
Part 2
Functional programming in Haskell
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Functional programming
early functional flavored languages: LISP (John McCarthy, late 1950s), then IPL
and APL
1977: John Backus Turing Award lecture “Can Programming Be Liberated From
the von Neumann Style? A Functional Style and its Algebra of Programs.”
1970: ML (Robin Milner, University of Edinburgh)
several ML dialects, most common now Objective Caml and Standard ML
1970s: Scheme (Lisp dialect) brought functional programming to the wider
programming-languages community
following Miranda (David Turner, 1985), interest in lazy functional languages
grew: by 1987, more than a dozen
at FPCA ’87 in Portland, consensus that a committee should define an open
standard for such languages
first version defined in 1990
Haskell 98: stable, minimal, portable version of the language with standard library
for teaching, and as a base for future extensions
in January 2003 revised version
Glasgow Haskell Compiler (GHC) current de facto standard implementation
from 2006, ongoing process of defining a successor to the Haskell 98 standard
(last revision published in July 2010)
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Basics: lambda-expressions

lambda-calculus forms the basis, as in almost all functional programming
languages today
expressions which denote functions: \ x -> x+1

function application (\ x -> x+1) 2

conventions like in the lambda calculis
I t1 t2 t3 = (t1 t2) t3
I λx .t1t2 = λx .(t1 t2)

declarations of functions:

inc = \x -> x+1
inc x = x + 1
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Basics: types and declarations

each value has a type, the following are type signature declarations

5 :: Integer
’a’ :: Char
\x -> x + 1 :: Integer -> Integer
[1,2,3] :: [Integer]
(’b’,4) :: (Char,Integer)

the type system is sound, and infers type signatures

:type "elena"
"elena" :: [Char]

types universally quantified over all types, e.g.,
∀a [a] is the type of all homogeneous lists
quantifier is omitted
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Functions

Higher-order functions

double f x = f (f x)

compose (f, g) x = f (g x)

compose (f, g) = \x -> f (g x)

compose = \(f, g) -> \x -> f (g x)

*Main> compose (inc, inc) 1
3

*Main> double inc 5
7
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Functions
Curried functions
sum:: (Integer, Integer) -> Integer
sum (x,y) = x + y
sum(1,2)

add:: Integer -> Integer -> Integer
add x y = x + y

*Main> add 1 2
3

compose f g x = f(g x)

Partial application
inc = add 1

*Main> :type compose inc inc

compose inc inc :: Integer -> Integer

*Main> :type compose inc

compose inc :: (t -> Integer) -> t -> Integer
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given a function
f : A×B → C, its curried version f̃ : A→ B → C is defined by: for all a ∈ A,

f̃ (a) : B → C,
for all b ∈ B, f̃ (a)(b) = f (a,b)

conversely, given a function g : A→ B → C, its uncurried version
ĝ : A× B → C is defined by: for all a ∈ A, b ∈ B,

ĝ(a,b) = g(a)(b)

curry and uncurry operators can be defined in Haskell:

curry f = \a -> \b -> f (a, b)

uncurry g = \(a, b) -> g a b

*Main> :type curry sum

curry sum :: Integer -> Integer -> Integer

*Main> :type curry

curry :: ((a, b) -> c) -> a -> b -> c
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Polymorphism

the definition of the identity function f (x) = x makes sense independently
from the nature of the argument
in languages allowing polymorphism it is possible to write such
definitions: \x -> x

one definition applicable to arguments of different types
different from overloading: same name for different definitions

*Main> :type (\x -> x)
(\x -> x) :: t -> t

*Main> :type compose
compose :: (t1 -> t2) -> (t -> t1) -> t -> t2
first(x,y) = x

*Main> :type (first)
(first) :: (t, t1) -> t
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Polymorphism

some types are more general than others, e.g., [a] -> a is more general
than [Integer] -> Integer

any expression has a most general or principal type
the principal type represents all the different types a function can assume
the type of compose in the expression compose inc inc is

(Integer->Integer) -> (Integer->Integer)->Integer->Integer

obtained by instantiating the type variables
each (well-typed) Haskell expression has a unique principal (most
general) type
type inference: the programmer is not required to insert type annotations
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Functions

infix operators are just functions and can be defined:

(++):: [a] -> [a] -> [a]
[]++xs = xs
(x:xs)++ys = x:(xs++ys)

(.) :: (b -> c) -> (a -> b) -> (a -> c)
f.g = \x -> f(g x)

partial applications of infix operators are called sections

(x+) ≡ \y -> x + y
(+y) ≡ \x -> x + y
(+) ≡ \x y -> x + y
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Pattern matching
general form
f p1 = e1

...
f pn = en

pattern = expression with free variables, describing a possible shape of
the argument
patterns are considered in the given order, hence each pattern behaves
like a filter for the following (unless irrefutable)
example
negate True = False
negate False = True

or
negate True = False
negate x = True

or using a wild-card
negate True = False
negate _ = True
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an exception is raised if a function is invoked on an argument which does
not match any pattern:

*Main> let f 0 = 0 in f 1

*** Exception: <interactive>:1:4-10: Non-exhaustive
patterns in function f
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Another example

Implication

implies True False = False
implies _ _ = True

a variable cannot be repeated, e.g.:

*Main> let f x x = 0 in f 0 0
<interactive>:1:6:

Conflicting definitions for ‘x’
Bound at: <interactive>:1:6

<interactive>:1:8
In the definition of ‘f’
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Lists

[1,2,3] is a shorthand for 1:2:3:[]
example of function defined by pattern-matching:

length [] = 0
length (_:xs) = 1 + length xs

is a polymorphic function

length:: [a] -> Integer
length [1,2,3]
length [’a’,’b’,’c’]
length [[1],[2,3],[4,5,6]]

other polymorphic functions:

head:: [a] -> a
head (x:_) = x
tail::[a]->[a]
tail (_:xs) = xs
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Polymorphic functions on lists

map :: (t -> a) -> [t] -> [a]
map f [] = []
map f (x:xs) = f x : map f xs

map (\x->x+1) [1,2,3,4]
[2,3,4,5]

itlist :: (t1 -> t -> t1) -> t1 -> [t] -> t1
itlist f a [] = a
itlist f a (x:xs) = itlist f (f a x) xs

sumlist = itlist (+) 0

flatten = itlist (++) []

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) = (if p x then [x] else [])++(filter p xs)
filter (\x->x>5)[1,2,3,4,5,6,7]
[6,7]
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List comprehension

filter p xs = [x | x <- xs, p x]

quicksort [] = []
quicksort (x:xs) =

quicksort [y|y<-xs,y<x]
++[x]
++ quicksort [y|y<-xs,y>=x]
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