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Abstract- The class or mapping networks is a general fam-
ily or tools to perform a wide variety or tasks; however, no
unifying framework exists to describe their theoretical and prac-
tical properties. This paper presents a standardized, uniform
representation for this class or networks, and introduces a sim-
ple modification or the multilayer perceptron with interesting
practical properties, especially well suited to cope with pattern
classification tasks. The proposed model unifies the two main rep-
resentation paradigms round in the class or mapping networks for
classification, namely, the surface-based and the prototype-based
schemes, while retaining the advantage or being trainable by
backpropagation. The enhancement in the representation prop-
erties and the generalization performance are assessed through
results about the worst-case requirement in terms or hidden
units and about the Vapnik-Chervonenkis dimension and Cover
capacity. The theoretical properties or the network also suggest
that the proposed modification to the multilayer perceptron is
in many senses optimal. A number or experimental verifications
also confirm theoretical results about the model's increased per-
formances, as compared with the multilayer perceptron and the

Gaussian radial basis functions network.

Index Terms-Feedforward neural networks, backpropagation,

pattern classification, knowledge representation
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I. INTRODUCrION

M APPING neural networks [1] are computing devices
that implement, in a distributed way, a function 'I/J,

from some input domain V C Rd to some output domain
T, parameterized by a set of parameters and featuring only
feedforward signal paths. Such a general definition describes
the basic properties common to many neural models, including
virtually all networks used in practical applications. However,
a unified theory of neural models does not yet exist.

A central topic in pattern recognition is classification. Map-
ping networks are widely used to approach classification
problems when the task is to derive a rule from a set of
examples. In classification tasks, the mapping to be learned
represents a law that assigns a label to each pattern. Therefore,
the output domain is defined as T = {0, l}b. In the following,
by default a two-class problem will be assumed (hence b = I);
the general case with more than one output label will be
considered only in statements involving a quantification of
the number of parameters.

The problem of regression, that is, function approximation,
has also been studied in great detail [2]-[4]. However, the
present work addresses only the problem of classification,
and focuses on the previously defined class of networks.

We attempt to set up a framework to allow the study of a

more general network model that may encompass different

representation paradigms.
A layered mapping network can be described from a topo-

logical point of view by the number and dimensions of its

layers and from a functional point of view by the transfer

function of its units. The overall function 7/1 is then described

in terms of a number of "simple" components. This description

can be further detailed, and still encompasses a large number

of neural-network models in use. A new scheme is proposed

that on one side may help interpret a learned mapping, and,
on the other hand, features interesting properties by itself.

Nonlinear discriminant functions have been considered by
many authors. The circular unit model was introduced in

the 1960's [5]. This and other works aimed at obtaining

the best representation and memorization from single-layer
networks. The related problem of generalization was intro-

duced by Cover's paper. Vapnik [6] started a theoretical

analysis of the topic, but a complete treatment was presented

only recently [7]. A perspective similar to that of Cover's
paper also characterizes the well-known book by Duda and

Hart [8] (first edition), in which considerations about the

degree-complexity of polynomial discriminant functions are

presented. Geometrical learning procedures presented in [9]

led to a method based on circular discriminant functions. A

multilayer version was used in [10], but no theoretical analysis
of the model is present. The circular unit was used in [11]
for minimum-cost structures for classification, and in [12] for

an interesting cascaded-architecture algorithm, whose complex

topology prevents an easy interpretation of the classification

rule synthesized.
The approach taken in many of these works is to con-

sider polynomial activation functions as an alternative to the

multilayer scheme. However, this introduces the need for

additional constraints to keep the generality of the set of

functions implementable by the model low enough for a good

generalization [7], [13]. The present work aims instead to

search for the minimal increment in the generality of the

multilayer model that is capable of substantially improving
the representation ability without affecting (and possibly en-

hancing) the generalization properties.
It should be stressed that the works focusing on radial basis

functions [4], [14] are substantially different from the proposed

approach, in spite of the formal equivalence. The present

work includes a proof of the fact that the proposed model

can be made equivalent to the Gaussian radial basis function

network, thus demonstrating its generality. However, the radial

basis function approach originates from the application of

regularization techniques, whereas the present work focuses on
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A generalized model of the neural unit.

discriminant functions and their implementation by multilayer

perceptrons. Moreover, a major distinguishing feature is the
ability of the proposed model to implement a larger set of

functions than that realizable by standard radial basis function

approaches.

II. A UNIFIED VIEW OF MApPING NETWORKS

notion of representation paradigm can help obtain such an

interpretation.
The representation paradigm is a characterization of map-

ping networks that is closely related to the geometrical prop-
erties of the stimulus. A distance-based stimulus (e.g., the

Euclidean distance between the parameter vector and the input
vector) can be associated with the prototype-based paradigm,

according to which a network stores representative patterns

(prototypes) and computes its output by measuring the match
between a pattern and the stored prototypes. Nearest neighbor

classifiers [19] implement this paradigm.

By contrast, the surface-based paradigm is represented by
those models that draw region borders (hypersurfaces) in the

input space, usually composed of individual segments realized
by different units, and compute their output according to the
position of an input pattern with respect to the borders. The

perceptron [ 16] is an example of this paradigm.
The prototype-based paradigm can be regarded as being

data-oriented, in that it represents data directly and decision

boundaries only indirectly. The surface-based paradigm rep-

resents boundaries directly, and only indirectly data, so it is

rule-oriented. The two approaches can be regarded as being

complementary.

A. Generalized Neural Unit

In the present work we refer to the multilayer mapping

network model with a topological structure inherited from the
MLP. A single hidden layer will always be assumed in the

following, without loss of generality. The network structure

being fixed, we focus on the description and design of the
(hidden) unit.

A generalized unit scheme is illustrated in Fig. 1, along with

the symbols adopted. This scheme was introduced in [15]. x
is the input vector of dimension d. The parameters (weights,

bias, etc.) are the components of the vector w E JR.P, which
needs not (and usually does not) have the same dimension as
x. The two blocks compute functions denoted by r and a. The

first block outputs the value r ; r(x,w), which we call the

stimulus. The second block outputs the activation a; a(r).
These two quantities have a quite straightforward inter-

pretation in geometric terms. The stimulus results from the
application of a "filter" sensitive to some geometric property
of the input space. The activation is the response of the unit

to the geometric property pointed out by the stimulus.

Through the selection of appropriate functional forms for
r and a, the model can be used to represent all neural

units usually adopted in practical applications. Some examples

follow.

.The perceptron [16]: r ; r(x, w) ; Wo + }::;1=1 XiWi; a ;
a(r) ; 1£(r) (where 1£ is a Heaviside function).

.The sigmoidal multilayer perceptron unit [17]: r ;
r(x,w) ; Wo + }::;1=1 xiwi;a ; a(r) ; (1(r) (where

(1 is a sigmoidal function).
.The radial basis (Gaussian) unit [18]: r ; r(x, w) ;

Ilx- cI12/(12;a ; a(r) ; e-r.

By using the terminology introduced, it is possible to make
a parallel analysis of many network models by comparing

their stimuli and activations. From the standpoint of function

representation, however, a direct comparison of the mappings
obtained by different networks is appropriate only in terms
of global evaluation parameters, such as a properly defined

functional distance, and not at the single unit level. A geo-

metric or algebraic interpretation of the unit functions does

not help in this respect. Hence an alternative interpretation
of the underlying elementary components is reQuired. The

B. The Circular Unit and the CBP Network

The perceptron can be generalized by letting r(x) =
Ef=l Wil:,i = w .I:" where the map x ~ I:, (I:, E RP) is such
that each component I:,i is given by a product of components
of x, which can be some power of a single component or the
product of powers of different components. Usually, one of
the terms is a constant whose weight implements the bias.
The parameter vector is of the same dimensions as ~ , and
the resulting stimulus is a polynomial with its components
as coefficients.

This model is often adopted as a single-layer network
scheme, as, for instance, in [5] and in more recent works, in-
cluding the theoretical overview presented in [20]. In principle,
its strength is the representation power, as every function may
be at least locally approximated with arbitrary precision by a
polynomial (e.g., Taylor's series expansion). However, it is not
possible to avoid a very sharp increase in the number of terms
required when the order is increased because it is not possible
to select a priori some terms and to neglect the others (se.e
[8]). For instance, the first-order model with bias (perceptron)
has about as many parameters as inputs: p = 1 + d. For the
complete second-order model, however, p = 1 + d(d + 1)/2,
which is of order d2. In the general case, the number of
terms of a complete polynomial with d variables of order q is
p = (d+q-l) , which is of order dq. The polynomial growth
can be agceptable in cases with very small input dimension d,
but it should be avoided for practical cases.

Other specialized unit functions can be devised based on re-
quirements imposed by specific problems, the wavelet network
[21] being an example. However, they often show a limited
applicability for various reasons, e.g., some are too specific
and tailored to a class of applications, and some others require
a nonstandard training m~thnn
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TABLE I

RELATING WEIGlfrS TO CIRCULAR PARAMETERS

From circular parameters to weights

Wq =9

Wi = -2gCi

Wo = 9 (tc~ -0
),=1

From weights to circular parameters

g= Wq

Ci = -wi/2wq

On the basis of the above considerations, it is necessary
to impose some constraints on the design of the stimulus
and activation functions, if the model must be general and
cost-effective at the same time.

.The overall network should have an increased represen-
tation power as compared with the standard MLP .

.The increase in the representation power should not affect
significantly the generalization power; in other words, it
should not cause an excessive increase in the probability
of overfitting.

.The representation should allow for an easy interpretation
of acquired knowledge. This is needed in order to use the
network as a data analysis tool.

.The network should be trainable by a standard algorithm,
without requiring a new theory .

.The implementation should stick as much as possible
to the standard multilayer perceptron structure. This is
especially important when dealing with hardware realiza-
tions, as we want to take advantage of the great efforts
previously made by many researchers in the design of
MLP hardware.

We consider the selection of an appropriate number of
polynomial terms as the most sensible way to obtain a good
compromise among the above constraints. In the following, the
circular back propagation (CBP) model [15] will be studied
from this standpoint. As previously remarked, the model
features the standafd multilayer topology with a single hidden
layer. At the unit level, the CBP model is described by the
following functions:

1
( d w~

)0=- L~-wo

Wq i=l 4wq

is obtained around the point c. Therefore, we describe the
parameters as follows:

d d

r(x,w)=WO+LXiWi+WqLX; (I)
i=li=l

or, expressing the quadratic tenn in the compact fonn Xq =
.:-.d 2
£Ji=l Xi

(2)

d

r(X,w) = Wo + LXiWi + WqXq

i=l

and

(3)a(r} = O"(r).

This is a special case of the polynomial unit described
above. There is one additional parameter, i.e., the coefficient
Wq, which weights the sum of the squared inputs. By simple
algebraic transformations, it is possible to obtain another form
for the same stimulus

c = center or prototype

(} = radial threshold (hence p = .j1J = radius )

9 = gain.

We call these the "circular parameters." The transfonnation
from standard perceptron weights to circular parameters is pre-
sented in Table I. The calculations involved are very simple,
but for completeness they are presented in Appendix I.

The double fonn of each parameter is not a fonnal artifice,
in that we adopt it to reflect the double nature of the repre-
sentation. The circular parameters represent a transfer function
implementing the prototype-based paradigm. However, when
the coefficient Wq is very small, the circular parameters are
not adequate anymore, and the stimulus collapses to the
standard linear perceptron stimulus. In this situation, the unit
implements the surface-based paradigm.

The choice between the two representation fonns is depen-
dent only on the value of adaptable parameters, so it is left
to the optimization process. We refer to this fact by saying
that the CBP model has a paradigm plasticity that enables it
to adapt the representation fonn, without need for the user's

supervision.

r = g(llx -cl12 -0) (4)

in which the parameters c, g, and 0 do not appear as weights

but have the following geometrical interpretations.

The distance from the point c in the space of inputs is

computed and compared with the value 0. The result is scaled

with the coefficient 9 to obtain the actual stimulus r, and the

activation a is computed by the standard sigmoidal function.
The output of the unit can be positive inside (for 9 < 0)

or outside (for 9 > 0) a circular (in general, hyperspherical)

region; anyway, a localized "bump" with a circular section

C. A Note on the [mplementation of the CBP Network

By simple inspection, it is easy to see that the only different
feature of a CBP network, as compared with the MLP, is
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Theorem 1: A d-input linear threshold machine (H-
perceptron without bias) has dvc = d.

Proof A linear threshold machine 10 E ]Rd, when the
vector x is fed at its input, outputs the value H(XT .10). The

machine is requested to learn the dichotomy T on the panem

set D of size n, defined by T(x) E {-1,+1} \fx E D.
The dichotomy T induces a vector t of size n, with binary
components, such that sign(tl) = T(Xl) \fxl E D, and D can

be arranged in a matrix X of d columns and n rows such
that rowl(X) = Xl. There are 2n possible dichotomies. The

dichotomy T is implementable by the machine 10 if there exists
an assignment for 10 such that

an additional input. This means that a CBP network can be

obtained by an off-line modification to the training set, i.e., by

adding the quadratic tenn Xq directly to the input patterns.
This trivial but fundamental observation allows one to

devise very efficient implementations, in both hardware im-

plementations and software simulations, if an MLP device is
already available. The resulting network will be trained by

plain backpropagation, at the only expense of an additional

input (for a network with h hidden units, this means h

additional weights).

However, when we are interested in issues related to the

representation paradigm, and not in implementation details,
we will consider the CBP model as being completely different
from the MLP. (5)Xw=t.

III. PROPERTIES OF THE CBP MODEL

This section describes the CBP model from different stand-

points, including the results on the capacity, introduced by
Cover [5], and on the Vapnik-Chervonenkis dimension [22],
for both the single circular unit and the layered network. A

very simple procedure to analyze a trained network to search
for significant rules will also be presented.

As is well known, the Vapnik-Chervonenkis dimension

(dvc) of a learning machine is the maximum sample size
such that there is at least one pattern set for which every

dichotomy is implementable by the machine; the capacity C
is the maximum sample size such that a pattern set for which

every dichotomy is implementable has a probability 1/2.
There are many theoretical results that make use of dvc as a

sort of generalized number of degrees of freedom; for instance,
a well-known result, although the estimated bounds are not

very tight, is presented in [23]. Vapnik's learning theory [7] is a

very sound and general background for classification and other

learning problems; this accounts for the greater importance
of dvc, as compared with Cover's capacity. Notwithstanding

these limitations, a number of results make use of the capacity

C, therefore, it could be exploited for comparisons with other

models.
In the following, we shall prefix the name of a unit (for

instance, perceptron) by using a symbol indicating the activa-
tion function: 0- for sigmoidal activation, 1-{ for Heavisides.
The same will be done for the names of multilayer networks

(either CBP or MLP), for which the symbols will indicate the

activation functions of the hidden units.

The value of dvc is the maximum sample size such that there
exists a pattern set D for which every T is implementable.
For (5) to have a solution, the target vector t should belong
to the column space of X (which is at most of dimension n).
This is guaranteed for every t, as long as the dimension of
the space is greater than, or at least equal to, the number of
columns ( n ~ d) .In this case, it is always possible to choose
D such that X has full rank. Hence, dvc ~ d. Conversely,
if n > d, the number of columns of X is insufficient for them
to fonn a base in an n-dimensional space. Since the 2n target
vectors span the whole Rn, then (5) cannot have a solution,
whatever the choice of D. Hence dvc = d. .

Proposition I: Given a mapping 4>: X -3, with X C Rd
and 3 C RP, if 4> is nonlinear, then a linear 1t-perceptron
with input { = 4>(:I:) (:1: E X,{ E 3) has dvc = p. If 4>
is linear ({ = 4>:1:, where 4> is a matiix of size (d,n)), then
dvc = rank( 4> ) .In general, dvc equals the number of linearly
independent components of 4>.

Proof The proof follows directly from Theorem I, by
substituting X' = 4>(D) for X. If 4> is nonlinear, it is possible
to choose D such that X' has full rank, whereas if it is linear,
the maximum rank attainable by X' is rank( X 4> ) ~ rank( 4> ) .
In the general case, it is possible to split 4> into a linear part
and a nonlinear part. The same considerations hold separately
for the two parts. The result follows. .

Corollary I: A d-input affine threshold machine (1t-
perceptron with bias) has dvc = d + 1. A d-input 1t-circular
unit has dvc = d + 2.

Proof In an affine perceptron, 4>(x) = Wo + }:::1=1 WiXi.
There are d + 1 tenns, all linearly independent. In a circular
unit, 4>(x) = Wo + }:::1=1 WiXi + Wq }:::1=1 x; .There are
d + 2 tenns, all linearly independent. The direct application of
Theorem 1 and Proposition 1 yields the result. .

B. Representation Properties of the CBP Network

Since a CBP network features the MLP as a special case.

it is possible to apply the known results on the approximation
properties of the MLP to a CBP network in the case Wq = O

(among others [3]. [1]). Hence the general approximation

properties of the MLP ensure that every mapping is realizable

with a CBP net with arbitrary precision. since it is also

realizable with an MLP. However. it is reasonable to expect
the CBP model to have a higher representation power than that

A. The Circular Unit

The capacity of a perceptron and that of a circular unit have
been studied by Cover [5]. In the reference, it is shown that
C = 2(d + 1) for the perceptron and C = 2(d + 2) for the
circular unit.

It is known that, for a perceptron with inputs in JRd, dvc =
d + 1 (a proof is given, for instance, in [24]). It is also known
that, for d-dimensional hyperspheres, dvc = d+2 [25]. These
results can be proved in many ways. In the following, we
present a very simple and intuitive proof that requires only
~Iementarv linear alQebraic considerations.
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at most one hypersphere is required to separate each point
x E 8(1) from the whole 8(0) .It is also possible that a single
hypersphere may separate two or more points; however, we

are interested in an upper bound, so we search for the most

unfavorable case. This is obtained when I) n is even; 2)
the sizes of 8(1) and 8(0) are both equal to n/2; and 3) no

two points of 8(1) are spherically separable from 8(0) .This
requires n/2 hidden units. If n is odd, then it is possible to

make this construction by using the subset of the smaller size,
that is, In/2J. Hence the number of hidden units required is

at most In/2J.
On the basis of this result, we can expect that the represen-

tation performance in "easy" cases will be similar to that of

an MLP. But when the complexity of the rule to be learned
increases, the number of hidden units for the CBP network

will have to increase more slowly than for the MLP. When

the worst case is reached, the number for the CBP network

will be approximately half that for the MLP .

C. Extension to the Case of Continuous-Activation Units

The following result states that the representation properties
of the MLP are enhanced when adopting the a--version.

Theorem 4 (Sontag [27], [28]): Any dichotomy on a set of
patterns of cardinality 2h can be implemented by some a--MLP
with h hidden units.

By this result, the gain of a 1i-CBP network with respect to
the 1i-MLP configuration is comparable to that of switching
from 1i-MLP to a--MLP. It is possible to find instances of
a further improvement by considering a--CBP networks. In
these cases, the number of hidden units for a given number of
patterns is even less than half.

An example of this kind is the "alternate labels" problem,
arising naturally in the context of Sontag' s work. This problem
consists of a given number of data points, all lying on the same
line. There are two possible class labels. Each point is labeled
differently from its neighbors, so that the targets alternate
along the line. We will consider the case of equispaced points
throughout this work.

In the .'alternate labels" case, for instance with 11 data
points, it is experimentally demonstrated that a CBP network
with h = 3 can solve the problem, while the above theorem
indicates that a MLP needs h = 6. However, there are other
circumstances in which the gain of CBP is DOt so large. We
refer to the following recent result.

Theorem 5 (Sontag [29]): A network (either a--MLP or a--
CBP) with p parameters can shatter any set of 2p + 1 points
in general position.

In this case, since only the number of parameters is taken
into account, the user who wants to improve the representation
perfonnance of an MLP architecture can either increase the
number of hidden units or step to the CBP model.

This discussion can be closed with a note on the practical
side. While the "alternate labels" case can be mapped on the
framework studied by Mirchandani [30], if each data point is
made to represent the .'center" of an input region, the ..general
position" is in fact very peculiar. Therefore, in applicative
cases we may expect an intermediate situation, in which the

of the MLP in tenns of resources needed (number of hidden
units, number of layers), by virtue of the properties shown at
the unit level.

At this point, however, a distinction should be made be-
tween the cases of stepwise and continuous activations. In
the multilayer case, it is known that the sigmoidal multilayer
perceptron provides a representation power that is different
from that of the hard-limited version (Heaviside activation
function). Consequently, the estimate of the generalization
power is also different. The case of sigmoidal activation will
be briefly addressed later on.

Definition 1: Let S be a finite set, with elements in ]Rd.
Let s(a) be a subset of S and let S(b) = S -s(a) be its
complement with respect to S. Let H be a class of varieties
(hypersurfaces) such that each element h induces a dichotomy
in ]Rd. The sets s(a) and S(b) are said to be H-separable if
there exists h E H that realizes the dichotomy S = s(a) +S(b) .

Definition 2: (Special cases of separability) A dichotomy
realizable by an element in the class H = { x E ]Rd: x. w =
k} of linear varieties (hyperplanes) is said to be linearly
separable. A dichotomy realizable by an element in the class
H = {x E ]Rd: Ilx- cl12 = k} of isotropic second-order
varieties (hyperspheres) is said to be spherically separable.

In the case of an 1t-MLP, the result presented by Huang
and Huang [26] holds:

Theorem 2 (Huang and Huang): Let S be a set of size
n < 00, with elements in ]Rd. Let 1/1: S -+ {0,1} be an
indicator function inducing an arbitrary dichotomy on S. There
exists an 1t-MLP network with n -1 hidden units capable of

realizing 1/1.
A similar result can be stated for an 1t-CBP network.

However, the upper bound on the necessary number of hidden
units is lower.

Proposition 2: If S is a finite set with elements in JR. d every

dichotomy, {x}, S -{x} for x E S is spherically separable.
Proof" From the hypothesis of finiteness of the set S,

given x* E S we can state that there exists r > 0 such that,
for each x E S, Ilx* -x II > r. Hence it is always possible to
construct a hypersphere h of radius r and center x* : h = { x E
]Rd:llx-x*112=r}. .

Proposition 3: Every linearly separable dichotomy is also

spherically separable.
Proof" The proof is immediate if the linear separating

hypersurface is written as a degenerate hypersphere of infinite
radius and center to infinity. .

This proposition is simply a geometric interpretation of the
fact that the perceptron is a particular case of the CBP unit.

With the aid of these propositions, it is possible to state the
following theorem, which is similar to Theorem 2 but refers
to the case of circular units.

Theorem 3: Let S be a set of size n < 00, with elements
in ]Rd. Let 1/1: S-+ {0,1} be an indicator function inducing
an arbitrary dichotomy on S. There is a 1i-CBP network with
l n!2 J hidden units capable of realizing 1/1.

Proof" Let S(O) + S(l) be the dichotomy on 8 induced
by 1/1: S(O) = {x E S: 1/I(x) = 0},8(1) = {x E S: 1/I(x) = 1}.
Consider singularly the elements of one of the subsets, say
S(l), without loss of generality. According to Proposition 2,
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This observation does not imply a reliable knowledge-
reversal process in every situation; nonetheless, the rule-
extraction procedures applicable in the standard MLP case are
preserved by the CBP model, whereas the latter introduces the
additional information on whether the rules are of the global
or of the local type.

gain of O"-CBP with respect to 1t:-MLP is not as large as in
the alternate labels example, but is larger than that of a simple
a-MLP.

D. Generalization in CBP Networks

A fundamental advantage of the CBP model is that most
of the results known for the MLP can be stated for the CBP
model, too, with appropriate modifications. This means that
the fundamental estimate of dvc for a multilayer 1i-network,
provided in [23], is still valid: for an MLP with d inputs,
h hidden units, and b outputs, dvc .$ 2(h(d + 1) + b(h +
1)) log(e(h+b)). Hence, for a CBP net with the same topology,
dvc .$ 2(h(d + 2) + b(h + 1)) log(e(h + b)). These values are
not very different, and their ratio approaches one for networks
with a large number of inputs, so the expected generalization
ability is similar for the MLP and the CBP model.

The same reasoning is not so easy when one tries to estimate
the capacity C. One reason is that the definition of capacity
cannot be generalized in a unique way [31]. However, some
results are presented in [32] (a more detailed version is to
appear [33]), and can be extended to the circular case by
means of the same arguments that hold about the dvc. In
particular, for networks with one output unit, it is shown that
dh + 1 .$ C .$ 2(dh + 1) in the case of the 1i-MLP. These
.bounds are obtained for sets of points in general position. The
transformation x f-+ I. converting MLP into CBP (i.e., the
addition of the sum-of-squares component to the input vector)
does not always preserve the general position; in other words,
if every subset of size d of the set of vectors {X(l) , ..., X(n) }
is linearly independent (does not lie on any d-dimensional
hyperplane), this is not always true in the corresponding set
{ t.C 1) , ..., t.C n ) } .Therefore we can state the following bounds

for the 1i-CBP network: dh + 1 .$ C .$ 2((d + l)h + 1).
The lower bound could be tightened to (d + l)h + 1 if

we restricted the general position requirement to exclude also
sets of points lying on d-dimensional hyperspheres; however,
this is not very interesting, since the corresponding gain is
proportional to h, but generally one tries to keep h as small
as possible.

F. Optimality of the CBP Model

With reference to the list of desirable properties presented
in Section II, this section has shown the following.

.The representation power of CBP is larger than that of
the standard MLP.

.The increase in the representation power does not affect
significantly the generalization power. The dvc value
estimated for CBP is very close to that estimated for the
MLP.

.The representation allows for an interpretation of acquired
knowledge in terms of representation paradigms. There-
fore, the knowledge reversal is analogous, in the worst
case, to that of the MLP, but is often easier.

.The network is trainable by standard backpropagation in
a transparent way.

.The structure of the network is almost identical to that
of the MLP .

The CBP model is a very special case in the class of
polynomial units as described earlier in this section. In general,
the ability to implement a localized activation allows the
feasibility of a prototype-based representation. The polynomial
model features this ability, but the order q must equal two. In
the class of second-order units it is possible to have or not to
have a localized activation; this depends on the relationships
among coefficients, and may be verified by analyzing the
definiteness of the matrix that describes the overall transfer
function as a quadratic form.

To obtain the required ability , it is necessary to impose
constraints on the coefficients of the second-order terms (pow-
ers of inputs and products of inputs). It is difficult to ensure
that these constraints will be met in every case because
they involve more than one weight. The only situation that
guarantees the function to be able to implement localized
activations is the circular one, as it involves one coefficient
Wq for all the second-order terms.

Therefore, the CBP model is the only one that is capable
of switching from a linear to a localized (circular) activation
region without requiring additional control structures that
constrain the parameters to satisfy special conditions. At the
same time, it is also the least costly in terms of number of
additional parameters, as compared with the MLP unit. Only
in the circular case is the number of parameters p constant
with d, p = 2 + d. In the restricted elliptical case, for instance,
it is linear in d: p = 1 + 2d. In the most general second-order
polynomial case, p is quadratic in d, p = 1 +d+d2 /2. It should
be noted that the number of parameters should be kept as
small as possible for many reasons, including those regarding
learning time, storage cost, sample complexity/generalization
power, and readability of the learned mapping.

E. Knowledge Reversal by Interpretation

of the Trained Network

In some cases, the internal representation of the MLP is used

to extract informations about the structure of the classification

mapping. This rule extraction is based on the interpretation
of the transition between decision regions, at the unit level,

as i/-then rules.

The same reasoning can be applied to a CBP network.

However, in this case, additional informations can be extracted

from the representation paradigm adopted by each unit. In

other words, if the weight Wq is very small, the unit is

implementing a standard perceptron rule. If the weight Wq is
not negligible, the unit is implementing a circular (distance-

based) rule. Since the paradigm is decided by the optimization

process, this gives an information on what type of representa-
tion better fits the training data.
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To sum up, the CBP model is optimal in tenns of gain in
representation power (according to our requirements) versus
increase in the number of parameters.
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Fi2. 2. How CBP solves the altemate-labels Droblem.

IV. EQUIVALENCE TO GAUSSIAN

RADIAL BASIS FUNCTION NETWORKS

In this section we shall show that the CBP model may be

made equivalent to another widely used neural scheme, i.e.,

the network of locally tuned Gaussian units.

Equivalence between two network models requires two
conditions to be satisfied. The first is that the sets of functions

implementable by the two models coincide. The second is that
the training procedures should allow them to learn the same

mapping for the same training set.

The first condition is of architectural nature. It can be

verified by comparing the structure and interconnections of the
layers, and the activation functions of the units. The second
condition is related to the algorithms used for training and

not to the networks. It can be verified by comparing the
iterative learning steps. However, if the perfonnance criterion
adopted in training is the same for both models (e.g., in

classification, the percentage of correctly labeled patterns), we

can concentrate on the architectural equivalence, since the goal
of the optimization process coincides in the two cases.

The transfer function of a circular unit is radially symmetric.
Hence a CBP net has by itself the structure of an RBF
network. However, in practice, the most commonly adopted

basis functions are the isotropic Gaussians

Q(x) = exp ( -~). (6)

The training of such networks requires the choice of ap-

propriate values for the parameters c and 0-, which is usually

made independently. Here we show that a o--CBP network can
implement a Gaussian RBF network; therefore, backpropaga-

tion training can be used to obtain the same results as those

obtained by RBF training.
Proposition 4: There is a two-layer o--CBP network equiv-

alent to a Gaussian RBF network with the same number of

hidden units h.
Proof: The stimulus of the generic hidden unit of a

o--CBP network can be expressed in tenns of the circular

parameters as per (4). The activation function is

I
a(r) = .(7)

l+e-r

Therefore, if we let r' = gllx -c112, the overall transfer

function of the unit can be expressed as

I
a -(8)-I + e-(r'-g9) .

By some algebraic manipulations, this expression can be

transfonned as follows:

I
a= ,

I + e-r e-g9

er'eg9
= er'eg9 + 1.

0

-0.5

~ .

A generic output unit will not receive this value directly
as an input, but only after a multiplication by the weight w.
Therefore, the output value of the hidden unit can be multiplied
by an arbitrary constant, which will be compensated for by
the subsequent weight

, kege
ka = er I

er ege + 1.

Let the term g(J take on very large values. Let the constant
k take on correspondingly small values. The multiplying
fraction can then take on values arbitrarily close to one. Hence,
including the weight in the expression for the output value,
we can write

IWaRBF -w'acBPI < E

for any E > 0, where aRBF is the activation computed by
using the Gaussian activation function and stimulus as per (6),
aCBP is the activation using the CBP activation function and
stimulus, w is the output weight, and w' is the compensated
output weight kw' = w. .

After showing that a CBP network can encompass also the
Gaussian RBF model, we may ask whether the converse is also
true, which means that the two approaches are theoretically
identical. However, this is not the case. This may be shown
with the aid of the altemate-Iabels problem. Fig. 2 shows
an altemate-labels problem with seven data points, and the
one-dimensional (I-D) activation profile of two CBP units.

It is possible to see that the CBP activation profile can
identify seven zones, characterized by sign inversion, while
RBF is limited to five zones. This has been shown theoretically
for RBF (the proof is in Appendix II), and experimentally
demonstrated for CBP, as shown in the figure, with good
convergence rate.

We conclude with a note on the representation properties of
the CBP activation function as compared with the Gaussian
function. In the CBP network the parameters are expressed
in the form of weights, rather than in the circular form. This
means that degenerate radial functions are implementable in
the CBP formalism, since an infinite radius is realizable when
expressed as Wq = 0. In the RBF formalism, this would mean
giving an infinite value to an actual parameter (the center's
coordinates), which is unrealizable both in physical hardware
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and in software simulation. This means that the equivalence

between RBF and MLP could be theoretically assessed in
the limit, but not physically attained, whereas the equivalence

between CBP and MLP is feasible also in practice. Comparing
the dvc of CBP with that of RBF is difficult, since to the best

of our knowledge no information on this topic is available

for RBF networks in the classification framework. However,
one can expect that the dvc of RBF will be proportional to

the number of weights in the network [34]. We stress that

Theorem 5 remains valid also for the RBF activation function,
if the training set is in general position.
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Fig. 3. The alternate-labels problem with ten data points.
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Fig. 4. The two-spiral problem.

A. Experimental Setup

The simulations are grouped into three different sets. The

first set of two tests aims at obtaining very simple verifications

of the properties described theoretically. The second set is
a more comprehensive study of several properties of CBP

networks, based on a family of data sets generated by Gaussian

mixture distributions. These experiments follow the approach

presented by de Villiers and Barnard in [35] to allow a

comparison with their results, obtained for the MLP. The
third set is a standard benchmark, i.e., a vowel recognition
task, available on-line in the repository of Carnegie Mellon

University, Pittsgurgh, PA.1 Although experimental compari-

son among different classification procedures is probably an

ill-posed problem [36], our choice is to complement theoret-
ical analysis with practical verifications. This allows a more

complete description of the model under study.

The first two problems consist of two-dimensional (2-D)
synthetic tests (for ease of visualization). The training sets
are shown in Figs. 3 and 4. The first problem, a ten-points

version of the "alternate labels" problem, aims at comparing

the representation properties in the worst-case addressed in
Theorem 3 for the MLP and CBP. The second problem is the

well-known "two spirals" benchmark [37], [38], commonly

adopted as a testbed for pattern classification systems. The
data set consists of points belonging to two interspersed spiral-

shaped classes, with 97 samples for each class.

The Gaussian mixtures are used to create a set of exper-

iments, originally aimed at doing statistical considerations

on the representation and generalization properties of MLP
networks with different layouts ( one- and two-hidden layer

networks). Here we adopt the same approach in order to

compare the CBP and MLP models. The training sets are

random samples of mixture distributions, resulting from su-
perpositions of equiprobable Gaussian clusters. The parameters
of the Gaussian clusters (averages .and variances) are in turn

randomly selected from a Gaussian distribution. Patterns are

d-dimensional, with d E {2, 5}, and the distribution of each
cluster is the product of d univariate Gaussian distributions;
this means that the principal directions coincide with the

coordinate axes. An example is given in Fig. 5. We refer the

reader to [35] for a complete presentation of this "distribution

of distributions."

The vowel recognition task is based on the real-world data
collected .by Deterding [39] for speech recognition experi-
ments. The data represent a ten-dimensional encoding of the
steady-state part of vowels uttered by different speakers. There
are II classes, corresponding to as many vowel sounds. TheAnonymous ftp: ftp.cs.cmu.edu, directory lafs/cs/project/connect/bench.
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Fig. 6. Training results for the altemate-labels problem with ten data points.

Percentage of convergence of multistart training for CBP (solid line) and MLP
(dotted line) versus number of hidden units h.
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Fig. 7. Training results for RBF on the two spirals problem.
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standard "vowel" database is composed of a training set (528

patterns) and a test set (462 patterns), to allow generalization

estimation.

The backpropagation procedure adopted was accelerated by

the method by Vogl et al. [40] for adapting the training param-
eters. An implementation of the algorithm, with optimizations

for RISC architectures, is available online.2

The RBF tests have been performed with a network featur-,
ing a hidden unit activation of the form given in (6) rather

than that of (4). A CBP network and a RBF network differ
essentially in that the term (} in (4) is null in (6), and in that

the term 9 in (4) is substituted for by _1/0"2 in (6), that is

necessarily of negative sign.

Training of this RBF structure is accomplished by gradient

descent, as described above, with the derivatives of the cost

function with respect to the parameters given by Bishop [41,

pp. 190-191].
When a random variable was required, the random number

generator presented in [42] was used. The Gaussian generator

routine can be found in [43].

B. Results on the Two-Dimensional Problems

The alternate-labels problem turns out to be very difficult
for standard backpropagation to learn. In the diagram of Fig. 6,
a number of experiments with varying numbers of sigmoidal

hidden units ( h) are presented. Sigmoidal activations were
chosen to allow backpropagation training. For each value

of h, 1000 training trials were fun, starting from different

seeds. The training was stopped either at convergence or when

the number of epochs reached the threshold of 20000. The

percentage of successful trials is plotted versus the value of

h. We observe that, as expected (Section III), the presence of

sigmoidal activation functions increments the capacity of the
network, as compared with Heaviside units. This fact holds
for both cases (MLP and CBP).

It is possible to see that the MLP does not converge
100% of the times for any value of h. The convergence rate

2ftp://risc6000.dibe.unige.it/pub; files mbp*.

TABLE D

R"OTIT~ "nR RRF nN TU" T"N-PnINTO AIT1'RNAT1'-T .AR".lO PRnRIFM

corresponding to the minimum theoretical number of hidden
units (i.e., h = 3 for CBP and h = 5 for MLP) is under
1 %, therefore in the plot it is not possible to appreciate it.
The actual percentages are .5% for CBP and .3% for MLP .
The decrease in the plot can be ascribed to the fact that,
when h increases, so does the number of parameters, therefore
either the threshold of 20000 epochs or the number of starts
per training run should have been increased to cope with the
more complex optimization problem. On the other hand, as
soon as the theoretical requisites for the representation of
configurations are met (i.e.,h sufficient for the n points), CBP
converges with little or no difficulty.

It is interesting to investigate the convergence of a RBF
network on the same problem, to compare it with an equivalent
CBP network. The results of this experiment are summarized
in Table II. For each number of hidden units, the mini-
mum error obtained in training (second column) and the
percentage of zero-error trials (third column) are presented.
The lower representation capacity of RBF with respect to
CBP can explain the fact that RBF does not converge for
h < 5, as discussed in the previous section. For h = 5,
performance of RBF equals that of MLP, in agreement with
Theorem 4. Of course, in these conditions ( h = 5 with
n = 10), RBF training can be implemented in a much faster
way by using a cluster analysis of the training set before
starting the classification phase, instead of a plain gradient
descent [14].
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Fig. 8. Training results for the two spiral problem. Visualization of the output with varying number of hidden units

The perfonnance of the MLP on the "two spirals" problem

was reported in r371 for a network with three hidden lavers
of five units each. Here we show the results of training CBP

networks with one hidden laver of seven to 15 units (FiQ. 8).
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TABLE IV

RESULTS OF THE GAUSSIAN CLUSTERS EXPERIMENTS

MLP CBP RBFp

94.93 (3.36)20 65.22 (8.94) 96.28 (3.36)

96.84 (3.17) 93.99 (4.96)TatJe 40 60.70 (5.82)

96.58 (3.42) 93.69 ( 4.86)60 63.02 (5.25)

72.78 (12.98) 75.29 (7.60)20 65.55 (13.99)

73.79 (13.61) 81.09 (10.70)GatJe 40 67.68 (12.88)

67.89 (12.41 ) 73.84 (14.34) 78.68 (10.84)60

69.29 (10.35) 97.58 (3.22) 96.23 (3.34)20

63.36 (6.43) 97.87 (2.92) 94.30 (4.75)Topt 40

97.70 (3.06) 94.24 (4.80)60 65.20 (5.32)

71.60 (14.70) 74.47 (11.77)20 65.17 (16.03)

73.54 (13.75) 79.87 (13.43)40 66.87 (13.65)

73.99 (14.26) 78.90 (12.05)60 67.36 (12.33)

All the trials were ended at convergence; therefore, seven
hidden units in one layer are sufficient to solve this problem
by the CBP model.

An RBF network has been trained on the same problem. The
result is shown in Fig. 8 for h = 42. However, no convergence
has been obtained with h ::; 41. The case of h = 42 requires
considerable optimization efforts. We consider h = 41 as a
threshold value, based on the following considerations.

We ask how many neighbors of the same class can be
represented by each hidden unit. For each point of one of
the two spirals we take into account its neighbors, starting
from the nearest and proceeding according to their distance
ranking. We count how many neighbors belong to the same
spiral ("homogeneous" neighbors), before finding a point lying
on the other spiral. The results are summarized in Table III,
where H N indicates the number of homogeneous neighbors
and p the number of points.

Using these data, the RBF network size can be estimated
based on the fact that:

I) 20 hidden units represent isolated points;
2) 15 hidden units represent points with H N = 2;
3) six hidden units represent points with H N :?; 3.
Therefore, h = 41 is the minimum size for which a

cluster analysis based on nearest neighbor consideration is
practically feasible. This does not mean that smaller size
nets could not be used; nevertheless, we can expect that
the convergence rate will experience a steep decrease with
decreasing h, since initialization becomes nontrivial under that
threshold.

c. Results on the Gaussian Mixtures

The experiments were based on multistart training (ten trials
per training run with different initializations). The measure-
ments were obtained by averaging over multiple training set
distributions (differing in both the number of clusters and their
parameters), multiple samplings from each distribution, and
multiple sample sizes (either 100 or 1000). The results are

Gopt

parameterized by the topology, hence they are a function of
h. As in the original experiments, the number of weights was
left constant for d = 2 and d = 5, and set to about 20, about

40, and about 60 (within 5% tolerance).
The parameters measured in these experiments are related

to classification performances (percentage of correctly labeled

patterns) over the 10 trials of each run, and are defined as fol-

lows (see also [35]): Tave is the average training performance,
Topt is the best training performance;, Gave is the average test

performance, and Gopt is the test performance of the net that

featured Topt.
Table IV contains the estimated values of the parameters

under study., with experimental standard deviation annotated

in parentheses. These data are summarized in Fig. 9.
The results suggest that, in this case, the classification

performance of a CBP network is always higher than that

of an MLP network with the same number of hidden units.
This holds true even on the test set, although it is commonly

acknowledged that a model with a larger number of param-
eters is more subject to overfitting than a model with fewer

parameters. We recall that for a three-layer MLP the number of

weights is PMLP = (d+l)h+(h+l)b, whereas for a CBP with
the same topology it is PCBP = (d+2)h+(h+l)b = PMLP+h.

In the case of RBF, we can observe that performance on the

test set is better than that of CBP. This could be explained by

the fact that data are clustered with a Gaussian distribution,

which could make it easier for the RBF networks to repre-

sent them (although the data are not necessarily isotropic).
However, training results are slightly better for CBP.
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D. Results on Vowel Recognition

The results summarized in Fig. 10 and detailed in Table V
were generated by a set of training runs. Several trials were

performed. To facilitate the repeatability of the experiments,
the results were obtained as follows: first, the minimum MSE

was searched for; then, the corresponding classification error

was recorded on both the training set (Topt) and the test set

( G opt) .This procedure is quite different from stopped training

with cross-validation, since the test performance is not taken

into account in the stopping criterion. The table compares the
test error obtained by MLP and by RBF with that obtained

by CBP. For this real-world benchmark, the CBP model

learns substantially better than the MLP. This can be seen

by comparing the approximation error and the classification
error on the training set. The generalization ability of CBP (as

estimated by this particular test) is also greater than that of the

MLP. Results for RBF are in some way intermediate between

those of MLP and of CRP

The test performance, as compared with other results, seems
unsatisfactory. However, it should be considered that the
networks adopted did not feature more than six hidden units.
In Table V results for networks with comparable numbers of
hidden units are presented. The usual RBF approaches often
involve larger networks. An example is presented in [44],
where a very good performance (65% correct) is reoorted for

--

I

20
I

40
I ,

6£)
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an RBF-type network with 204 units. To make a comparison,

a CBP network with 80 hidden units was trained with stopped
training by cross-validation, reaching the same value (65.1 %

correct).

Consider a Gaussian RBF network with d = I, h = 2, b = I
to attempt representing the alternate labels problem with seven
data points. Symmetry considerations allow the stimulus of its
output unit to be expressed as

2 2
Tout = Wo + wle-91::: + w2e-92::: .(9)

Derivation of this expression with respect to x yields

aTout 9 :::2 9 :1;2 O-= -9lxwle- 1 -92XW2e- 2 .(I )

ax

This expression vanishes for x = 0, for x = :I:oo, and for

/W~1~ /;?~~ )
x= :i: .

(92- 91)

(This pair of roots is defined only when the arguments of the
logarithm and of the root are both positive. We assume this
is the case, since we are interested in assessing the maximum
number of roots.)

The roots of the derivative correspond to minimum, max-
imum and saddle points. Between pairs of these points, we
can identify at most five regions corresponding to five differ-
ent classification outputs. Therefore the seven-points problem
cannot be solved.

VI. CONCLUDING REMARKS

In this paper, the properties of the circular backpropagation
multilayer network have been investigated from the standpoint
of pattern classification. Theoretical analysis and experimental
evidence suggest that this model is especially well suited to
implement classification tasks. The paradigm plasticity fea-
tured by the model allows the implementation of classification
principles which have different interpretations, based either
on the classification rules (by direct implementation of the
decision boundaries) or on the data (by implementation of
prototypes of the nearest neighbor type). Results about the
properties of the model have been illustrated with experimental
verifications, on both synthetic problems and a real-world
benchmark.

The perspectives of research include a hardware implemen-
tation of the model which will be applied to a character
recognition task. Hardware implementation is very simple,
since it reduces to a preprocessing phase to be applied to
the input of a standard multilayer perceptron network. The
theoretical analysis is being extended to encompass other
neural models (e.g., vector-quantization networks) within the
same framework. This requires only simple modifications to
the standard scheme, such as weight linking, so that the
resulting networks are still trainable by plain backpropagation.
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