Chapter 6

Axiomatic Program Verification

The kinds of semantics we have seen so far specify the meaning of programs al-
though they may also be used to prove that given programs possess certain proper-
ties. We may distinguish between several classes of properties: partial correctness
properties are properties expressing that if a given program terminates then there
will be a certain relationship between the initial and the final values of the vari-
ables. Thus a partial correctness property of a program need not ensure that it
terminates. This is contrary to total correctness properties which express that the
program will terminate and that there will be a certain relationship between the
initial and the final values of the variables. Thus we have

partial correctness + termination = total correctness

Yet another class of properties is concerned with the resources used when executing
the program. An example is the ¢ime used to execute the program on a particular
machine.

6.1 Direct proofs of program correctness

In this section we shall give some examples that prove partial correctness of state-
ments based directly on the operational and denotational semantics. We shall
prove that the factorial statement

y := 1; while =(x=1) do (y := y*x; x := x—1)

is partially correct, that is ¢f the statement terminates then the final value of y
will be the factorial of the initial value of x.

Natural semantics

Using natural semantics the partial correctness of the factorial statement can be
formalized as follows:

169



170 6 Axiomatic Program Verification

For all states s and ', if
(y := 1; while —(x=1) do (y := y*x; x := x—1), s) = &
then 'y = (s x)! and s x > 0

This is indeed a partial correctness property because the statement does not ter-
minate if the initial value s x of x is non-positive.
The proof proceeds in three stages:

Stage 1: We prove that the body of the while loop satisfies:

if (y:=y*x; x:=x—1,8) > s"and s" x > 0

then (s y) x (s x)! = (s"y) x (s" x)! and s x > 0
Stage 2: We prove that the while loop satisfies:

if (while —(x=1) do (y := y*x; x :=x—1), §) — "

(**)

then (s y) x (s x)! =s"yand " x=1and s x>0

Stage 3: We prove the partial correctness property for the complete program:
if (y := 1; while =(x=1) do (y := y*x; x := x—1), 5) = ¢ (o)
then s’y = (s x)! and s x > 0

In each of the three stages the derivation tree of the given transition is inspected
in order to prove the property.
In the first stage we consider the transition

(y := y*x; x := x—1, 5) — §"”
According to [comp,s] there will be transitions
(y = y*x, s) = s’ and (x :=x—1, §') = "

for some s'. From the axiom [assys| we then get that s’ = s[y—.A[yxx]s| and that
s" = s'[x—>A[x—1]s']. Combining these results we have

s" = sly—(s y)*(s x)][x—(s x)—1]
Assuming that s” x > 0 we can then calculate

(s" ) % (" 1)t = ((s y) * (s x)) % ((s x)=1)! = (s y) % (s %)!

and since s x = (s” x) + 1 this shows that (*) does indeed hold.
In the second stage we proceed by induction on the shape of the derivation tree
for

!

(while —=(x=1) do (y := y*x; x := x—1), 5) = s



6.1 Direct proofs of program correctness 171

One of two axioms and rules could have been used to construct this derivation.
If [while®] has been used then s’ = s and B[-(x=1)]s = ff. This means that
s x =1 and since 1! = 1 we get the required (s y) x (s x)! = sy and s x > 0.
This proves (**).

Next assume that [whilef] is used to construct the derivation. Then it must
be the case that B[-(x=1)]s = tt and

(y = y*x; x := x—1, ) — §"
and
!

(while —(x=1) do (y := y*x; x :=x—1), s") = s

for some state s”. The induction hypothesis applied to the latter derivation gives
that

(s"y)x(s"x)! =s'yand s"x=1and s" x>0
From (*) we get that

(sy)*x(sx)! =(s"y)x(s"x)! and s x>0
Putting these results together we get

(sy)x(sx)! =s'yand s x=1and s x >0

This proves (**) and thereby the second stage of the proof is completed.
Finally, consider the third stage of the proof and the derivation

(y :=1; while —(x=1) do (y := y*x; x :=x—1), 5) = ¢
According to [comp,s] there will be a state s” such that
(y:=1,s) — "
and
(while —(x=1) do (y := y*x; x :=x—1), s") = &

From axiom [ass,s] we see that s” = s[y—1] and from (**) we get that s” x > 0
and therefore s x > 0. Hence (s x)! = (s” y) % (s” x)! holds and using (**) we get

(sx)! =(s"y)x(s"x)! =45y
as required. This proves the partial correctness of the factorial statement.

Exercise 6.1 Use the natural semantics to prove the partial correctness of the
statement



172 6 Axiomatic Program Verification

z := 0; while y<x do (z := z+1; x := x—y)

that is prove that if the statement terminates in s’ when executed from a state s
withs x > 0and sy > 0, then s" z = (s x) div (s y) and s’ x = (s x) mod (s y)
where div is integer division and mod is the modulo operation. O

Exercise 6.2 Use the natural semantics to prove the following total correctness
property for the factorial program: for all states s

if s x > 0 then there exists a state s’ such that
!

(y := 1; while —(x=1) do (y := y*x; x 1= x—1), s) = s

and s’y = (s x)! O

Structural operational semantics

The partial correctness of the factorial statement can also be established using the
structural operational semantics. The property is then reformulated as:

For all states s and &', if
(y := 1; while —(x=1) do (y := y*x; x := x—1), 5) =* &
then s’y = (s x)! and s x > 0

Again it is worthwhile to approach the proof in stages:

Stage 1: We prove by induction on the length of derivation sequences that
if (while —(x=1) do (y := y*x; x := x—1), s) =k &
then sy =(sy)*x(sx)! and s x =1and s x >0

Stage 2: We prove that
if (y := 1; while —=(x=1) do (y := y*x; x := x—1), 5) =* &
then s’ y = (s x)! and s x > 0

Exercise 6.3 Complete the proof of stages 1 and 2. O

Denotational semantics

We shall now use the denotational semantics to prove partial correctness properties
of statements. The idea is to formulate the property as a predicate 1 on the ccpo
(State — State, C), that is

Y: (State — State) — T



6.1 Direct proofs of program correctness 173

As an example, the partial correctness of the factorial statement will be written
as

Y5ac(Sas[y = 1; while =(x=1) do (y := yxx; x := x—1)]) = tt
where the predicate v ¢, is defined by

Vsac(g) = tt
if and only if

for all states s and ', if g s = s’ then ' y = (s x)! and s x > 0

A predicate v: D — T defined on a ccpo (D,C) is called an admissible predicate
if and only if we have

ifip d =ttforall d € YV then ¢(UY) = tt

for every chain Y in D. Thus if 1) holds on all the elements of the chain then it
also holds on the least upper bound of the chain.

Example 6.4 Consider the predicate ;. defined on State — State by

Vraclg) = tt
if and only if

for all states s and s', if g s = &’
then s’y = (sy) x (sx)! and s x>0

Then ,. is an admissible predicate. To see this assume that Y is a chain in
State — State and assume that ¢’,. g = tt for all g € Y. We shall then prove
that 1, (LY) = tt, that is

Uy) s=s
implies
ssy=(sy)x(sx)! and s x >0

From Lemma 4.25 we have graph(||Y) = U{ graph(g) | g € Y }. We have assumed
that (UY) s = s’ so Y cannot be empty and (s, s') € graph(g) for some g € Y.
But then

ssy=(sy)x(sx)! and s x >0
as Y’,. g = tt for all g € Y. This proves that ¢, is an admissible predicate. O

For admissible predicates we have the following induction principle called fized
point induction:



174 6 Axiomatic Program Verification

Theorem 6.5 Let (D,C) be a ccpo and let f: D — D be a continuous function
and let ) be an admissible predicate on D. If for all d € D

Y d = tt implies Y(f d) = tt
then ¢ (FIX f) = tt.

Proof: We shall first note that
YL = tt

holds by admissibility of ¢ (applied to the chain ¥ = §}). By induction on n we
can then show that

Y(fr L) = tt

using the assumptions of the theorem. By admissibility of ) (applied to the chain
Y={f"L|n>0}) we then have

Y(FIX f) = tt
This completes the proof. O

We are now in a position where we can prove the partial correctness of the
factorial statement. The first observation is that

Sasly := 1; while =(x=1) do (y := y*x; x :=x—1)]s = &
if and only if
Sas[while —(x=1) do (y := y*x; x := x—1)](s[y—1]) = ¢
Thus it is sufficient to prove that
V'ac(Sas[while —(x=1) do (y := y*x; x := x—1)]) = tt (*)
(where 9, is defined in Example 6.4) as this will imply that
VY rac(Sasly == 1; while —(x=1) do (y := y*x; x 1= x—1)]) = tt

We shall now reformulate (*) slightly to bring ourselves in a position where we
can use fixed point induction. Using the definition of S4s in Table 4.1 we have

Sas[while —(x=1) do (y := y*x; x := x—1)] = FIX F
where the functional F is defined by

F g = cond(B[—(x=1)], g © Sas[y := y*x; x := x—1], id)



6.2 Partial correctness assertions 175

Using the semantic equations defining S45 we can rewrite this definition as

S ifszx=1
(Fg)s=

g(sly—(s y)x(s x)][x—(s x)—1]) otherwise

We have already seen that F' is a continuous function (for example in the proof
of Proposition 4.47) and from Example 6.4 we have that ¢, is an admissible
predicate. Thus we see from Theorem 6.5 that (*) follows if we show that

Whae 9 = tt implies ¢, (F g) = tt

To prove this implication assume that w}ac g = tt, that is for all states s and s’
ifgs=sthens' y=(sy)rx(sx)! and s x>0

We shall prove that ';,.(F g) = tt, that is for all states s and s’
if(Fg)s=sthens'y=(sy)*(sx)! andsx>0

Inspecting the definition of F' we see that there are two cases. First assume that
s x=1. Then (F g) s = s and clearly s y = (s y) * (s x)! and s x > 0. Next
assume that s x # 1. Then

(F g) 5 = glsly—(s )x(s x)][x—(s 1)—1))
From the assumptions about g we then get that
s'y=((s y)*(s x)) » ((s x)—1)! and (s x)—1 > 0
so that the desired result
ssy=(sy)x(sx)! and s x >0
follows.

Exercise 6.6 Repeat Exercise 6.1 using the denotational semantics. O

6.2 Partial correctness assertions

One may argue that the above proofs are too detailed to be practically useful; the
reason is that they are too closely connected with the semantics of the program-
ming language. One may therefore want to capture the essential properties of the
various constructs so that it would be less demanding to conduct proofs about
given programs. Of course the choice of “essential properties” will determine the
sort of properties that we may accomplish proving. In this section we shall be
interested in partial correctness properties and therefore the “essential properties”
of the various constructs will not include termination.

The idea is to specify properties of programs as assertions, or claims, about
them. An assertion is a triple of the form



176 6 Axiomatic Program Verification

{P}rs{Q}

where § is a statement and P and () are predicates. Here P is called the precondi-
tion and @ is called the postcondition. Intuitively, the meaningof { P } S { @ }
is that

if P holds in the initial state, and
if the execution of S terminates when started in that state,

then ) will hold in the state in which S halts

Note that for { P } § { @ } to hold we do not require that S halts when started
in states satisfying P — merely that if it does halt then @) holds in the final state.

Logical variables

As an example we may write
{ x=n} y ;= 1; while —(x=1) do (y := xxy; x := x—1) { y=n! A n>0}

to express that if the value of x is equal to the value of n before the factorial
program is executed then the value of y will be equal to the factorial of the value
of n after the execution of the program has terminated (if indeed it terminates).
Here n is a special variable called a logical variable and these logical variables
must not appear in any statement considered. The role of these variables is to
“remember” the initial values of the program variables. Note that if we replace
the postcondition y=n! A n>0 by the new postcondition y=x! A x>0 then the
assertion above will express a relationship between the final value of y and the
final value of x and this is not what we want. The use of logical variables solves
the problem because it allows us to refer to initial values of variables.
We shall thus distinguish between two kinds of variables:

e program variables, and
e logical variables.

The states will determine the values of both kinds of variables and since logical
variables do not occur in programs their values will always be the same. In case
of the factorial program we know that the value of n is the same in the initial
state and in the final state. The precondition x = n expresses that n has the same
value as x in the initial state. Since the program will not change the value of n the
postcondition y = n! will express that the final value of y is equal to the factorial
of the initial value of x.



6.2 Partial correctness assertions 177

The assertion language

There are two approaches concerning how to specify the preconditions and post-
conditions of the assertions:

e the intensional approach, versus
e the extensional approach.

In the intensional approach the idea is to introduce an explicit language called an
assertion language and then the conditions will be formulae of that language. This
assertion language is in general much more powerful than the boolean expressions,
Bexp, introduced in Chapter 1. In fact the assertion language has to be very
powerful indeed in order to be able to express all the preconditions and postcon-
ditions we may be interested in; we shall return to this in the next section. The
approach we shall follow is the extensional approach and it is a kind of shortcut.
The idea is that the conditions are predicates, that is functions in State — T.
Thus the meaning of { P } S { @ } may be reformulated as saying that if P holds
on a state s and if § executed from state s results in the state s’ then ¢ holds on
s'. We can write any predicates we like and therefore the expressiveness problem
mentioned above does not arise.

Each boolean expression b defines a predicate B[b]. We shall feel free to let
b include logical variables as well as program variables so the precondition x = n
used above is an example of a boolean expression. To ease the readability, we
introduce the following notation

Pi A Py for P where P s = (P s) and (P3 s)
P,V Py for P where P s = (P; s) or (Py s)
-P for P' where P! s = (P s)
Plz—Ala]] for P’ where P' s = P (s[z—.A[a]s])
P, = P, for Vs € State: P, s implies Py s

When it is convenient, but not when defining formal inference rules, we shall
allow to dispense with BJ---] and A[- - -] inside square brackets as well as within
preconditions and postconditions.

Exercise 6.7 Show that
e B[blz—a]] = B[b][z+—A]a]] for all b and a,
e B[by A by] = B[bi] A B[bs] for all b; and by, and

o B[-b] = —B[b] for all b. O



178 6 Axiomatic Program Verification

[ass,] { Plz—Ala]] } z:=a { P}

[skip,] { P }skip{ P}

comp] {PrsSi{Q} {@}S{R}

compy, {P}S;8 {R}

" {Blb] AP} S {Q}, {-BIBIAP}S:{Q}

p { P} if b then S; else Sy { @ }

- {Bl)J]AP}S{P}

[whilep) { P} while bdo S {-B[b] AP}
{PI}S{QI} . ! !

[cons,] P15(Q] if P= P'and Q' = @

Table 6.1: Axiomatic system for partial correctness

The inference system

The partial correctness assertions will be specified by an inference system consist-
ing of a set of axioms and rules. The formulae of the inference system have the
form

{P}rs{Q}

where S is a statement in the language While and P and @ are predicates. The
axioms and rules are summarized in Table 6.1 and will be explained below. The
inference system specifies an ariomatic semantics for While.

The axiom for assignment statements is

{ Plz—Ala]] } z:=a { P}

This axiom assumes that the execution of z := a starts in a state s that satisfies
Plz—A[a]], that is in a state s where s[z—.A[a]s] satisfies P. The axiom expresses
that if the execution of z := a terminates (which will always be the case) then the
final state will satisfy P. From the earlier definitions of the semantics of While
we know that the final state will be s[z+—.A[a]s] so it is easy to see that the axiom
is plausible.

For skip the axiom is

{ P}skip{ P}

Thus if P holds before skip is executed then it also holds afterwards. This is
clearly plausible as skip does nothing.



6.2 Partial correctness assertions 179

Axioms [ass,| and [skip,] are really aziom schemes generating separate axioms
for each choice of predicate P. The meaning of the remaining constructs are given
by rules of inference rather than axiom schemes. Each such rule specifies a way
of deducing an assertion about a compound construct from assertions about its
constituents. For composition the rule is:

{P}5S.{Q} {Q}S:{R}
{P}S;S{R}

This says that if P holds prior to the execution of §;; S5 and if the execution
terminates then we can conclude that R holds in the final state provided that
there is a predicate () for which we can deduce that

e if § is executed from a state where P holds and if it terminates then () will
hold for the final state, and that

e if §, is executed from a state where () holds and if it terminates then R will
hold for the final state.

The rule for the conditional is
{BlolAP} S {@}, {-BJAP}S{Q}
{ P} if b then S| else S, { @ }

The rule says that if if b then S; else S5 is executed from a state where P holds
and if it terminates, then ¢ will hold for the final state provided that we can
deduce that

e if S| is executed from a state where P and b hold and if it terminates then
() holds on the final state, and that

e if S5 is executed from a state where P and —b hold and if it terminates then
@ holds on the final state.

The rule for the iterative statement is
{Blp]AP}YS{P}
{ P } while bdo S { ~B[b] A P }

The predicate P is called an invariant for the while-loop and the idea is that it
will hold before and after each execution of the body S of the loop. The rule says
that if additionally b is true before each execution of the body of the loop then —b
will be true when the execution of the while-loop has terminated.

To complete the inference system we need one more rule of inference

{P}S{Q}
{Prs{Q}

if P= P and Q' = @



180 6 Axiomatic Program Verification

This rule says that we can strengthen the precondition P’ and weaken the post-
condition @'. This rule is often called the rule of consequence.

Note that Table 6.1 specifies a set of axioms and rules just as the tables defining
the operational semantics in Chapter 2. The analogue of a derivation tree will now
be called an inference tree since it shows how to infer that a certain property holds.
Thus the leaves of an inference tree will be instances of axioms and the internal
nodes will correspond to instances of rules. We shall say that the inference tree
gives a proof of the property expressed by its root. We shall write

AP }S{Q}

for the provability of the assertion { P } S { @ }. An inference tree is called
stmple if it is an instance of one of the axioms and otherwise it is called composite.

Example 6.8 Consider the statement while true do skip. From [skip,| we have
(omitting the BJ[---])

Fp { true } skip { true }
Since (true A true) = true we can apply the rule of consequence [cons,| and get
Fp { true A true } skip { true }
Hence by the rule [while,] we get
Fp, { true } while true do skip { —true A true }
We have that —true A true = true so by applying [cons,| once more we get
Fp { true } while true do skip { true }
The inference above can be summarized by the following inference tree:

{ true } skip { true }

{ true A true } skip { true }

{ true } while true do skip { —true A true }

{ true } while true do skip { true }

It is now easy to see that we cannot claim that { P } S { @ } means that S
will terminate in a state satisfying () when it is started in a state satisfying P.
For the assertion { true } while true do skip { true } this reading would mean
that the program would always terminate and clearly this is not the case. a



6.2 Partial correctness assertions 181

Example 6.9 To illustrate the use of the axiomatic semantics for verification we
shall prove the assertion

{x=n}
y := 1; while —(x=1) do (y := y*x; x := x—1)
{y=nlAn>0}

where, for the sake of readability, we write y = n! A n > 0 for the predicate
P where P s = (s y=(sn)! A sn>0)

The inference of this assertion proceeds in a number of stages. First we define the
predicate INV that is going to be the invariant of the while-loop:

INV s = (s x> 0 implies ((s y) x (s x)! = (sn)! and s n > s x))
We shall then consider the body of the loop. Using [ass,| we get
Fo { INV[x—x—1] } x:=x—-1 { INV }
Similarly, we get
Fo { UNV[z—x—1])[y—y*x] } vy =y x x { INV[x—x—1] }
We can now apply the rule [comp,] to the two assertions above and get
Fo { UNV[x—x—1])[y—y*x] } y =y xx; x:=x—1 { INV }
It is easy to verify that
(=(x=1) A INV) = (INV[z—x—1])[y—>y*x]
so using the rule [cons,| we get
Fo{(x=1)AINV }y:=yxx;x:=x—1{INV }
We are now in a position to use the rule [while,| and get

Fo { INV }
while —(x=1) do (y := y*x; x := x—1)
{=(-(x=1)) ANINV }
Clearly we have

—|(—|(x:1))/\INV=>y:n!/\n>O



182 6 Axiomatic Program Verification

so applying rule [cons,| we get
Fp { INV } while =(x=1) do (y :=y*x;x:=x—1) {y=nl An>0}
We shall now apply the axiom [ass,]| to the statement y := 1 and get
Fo { INV]y—1] } y:=1{INV }
Using that
x =n = INV[y—1]
together with [cons,] we get
Fo{x=n}y:=1{INV}
Finally, we can use the rule [comp,] and get
o {x=n}
y := 1; while —(x=1) do (y := y*x; x := x—1)
{y=nlAn>0}

as required. O

Exercise 6.10 Specify a formula expressing the partial correctness property of
the program of Exercise 6.1. Construct an inference tree giving a proof of this
property using the inference system of Table 6.1. O

Exercise 6.11 Suggest an inference rule for repeat S until b. You are not
allowed to rely on the existence of a while-construct in the language. a

Exercise 6.12 Suggest an inference rule for for z := a; to a3 do S. You are not
allowed to rely on the existence of a while-construct in the language. a

Properties of the semantics

In the operational and denotational semantics we defined a notion of two programs
being semantically equivalent. We can define a similar notion for the axiomatic
semantics: Two programs §; and Sy are provably equivalent according to the
axiomatic semantics of Table 6.1 if for all preconditions P and postconditions ¢
we have

Fo{P}S1{Q} ifandonlyif H, {P} S, {Q}

Exercise 6.13 Show that the following statements of While are provably equiv-
alent in the above sense:



6.3 Soundness and completeness 183

e §; skip and §
o S1; (S2; S3) and (S1; S2); S 0

Proofs of properties of the axiomatic semantics will often proceed by induction
on the shape of the inference tree:

Induction on the Shape of Inference Trees

1:  Prove that the property holds for all the simple inference trees by showing
that it holds for the azioms of the inference system.

2:  Prove that the property holds for all composite inference trees: For each
rule assume that the property holds for its premises (this is called the
induction hypothesis) and that the conditions of the rule are satisfied and
then prove that it also holds for the conclusion of the rule.

Exercise 6.14 ** Using the inference rule for repeat S until b given in Exercise
6.11 show that repeat S until b is provably equivalent to S; while —b do S. Hint:
it is not too hard to show that what is provable about repeat S until b is also
provable about S; while —b do S. O

Exercise 6.15 Show that -, { P } S { true } for all statements .S and properties
P. a

6.3 Soundness and completeness

We shall now address the relationship between the inference system of Table 6.1
and the operational and denotational semantics of the previous chapters. We shall
prove that

e the inference system is sound: if some partial correctness property can be
proved using the inference system then it does indeed hold according to the
semantics, and

e the inference system is complete: if some partial correctness property does
hold according to the semantics then we can also find a proof for it using the
inference system.

The completeness result can only be proved because we use the extensional ap-
proach where preconditions and postconditions are arbitrary predicates. In the
intensional approach we only have a weaker result; we shall return to this later in
this section.



184 6 Axiomatic Program Verification

As the operational and denotational semantics are equivalent we only need to
consider one of them here and we shall choose the natural semantics. The partial
correctness assertion { P } S { @ } is said to be wvalid if and only if

for all states s, if P s = tt and (S,s) — s’ for some s’ then @ s' = tt
and we shall write this as
F{P}S{Q}
The soundness property is then expressed by
Fo{P}S{Q} impliess =, {P}S{Q}
and the completeness property is expressed by
Eo{P}S{Q} implies H, { P} S{Q}
We have

Theorem 6.16 For all partial correctness assertions { P } S { @ } we have
= {P}S{Q} ifandonlyif , { P}S{Q}

It is customary to prove the soundness and completeness results separately.

Soundness

We shall first prove:

Lemma 6.17 The inference system of Table 6.1 is sound, that is for every partial
correctness formula { P } S { @ } we have

Fo{P}S{Q}implies = {P}S{Q}

Proof: The proof is by induction on the shape of the inference tree used to infer
Fo { P } S { @ }. This amounts to nothing but a formalization of the intuitions
we gave when introducing the axioms and rules.

The case [ass,|: We shall prove that the axiom is valid, so suppose that



6.3 Soundness and completeness 185

and (P[z—A[a]]) s = tt. We shall then prove that P s’ = tt. From [ass,s] we get
that s’ = s[z—A[a]s] and from (P[z—.A[a]]) s = tt we get that P (s[z—A[a]s])
= tt. Thus P s’ = tt as was to be shown.

The case [skip,|: This case is immediate using the clause [skipys|-

The case [comp,|: We assume that

Fp{P}Si{Q}and = {Q} S2{ R}

and we have to prove that =, { P } S1; S2 { R }. So consider arbitrary states s
and s” such that P s = tt and

(51;59, s) — §"
From [comp,s] we get that there is a state s’ such that
(S1,8) = s and (S, s') — §"

From (Sy, s) = s, Ps=ttand =, { P } S1 { @ } we get @ s’ = tt. From
(S9,8") = ", Qs =ttand =, { @ } S2 { R } it follows that R s” = tt as was
to be shown.

The case [if,]: Assume that

Fp { BILIA P} S { @ }and = { -B[B] AP} S {Q}

To prove |=, { P } if b then S; else Sy { @ } consider arbitrary states s and s’
such that P s = tt and

(if b then S; else Sy, s) — &'

There are two cases. If B[b]s = tt then we get (B[b] A P) s = tt and from [if,q]
we have

(S1, 8) = ¢

From the first assumption we therefore get @@ s’ = tt. If B[b]s = ff the result
follows in a similar way from the second assumption.

The case [while,]: Assume that

Fp {BILIAP}S{P}

To prove =, { P } while b do S { =B[b] A P } consider arbitrary states s and
s" such that P s = tt and

(while b do S, s) — s"



186 6 Axiomatic Program Verification

and we shall show that (—=B[b]AP) s” = tt. We shall now proceed by induction on
the shape of the derivation tree in the natural semantics. One of two cases apply.
If B[b]s = ff then s” = s according to [whilel] and clearly (=B[b] A P) s" = tt
as required. Next consider the case where B[b]s = tt and

(S, sy »s and (while bdo S, s') — s”

for some state s’. Thus (B[b] A P) s = tt and we can then apply the assump-
tion =, { B[b)] AP} S{ P } and get that P s’ = tt. The induction hypothe-
sis can now be applied to the derivation (while b do S, s') — s” and gives that
(=B[b] N P) s" = tt. This completes the proof of this case.

The case [consp|: Suppose that
Eo{P'}S{Q }and P= P and Q' = @

To prove =, { P } S { @ } consider states s and s’ such that P s = tt and
(S, s) = ¢

Since P s = tt and P = P’ we also have P’ s = tt and the assumption then gives
us that @' s’ = tt. From Q' = @ we therefore get () s’ = tt as required. a

Exercise 6.18 Show that the inference rule for repeat § until b suggested in
Exercise 6.11 preserves validity. Argue that this means that the entire proof system
consisting of the axioms and rules of Table 6.1 together with the rule of Exercise
6.11 is sound. O

Exercise 6.19 Define ="' { P } S { @ } to mean that

for all states s such that P s = tt there exists a state s’ such that
Q s =ttand (S, s) = s

Show that it is not the case that -, { P } S { @ } implies = { P } S { @ } and
conclude that the proof system of Table 6.1 cannot be sound with respect to this
definition of validity. O

Completeness (in the extensional approach)

Before turning to the proof of the completeness result we shall consider a special
predicate wlp(S, @) defined for each statement S and predicate Q:

wlp(S, @) s = tt

if and only if for all states s,



6.3 Soundness and completeness 187

if (S, s) — s’ then @ s’ = tt

The predicate is called the weakest liberal precondition for @) and it satisfies:

Fact 6.20 For every statement S and predicate () we have

« = {vIn(S, Q) }S{Q} ")
o if =, {P}S{Q}then P= wlp(S, Q) (**)

meaning that wip(S, @) is the weakest possible precondition for S and Q.

Proof: To verify that (*) holds let s and s’ be states such that (S, s) — s
and wlp(S, @) s = tt. From the definition of wlp(S, @) we get that @ s’ = tt
as required. To verify that (**) holds assume that =, { P } S { @ } and let
Ps=tt. If (S,s) — s’ then @ s' = tt (because =, { P } S { @ }) so clearly
wlp(S,Q) s = tt. O

Exercise 6.21 Prove that the predicate INV of Example 6.9 satisfies
INV = wlp(while —(x=1) do (y := yxx; x :=x—1),y=n!l An>0) O

Exercise 6.22 Another interesting predicate called the strongest postcondition
for S and P can be defined by

sp(P, S) s = tt
if and only if
there exists s such that (S, s) — s’ and P s = tt
Prove that
e« = {P}S {sp(P, $) )}
oif =, {P}S{Q}thensp(P, S)= @

Thus sp(P, S) is the strongest possible postcondition for P and S. O

Lemma 6.23 The inference system of Table 6.1 is complete, that is for every
partial correctness formula { P } S { @ } we have

Fo{P}S{Q}impliest, { P} S{Q}




188 6 Axiomatic Program Verification

Proof: The completeness result follows if we can infer
Fo {wilp(S, @)} S{ @}

for all statements S and predicates (). To see this suppose that
FH{P}S{Q}

Then Fact 6.20 gives that

P = wip(S,Q)

so that (*) and [cons,] give

H{P}S{Q}

as required.
To prove (*) we proceed by structural induction on the statement S.

The case z := a: Based on the natural semantics it is easy to verify that

wip(z := a, @) = Q[z—A[a]]
so the result follows directly from [ass}).
The case skip: Since wlp(skip, @) = @ the result follows from [skip,].
The case 51;55: The induction hypothesis applied to S; and S5 gives

Fp { wlp(S2, @) } S2{ @ }

and

Fp { wWip(S1, wip(Se, @)) } S1 { wip(S2, @) }

so that [comp,] gives

Fp { wWip(S1, wip(Se, @)) } S1;82{ @ }
We shall now prove that

wip(S1;52, @) = wlp(S1, wip(S2, @))

as then [cons,| will give the required proof in the inference system. So assume that
wlp(S1;52, @) s = tt and we shall show that wip(S1, wip(Ss, @)) s = tt. This is
obvious unless there is a state s’ such that (S;, s) — s’ and then we must prove
that wip(Ss, @) s’ = tt. However, this is obvious too unless there is a state s”
such that (Ss, s’) — s” and then we must prove that @ s” = tt. But by [comp,s]
we have (S1;S59, s) — s” so that @ s"” = tt follows from wlp(S5;;52, @) s = tt.

The case if b then S; else S5: The induction hypothesis applied to S; and S5

gives



6.3 Soundness and completeness 189

Fp { wip(51, @) } 1 { @ }and b { wp(52, Q) } S2{ @ }
Define the predicate P by

P = (B[o] A wip(S1, @)) vV (=B[b] A wip(S2, Q)
Then we have
(B[b] A P) = wlp(S1, @) and (=B[b] A P) = wlp(S2, Q)
so [cons,| can be applied twice and gives
o {BIBIA P} S {Q}andby { -BIIAPYS:{Q)
Using [if,] we therefore get
Fp { P } if b then S; else S, { @ }
To see that this is the desired result it suffices to show that
wlp(if b then S; else So, @) = P

and this is straightforward by cases on the value of b.

The case while b do §: Define the predicate P by
P = wlp(while b do S, Q)

We first show that
(-B[b] A P) = @ (**)
(B[b] A P) = wip(S,P) (***)

To verify (**) let s be such that (—=B[b] A P) s = tt. Then it must be the case
that (while b do S, s) — s so we have @ s = tt. To verify (***) let s be such
that (B[b] A P) s = tt and we shall show that wip(S,P) s = tt. This is obvious
unless there is a state s’ such that (S, s) — s’ in which case we shall prove that
P s" = tt. We have two cases. First we assume that (while b do S, s') — s” for
some s”. Then [whilel’] gives us that (while b do §, s) — s” and since P s =
tt we get that @ s” = tt using Fact 6.20. But this means that P s’ = tt as was
required. In the second case we assume that (while b do S, s') — s” does not
hold for any state s”. But this means that P s’ = tt holds vacuously and we have
finished the proof of (***).
The induction hypothesis applied to the body S of the while-loop gives

Fo {wip(S,P) } §{ P}

and using (***) together with [cons,| we get



190 6 Axiomatic Program Verification

Fo{B[)JAP}S{P}
We can now apply the rule [while,] and get
Fp { P } while bdo S { -B[b] A P }
Finally, we use (**) together with [cons,] and get
Fo { P } while bdo S { @ }

as required. O

Exercise 6.24 Prove that the inference system for the while-language extended
with repeat S until b as in Exercise 6.11 is complete. (If not you should improve
your rule for repeat S until b.) |

Exercise 6.25 * Prove the completeness of the inference system of Table 6.1
using the strongest postconditions of Exercise 6.22 rather than the weakest liberal
preconditions as used in the proof of Lemma 6.23. O

Exercise 6.26 Define a notion of validity based on the denotational semantics
of Chapter 4 and prove the soundness of the inference system of Table 6.1 using
this definition, that is without using the equivalence between the denotational
semantics and the operational semantics. O

Exercise 6.27 Use the definition of validity of Exercise 6.26 and prove the com-
pleteness of the inference system of Table 6.1. O

Expressiveness problems (in the intensional approach)

So far we have only considered the extensional approach where the preconditions
and postconditions of the formulae are predicates. In the intensional approach they
are formulae of some assertion language £. The axioms and rules of the inference
system will be as in Table 6.1, the only difference being that the preconditions
and postconditions are formulae of £ and that operations such as P[z—A[a]],
P A Py and P; = P, are operations on formulae of L.

It will be natural to let £ include the boolean expressions of While. The
soundness proof of Lemma 6.17 then carries directly over to the intensional ap-
proach. Unfortunately, this is not the case for the completeness proof of Lemma
6.23. The reason is that the predicates wlp(S, @) used as preconditions now have
to be represented as formulae of £ and that this may not be possible.

To illustrate the problems let S be a statement, for example a universal program
in the sense of recursion theory, that has an undecidable Halting problem. Further,
suppose that £ only contains the boolean expressions of While. Finally, assume
that there is a formula bg of £ such that for all states s



6.4 Extensions of the axiomatic system 191

B[bs] s = tt if and only if wlp(S, false) s = tt
Then also —bg is a formula of £. We have
B[bs] s = tt if and only if the computation of S on s loops
and hence
B[—bs] s = tt if and only if the computation of S on s terminates

We now have a contradiction: the assumptions about S ensure that B[—bg] must
be an undecidable function; on the other hand Table 1.2 suggests an obvious
algorithm for evaluating B[—bs]. Hence our assumption about the existence of bg
must be mistaken. Consequently we cannot mimic the proof of Lemma 6.23.

The obvious remedy is to extend £ to be a much more powerful language that
allows quantification as well. A central concept is that £ must be expressive with
respect to While and its semantics, and one then shows that Table 6.1 is relatively
complete (in the sense of Cook). It is beyond the scope of this book to go deeper
into these matters but we provide references in Chapter 7.

6.4 Extensions of the axiomatic system

In this section we shall consider two extensions of the inference system for par-
tial correctness assertions. The first extension shows how the approach can be
modified to prove total correctness assertions thereby allowing us to reason about
termination properties. In the second extension we consider how to extend the
inference systems to more language constructs, in particular recursive procedures.

Total correctness assertions

We shall now consider formulae of the form
{PrS{iQ}
The idea is that

if the precondition P is fulfilled
then S is guaranteed to terminate (as recorded by the symbol |})
and the final state will satisfy the postcondition Q).

This is formalized by defining validity of { P } S { | @ } by
F{P}S{IQ}



192 6 Axiomatic Program Verification

[assy] { Plz—AJa]] } z:=a{ | P}
[skip] { P }skip{{ P}
(comp] {P}y5:{4Q}, {Q@}S:{IR}
" (P} SiS:{VR)
if,] {BloJAP}S1 {4 @}, {-B]JAP}S:{IQ}
B { P} if bthen S;else So { | @}
while] { P(z+1)} S { I P(z) }
" {32.P(z) } while bdo S { | P(0) }
where P(z+1) = B[b], P(0) = —B[b]
and z ranges over natural numbers (that is z>0)
{P}S{1Q} , ,
[cons; ] (P1S{0 0} where P = P’ and Q' = @

Table 6.2: Axiomatic system for total correctness

if and only if

for all states s, if P s = tt then there exists s’ such that
@ s =ttand (S, s) — s

The inference system for total correctness assertions is very similar to that for
partial correctness assertions, the only difference being that the rule for the while-
construct has changed. The complete set of axioms and rules is given in Table 6.2.
We shall write

FH{P}S{LQ}

if there exists an inference tree with the formula { P } S { || @ } as root, that is
if the formula is provably in the inference system.

In the rule [while] we use a parameterized family P(z) of predicates for the
invariant. The idea is that z is the number of unfoldings of the while-loop that will
be necessary. So if the while-loop does not have to be unfolded at all then P(0)
holds and it must imply that b is false. If the while-loop has to be unfolded z+1
times then P(z+1) holds and b must hold before the body of the loop is executed;
then P(z) will hold afterwards so that we have decreased the total number of
times the loop remains to be unfolded. The precondition of the conclusion of the
rule expresses that there exists a bound on the number of times the loop has to be
unfolded and the postcondition expresses that when the while-loop has terminated
then no more unfoldings are necessary.



6.4 Extensions of the axiomatic system 193

Example 6.28 The total correctness of the factorial statement can be expressed
by the following assertion:

{x>0Ax=n}
y := 1; while =(x=1) do (y := y*x; x := x—1)
{$y=n'}
where y = n! is an abbreviation for the predicate
P where P s = (s y = (s n)!)

In addition to expressing that the final value of y is the factorial of the initial
value of x the assertion also expresses that the program does indeed terminate on
all states satisfying the precondition. The inference of this assertion proceeds in
a number of stages. First we define the predicate INV (z) that is going to be the
invariant of the while-loop

INV(z) s=(sx>0and (sy) x(sx)! =(sn)! and sx =2z + 1)
We shall first consider the body of the loop. Using [ass;| we get

o { INV(z)[x—x—1] } x:=x—1 { | INV(z) }
Similarly, we get

Fo { (INV (2z)[x—=x—1])[y—y*x] } y =y *xx { | INV(2)[x—x—1] }
We can now apply the rule [comp;] to the two assertions above and get

Fo { (INV (z)[x—x—1))[y—y*x] }yi=y*xx;x:=x—1 { | INV(2) }
It is easy to verify that

INV (z+1) = (INV(z)[x—x—1])[y—y*x]
so using the rule [cons;| we get

Fe {INV(z+1) } y:=y*xx;x:=x—1{ | INV(z) }
It is straightforward to verify that

INV(0) = —(—(x=1)), and

INV (z+1) = —(x=1)
Therefore we can use the rule [while;| and get

Fy { 32.INV (z) } while —(x=1) do (y := y*x; x := x—1) { |} INV(0) }
We shall now apply the axiom [ass;| to the statement y := 1 and get



194 6 Axiomatic Program Verification

Fe { (32.INV (z))[y—1] } y:=1{ | Fz.INV(z) }
so using [comp| we get
Fe { (32.INV (2))[y—1] }
y := 1; while —(x=1) do (y := y*x; x := x—1)
{4 INV(0) )
Clearly we have
x> 0Ax=n= (Jz.INV(z))[y—1], and
INV(0) = y = n!
so applying rule [cons;] we get
Fe{x>0Ax=n}
y := 1; while —(x=1) do (y := yxx; x := x—1)
{Jy=nl}
as required. O

Exercise 6.29 Suggest a total correctness inference rule for repeat S until b.
You are not allowed to rely on the existence of a while-construct in the program-
ming language. a

Lemma 6.30 The total correctness system of Table 6.2 is sound, that is for every
total correctness formula { P } S { | @ } we have

F{P}S{IQ}implies = {P}S{IQ}

Proof: The proof proceeds by induction on the shape of the inference tree just as
in the proof of Lemma 6.17.

The case [assy|: We shall prove that the axiom is valid, so assume that s is such
that (P[z—A[a]]) s = tt and let s’ = s[z+—A[a]s]. Then [ass,s| gives

(z:=a,s) > ¢
and from (P[z—A[a]]) s = tt we get P s’ = tt as was to be shown.
The case [skipy]: This case is immediate.

The case [comp;|: We assume that
F{P} S {IQ} and ()

F{@}S{IR} (**)

and we have to prove that = { P } S1; S2 { } R }. Solet s be such that P s = tt.
From (*) we get that there exists a state s’ such that @ s’ = tt and



6.4 Extensions of the axiomatic system 195

(S1, 8) = ¢

Since @) s’ = tt we get from (**) that there exists a state s” such that R s"” = tt
and

(Sq, 8"y — "
Using [comp,s] we therefore get
(S1; S2, s) = 5"

and since R s"” = tt we have finished this case.

The case [if;]: Assume that
Fe{BlB] AP} S {I@Q}, and (*)
Fe{-BJ AP} S {1 @}

To prove =; { P } if b then S else Sy { | @ } consider a state s such that
P s = tt. We have two cases. If B[b]s = tt then (B[b] A P) s = tt and from (*)
we get that there is a state s’ such that @ s’ = tt and

(S1, s) = ¢
From [if,s] we then get
(if b then S; else Sy, s) — &'
as was to be proved. If B[b]s = ff the result follows in a similar way from the
second assumption.
The case [whileg|: Assume that
Fio{ P(z+1) } S{ I P(z) }, (*)
P(z+1) = B[b], and
P(0) = —B[b]

To prove = { 3z.P(z) } while b do S { || P(0) } it is sufficient to prove that for
all natural numbers z

if P(z) s = tt then there exists a state s’ such that
P(0) s' = tt and (while bdo S, s) — s’

(**)

So consider a state s such that P(z) s = tt. The proof is now by numerical
induction on z.

First assume that z = 0. The assumption P(0) = —B[b] gives that B[b]s =

ff and from [whilel ] we get

(while b do S, s) — s



196 6 Axiomatic Program Verification

Since P(0) s = tt this proves the base case.

For the induction step assume that (**) holds for all states satisfying P(z) and
that P(z+1) s = tt. From (*) we get that there is a state s’ such that P(z) s’ =
tt and

(S, sy —» ¢

The numerical induction hypothesis applied to s’ gives that there is some state s”
such that P(0) s” = tt and

(while bdo S, s') — s

Furthermore, the assumption P(z+1) = B[b] gives B[b]s = tt. We can therefore
apply [whileft] and get that

(while bdo S, s) — s"”
Since P(0) s” = tt this completes the proof of (**).
The case [consg|: Suppose that
APPSR
P = P’ and
Q= Q

To prove =, { P } S { | @ } consider a state s such that P s = tt. Then P’ s =
tt and there is a state s’ such that Q' s’ = tt and

(S, s) = ¢

However, we also have that ) s’ = tt and this proves the result. O

Exercise 6.31 Show that the inference rule for repeat § until b suggested in
Exercise 6.29 preserves validity. Argue that this means that the entire proof system
consisting of the axioms and rules of Table 6.2 together with the rule of Exercise
6.29 is sound. O

Exercise 6.32 * Prove that the inference system of Table 6.2 is complete, that is
= {P}S{4Q}impliest {P}S{UQ} 0
Exercise 6.33 * Prove that

iftb {P}S{}Q}thent, {P}S5{Q}

Does the converse result hold? O



