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Course description

Induction and conduction: different ways to interprete recursive definitions
Self-contained introduction to functional and logic programming
(languages Haskell and Prolog)
Semantics and type system of programming languages
Organized in two modules:

1 10 hours: basis for the second
Induction, small step and big step semantics, lambda calculus, inductive
type system, soundness
Functional programming in Haskell

2 10 hours: induction and coinduction, lowest and greatest fixed points,
abstract and operational semantics of Prolog and coProlog
Programming in Prolog and coProlog
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First module

1 [Monday 10.30-13] Induction: inductive definitions and proofs by
induction

2 [Monday 14.30-17] Functional programming in Haskell + Lab: simple
programs in Haskell

3 [Wednesday 10.30-13] Small step and big step semantics, lambda
calculus, type system, soundness

4 [Wednesday 14.30-17] Lab: programs in Haskell
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Part I
Induction
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Induction

What is induction useful for?
definition of sets whose elements can be generated in a finite number of
steps:

I natural numbers, finite lists, finite trees
I relations and functions over such sets

proving properties by the induction principle
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Simple examples

Mathematical style
The set of even numbers is the least set s.t. (or: the set inductively
defined by)

I 0 is an even number
I if n is an even number, then n + 2 is an even number

Recursive function definitions in programming languages
f x = if x == 0 then 0 else f (x-1) + 1

Syntax of programming languages

t ::= true | false | if t then t1 else t2 | succ t
| pred t | 0 | iszero t
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Inference systems

U universe

a rule is a pair
Pr
c

, with Pr ⊆ U set of premises, c ∈ U consequence

an inference system Φ is a set of rules

Φ is finitary if, for all
Pr
c
∈ Φ, Pr is finite

X ⊆ U is closed w.r.t.
Pr
c

iff Pr ⊆ X implies c ∈ X

X is Φ-closed (closed w.r.t. Φ) iff it is closed w.r.t all rules in Φ

the set I(Φ) inductively defined by Φ is the intersection of all the Φ-closed
sets
it is easy to see that I(Φ) is Φ-closed, hence we can equivalently say the
least Φ-closed set
U is always Φ-closed hence I(Φ) is well-defined
given Φ, we can take as universe the set of consequence elements,
hence it is not necessary to fix U
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Inductive definitions

an inductive definition is any finite description, in some meta-language, of
an inference system Φ, hence of I(Φ)

typically consisting of a set of meta-rules of the form
pre
ce

cond

pre, ce, cond are expressions with meta-variables
each meta-rule represents a (possibly infinite) set of rules, one for each
assignment of values to the meta-variables satisfiyng cond
meta-rules with empty set of premises are the basis, others are the
inductive step of the inductive definition
however, there are many other styles for giving inductive definitions ...
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Example: mathematical style

The set of even numbers is the least set s.t. (or: the set inductively
defined by)

0 is an even number
if n is an even number, then n + 2 is an even number

corresponds to the following (meta-)rules, where n ranges over N:

0
n

n + 2
closed sets: {n | n even}, {n | n even or n ≥ k} for some k ∈ N

non closed sets: e.g., ∅
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Variants

n
n + 2

empty set

10
n + 1

n
0..10

0
n

n + 2
{n | n even}

1
N

it is easy to see that I(Φ) 6= ∅ only if there is some rule with empty set of
premises
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Recursive function definitions in programming
languages

f x = if x == 0 then 0 else f (x-1) + 1

corresponds to the following (meta-)rules, where x , r range over Z:

(0,0)

(x − 1, r)

(x , r + 1)
x 6= 0

(some) closed sets: all the partial identity functions defined from some
x ≤ 0, the total identity function, ...
exercise: show that I(Φ) = {(x , x) | x ≥ 0}

I I(Φ) ⊆ {(x , x) | x ≥ 0} is proved showing that {(x , x) | x ≥ 0} is closed
I {(x , x) | x ≥ 0} ⊆ I(Φ) by arithmetic induction
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Example: syntax of programming languages

T ::= true | false | if T then T else T
| 0 | succ T | pred T | iszero T

corresponds to the following (meta-)rules:

true false

t t1 t2
if t then t1 else t2

0
t

succ t
t

pred t
t

iszero t

context free grammars correspond to a special class of inductive
definitions where premises are distinct metavariables

t ::= true | false | if t then t1 else t2
| 0 | succ t | pred t | iszero t
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An alternative view

Definition (Signature)
A signature Σ is a family of operators indexed over natural numbers. If
op ∈ Σn, then we say that op has arity n and write op/n

Definition (Terms over a signature)
Given a signature Σ, the set of terms over Σ or Σ-terms is inductively defined
by:
for each operator op with arity n, if t1, . . . , tn are terms, then op(t1, . . . , tn) is a
term

for simplicity we consider the uni-sorted case
a context-free grammar implicitly defines a signature and, for each
operator, a concrete syntax for writing op(t1, . . . , tn), e.g.,
if t then t1 else t2
the signature is the abstract syntax
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Induction principle
Φ inference system, I(Φ) ⊆ U , P : U → {T ,F}

Theorem

If for all
Pr
c
∈ Φ

(?) (P(d) = T for all d ∈ Pr) implies P(c) = T

then P(d) = T for all d ∈ I(Φ)

Proof.
Set C = {d |P(d) = T}
The condition (?) can be equivalently written: Pr ⊆ C implies c ∈ C.
That is, C is Φ-closed, hence I(Φ) ⊆ C.

Remark
If Pr = ∅, then (?) is equivalent to P(c) = T
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Particular case: arithmetic induction

Theorem
P predicate on natural numbers s.t.

P(0) = T
for all n ∈ N, P(n) = T implies P(n + 1) = T

Then P(n) = T for all n ∈ N.

Proof.
N can be seen as the set inductively defined by:

0 ∈ N

if n ∈ N then n + 1 ∈ N.
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Particular case: complete arithmetic induction

Theorem
P predicate on natural numbers s.t.

P(0) = T
for all n ∈ N, P(m) = T for all m < n implies P(n) = T

Then P(n) = T for all n ∈ N.

Proof.
N can be seen as the set inductively defined by:

0 ∈ N

if m ∈ N for all m < n then n ∈ N.
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Particular case: structural induction

Theorem
Σ signature, P predicate on Σ-terms s.t.

for all op ∈ Σn, P(t1) = T , . . . ,P(tn) = T implies P(op(t1, . . . , tn)) = T

Then P(t) = T for all t term over Σ.
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Multiple inference definitions (sketch)
all previous definitions and results can be generalized to families
a family of sets A indexed over S (S-family of sets) is a function which
associates to each s ∈ S a set As

also written {As}s∈S

in a multiple inference system a rule has shape
{Pr s}s∈S

c : s
I(Φ) is an S-family of sets
examples: definitions of mutually recursive functions, general form of
syntax (many syntactic categories = indexes, many-sorted signature)
multiple induction principle: Φ multiple inference system, I(Φ) ⊆ U ,
{Ps}s∈S family of predicates s.t. Ps : Us → {T ,F}

If for all
{Pr s}s∈S

c : s
∈ Φ

(?) (Ps(d) = T ∀d ∈ Pr s,∀s ∈ S) implies Ps(c) = T

then Ps(d) = T ∀d ∈ I(Φ),∀s ∈ S
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Inductive definitions as fixed points

given f : A→ A and a ∈ A, a is a fixed point of f iff f (a) = a
given f : ℘(U)→ ℘(U) and X ⊆ U , X is a pre-fixed point of f (X is
f -closed) iff f (X ) ⊆ X
X is a least pre-fixed point of f iff f (Y ) ⊆ Y implies X ⊆ Y
equivalently, X is the intersection of pre-fixed points
f is monotone if X ⊆ Y implies f (X ) ⊆ f (Y )
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Theorem
Given Φ an inference system with universe U , set fΦ : ℘(U)→ ℘(U) defined by:

for each X ⊆ U , fΦ(X ) = {c | Pr
c
∈ Φ,Pr ⊆ X}

Then, fΦ is monotone and I(Φ) is the least pre-fixed point of fΦ(X ).

Theorem
Given f : ℘(U)→ ℘(U) monotone, set Φf defined by:

Φf = {Pr
c
| Pr ⊆ U , c ∈ f (Pr)}

Then, I(Φf ) is the least pre-fixed point of f .
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