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Abstract

The Distributed Associative Memory (DAM) model operates as a basic device inside an
image-classification system, whose accuracy is increased by the restoration ability of the associa-
tive mechanism. The paper describes a methodology for implementing the DAM model on
transputer-based hierarchical parallel architectures. First, a theoretical analysis reformulates the
basic memory model to fit a practical implementation; then, the parallel system’s efficiency is
defined analytically. Experimental results on a significant testbed confirm the classifier’s effec-
tiveness and the consistency of theoretical predictions. © 1997 Elsevier Science B.V.
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1. Introduction

Associative memories are used in several applications of image understanding, as
they can enhance the robustness and content-addressability of a recognition system for
high-dimensional data processing [1]. Memory models differ in the way they store and
recall data. The associative recall process recovers stored information (datm) previ-
ously associated with an input {key); the crucial feature of associative storage lies in the
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ability of the retrieval mechanism to restore incorrect or incomplete information in the
addressing key.

This paper considers Kohonen’s Distributed Associative Memories (DAMs) [6]. The
DAM model is applied to image classification, and its implementation on hierarchical
architectures is presented. Several studies on hierarchical structures include the structural
features of massively parallel architectures for high-dimensional data processing
[2,5,8,13], and the robustness and implementation properties of binary trees [3,14]. The
model’s ability to perform robust high-dimensional data processing was previously
demonstrated in its early development [7]. In later works, DAMs found successful
applications in visual-understanding problems, including invariant object recognition
[12,15] and autonomous vehicle guidance [10].

The present paper mainly concentrates on evaluating the performance of the parallel
implementation. The mathematical framework of the memory model is redefined to
satisfy the limited-resource constraints of practical implementations. In particular, the
model reformulation is proved to decrease the total memory occupation by orders of
magnitude, thus making a practical realization feasible. The higher performance of the
parallel approach allows the use of this method for real-time tasks.

As a result, a major novel aspect of the presented research from a theoretical point of
view consists in the derivation of a more efficient and practical expression of the basic
model. From a practical perspective, the parallel implementation methodology is general
and has proved effective in a wide range of working conditions. A calculation of
communication overheads is presented and it can be applied to a general application
organized according to a general tree topology, in which a data-allocation strategy splits
data into ‘slices’. For practical applications, transputers provide a suitable machinery to
balance expected performances and cost constraints.

The paper outlines the basic memory model and its reformulation in Section 2.
Section 3 describes the parallel approach to the memory implementation and the
classifier schema, and develops the mathematical model of the parallel structure, from
which efficiency performance can be predicted. Experimental results concerning the
system’s efficiency and classification accuracy are reported in Section 4. Concluding
remarks are made in Section 5.

2. The associative model
2.1. Kohonen’s basic model

In Kohonen’s model, the writing and reading phases are based on matrix multiplica-
tions embedding mutual correlations among processed data [6]. The related cognitive
framework refers mainly to biological-consistency aspects [7]; however, the overall
mathematical formalism can be expressed in terms of simple matrix algebra. The
associative system developed in the presented research adopts auto-associativity as a
storage schema in which the information used for memory addressing coincides with the
information retrieved.
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2.1.1. Data structures

The following data structures will be used to implement DAMs for image classifica-
tion; for simplicity and without loss of generality, square images made up of N XN
pixels will be assumed:

— M[N2, N?]is the memory matrix, resulting from the writing phase;

— pIN?]is a vector holding a prototype (the related image is arranged in p along
TOWS);

- I is the total number of stored prototypes;

— S[N?, I]is the prototype matrix, whose columns hold vectors p,, i=1, ...,

— S' is the transposed matrix S;

- FIN?, N?]is the ‘forcing stimulus’ matrix holding the expected memory output
associated with prototypes S.

In autoassociative storage, each forcing stimulus (i.e., the expected recalled informa-
tion) and the corresponding prototype coincide, hence F = S.

2.1.2. Memory operation

Memory writing requires the selection of a training set including prototypes p;;
training patterns are stored in the memory, M, and coupled with the desired output
recall, F. When an image is presented to the system for classification, it is used as a key
pattern, k, to address the memory and retrieve information. To this end, the memory
matrix is multiplied by the key and a recall vector, r, is obtained:

r=Mk (H

In ideal working conditions, the encoding performed by the autoassociative schema is
loss-less, hence the memory-reading result coincides with one of the prototypes stored in
M:

r=p, i€{l,..., I} (2)

Thus the memory-training problem can be mapped into a matrix-computation one, in
which one has to find the best matrix, M, such that Eq. (2) ideally holds for each i.
Kohonen's work on the theoretical model of DAMs shows [7] that, in the case of
autoassociative storage, the optimal solution to the training problem can be obtained by
a series of matrix multiplications, as follows (prototypes constitute the columns of
matrix S):

M=S(S'S)”'s! (3)

2.2. Model reformulation

The matrix size M is a critical aspect of Kohonen’s memories because, especially for
images of ‘normal’ size, it requires a huge amount of physical memory. In particular, the
total memory occupation turns out to be proportional to N 4. As a result, implementing
Kohonen’s algorithm directly may prove impractical on any computing platform.

In the present paper, this problem is solved by a simple reformulation of the overall
memory model, as the resulting model makes the implementation of DAMs feasible on
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parallel machinery. Such formalism may appear straightforward; indeed, the reformula-
tion represents a novel point in the context of Kohonen’s associative modelling and
provides a viable way to the practical use of such devices in high-dimensional data
processing. The memory matrix, M, is split into two partial matrixes, M, and M,,
which are computed (off line) during training, as follows:

2.2.1. Training

M, =S(S'S)"'; size: [N?XI] (4)
M,=S' size: [IXN?] (5)
2.2.2. Recall

Memory reading is split into two subprocesses: first, the key vector, k, is multiplied
by M, and gives the intermediate vector, v; then, the product of v by M, yields the
final recall, r:

v=M,k; size: [IXN?}-[N?]=][1] (6)
r=Mu; size:[N*x1]-[1]=][N?] @)

Proving that the reformulated memory model is equivalent to Kohonen’s original model
is immediate:

plreform.) Ml(M2k) — S(S(S)—l(stk) — [S(S(S)" lS‘]k (8)

Eq. (8) shows that the recall vector for the reformulated model is equivalent to Eq. (3).

Egs. (6) and (7) indicate that M, and M, have an identical number of elements
(I-N?), hence the total number of stored elements amounts to 2 - 7 - N2. The advantage
over the original memory mode! (requiring N* elements) in terms of physical occupa-
tion is notable, especially if one reasonably assumes / to be much smaller than the
number of pixels in an image. As compared with Kohonen’s formulation, the total
memory occupation depends on the number of stored images; this might appear as a
drawback in terms of generality. On the other hand, the specific practical improvement
holds under standard working conditions; for example, if 7 < 1000 and the involved
(small) images include 128 X 128 pixels, the saving in memory is equal to about one
order of magnitude, and may represent a good threshold for the new method’s
effectiveness (Table 1).

Table |
Memory occupation

Number of samples 16 160 1600 16000

Memory occupation 2 Mbytes 20 Mbytes 200 Mbytes 2 Gbytes
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Fig. 1. Schema of the associative classifier.

2.3. Associative classification

In image classification, an unknown input picture must be associated with one of the
prototypes stored in the memory. In an associative classifier, the input pattern, K, is
used as a key for addressing the memory content. Autoassociativity enhances the
classifier performance by exploiting the memory’s pattern-completion ability, which can
restore correct information from noisy or incomplete input keys.

The recognition mechanism is based on a minimum-variance criterion, whose validity
was previously verified by using other associative memory models [4,9]. The principle
of operation is that the associative device operates as a sort of ‘active filter’ that
recovers the signal-to-noise ratio by using stored information.

The classifier (Fig. 1) proceeds as follows:

— K is used to fetch the memory and to derive a recall pattern, r;

— for each prototype, p;, the mean square error, o2, with respect to r is computed;

— the prototype associated with the smallest variance is selected for classification.
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The associative classifier is set up offline by building the memory device; this is
accomplished by storing reference prototypes in an autoassociative way. At run time
classification, matching memory recalls with stored prototypes exploits the memory
device as a nonlinear, ‘active’ filter able to restore information. As to the method’s
robustness, the classification principle has been successfully compared in Ref. [9] with
the corresponding optimal schema adopted by classical pattern recognition, which
minimizes the MSE.

The specific characterization of the associative classifier’s performance goes beyond
the scope of this paper; from a general perspective, the apparently surprising result of
improving an optimal classifier is explained by the fact that the associative device uses,
in the recognition process, some a priori knowledge about stored information before
issuing the actual classification outcome. These considerations motivate the research on
a parallel implementation of the overall system, as it may support real-time perfor-
mances of the online classification task.

3. Parallel implementation
3.1. Parallel architecture and data allocation

The choice of the supporting HW architecture is crucial to eventual applications, and
a tradeoff between computational speed and cost constraints should be allowed, espe-
cially in practical problems. The implementation of DAMs mainly involves matrix
multiplications, whose mathematical formalism somewhat drives the choice toward a
parallel approach. To this end, we selected a transputer-based architecture. In this
domain, transputers prove inexpensive and feature high flexibility; however, the widely
general model reformulation allows one to switch to other and possibly more effective
HW supports.

As to the data-allocation strategy and the processor configuration, we adopted a
hierarchical network, whose topology is arranged as a tree (Fig. 2). The method used to
work out a memory recall is independent of the tree depth and is based on a uniform

HW link HW pipeline unused HW pipeline
ROOT]
2 3
t 0
TO TS
2 0 t k]
3 2
1 0 3 2 1 0
2 2 2 2
Tl N e l Tz . . ’1‘3 ) T4 TG .......... l T7

Fig. 2. Processor hierarchy for the memory parallel implementation.
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distribution of matrix multiplications among processors. A hierarchical architecture of
processors reflects the structural choice already adopted for previous research on parallel
implementation of associative memories with computation-intensive modelling [11],

The uniform distribution of the computational load is attained by a suitable data-al-
location strategy, which consists in splitting all data matrixes (images, memory, etc.)
into as many slices as the number of processors (Fig. 3). Therefore, each network node
performs local computations on the assigned portions of the data sets. This basic
architecture was also adopted in the above-mentioned implementation of an image
classifier using noise-like coding associative memories [11]; therefore, the present
research also allows a comparative evaluation of different approaches to the same
problem.

At the initialization step, the ROOT (master) processor sends to each mth slave the
assigned portions, M{™ and M{™, of M, and M,, respectively. For simplicity and
without loss of generality, we assume that all slaves (m =1, ..., M) receive portions of
equal size. Uniform splitting is also valid for the key pattern, K, which is divided into m
slices for on-line recall. As a result, the sizes of the data sets M{™, M{™ and k™ on
each processor are given by [, N2/M], [N2/M, I], and [N?/M], respectively. The
initialization step is executed offline and is not considered in the performance analysis
of the system.

Run-time memory recall involves the following steps:

(1) the roOT node splits the input image, K, into as many portions as the available
processors, and downloads the resulting ‘slices’, k™, to slave nodes accordingly;

(2) each slave computes the local portion of the first intermediate product, v‘™ =
M(l'")k("');

(3) vectors v'™ (of size [1]) are recollected at the ROOT level; their vector sum yields
the intermediate vector, v;

(4) v is broadcast to all slaves;

(5) each slave computes the local portion of the actual recall: (™ = M{™p;
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(6) partial recall vectors are reassembled at the ROOT, which builds up the final result,
r.

In the above algorithm, inter-node communications take place at steps (1), (3), (4},
and (6). It is worth stressing, however, that these phases involve at most vector
quantities; hence they play a minor role for the eventual efficiency. Conversely, the
specific data-allocation strategy manages to keep the bulk of the computation-intensive
process at the local level, thus increasing the overall efficiency.

3.2. Theoretical analysis of the system’s efficiency

This section considers the algorithm previously outlined, and derives an analytical
expression for the structure efficiency. Such an expression makes it possible to predict
the overall system’s performance. The following notations and conventions will be used
for the analysis:

— Thxe = time required to transmit a pixel through a physical link between two
Processors;

- T, = time to perform a floating-point multiplication;

- T,,m = time to perform a floating-point sum;

— L = total network depth equal to the number of hierarchy levels supported by the
processor tree (0 = root level, ..., L);

— M = total number of processors.

3.2.1. Communication overhead

Link communications among transputers proceed sequentially on each node, because
of each processor’s inability to support a parallel memory access. This limitation has
major consequences on the eventual performance, as the time for information broadcast-
ing from each node to lower ones is given by the sum of all individual transmission
phases. Run-time operation involves different types of communications:

— top-down transmission of key slices, k™, T¥;

— bottom-up collection of partial vectors v'™, TV 1);

— top-down broadcast of the intermediate vector v, T *);

— bottom-up collection of portions of vector r(™, 7"

Data transmission affects communication costs selectively, depending on whether
common information is broadcast or individual information is sent to each processor.
Two structural factors can be defined accordingly.

When common information must be broadcast to all slaves, the cost term, F®, is
expressed as:

L
F® = Y max{ BF(1, j)) (9)
(=0 7
where BF(I, j) indicates the number of outgoing downward links of processor (I, j)
(branching factor of the jth processor at level /). Summing the highest branching factor
at each level lets the total broadcast time depend on the largest subtree in the network.
Thus the term F'® gives a structural and general measure of the topology effect on



F. Ancona et al. / Parallel Computing 23 (1997) 1479~1491 1487

broadcast communications; in fact, the amount of transmitted data is not proportional to
the number of network nodes.

When transmitted information differs from one node to another (in other words, when
the path differs), the structural cost, F(®, is expressed as:

L BF(1,))
F@ = }:mgx{ Y. D(1, j, k) (10)
h=1

=0 J

where D(!, j, h) is the size (number of nodes) of the subtree spanned from the 4™ link
of the j™ processor at level I This quantity is architecture-dependent, and can be
computed once for ever when the global processor hierarchy is defined. The function D(
) was previously used in Ref. [11] to characterize hierarchical topologies, and returns a
communication cost proportional to the total weight (number of nodes) of the specific
subtree spanned from a given link. For example, for the architecture shown in Fig. 1,
D(l, j, h) has the following values:

level0, D(0,j, h)=4, Vjh
levell, D(1,j,h)=1, Vjh
level2, D(3,j,h) =0, Vj, h

As opposed to F'®, which takes into account the largest subtree in the network but can
exploit some parallelism, the term F'? yields a structural cost proportional to the actual
network weight (where the amount of transmitted data is proportional to the number of
nodes). F® is structure-dependent and can be computed once when defining the global
processor hierarchy.

With these notations, communication costs can be expressed as follows:

2

N
Tc(k)= Tc(f)r. WF(d)TPiXC) (“)
Tc(v )= 1p(11)7-pixel ( 12)
Tc(vl ) — ”;‘(17).,-1)“el ( 13)

3.2.2. Computational timings

At run time, each processor performs two different computations at the local level:

— time to compute the intermediate product v‘™, Tp‘”’;

— time to compute the local recall ™, T,

Finally, the time, Tp@), for summing the M intermediate vectors on the ROOT node at
step (3) must also be taken into account. The timings associated with such processes,
considering the matrix-vector multiplications at steps (2) and (5), are given by:

N? N?
TP(U)=1[VTmul+ (—ﬁ*l)fsum (14)
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NZ
T;’)=7[17mul+(1— 1)Tsum] (15)
TP(E)=I(M— D7y (16)

3.2.3. Analysis of the architecture efficiency
The parallel system’s efficiency is defined as n =T, /(MT ), where T, and T,

par seq par
denote the timings for the sequential execution of the recall process on one transputer

and on the parallel architecture, respectively. The former includes the timings for two
matrix multiplications:

T =1[ N,

seq mul

=2IN*, + (2IN*-1-N)1, (17)

mul

The timing of the parallel execution is obtained by combining Eqgs. (11)-(13) and Egs.
(14)-(16):

= L k T !
T =T+ T+ T + T + 7O 4 7D 4 7L

par
2

2IN? N? N
= T,m,,+(21—1)775um+1(M—2)7m+ 27+1 F

M

b
+IF® Toinel

(18)

The overall system efficiency can then be derived from Egs. (17) and (18):
1 2IN 1 +(2IN? = 1= N1

M QRINT MY 1 (21 = V) (N2 /M Y1 + I(M =) + [N/ MY+ D) FD+ FO 7

~ (] U+ N, ) (1 . [IM(M ~2) = N? |10 +[(2N? + IMYFD + IMFO)r )
2IN? (70 + Toum ) 2IN (Tt + Teum)

(19)
The efficiency expression makes it possible to verify consistency, i.e., that:

n>1 e —(I+N?)7,

um

<[m(m=-2)-N7,, +[2N? +IM)FD + IMF®) 7.

T
S0<(MI-2M+1) + 7"1‘—6—'[(21\/2 +IM)F + IMF®)]

sum

M*—2M+1>0 True YM > 1
<> 7-pixel

= [N+ IM)FDO + IMF®P] >0 Always true
;

sum
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Eq. (19) also shows that, in a single-processor architecture (M = 1), efficiency evaluates
7= 1, as communication costs Egs. (9) and (10) nullify.

At present, performances of computers permit to perform floating-point operations
(sum and multiplication) by comparable times. For this reason, Eq. (19) can be
simplified as follows:

(41 -1)N* =1
T (AI-1)N'+ (M-2)IM+ a[(2N? + M) FD + IMF®)]
4IN?
SAN (M- M+ a[(2N? + M)FD + IMF®]

n

Tpixel

and 7= T

where a = o =

- Tl (20)

4. Experimental results

Experiments aimed at assessing the system’s performance in terms of both computa-
tional efficiency and classification accuracy. For the HW support, we used an evaluation
system including 8 transputers of the T800 family, arranged as shown in Fig. 2. The
visual testbed included a prototype set of binary images drawn from different domains,
including cell nuclei, human faces, and geometrical shapes. This data set involved a
difficult problem because pictures belonging to the same domain (e.g., faces or cell
nuclei) were quite similar to one another, and formed thick clusters difficult to separate.
The image size was always set to N? = 128 X 128 pixels.

4.1. Efficiency measurements

Another important verification of the consistency of the research presented in this
paper concerned the correctness of the predicted efficiency (Eq. (19)) as compared with
empirical evidence. In this sense, the experimental setup we used for evaluation
involved a board with M = 8 processors of the T800 family, using inter-transputer links
operating at 10 Mbit/s, giving 7,,. = 4.48 us; the time required for a floating-point
operation amounted to 7= 4.32 us. The hierarchical topology illustrated in Fig. 2 and
the definition of the structural cost functions leads to the communication factors
F® =5 and F=11 as follows:

2
F® =% max{BF(l, j)} =2+3+0=5;
=0 J
2 BF(, )
F = Zmax{ Y D(I,j, h)} =(4+4)+(1+1+1)+0=11.
=0 J \ a=1
The network symmetry makes the max( ) operators irrelevant.

Using these technical values in Eq. (19) yields efficiency estimates for the specific

architecture. Table 2 allows a comparison between predicted and measured values; the
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Table 2
Efficiency and speedup results

Teq Toar Measured n Predicted Speedup
I=8 1.777 s 0.411s 0.54 0.583 4.666
I=16 3.488 s 0.586 s 0.74 0.736 5.891

T, = recall timings for the sequential algorithm.

T, = recall timings for the parallel algorithm.

fit between experimental and expected values demonstrates the validity of the theoretical
model.

From a strictly technical point of view, computational timings appear quite satisfac-
tory (a 16-class classifier operates in about half a second) and, at the same time, the
values of the overall efficiency are quite significant. These results refer to the specific
mathematical model described (mainly based on matrix algebra). However, timing
performances can be further enhanced by using 20 Mbit/s links and including unrolling
techniques in the floating-point vector computations.

As to the overall classification performance, some interesting issues stem from a
comparison of a DAM-based classifier with the schema described in Ref. [11] and using
noise-like coding memories. In this respect, Kohonen’s model exhibits a greater
robustness, especially against speckle noise, whereas insensitivity to Gaussian noise is
almost equivalent for the two models. On the other hand, it is worth stressing that
DAMs require (even in the reformulated version) a much larger memory occupation
than noise-like coding memories to store the same amount of information. (Incidentally,
we recall that the size of a noise-like coding memory is constant and equal to 2N2.) As
a consequence, the increased insensitivity of a DAM-based classifier is obtained at the
cost of heavier hardware requirements, hence the ultimate choice will be driven by a
performance /cost tradeoff dependent on the actual application domain.

This line of research ultimately confirms the interest in using associative memory
models as support devices to enhance a classification system’s performance in a flexible
and effective manner, by providing trainable and adaptive components whose relatively
inexpensive parallel implementation makes real-time application feasible.

5. Conclusions

The paper has addressed a basic model of associative memory and described its use
for high-dimensional image recognition.

The presented research also exhibits novel aspects from a theoretical perspective. The
model reformulation makes a practical implementation feasible without affecting the
memory performance; at the same time, the architectural choice and the implementation
strategy have defined the method’s effectiveness quantitatively, and proved its notable
scalable properties.

The inclusion of DAMs inside an image-processing system appears very promising,
especially when considering the possibility of adopting hetero-associative schemata,
which have proved effective in other related approaches presented in the literature.
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