
Declarative Programming and (Co)Induction

Haskell exercises

Davide Ancona and Elena Zucca

PhD Course, DIBRIS, Univ. Genova, June 23-27, 2014

Preliminaries The interactive interpreter is called ghci ; under Windows, we suggest to use WinGHCi, which
is “Windowsish”. Running either one, you should get a prompt where you can write Haskell code. For instance,
try:

3∗2

or

(\x −> x+1) 41

With :? you can get the help of available (ghci) command, anyway the only ones you probably need are:

• :l, to load a file; for instance:

:l c:\users\elena\Desktop\foo.hs

You can also double-click on a .hs file, to start WinGHCi and load the file, or choose “Load...” from the
File menu inside WinGHCi

• :r, to re-load the current file

• :t, to see the type of an expression

• :set +t, to enable the printing of types, after evaluation (note: the special variable it keeps the value of
the last successful evaluation)

Exercises for beginners Define the following functions (we suggest to collect your definitions in a file) and
then evaluate the given expressions, checking their results.

1. the identity function myid

• myid 1

• myid True

2. the function prod, which multiplies two integers

• prod 3 4

3. the function twice that doubles an integer

• twice 3

4. the predicate isEven which holds when an integer is even

• isEven 3

5. the composition of two functions compose

• compose isEven id 2

• compose isEven id 3

• compose isEven id

– Note: you can’t “print” this one

6. copy n e = the list consisting of n copies of e

• copy 5 ”ciao”

(in Haskell strings are just lists of characters)



7. mysum g n = the sum for i from 0 to n of g(i)

8. sumsquare = the sum for i from 0 to n of i ∗ i as an instance (that is, obtained by partial application) of
the previous function

9. forloop n body s = execute n times body starting from s

• forloop 2 (\x −> x+1) 5
(result: 7)

10. copy as an instance of forloop

11. the function leq which, given two functions f and g from integers to integers, checks whether f<=g for
integers from n to m

• leq id twice 1 10

12. prodlist = the product of a list of integers

13. after having defined the function itlist (as we have seen during the lecture), prodlist as an instance of itlist

14. member e l = checks whether e is a member of the list l

15. member as an instance of itlist

• member 2 [1, 2, 3]

More challenging exercises

1. mydrop n l = removes the first n elements of the list l

2. myfilter p l = the list of the elements of l where the predicate p holds

3. poslist l = positive elements of the list (as an instance of the previous function)

4. forall p l = checks whether the predicate p holds for all elements of list l

5. allpos l = checks whether all elements of a list of numbers are positive (as instance of forall)

6. split p l = produces two lists, the former consisting of the elements of l satisfying p, the latter consisting
of the elements that do not satisfy the predicate

7. after having defined the function mymap (as we have seen during the lecture), a function that given a list
of pairs, checks whether for all pairs the first element is equal to the second

8. upto (n, m) = the list of integers from n to m

9. flatten [l 1, ..., l n] = l 1 ++ ... ++ l n

10. flatten as an instance of itlist

11. exists p l = checks whether there is at least an element of list l satisfying p

12. listit = an iterator analogous to itlist we have seen during the lecture, but which starts iteration from the
last element

13. composelist which returns the composition of a list of functions, as an instance of listit

14. combine ([x 1, ..., x n], [y 1, ..., y n]) = [(x 1,y 1), ..., (x n,y n)]

15. sublists l = the list of all sublists of l

for instance: [1, 2, 3] has, as sublists, [] [1] [2] [1, 3] etc

(variant: the list of all sublists consisting of adjoining elements)

16. prefixes l = the list of prefixes of l

for instance: [1, 2, 3] has, as prefixes, the lists [] [1] [1, 2] [1, 2, 3]

2


