Part III: Semantics and type systems of programming languages

Small-step semantics

- abstract model of program execution
- abstract machine:
- states $s \in S$
- $s \rightarrow s^{\prime}$ reduction relation
- if deterministic, a (partial) function
- calculus: states are language terms $t \in \mathcal{T}$
- values $v \in \operatorname{Val} \subseteq \mathcal{T}$
- a term t is a normal form if $\nexists t^{\prime} . t \rightarrow t^{\prime}$ (shortly $t \nrightarrow$)

Introductory example: calculus \mathcal{E}

boolean and natural expressions

$t::=$ true|false|ift then t_{1} else $t_{2} \mid$ succ t
| predt|0| iszerot
$v::=$ true|false|n
$n::=0 \mid \operatorname{succ} n$

Reduction rules

Inductive definition of $t \rightarrow t^{\prime}$
(IF) $\frac{t \rightarrow t^{\prime}}{\text { if } t \text { then } t_{1} \text { else } t_{2} \rightarrow \text { if } t^{\prime} \text { then } t_{1} \text { else } t_{2}}$
(IFTRUE) $\overline{\text { if true then } t_{1} \text { else } t_{2} \rightarrow t_{1}}$
(IFFALSE) if false then t_{1} else $t_{2} \rightarrow t_{2}$
computational rules, congruence (propagation) rules

Reduction rules

```
(Succ)}\frac{t->\mp@subsup{t}{}{\prime}}{\operatorname{succ}t->\operatorname{succ}\mp@subsup{t}{}{\prime}
(PRED)}\frac{t->\mp@subsup{t}{}{\prime}}{\mathrm{ pred }t->\mathrm{ pred t'}
(PredZero) }\overline{\mathrm{ pred 0 }->0
(PredSucc) }\overline{\mathrm{ pred succ n }n
```



```
(IsZero) }\frac{t->\mp@subsup{t}{}{\prime}}{\mathrm{ iszerot iszero t'}
```


Example of reduction with proof trees

(IF) $\frac{(\text { IsZeroZero) } \overline{\text { iszero } 0 \rightarrow \text { true }}}{\text { if iszero } 0 \text { then } 0 \text { else succ } 0 \rightarrow \text { if true then } 0 \text { else succ } 0}$

Properties of \mathcal{E}

- any value is a normal form
- the converse does not hold: e.g., succ true
- stuck terms are normal forms but not values
- reduction is deterministic, that is, for all t there exists at most one t^{\prime} s.t. $t \rightarrow t^{\prime}$ (exercise)
- reduction is terminating, that is, any reduction sequence is finite
- hence, any term has a unique normal form

Big-step semantics

Inductive definition of $t \Downarrow v$

$$
(\mathrm{BIG}-V A L) \quad \overline{V \Downarrow V}
$$

$$
\text { (Big-IFTrue) } \frac{t \Downarrow \text { true } t_{1} \Downarrow v}{\text { if } t \text { then } t_{1} \text { else } t_{2} \Downarrow v} \quad \text { (BIG-IFFALSE) } \frac{t \Downarrow \text { false } t_{2} \Downarrow v}{\text { if } t \text { then } t_{1} \text { else } t_{2} \Downarrow v}
$$

$$
\text { (Big-Succ) } \frac{t \Downarrow n}{\operatorname{succ} t \Downarrow \operatorname{succ} n}
$$

(Big-PredZero) $\frac{t \Downarrow 0}{\text { pred } t \Downarrow 0}$

$$
\text { (Big-PredSucc) } \frac{t \Downarrow \operatorname{succ} n}{\operatorname{pred} t \Downarrow n}
$$

(Big-IsZeroZero) $\frac{t \Downarrow 0}{\text { iszero } t \Downarrow \text { true }}$
(Big-IsZeroSucc) $\frac{t \Downarrow \operatorname{succ} n}{\text { iszero } t \Downarrow \text { false }}$

Proof of equivalence

$t \Downarrow v \Rightarrow t \rightarrow^{\star} v$
By induction on the definition of \Downarrow, that is:
for each (meta)rule defining \Downarrow, we prove that, if the property holds for the premises, then it holds for the consequence
(BIG-VAL) Trivially $v \rightarrow^{\star} v$ (in zero steps).
(Big-IfTrue) We have to prove that if t then t_{1} else $t_{2} \rightarrow^{\star} v$.
By inductive hypothesis, $t \rightarrow^{\star}$ true. Then, by applying (IF) as many times as the number of steps in $t \rightarrow^{\star}$ true, we get:

$$
\text { if } t \text { then } t_{1} \text { else } t_{2} \rightarrow^{\star} \text { if true then } t_{1} \text { else } t_{2}
$$

Now, by applying (IFTRUE), we get
if true then t_{1} else $t_{2} \rightarrow^{\star} t_{1}$
and we conclude, since by inductive hypothesis $t_{1} \rightarrow^{\star} v$.

Proof of equivalence

$t \rightarrow^{\star} v \Rightarrow t \Downarrow v$
By arithmetic induction on the length of the reduction sequence.
$t \rightarrow^{0} v$ Then t coincides with v, and we get the thesis.
$t \rightarrow^{n+1} v$ Then $t \rightarrow t^{\prime} \rightarrow^{n} v$. By inductive hypothesis, $t^{\prime} \Downarrow v$.

We prove, by induction on the definition of \rightarrow, that $t \rightarrow t^{\prime}$ and $t^{\prime} \Downarrow v$ imply $t \Downarrow v$.

Proof of equivalence

$t \rightarrow t^{\prime}$ and $t^{\prime} \Downarrow v$ imply $t \Downarrow v$

(IfTrue) We have to prove that $t_{1} \Downarrow v$ implies
if true then t_{1} else $t_{2} \Downarrow v$.
We get the thesis by applying rules (BIG-VAL) and (Big-IfTrue).
(IF) We have to prove that if t^{\prime} then t_{1} else $t_{2} \Downarrow v$ implies if t then t_{1} else $t_{2} \Downarrow v$.
We derived if t^{\prime} then t_{1} else $t_{2} \Downarrow v$ by applying (BIG-IFTRUE) or (BIG-IFFALSE). Consider, e.g, the first case.
Then, we know that premises $t^{\prime} \Downarrow$ true and $t_{1} \Downarrow v$ hold.
From the first premise and $t \rightarrow t^{\prime}$, by inductive hypothesis, we get $t \Downarrow$ true.
By applying (BIG-IFTRUE) with premises $t \Downarrow$ true e $t_{1} \Downarrow v$ we get the thesis.

Lambda-calculus

- introduced by Alonzo Church in the 1930s as part of an investigation into the foundations of mathematics
- Turing-complete formalism, can be considered "the smallest programming language"
- hence, studied as paradigmatic model of programming languages, which can all be encoded
- functional languages are more directly based on it

Basic idea

- calculus of functions
- basic constructs: function definition and application
- in function definition, the "name" is not relevant: $f(x)=x+3$ and $g(x)=x+3$ define the same function, also sometimes denoted by $x \mapsto x+3$
- in the lambda-calculus we write $\lambda x . x+3$, or, by using the operators of \mathcal{E} :

$$
\lambda x . \operatorname{succ} \text { succ succ } x
$$

- meta-level abbreviation add3 $=\lambda x$.succ succ succ x

Application

$(\lambda x$.succ succ succ $x) \operatorname{succ} 0$
$(\lambda x$. succ succ succ $x)$ succ $0 \rightarrow$ succ succ succ succ 0

```
g=\lambdaf.f(f(succ 0))
    g add3 = ( \lambdaf.f(f succ 0)) \lambdax.succ succ succ x
    ->(\lambdax.succ succ succ x)((\lambdax.\operatorname{succ}\mathrm{ succ succ }x)\mathrm{ succ 0)}
    \rightarrow \text { ( } \lambda x . \text { succ succ succ } x \text { ) succ succ succ succ 0}
    succ succ succ succ succ succ succ 0
```

```
double = \lambdaf.\lambday.f(fy)
    double add3 0 = (\lambdaf.\lambday.f(fy))(\lambdax.succ succ succ x)0
    ->(\lambday.(\lambdax.succ succ succ x)((\lambdax.succ succ succ x) y))0
    ->(\lambdax.succ succ succ }x)((\lambdax.\operatorname{succ}\mathrm{ succ succ }x)0
    (\lambdax.succ succ succ }x\mathrm{ )(succ succ succ 0)
    succ succ succ succ succ succ 0
```


Syntax

$$
\begin{array}{ll}
t & ::= \\
x \quad:= & x|y x . t| t_{1} t_{2} \mid \ldots \\
x & x \mid \ldots
\end{array}
$$

e.g., $+\mathcal{E}$

- Conventions
- $t_{1} t_{2} t_{3}=\left(t_{1} t_{2}\right) t_{3}$
- $\lambda x . t_{1} t_{2}=\lambda x .\left(t_{1} t_{2}\right)$
- Binding, bound, free variables

$$
\begin{aligned}
& \lambda x \cdot \lambda y \cdot x y z \\
& \lambda x \cdot(\lambda y \cdot z y) y
\end{aligned}
$$

- Exercise: formally define the set $F V(t)$ of the free variables of t, and $\operatorname{dim}(t)$ the dimension of t, and prove that, for all $t,|F V(t)| \leq \operatorname{dim}(t)$

Small step reduction rules

$$
v::=\lambda x . t
$$

(APP1) $\frac{t_{1} \rightarrow t_{1}^{\prime}}{t_{1} t_{2} \rightarrow t_{1}^{\prime} t_{2}} \quad$ (APP2) $\frac{t_{2} \rightarrow t_{2}^{\prime}}{v t_{2} \rightarrow v t_{2}^{\prime}}$
(APPABS ${ }^{v}$) $\overline{(\lambda x . t) v \rightarrow t[v / x]}$

Call-by-value strategy

- corresponds to what usually happens in programming languages
- (APPABS ${ }^{v}$) is a restricted version of β-rule:

$$
\text { (AppABS) } \overline{\left(\lambda x . t_{1}\right) t_{2} \rightarrow t_{1}\left[t_{2} / x\right]}
$$

- $t_{1}\left[t_{2} / x\right]$ is the term obtained by replacing all free occurrences of x in t_{1} by t_{2}

Other strategies

- $\left(\lambda x . t_{1}\right) t_{2}$ is a redex
- full-beta reduction (any redex can be reduced in a non-deterministic way)
- normal order (leftmost outermost redex)
- call-by-name (as above, but no reduction inside a lambda-abstraction)

Consider id (id $\lambda \mathrm{z} . i d \mathrm{z}$) with id $=\lambda \mathrm{x} . \mathrm{x}$
(1) id (id $\lambda z . i d z)$
(2) id (id $\lambda z . i d z)$
(3) id (id $\lambda z . i d \mathrm{z})$
call-by-value reduction
$i d(\underline{i d} \lambda \mathrm{z} . i d \mathrm{z}) \rightarrow \underline{i d \lambda \mathrm{z} . i d \mathrm{z}} \rightarrow \lambda \mathrm{z} . i d \mathrm{z}$
(another) full-beta-reduction
$i d(i d \lambda z . i d z) \rightarrow i d \lambda z . i d z \rightarrow \lambda z . i d z \rightarrow \lambda z . z$

Call-by-value versus call-by-name

- consider ($\lambda x .0$) t : evaluation of t is useless, and can even lead to non termination
- consider $(\lambda x . x+x) t: t$ can be evaluated only once
- Haskell uses an optimized version called call-by-need (the argument is evaluated if needed and only once)
- call-by-value strategy is strict (eager), call-by-name and call-by-need strategies are lazy
- exercise: formalize full-beta-reduction and call-by-name strategies

Which properties hold for the lambda-calculus?

- any value is a normal form
- the converse does not hold, e.g., x
- the call by value strategy is deterministic, that is, for all t there exists at most one t^{\prime} s.t. $t \rightarrow t^{\prime}$ (exercise)
- reduction is non terminating, that is, there are infinite reduction sequences

Big-step semantics

(Big-Lambda) $\overline{\lambda x . t \Downarrow \lambda x . t}$
(BIG-APP) $\frac{t_{1} \Downarrow \lambda x . t \quad t_{2} \Downarrow v^{\prime} t\left[v^{\prime} / x\right] \Downarrow v}{t_{1} t_{2} \Downarrow v}$

Type systems

- aim: define a subset of the language terms, the well-typed terms, whose execution cannot get stuck
- this is obtained by classifying terms by different types
- language operators are applied coherently with such types

Introductory example: type system for \mathcal{E}

$$
T::=\text { Bool|Nat }
$$

(T-True) $\overline{\text { true : Bool }}$	(T-FALSE)	false: Bool
$\text { (T-IF) } \frac{t: \text { Bool } t_{1}: T t_{2}: T}{\text { if } t \text { then } t_{1} \text { else } t_{2}: T}$		
(T-Zero) $\overline{0: \mathrm{Nat}}$	(T-Succ)	$\frac{t: \mathrm{Nat}}{\operatorname{succ} t: \mathrm{Nat}}$
(T-Pred) $\frac{t: \text { Nat }}{\text { pred } t: \text { Nat }}$	(T-IsZERO)	$\frac{t: \text { Nat }}{\text { iszerot: Bool }}$

Example of proof tree

- these metarules inductively define a relation $t: T$
- we can prove by structural induction that this relation is a partial function, that is, each term has at most one type not always true, e.g., in languages with subtyping
- the type system gives a conservative ("pessimistic") approximation of the execution, that is:
- well-typed programs do not get stuck, but the converse does not hold, e.g.,

```
if true then 0 else false
```

Theorem (Soundness)
If $t: T$ and $t \rightarrow^{\star} t^{\prime}$, then t^{\prime} is not stuck (that is, t^{\prime} is a value or $t^{\prime} \rightarrow$)

- soundness is usually proved by:

Theorem (Progress)

If $t: T$ then t is not stuck (that is, t is a value or $t \rightarrow$)

Theorem (Subject Reduction)
 If $t: T$ and $t \rightarrow t^{\prime}$ then $t^{\prime}: T$

- in general the type could be not exactly the same, but, e.g., a subtype

Progress+Subject reduction \Rightarrow Soundness

Proof: By arithmetic induction on the length of the reduction
$t \rightarrow^{0} t^{\prime}$ Then t coincides with t^{\prime}, and the thesis follows from Progress.
$t \rightarrow{ }^{n+1} t^{\prime}$ Then $t \rightarrow t^{\prime \prime} \rightarrow^{n} t^{\prime}$. From Subject Reduction we have that $t^{\prime \prime}: T$, hence by inductive hypothesis we get the thesis.

Simply-typed lambda-calculus (+ \mathcal{E})

- explicitly typed approach (Church-style):
- add type annotations when declaring variables

$$
\begin{aligned}
t: & := \\
& x|\lambda x: T . t| t_{1} t_{2} \mid \text { true } \mid \text { false } \\
& \mid \text { ift then } t_{1} \text { else } t_{2} \mid \ldots \\
v: & := \\
T: & \lambda x: T . t \mid \text { true |false|... } \\
T & \text { Bool|Nat } \mid T_{1} \rightarrow T_{2}
\end{aligned}
$$

- there is an identity function for each type, e.g., $\lambda \mathrm{x}: \mathrm{Bool.x}, \lambda \mathrm{x}:$ Nat.x,...
- alternative approach:
- implicitly typed (Curry-style)

$$
\begin{aligned}
t: & := \\
& x|\lambda x . t| t_{1} t_{2} \mid \text { true } \mid \text { false } \\
& \mid \text { ift then } t_{1} \text { else } t_{2} \mid \ldots \\
v: & := \\
T: & \lambda x . t \mid \text { true } \mid \text { false } \mid \ldots \\
T & \text { Bool Nat }\left|T_{1} \rightarrow T_{2}\right| \alpha \mid(\forall \alpha) T
\end{aligned}
$$

- polymorphism: only one function $\lambda \mathrm{x}$.x
- most general type $(\forall \alpha) \alpha \rightarrow \alpha$
- typing relation $\Gamma \vdash t: T$ with Γ type context, needed to type free variables
- Γ is a partial function from variables to types
- $\Gamma[T / x]$ denotes the function which returns T on x, is equal to Γ otherwise

$$
\begin{aligned}
& \text { (T-TRUE) } \\
& \overline{\Gamma \vdash \text { true: Bool }} \\
& \text { (T-FALSE) } \\
& \overline{\Gamma \vdash \text { false: Bool }} \\
& \text { (T-IF) } \frac{\Gamma \vdash t: \text { Bool } \Gamma \vdash t_{1}: T \Gamma \vdash t_{2}: T}{\Gamma \vdash \text { if } t \text { then } t_{1} \text { else } t_{2}: T} \\
& \text { (T-ABS) } \frac{\Gamma\left[T_{1} / x\right] \vdash t: T_{2}}{\Gamma \vdash \lambda x: T_{1} \cdot t: T_{1} \rightarrow T_{2}} \\
& \text { (T-APP) } \frac{\Gamma \vdash t_{1}: T_{2} \rightarrow T \Gamma \vdash t_{2}: T_{2}}{\Gamma \vdash t_{1} t_{2}: T}
\end{aligned}
$$

Soundness of the type system with simple types

Theorem (Soundness)
If $t: T$ and $t \rightarrow^{\star} t^{\prime}$, then t^{\prime} is not stuck (that is, t^{\prime} is a value or $t^{\prime} \rightarrow$)
Theorem (Progress)
If $t: T$, then t is not stuck (that is, t^{\prime} is a value or $t^{\prime} \rightarrow$)
Theorem (Subject reduction)
If $\Gamma \vdash t: T$ and $t \rightarrow t^{\prime}$ then $\Gamma \vdash t^{\prime}: T$.

- progress (and soundness) only holds for closed terms

