
Part III: Semantics and type systems
of programming languages

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 1 / 31

Small-step semantics

abstract model of program execution
abstract machine:

I states s ∈ S
I s → s′ reduction relation
I if deterministic, a (partial) function

calculus: states are language terms t ∈ T
I values v ∈ Val ⊆ T
I a term t is a normal form if 6 ∃t ′.t → t ′ (shortly t 6→)

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 2 / 31

Introductory example: calculus E

boolean and natural expressions

t ::= true | false | if t then t1 else t2 | succ t
| pred t | 0 | iszero t

v ::= true | false | n
n ::= 0 | succ n

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 3 / 31

Reduction rules

Inductive definition of t → t ′

(IF)
t → t ′

if t then t1 else t2 → if t ′ then t1 else t2

(IFTRUE)
if true then t1 else t2 → t1

(IFFALSE)
if false then t1 else t2 → t2

computational rules, congruence (propagation) rules

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 4 / 31

Reduction rules

(SUCC)
t → t ′

succ t → succ t ′

(PRED)
t → t ′

pred t → pred t ′
(PREDZERO)

pred 0→ 0

(PREDSUCC)
pred succ n→ n

(ISZEROZERO)
iszero 0→ true

(ISZEROSUCC)
iszero succ n→ false

(ISZERO)
t → t ′

iszero t → iszero t ′

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 5 / 31

Example of reduction with proof trees

(IF)

(ISZERO)

(PREDSUCC)
pred succ 0 → 0

iszero pred succ 0 → iszero 0

if iszero pred succ 0 then 0 else succ 0 → if iszero 0 then 0 else succ 0

(IF)

(ISZEROZERO)
iszero 0 → true

if iszero 0 then 0 else succ 0 → if true then 0 else succ 0

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 6 / 31

Properties of E

any value is a normal form
I the converse does not hold: e.g., succ true
I stuck terms are normal forms but not values

reduction is deterministic, that is, for all t there exists at most one t ′ s.t.
t → t ′ (exercise)
reduction is terminating, that is, any reduction sequence is finite
hence, any term has a unique normal form

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 7 / 31

Big-step semantics
Inductive definition of t ⇓ v

(BIG-VAL)
v ⇓ v

(BIG-IFTRUE)
t ⇓ true t1 ⇓ v

if t then t1 else t2 ⇓ v
(BIG-IFFALSE)

t ⇓ false t2 ⇓ v
if t then t1 else t2 ⇓ v

(BIG-SUCC)
t ⇓ n

succ t ⇓ succ n

(BIG-PREDZERO)
t ⇓ 0

pred t ⇓ 0
(BIG-PREDSUCC)

t ⇓ succ n
pred t ⇓ n

(BIG-ISZEROZERO)
t ⇓ 0

iszero t ⇓ true
(BIG-ISZEROSUCC)

t ⇓ succ n
iszero t ⇓ false

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 8 / 31

Proof of equivalence

t ⇓ v ⇒ t →? v
By induction on the definition of ⇓, that is:

for each (meta)rule defining ⇓, we prove that, if the property holds for
the premises, then it holds for the consequence

(BIG-VAL) Trivially v →? v (in zero steps).
(BIG-IFTRUE) We have to prove that if t then t1 else t2 →? v .

By inductive hypothesis, t →? true. Then, by applying (IF) as
many times as the number of steps in t →? true, we get:

if t then t1 else t2 →? if true then t1 else t2

Now, by applying (IFTRUE), we get
if true then t1 else t2 →? t1

and we conclude, since by inductive hypothesis t1 →? v .

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 9 / 31

Proof of equivalence

t →? v ⇒ t ⇓ v
By arithmetic induction on the length of the reduction sequence.

t →0 v Then t coincides with v , and we get the thesis.
t →n+1 v Then t → t ′ →n v . By inductive hypothesis, t ′ ⇓ v .

We prove, by induction on the definition of→, that
t → t ′ and t ′ ⇓ v imply t ⇓ v .

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 10 / 31

Proof of equivalence

t → t ′ and t ′ ⇓ v imply t ⇓ v
(IFTRUE) We have to prove that t1 ⇓ v implies

if true then t1 else t2 ⇓ v .
We get the thesis by applying rules (BIG-VAL) and
(BIG-IFTRUE).

(IF) We have to prove that if t ′ then t1 else t2 ⇓ v implies
if t then t1 else t2 ⇓ v .
We derived if t ′ then t1 else t2 ⇓ v by applying (BIG-IFTRUE)
or (BIG-IFFALSE). Consider, e.g, the first case.
Then, we know that premises t ′ ⇓ true and t1 ⇓ v hold.
From the first premise and t → t ′, by inductive hypothesis, we
get t ⇓ true.
By applying (BIG-IFTRUE) with premises t ⇓ true e t1 ⇓ v we
get the thesis.

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 11 / 31

Lambda-calculus

introduced by Alonzo Church in the 1930s as part of an investigation into
the foundations of mathematics
Turing-complete formalism, can be considered “the smallest
programming language”
hence, studied as paradigmatic model of programming languages, which
can all be encoded
functional languages are more directly based on it

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 12 / 31

Basic idea

calculus of functions
basic constructs: function definition and application
in function definition, the “name” is not relevant: f (x) = x + 3 and
g(x) = x + 3 define the same function, also sometimes denoted by
x 7→ x + 3
in the lambda-calculus we write λx.x + 3, or, by using the operators of E :

λx.succ succ succ x

meta-level abbreviation add3 = λx.succ succ succ x

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 13 / 31

Application

(λx.succ succ succ x)succ 0

(λx.succ succ succ x)succ 0→ succ succ succ succ 0

g = λf.f (f (succ 0))
g add3 = (λf.f (f succ 0)) λx.succ succ succ x

→ (λx.succ succ succ x)((λx.succ succ succ x) succ 0)
→ (λx.succ succ succ x) succ succ succ succ 0
→ succ succ succ succ succ succ succ 0

double = λf.λy.f (fy)
double add3 0 = (λf.λy.f (fy))(λx.succ succ succ x)0

→ (λy.(λx.succ succ succ x) ((λx.succ succ succ x)y))0
→ (λx.succ succ succ x) ((λx.succ succ succ x)0)
→ (λx.succ succ succ x) (succ succ succ 0)
→ succ succ succ succ succ succ 0

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 14 / 31

Syntax

t ::= x | λx .t | t1 t2 | . . .
x ::= x | y | f | . . .

e.g., + E

Conventions
I t1 t2 t3 = (t1 t2) t3
I λx .t1t2 = λx .(t1 t2)

Binding, bound, free variables
λx.λy.x y z
λx.(λy.z y) y

Exercise: formally define the set FV (t) of the free variables of t , and
dim(t) the dimension of t , and prove that, for all t , | FV (t) |≤ dim(t)

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 15 / 31

Small step reduction rules

v ::= λx .t

(APP1)
t1 → t ′1

t1 t2 → t ′1 t2
(APP2)

t2 → t ′2
v t2 → v t ′2

(APPABSv)
(λx .t) v → t [v/x]

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 16 / 31

Call-by-value strategy

corresponds to what usually happens in programming languages
(APPABSv) is a restricted version of β-rule:

(APPABS)
(λx .t1) t2 → t1[t2/x]

t1[t2/x] is the term obtained by replacing all free occurrences of x in t1 by
t2

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 17 / 31

Other strategies

(λx .t1) t2 is a redex
full-beta reduction (any redex can be reduced in a non-deterministic way)
normal order (leftmost outermost redex)
call-by-name (as above, but no reduction inside a lambda-abstraction)

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 18 / 31

Consider id (id λz.id z) with id = λx.x

1 id (id λz.id z)

2 id (id λz.id z)

3 id (id λz.id z)

call-by-value reduction
id (id λz.id z)→ id λz.id z→ λz.id z

(another) full-beta-reduction
id (id λz.id z)→ id λz.id z→ λz.id z→ λz.z

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 19 / 31

Call-by-value versus call-by-name

consider (λx .0) t : evaluation of t is useless, and can even lead to non
termination
consider (λx .x + x) t : t can be evaluated only once
Haskell uses an optimized version called call-by-need (the argument is
evaluated if needed and only once)
call-by-value strategy is strict (eager), call-by-name and call-by-need
strategies are lazy
exercise: formalize full-beta-reduction and call-by-name strategies

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 20 / 31

Which properties hold for the lambda-calculus?

any value is a normal form
I the converse does not hold, e.g., x

the call by value strategy is deterministic, that is, for all t there exists at
most one t ′ s.t. t → t ′ (exercise)
reduction is non terminating, that is, there are infinite reduction
sequences

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 21 / 31

Big-step semantics

(BIG-LAMBDA)
λx .t ⇓ λx .t

(BIG-APP)
t1 ⇓ λx .t t2 ⇓ v ′ t [v ′/x] ⇓ v

t1 t2 ⇓ v

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 22 / 31

Type systems

aim: define a subset of the language terms, the well-typed terms, whose
execution cannot get stuck
this is obtained by classifying terms by different types
language operators are applied coherently with such types

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 23 / 31

Introductory example: type system for E

T ::= Bool | Nat

(T-TRUE)
true : Bool

(T-FALSE)
false : Bool

(T-IF)
t : Bool t1 : T t2 : T
if t then t1 else t2 : T

(T-ZERO)
0 : Nat

(T-SUCC)
t : Nat

succ t : Nat

(T-PRED)
t : Nat

pred t : Nat
(T-ISZERO)

t : Nat

iszero t : Bool

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 24 / 31

Example of proof tree

(T-IF)

(T-ISZERO)

(T-ZERO)
0 : Nat

iszero 0 : Bool
(T-ZERO)

0 : Nat
(T-PRED)

(T-ZERO)
0 : Nat

pred 0 : Nat
if iszero 0 then 0 else pred 0 : Nat

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 25 / 31

these metarules inductively define a relation t : T
we can prove by structural induction that this relation is a partial function,
that is,
each term has at most one type
not always true, e.g., in languages with subtyping
the type system gives a conservative (“pessimistic”) approximation of the
execution, that is:
well-typed programs do not get stuck, but the converse does not hold,
e.g.,

if true then 0 else false

Theorem (Soundness)
If t : T and t →? t ′, then t ′ is not stuck (that is, t ′ is a value or t ′ →)

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 26 / 31

soundness is usually proved by:

Theorem (Progress)
If t : T then t is not stuck (that is, t is a value or t →)

Theorem (Subject Reduction)
If t : T and t → t ′ then t ′ : T

in general the type could be not exactly the same, but, e.g., a subtype

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 27 / 31

Progress+Subject reduction⇒ Soundness

Proof: By arithmetic induction on the length of the reduction
t →0 t ′ Then t coincides with t ′, and the thesis follows from Progress.

t →n+1 t ′ Then t → t ′′ →n t ′. From Subject Reduction we have that t ′′ : T ,
hence by inductive hypothesis we get the thesis.

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 28 / 31

Simply-typed lambda-calculus (+ E)

explicitly typed approach (Church-style):
I add type annotations when declaring variables

t ::= x | λx : T .t | t1 t2 | true | false
| if t then t1 else t2 | . . .

v ::= λx : T .t | true | false | . . .
T ::= Bool | Nat | T1 → T2

I there is an identity function for each type, e.g., λx : Bool.x, λx : Nat.x, . . .

alternative approach:
I implicitly typed (Curry-style)

t ::= x | λx .t | t1 t2 | true | false
| if t then t1 else t2 | . . .

v ::= λx .t | true | false | . . .
T ::= Bool | Nat | T1 → T2 | α | (∀α)T

I polymorphism: only one function λx.x
I most general type (∀α)α→ α

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 29 / 31

typing relation Γ ` t : T with Γ type context, needed to type free variables
Γ is a partial function from variables to types
Γ[T/x] denotes the function which returns T on x , is equal to Γ otherwise

(T-TRUE)
Γ ` true : Bool

(T-FALSE)
Γ ` false : Bool

(T-IF)
Γ ` t : Bool Γ ` t1 : T Γ ` t2 : T

Γ ` if t then t1 else t2 : T
(T-VAR)

Γ ` x : T
Γ(x) = T

(T-ABS)
Γ[T1/x] ` t : T2

Γ ` λx : T1.t : T1 → T2
(T-APP)

Γ ` t1 : T2 → T Γ ` t2 : T2

Γ ` t1 t2 : T

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 30 / 31

Soundness of the type system with simple types

Theorem (Soundness)
If t : T and t →? t ′, then t ′ is not stuck (that is, t ′ is a value or t ′ →)

Theorem (Progress)
If t : T , then t is not stuck (that is, t ′ is a value or t ′ →)

Theorem (Subject reduction)
If Γ ` t : T and t → t ′ then Γ ` t ′ : T .

progress (and soundness) only holds for closed terms

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 31 / 31

	Small step semantics
	Type systems

