
,PSOHPHQWLQJ�1HXUDO�*DV�1HWZRUNV�RQ�'LVWULEXWHG�$UFKLWHFWXUHV

Fabio Ancona, Stefano Rovetta, and Rodolfo Zunino

'HSW��RI�%LRSK\VLFDO�DQG�(OHFWURQLF�(QJLQHHULQJ��',%(���8QLYHUVLW\�RI�*HQRD�
9LD�DOO¶2SHUD�3LD���D�������*HQRYD��,WDO\���SKRQH����������������

�H�PDLO�V���^DQFRQD��URYHWWD��]XQLQR`#GLEH�XQLJH�LW

$EVWUDFW

7KH SDSHU GHVFULEHV D PHWKRGRORJ\ IRU WKH LPSOHPHQWDWLRQ RI D QHXUDO DOJRULWKP IRU YHFWRU
TXDQWL]DWLRQ RQ SDUDOOHO KDUGZDUH� 7KH ILQDO DSSOLFDWLRQ JRDO LV ORVV\ FRPSUHVVLRQ RI KLJK�
GLPHQVLRQDO GDWD IRU ORZ ELW�UDWH LPDJH FRPPXQLFDWLRQ� 7KH KLJK FRPSXWDWLRQDO ORDG RI WKH QHXUDO
WUDLQLQJ SURFHVV DQG WKH WHFKQLFDO LPSRUWDQFH RI WKH VSHFLILF DSSOLFDWLRQ PRWLYDWH WKH VHDUFK IRU D
KLJKO\ HIILFLHQW SDUDOOHO LPSOHPHQWDWLRQ RI WKH TXDQWL]DWLRQ PHWKRG�)LUVW� WKH SDSHU VKRZV D QHXUDO
DOJRULWKP WKDW LPSOHPHQW WKH YHFWRU TXDQWL]DWLRQ �1HXUDO *DV�� 7KHQ� WKH SDSHU SUHVHQWV WKH VWUDWHJ\
WR GLVWULEXWH WKH DOJRULWKP RYHU DQ DUFKLWHFWXUH EDVHG RQ D WRURLGDO PHVK WRSRORJ\� ([SHULPHQWDO
UHVXOWV RQ DQ DSSOLFDWLRQ WHVWEHG FRQVLVWHG LQ DQ LPDJH�FRPSUHVVLRQ WDVN� LQ ZKLFK ORZ ELW�UDWH
FRGLQJ�LV�DFKLHYHG�E\�9HFWRU�4XDQWL]DWLRQ�HQFRGLQJ��FRQILUP�WKH�YDOLGLW\�RI�WKH�SDUDOOHO�DSSURDFK�

���,QWURGXFWLRQ

In the past few years there has been significant progress in video coding. Very low bit rate video coding is still
an open reseach area where useful contribution are obtained by Vector-Quantization encoding. Neural training
process for VQ implementations has a drawback in the high computational load for compression of high-
dimensional data. We have incentived the search to overcome this drawback by a parallel approach implementing
the quantization method. To this end, we chose a neural model (Neural Gas [1]) that exhibits remarkable properties
in terms of both consistency (quality of the quantization process) and easy implementation, and we describe how a
toroidal mesh topology fits the proposed model for a distributed approach. The paper first outlines the basic neural
algorithm, and then points out those features making this technique very suitable for efficient HW support. The
analysis of the actual implementation methodology shows its notable scaling properties, that is, the satisfactory
efficiency of the technique is not affected significantly by the number of processors involved. Preliminary
experimental results confirm the validity of the overall approach.

���7KH�1HXUDO�*DV�DOJRULWKP�IRU�YHFWRU�TXDQWL]DWLRQ

Vector quantization is the process of approximating a large data set of multidimensional data (e.g., image blocks
for image compression) by a reduced number of “prototype” vectors, obtained by clustering several, similar data
into one prototype. This approximation resembles that used in scalar quantization, and proceeds by minimizing
some error function (usually, the mean square error).

The Neural Gas (NGAS) algorithm, developed by Martinetz et al. [1], is an iterative algorithm to train a set of
prototypes. At each iteration, a sample datum is received, and prototype vectors are ordered according to their
distances from the input sample. Prototypes are then adjusted according to their positions on the ordered list: closer
vectors undergo larger modifications. The intensity of the adaptation steps and the width of each vector’s
neighborhood decrease during training, thus providing a stabilization mechanism, also present in similar algorithms
(including Kohonen's SOMs [2]). The NGAS training algorithm can be outlined as follows:

1 Set W = a set of randomly initialized prototypes; set , = a fixed number of iterations.
2 Repeat for L = 1 to ,�:

2.1Input a sample vector [�

2.2Compute the distance G � = || [– Z � || from each prototype Z � .
2.3Sort the list of prototypes according to G � .
2.4Compute the adaptation step ∆Z� for each prototype Z� .
2.5Apply adaptations to each prototype.

3 Output the set of prototypes W.

This procedure exhibits interesting properties that can be exploited in an HW realization. The simple rule
provides a uniform coverage of input samples with the available number of prototypes, thus maximizing the
representation consistency. Although there is no theoretical proof of convergence, the algorithm has often been
shown to have notable advantages over similar models.

Another property [3] guarantees the existence of an initialization of prototypes such that they always lie in a
bounded region, provided that input values are themselves bounded (which is always the case in practice). This is
very important when one needs to assess a priori the dynamic range of a stored quantity. It is worth noting that
weights in back-propagation networks do not feature this property.

The training algorithm involves a number of independent operations, and the absence of a fixed inter-neuron
connectivity simplifies a parallel implementation. The relatively large amount of computations at the local level
allows one to achieve a high degree of parallelism; moreover, the alternation of the computation and communication
phases makes synchronization easier.

���3DUDOOHO�LPSOHPHQWDWLRQ

The hardware architecture is subject to different constraints, mainly related to its performance, cost, and
flexibility. In this research, transputers constitute the basic processing units of the final HW realization. They are
less expensive than commercial workstations applied for image processing; besides, thanks to their high structural
flexibility, one can configure a system in compliance with target applications.

In the implementation of neural systems, transputers can represent a suitable compromise between opposite
constraints (e.g. image size involving computational overhead, timings imposed by the application domain, easy
configuration, and availability of resources). On the other hand, higher development costs demand an accurate
architectural design. In particular, the data-allocation strategy and the organization of processors play crucial roles
in the system’s effectiveness [4].

������$UFKLWHFWXUH DQG�GDWD�DOORFDWLRQ

The realized algorithm is suited to being
distributed over an architecture characterized by a
toroidal mesh topology, as shown in Fig.1. The
basic approch lies in splitting neurons along the
mesh columns, whereas the training data set is
partitioned along the mesh rows.

The specific nature of the neural algorithm
makes it possible to identify three distinct
computational phases, namely, steps 2.2, 2.3, and
2.4+2.5. Thus a straightforward and effective data-
allocation method is to split the data set into three
subsets and to map them into the mesh rows. As a
result, each row is entrusted with the training
contribution of one third of the entire training data
set. Conversely, the mutual topological
independence of neurons makes it possible to
partition the prototype set into as many subsets as
the mesh columns, whose number is not fixed and
can be changed according to the number of
available processors.

������$OJRULWKP�LPSOHPHQWDWLRQ�

The above allocation approach has important consequences on the actual algorithm implementation and its
resulting efficiency. The system’s run-time kernel is arranged in a state machine as follows:
1) compute ORFDOO\�the distances between available samples and local prototypes;
2) sort prototypes;

D Training data

D/3

D/3

D/3

N/M N/M N/M

N Prototypes

Transputer

Fig. 1 - The mesh architecture and the related data-
allocation strategy:
rows = 3 (always); M = #columns; D= number
of training samples; N=number of prototypes.

3) update prototypes ORFDOO\;
4) VHQG�adjustment steps for each vector to the next row in the mesh.

This approach has several specific features enhancing a parallel performance: the computation-intensive phase,
namely, the working out of distances, is performed entirely at the local level, thus yielding the maximum efficiency;
likewise, the vector-adjustment step does not involve any
inter-processor communication.

As to the communication overhead, the sorting phase
involves row-wise communications; as a result, the sorting
process proceeds independently along each row for one
third of the allocated data. In addition, the amount of
transmitted information (vector index + scalar distance
values) is small, as compared with the huge amount of data
stored for each datum and vector. Conversely, the
communication of adjustment displacements at step 4)
involves a larger amount of information, but its parallelism
spreads over FROXPQV, whose number is unbounded. This
property allows the critical part of communication costs to
be reduced by increasing the number of processors, hence
efficiency is made virtually independent of the problem
scale. Actually, the efficiency behaviour of the system when the number of processors increases can be described by
observing:

lim
n →∞

=η η1 where is the system’s efficiency
.

������([SHULPHQWDO�UHVXOWV�

As result of a previous research [5], we have developed a method to estimate the number of prototypes as a
good compromise between compression and generalization power of the model. In this research the neural method
has been applied to image compression.

In our experiments, we used a simple 6-processor network (2 columns and 3 rows) for evaluation purposes.
Accuracy results include the WUDLQLQJ WLPLQJ for the sequential algorithm, the WUDLQLQJ WLPLQJ for the parallel
algorithm, and the system’s efficiency (η = 1/P⋅Tseq/Tpar = 0.58; P = # processors).

The application testbed consisted in an image-compression task, in which low bit-rate coding is achieved by VQ
encoding. The compression system processed standard (grey-level) images (8bpp) with 512x512 pixels. All
pictures were split into 4096 blocks including 8x8 pixels each. In the experiments, a set of classical pictures were
adopted for the network training, and a different image set for the generalization-based algorithm control. A
network with 236 prototypes was used.

Figure 3 presents the network’s performance on a “validation” picture not used for training nor for cross-
validation. Results attained a compression ratio of 42.7, with a PSNR of 28.26 (SNR=22.71, MSE=97.90),
indicating the method’s notable performance as compared with classical compression techniques (e.g., JPEG).

���&RQFOXGLQJ�UHPDUNV

Vector Quantization can provide an image-coding schema with a remarkable compression ability, thanks to the
codebook-indexing mechanism intrinsic to the quantization process. This advantage is often obtained at the cost of
some coarseness and blockness affecting the reconstruction quality. In this sense, an adaptive technique to improve
the overall generalization ability is described in [6]. A crucial issue inherent in all these methodologies is the
computational cost of training, especially in high-dimensional domains with many training samples.

Therefore, a method for a parallel implementation with high efficiency appears very interesting and useful from
a practical perspective, too. In this regard, the paper has presented a general methodology that combines a low-cost
machinery with a scalable and effective implementation of the neural model. This represents the basic advantage
and the main novel point of the described method.

The current lines of research in this area concern the development of more complex architectures integrating
several processors for a real-domain utilization.

Column-wise
updating

Row-wise
sorting

Fig.2 - Communication structure.

���5HIHUHQFHV

[1] Martinez T. M., Berrkovich S. G., Schulten K. J., “‘Neural-Gas’ network for vector quantization and its
application to time-series prediction,” ,(((�7UDQVDFWLRQ�1HXUDO�1HWZRUNV, vol. 4, No. 4, pp. 558–569, 1993.

[2] Kohonen T., “Self-organization and associative memories,” Heidelberger:Springer, 1982.
[3] Ridella S., Rovetta S., Zunino R., “On the role of generalization in adaptive dynamic vector quantization,”

submitted to ,(((�7UDQV��1HXUDO�1HWZRUNV, 1995.
[4] Pagano F., Parodi G., and Zunino R., “Parallel implementations of associative memories for image

classification,” 3DUDOOHO�&RPSXWLQJ, vol. 19, No. 6, pp. 667–684, 1993.
[5] Ridella S., Rovetta S., and Zunino R., “Generalization-based Approach to Plastic Vector Quantization”,

:RUOG�&RQJU��1HXU�1HWZ��:&11¶��, Washington, vol.I, 505-508, 1995.
[6] Anguita D, Passaggio F, and Zunino R., “SOM-based interpolation for image compression”, :RUOG &RQJU�

1HXU�1HWZ��:&11¶��, Washington, vol.I, 739-742, 1995.

Fig.3 - Validation performance of Neural Gas for image compression

