
Declarative Programming and (Co)Induction
Haskell exercises

Davide Ancona and Elena Zucca

PhD Course, DIBRIS, Univ. Genova, June 23-27, 2014

User-defined types
Given the type of binary trees (deriving Show makes them printable)

data BTree a = Empty | Node (a, (BTree a), (BTree a)) deriving Show

define the following functions:

frontier t the frontier of t (list of the leaves)
inorder f a t inorder visit with accumulation parameter a, at each node b the new value of the accu-
mulation parameter is f a b
inorder_list (instance of inorder) list of the nodes with inorder visit sum_tree (instance of inorder)
sum of the nodes of a tree with numeric labels
node_num (istanza of inorder) number of nodes

Laziness

• Define a function iterate::(a -> a) -> a -> [a] such that iterate f x is the infinite list
x, f x, f(f x), f(f(fx)), ...
For instance:

Main> iterate (*2) 1
[1,2,4,8,16,32,64,128,256,512,1024,...

• Define the function repeat::a -> [a] such that repeat x is the infinite list x, x, x, ... (see in the
lecture) as an instance of iterate.

• Define a function cycle:: [a] -> [a] such that cycle xs is the infinite list xs++xs++xs++....

• Define cycle using repeat.

• Define the (predefined) function takeWhile mentioned in the lecture, which, applied to a predicate p and a list
xs, returns the longest prefix (possibly empty) of xs of elements that satisfy p:

Interpreter for the E calculus Implement the E calculus. Notably:

• Define a type Exp modeling language terms (be careful to avoid name conflicts with predefined constructors such
as True e False).

• Define a function isNum which checks whether a term is a numeral, that is of shape

n ::= 0 | succ n.

• Define a function isVal which checks whether a term is a value.

• Define a function reduce :: Exp -> Maybe Expwhich models the reduction relation→. (data Maybe a = Nothing | Just a
is a predefined type for optional values).

• Define a function reduceStar :: Exp -> Exp which models the relation→?.

• Implement big-step semantics as a function big_reduce :: Exp -> Maybe Exp.

