and W. L. Johnson, editors, Proc. of AAMAS
2002, pages 517–526. ACM Press, 2002.

[Mic] Sun Microsystems. Java trademark of Sun Microsystems. Home
Page: http://www.sun.com/ .

[Mig02] S. Miglia. ”Specifica ed implementazione di ruoli e protocolli
d’interazione per agenti in D-CaseLP”. Master’s thesis, DISI,

Ivana Gungui Integrating Logical Agents Into DCaseLP

176 Bibliography

University of Italy, Genova, Italy, 2002. downloadable from
ftp://gundam.vislink.it/stefano/thesis.pdf.

[MMMZ00a] S. Marini, M. Martelli, V. Mascardi, and F. Zini. “HEMASL: A
Flexible Language to Specify Heterogeneous Agents”. In A. Cor-
radi, A. Omicini, and A. Poggi, editors, Proceedings of WOA
2000. Dagli Oggetti Agli Agenti, pages 76–81, Parma, Italy, 2000.
Pitagora editrice, Bologna.

[MMMZ00b] S. Marini, M. Martelli, V. Mascardi, and F. Zini. “Specification
of Heterogeneous Agent Architectures”. In C. Castelfranchi and
Y. Lespérance, editors, Intelligent Agents VII. Agent Theories,
Architectures, and Languages – Proceedings of the Seventh In-
ternational Workshop ATAL 2000, pages 275–289, Boston, MA,
USA, July 2000. Springer-Verlag, Berlin. Lecture Notes in Arti-
ficial Intelligence 1986.

[MMZ99] M. Martelli, V. Mascardi, and F. Zini. “Specification and Sim-
ulation of Multi-Agent Systems in CaseLP”. In Proc. of Appia–
Gulp–Prode 1999, L’Aquila, Italy, 1999.

[MOL] MOLE. Mole mobile agent system. Home Page:
http://mole.informatik.uni-stuttgart.de/ .

[Nwa96] Hyacinth S. Nwana. “Software Agents: An Overview”. Knowl-
edge Engineering Review, 11(3):205–244, 1996.

[OMGa] OMG. Mobile Agent System Interoperability Facilities . Home
Page: http://www.omg.org/docs/orbos/97-10-05.pdf .

[OMGb] OMGTM . Unified Modeling Language.
Home Page: http://www.uml.org/.

[PW02] L. Padgham and M. Winikoff. “Prometheus: A Methodology
for Developing Intelligent Agents”. In Proceedings of the Third
International Workshop on Agent-Oriented Software Engineering
(AAMAS 2002), Bologna, Italy, July 2002.

[Roy70] W. W. Royce. “Managing the Development of Large Software
Systems”. In Proceedings of IEEE WESCON, August 1970.

[RS] Inc. RECURSION SOFTWARE. Voyager. Home Page:
http://www.objectspace.com/products/voyager/ .

Ivana Gungui Integrating Logical Agents Into DCaseLP

Bibliography 177

[SA03] F. Stolzenburg and T. Arai. “From the specification of multia-
gent systems by statecharts to their formal analysis by model
checking: Towards safety-critical applications”. In J. Muller
M.Schillo, M.Klusch and H.Tianfield, editors, Proc. of the First
German Conference on Multiagent System Technologies, LNAI
2831, pages 131–143. Springer-Verlag, 2003.

[SCT96] L. Sterling, P. Ciancarini, and T. Turnidge. “On the Anima-
tion of “not Executable” Specifications by Prolog”. Interna-
tional Journal of Software Engineering and Knowledge Engineer-
ing, 6(1):63–87, 1996.

[Sea69] J. R. Searle. “Speech Acts”. Cambridge University Press, Cam-
bridge, UK, 1969.

[SIC] SICS. (SWEDISH INSTITUTE OF COMPUTER SCIENCE)
SICStus Prolog. Home Page:
http://www.sics.se/isl/sicstuswww/site/index.html.

[SLBB04] C. Schifanella, L. Lusso, M. Baldoni, and C. Baroglio. “Design
and development of a visual environment for writing DyLOG pro-
grams”. In M. Baldoni, F. De Paoli, A. Martelli, and A. Omicini,
editors, Proc. of WOA 2004: Dagli Oggetti agli Agenti, Sistemi
Complessi e Agenti Razionali, pages 43–50, Torino, Italy, Novem-
ber 2004. Pitagora Editrice Bologna.

[Til] Tilab (Telecom Italia Lab). “Java Agent DEvelopment Frame-
work, an Open Source platform for peer-to-peer agent based ap-
plications”. Home Page: http://jade.tilab.com/.

[Wha] Whatis.com. whatis.com@. Home Page:
http://whatis.techtarget.com/whome/0,289825,sid9,00.html.

Ivana Gungui Integrating Logical Agents Into DCaseLP

