Part 2

Functional programming in Haskell

Functional programming

- early functional flavored languages: LISP (John McCarthy, late 1950s), then IPL and APL
- 1977: John Backus Turing Award lecture "Can Programming Be Liberated From the von Neumann Style? A Functional Style and its Algebra of Programs."
- 1970: ML (Robin Milner, University of Edinburgh)
- several ML dialects, most common now Objective Caml and Standard ML
- 1970s: Scheme (Lisp dialect) brought functional programming to the wider programming-languages community
- following Miranda (David Turner, 1985), interest in lazy functional languages grew: by 1987, more than a dozen
- at FPCA '87 in Portland, consensus that a committee should define an open standard for such languages
- first version defined in 1990
- Haskell 98: stable, minimal, portable version of the language with standard library for teaching, and as a base for future extensions
- in January 2003 revised version
- Glasgow Haskell Compiler (GHC) current de facto standard implementation
- from 2006, ongoing process of defining a successor to the Haskell 98 standard (last revision published in July 2010)

Basics: lambda-expressions

- lambda-calculus forms the basis, as in almost all functional programming languages today
- expressions which denote functions: $\backslash \mathrm{x}$-> $\mathrm{x}+1$
- function application ($\backslash \mathrm{x}$-> x+1) 2
- conventions like in the lambda calculis
- $t_{1} t_{2} t_{3}=\left(t_{1} t_{2}\right) t_{3}$
- $\lambda x . t_{1} t_{2}=\lambda x .\left(t_{1} t_{2}\right)$
- declarations of functions:

```
inc = \x -> x+1
```

inc $x=x+1$

Basics: types and declarations

- each value has a type, the following are type signature declarations

```
5 :: Integer
    'a' :: Char
    \x -> x + 1 :: Integer -> Integer
    [1,2,3] :: [Integer]
    ('b',4) :: (Char,Integer)
```

- the type system is sound, and infers type signatures

```
:type "elena"
"elena" :: [Char]
```

- types universally quantified over all types, e.g.,
- $\forall a[a]$ is the type of all homogeneous lists
- quantifier is omitted

Functions

- Higher-order functions

```
double f x = f (f x)
compose (f, g) x = f (g x)
compose (f, g) = \x -> f (g x)
compose = \(f, g) -> \x -> f (g x)
*Main> compose (inc, inc) 1
3
*Main> double inc 5
7
```


Functions

- Curried functions

```
sum:: (Integer, Integer) -> Integer
sum (x,y) = x + y
sum(1,2)
add:: Integer -> Integer -> Integer
add x y = x + y
*Main> add 1 2
3
compose f g x = f (g x)
```

- Partial application

```
inc = add 1
*Main> :type compose inc inc
compose inc inc :: Integer -> Integer
*Main> :type compose inc
compose inc :: (t -> Integer) -> t -> Integer
```

- given a function
$f: A \times B \rightarrow C$, its curried version $\tilde{f}: A \rightarrow B \rightarrow C$ is defined by: for all $a \in A$,

$$
\begin{aligned}
& \tilde{f}(a): B \rightarrow C, \\
& \text { for all } b \in B, \tilde{f}(a)(b)=f(a, b)
\end{aligned}
$$

- conversely, given a function $g: A \rightarrow B \rightarrow C$, its uncurried version $\hat{g}: A \times B \rightarrow C$ is defined by: for all $a \in A, b \in B$,

$$
\hat{g}(a, b)=g(a)(b)
$$

- curry and uncurry operators can be defined in Haskell:

```
curry f = \a -> \b -> f (a, b)
uncurry g = \(a, b) -> g a b
*Main> :type curry sum
curry sum :: Integer -> Integer -> Integer
*Main> :type curry
curry :: ((a, b) -> c) -> a -> b -> c
```


Polymorphism

- the definition of the identity function $f(x)=x$ makes sense independently from the nature of the argument
- in languages allowing polymorphism it is possible to write such definitions: \x -> x
- one definition applicable to arguments of different types
- different from overloading: same name for different definitions

```
*Main> :type (\x -> x)
(\x -> x) :: t -> t
*Main> :type compose
compose :: (t1 -> t2) -> (t -> t1) -> t -> t2
first(x,y) = x
*Main> :type (first)
(first) :: (t, t1) -> t
```


Polymorphism

- some types are more general than others, e.g., [a] -> a is more general than [Integer] -> Integer
- any expression has a most general or principal type
- the principal type represents all the different types a function can assume
- the type of compose in the expression compose inc inc is

```
(Integer->Integer) -> (Integer->Integer) -> Integer-> Integer
```

obtained by instantiating the type variables

- each (well-typed) Haskell expression has a unique principal (most general) type
- type inference: the programmer is not required to insert type annotations

Functions

- infix operators are just functions and can be defined:

```
(++):: [a] -> [a] -> [a]
[]++xs = xs
(x:xs)++ys = x:(xs++ys)
(.) :: (b -> c) -> (a -> b) -> (a -> c)
f.g = \x -> f(g x)
```

- partial applications of infix operators are called sections

```
(x+) \equiv \y -> x + y
(+y) \equiv \x -> x + y
(+) \equiv\x y -> x + y
```


Pattern matching

- general form
f $\mathrm{p}_{1}=e_{1}$
f $p_{n}=e_{n}$
- pattern = expression with free variables, describing a possible shape of the argument
- patterns are considered in the given order, hence each pattern behaves like a filter for the following (unless irrefutable)
- example

```
negate True = False
negate False = True
```


or

```
negate True = False
```

negate $x=$ True
or using a wild-card

```
negate True = False
```

negate _ = True

- an exception is raised if a function is invoked on an argument which does not match any pattern:

```
*Main> let f 0 = 0 in f 1
*** Exception: <interactive>:1:4-10: Non-exhaustive
    patterns in function f
```


Another example

```
Implication
implies True False = False
implies _ _ = True
```

- a variable cannot be repeated, e.g.:

```
*Main> let f x x = 0 in f 0 0
<interactive>:1:6:
    Conflicting definitions for 'x'
    Bound at: <interactive>:1:6
        <interactive>:1:8
    In the definition of 'f'
```


Lists

- $[1,2,3]$ is a shorthand for $1: 2: 3:[]$
- example of function defined by pattern-matching:

```
length [] = 0
length (_:xs) = 1 + length xs
```

- is a polymorphic function

```
length:: [a] -> Integer
length [1,2,3]
length ['a','b','c']
length [[1],[2,3],[4,5,6]]
```

- other polymorphic functions:

```
head:: [a] -> a
head (x:_) = x
tail::[a]->[a]
tail (_:xs) = xs
```


Polymorphic functions on lists

```
map :: (t -> a) -> [t] -> [a]
map f [] = []
map f (x:xs) = f x : map f xS
map (\x->x+1) [1,2,3,4]
[2,3,4,5]
itlist :: (t1 -> t -> t1) -> t1 -> [t] -> t1
itlist f a [] = a
itlist f a (x:xS) = itlist f (f a x) xs
sumlist = itlist (+) 0
flatten = itlist (++) []
filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) = (if p x then [x] else [])++(filter p xs)
filter (\x->x>5)[1,2,3,4,5,6,7]
[6,7]
```


List comprehension

```
filter p xs = [x | x <- xs, p x]
quicksort [] = []
quicksort (x:xs) =
    quicksort [y|y<-xs,y<x]
    ++[x]
    ++ quicksort [y|y<-xs,y>=x]
```

