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IAVQ—Interval-Arithmetic Vector Quantization for
Image Compression
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Abstract—Interval arithmetic (IA) can enhance vector quantiza-
tion (VQ) in image-compression applications. In the interval arith-
metic vector quantization (IAVQ) reformulation of classical VQ,
prototypes assume ranges of admissible locations instead of being
clamped to specific space positions. This provides the VQ-recon-
struction process with some degrees of freedom, which do not af-
fect the overall compression ratio, but help make up for coarse dis-
cretization effects. In image compression, IA attenuates artifacts
(such as blockiness) brought about by the VQ schema. This paper
describes the algorithms for both the training and the run-time
use of IAVQ. Data-driven training endows the methodology with
the adaptiveness of standard VQ methods, as confirmed by exper-
imental results on real images.

Index Terms—Author, please supply index terms. E-mail key-
words@ieee.org for more info.

I. INTRODUCTION

V ECTOR QUANTIZATION (VQ) [1] encodes information
by means of a set of prototypes (codewords) in the ob-

served domain. Each point in the data space is represented by
the codeword that maximizes a similarity criterion. Compres-
sion stems from using a codebook whose (log) cardinality is
smaller than the number of bits describing a datum. The fact that
entire space partitions are encoded by the associated codewords
causes VQ to be an efficient compression method. The heavy
computational load represents a crucial issue of VQ schemata.
It can be tackled by either dedicated hardware circuitry [2]–[6]
or accelerated algorithms [7]–[9].

The index-based coding schema allows VQ to attain consid-
erable compression ratios in high-dimensional domains. This
makes the method suitable for image compression [10]–[13].
Thanks to the possibility of locally representing scene contents,
VQ coding schemata may perform effectively in specific appli-
cations that involve image understanding [14] and multimedia
data processing [15]. When very low bit-rate compression must
be attained, VQ techniques, as well as other nonconventional
approaches (e.g., wavelets), may represent a valid alternative to
standard compression algorithms such as Joint Photographers
Expert Group (JPEG) [14]–[16] in specific applications.

When considering the quality of reconstructed images, it is
well-known that quantizing the space into a few partitions may
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lead to an excessive discretization of represented data. This may
give rise to undesired effects, such as blockiness. Removing ar-
tifacts is still an open problem [17]–[21]. Any additional in-
formation transmitted to remove image defects may tend to in-
crease the required bandwidth, hence a myriad of deblurring ap-
proaches have been proposed to improve image quality at the
decoder end without increasing the number of bits sent.

This paper shows that interval arithmetic (IA) [22] can be
profitably integrated within the VQ-based paradigm. The major
advantage is that reconstruction quality is enhanced without
affecting compression performance. Interval arithmetic vector
quantization (IAVQ) redefines VQ prototypes and lets them be
placed in ranges of admissible locations rather than specific
space positions. Thus, a VQ prototype becomes an “interval pro-
totype.” Nevertheless, the number of bits and the time for en-
coding a datum are the same as those of classical VQ coding.

Interval prototypes at the receiver end provide the pixel-re-
construction process with degrees of freedom, thus permitting
a qualitative improvement in image rendering. Evaluating
the method quantitatively is complicated by the lack of a
valid model of visual perception, hence the current research
adopts mean square error as a standard distortion measure. An
approach using the quantization interval has been proposed
for JPEG-compressed images [18], [23], where projections
onto convex sets (POCS) constrain the reconstruction to be
consistent with the encoded bitstream subject to a smoothness
constraint. From a regularization perspective, a frequency-do-
main method to remove blocking from JPEG-encoded pictures
led to a gradient-based quadratic-programming problem [17].

Likewise, IAVQ formulates the image-reconstruction process
as a constrained quadratic-programming problem [24], where
interval codewords impose bounds to the solution space. The
final optimization process implies a local-smoothness assump-
tion. In place of the gradient-based method used in [17], a cel-
lular neural network (CNN) [25], [26] drives the regularization
task and supports the actual image rendering. The major ad-
vantage of adopting a CNN lies in the notable efficiency of the
eventual circuit implementation. The reconstruction method at
the decoder end differs significantly from classical low-pass fil-
tering [19], [27], as interval quantities strictly control (as much
as slopes in [17]) the filtering action and ultimately prevent gen-
eralized blurring effects. In IAVQ, the bounds are domain-adap-
tive, as the used codebooks can be trained empirically by simple
and fast algorithms. Thus IAVQ ensures the example-driven
ability of VQ schemata and keeps their flexibility.

The augmented model does not affect either the compression
ratio or the speed performance. The circuitry supporting
data-coding uses standard VQ hardware implementations [6].
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The application of a CNN to the decoding process exploits
well known results reported in the literature, showing that
CNN structures can solve quadratic-optimization problems
effectively. In addition, the planar, locally interconnected
architectures of CNNs strongly simplify hardware circuitry
[28]–[31].

This paper describes both the training process and the
run-time use of IAVQ codebooks. The image-coding recon-
struction performance of the method is evaluated in comparison
with well known rendering approaches that can be applied after
standard VQ coding, namely, classical low-pass filtering and
unconstrained CNN-based low-pass filtering. Experimental
results show the effectiveness of the proposed methodology
and provide numerical evaluations and qualitative visual
assessments.

The paper is organized as follows: Section II briefly summa-
rizes VQ information coding and gives a basic formalism for IA,
then the actual IAVQ method is presented. Section III deals with
the interval codebook-training problem. Section IV describes
the use of IAVQ for image coding, and especially details its op-
eration at the receiver end by means of a CNN structure. Sec-
tion V reports the experimental results obtained and compares
the method performances with those of related approaches. Fi-
nally, some concluding remarks are made in Section VI.

II. FRAMEWORK FORIAVQ

A. VQ-Based Data and Image Coding

The basic VQ schema adopted here associates with each-di-
mensional point, , the best-matching element, ,
selected from a codebook, ,
such that:

(1)

Several algorithms have been proposed to build up a suitable
codebook for a given VQ-coding task, involving a vast literature
on pattern recognition [1], [32] and neural networks [33], [34].
The research presented in this paper adopted a plastic version
[35] of the “neural gas” model [33] to assess both the number,

, and the positions of codevectors. This choice was mainly
suggested by the availability of an efficient hardware implemen-
tation of the method [6].

VQ-based image compression has been used in the litera-
ture in both the transform domain and the spatial domain. In
the transform domain, VQ applies to frequency-based represen-
tations of coded images (typically, discrete cosine transform)
[13]. In the spatial domain, it operates directly on image pixels,
and will be adopted as a default in the following. This choice re-
sults in a lower computational cost, as images need not be trans-
formed, and it simplifies real-time applications [14].

Pixel-domain VQ divides a picture into (usually square)
blocks representing coded samples, ,
where is the number of pixels within a block, and is the
number of blocks making up the picture. Each block is encoded
by working out its associated best-matching codevector (1). For

images with gray-level pixels that may assume up tovalues,
the resulting compression ratio is given by

(2)

For example, an 8-bpp image that is split into blocks covering
pixels , a (typical) codebook holding

codewords yields a compression ratio . Clearly, larger
block sizes yield higher compression ratios. On the other hand,
the codebook size might represent a severe problem if too large
blocks are encoded, due to the involved memory requirements
and the increased computational load. As a consequence, rela-
tively small block sizes are used (typically or, in some
nonstandard cases, ).

In practice, several technical mechanisms have been added to
the basic schema to improve image appearance. Mean residual
coding (MRC) [36] subtracts from each block its mean value
before VQ encoding. This mechanism separates brightness in-
formation in advance and lets VQ represent contrast. Adaptive
block splitting (ABS) [37], [38] allows the encoder to choose
various block sizes in compliance with local image contents.
Picture areas containing little information are encoded by larger
blocks, whereas smaller blocks cover detail-rich image regions.
Both MRC and ABS can notably improve the quality of a recon-
structed image, at the cost of transmitting additional information
(block mean values and quadtree structure, respectively). These
add-ons by no means affect the basic coding schema (1), which
will keep a general validity in the following.

B. Interval Arithmetic Formalism

Interval Arithmetic was introduced [22] as a handy for-
malism to treat quantities in the presence of uncertainty or
noise that makes exact determinations impossible. An interval
variable defines a range of possible values for that quantity;
any value within the interval is admissible and equally likely.
An interval is defined as an ordered pair , such
that and . The bounds are admissible
values for the associated quantity.

In the following, by convention, uppercase letters will always
denote interval quantities, whereas lowercase letters will stand
for scalar variables. The interval formalism supports a compact
algebraic notation in the space of intervals,. The following
operations are defined

sum

difference

translation

amplification
if
if

product

square
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Fig. 1. The IAVQ-based image-coding schema.

In comparison with classical algebra, some operations require
additional computations to ensure the consistency of bounds.
The case of the square function exemplifies an IA peculiarity
for nonmonotonic functions, as the interval function may
differ from , if includes the origin.

A -dimensional interval vector is represented by an array
of intervals: . The Euclidean distances
from to a vector and another interval vector
are given by

(3)

C. Concept and Basics of IAVQ

The basic idea underlying IAVQ is to extend the flexibility of
VQ schemata. A crucial drawback of VQ-based representation
of information is that the encoding process results in a single
location of the data space (a codeword), which represents every
point in the associated partition. Thus, compression is often ob-
tained at the cost of coarseness. The purpose of augmenting VQ
by IA is to extend the meaning of “codeword” by encoding a
partition of the data space with a range of admissible space lo-
cations. In practice, a set of intervals replaces the single centroid
coordinates. This redefines the concept of a “prototype,” which
can be regarded as a “hyper-box” spanning an interval of valid
coordinates along each dimension. Such a mechanism clearly
introduces degrees of freedom into the reconstruction process,
and the specific application requirements will suggest the suit-
able criterion to select the appropriate coordinates within the
box.

In VQ-based picture compression, codeword coordinates
have a one-to-one mapping to image pixels, hence the out-
come of IAVQ block coding is a block of “interval pixels.”
IAVQ-based image coding exploits the variability associated
with each interval to compensate for the coarseness brought

about by the quantization process. The crucial advantage of the
VQ-derived schema is that both the position and the extension
of each hyperbox can be made domain-adaptive by learning
from examples. Thus, the overall compression and rendering
schema preserves the flexibility of basic VQ.

The selection of the eventual pixel values stems from a
regularization process that minimizes a quadratic cost function
within the constraints set by interval codewords. The inherent
smoothness constraint aims to exploit the contiguity of neigh-
boring pixels, and leads to a filtering action that involves a
quadratic-programming optimization problem. This crucial
task can be effectively accomplished by a cellular neural
network, whose major features are its theoretically established
convergence properties and a planar architecture allowing
efficient hardware implementations. Fig. 1 shows a schematic
representation of the process.

III. IAVQ T RAINING

In principle, the codebook-training problem requires that one
determine the positions and ranges of all interval codewords at
the same time. Such an exhaustive approach, however, seems
computationally unfeasible because of the huge number of pa-
rameters to be estimated. The simpler training strategy adopted
in this research proceeds in two steps: 1) a standard VQ al-
gorithm places prototypes in the domain space and 2) interval
codewords are “inflated” around the VQ-generated initial po-
sitions. Such an approach has the following two basic reasons:
1) splitting the optimization process into a twofold process re-
duces training complexity and 2) the VQ coding schema still
applies and is comprehended as a special case of the more gen-
eral IAVQ.

The amplitude of each interval controls the extent of the as-
sociated degree of freedom, hence one might intuitively ex-
pect that larger intervals result in a better interpolation. Indeed,
using zero-width intervals reduces the whole schema to basic
VQ coding, but the widest intervals covering the whole range of
possible values lead to unconstrained filtering, which
often proves unsatisfactory. The required tradeoff between such
extremes can be worked out empirically by data-driven training.
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Fig. 2. Geometrical properties of sample distribution determine interval amplitudes (one-dimensional case).

A. Theoretical Approach to IAVQ Codebook Training

The theoretical approach to IAVQ codebook training derives
analytical values for the ranges of each interval prototype, under
the basic constraint that the interval settings should not gen-
erate ambiguities as to the categorization of any training sample.
Thus, the data partitions set by VQ regions will remain unaf-
fected. Let denote the data partition associated with theth
codeword, i.e., the set of samples belonging to the partition cov-
ered by such that

.
In compliance with the above training strategy, interval-width

optimization starts from a trained VQ codebook . The
only assumption made in this phase is thatis adjusted by using
an LBG-like algorithm [32]. The LBG model, often also known
as -means, is an iterative codeword-positioning algorithm, and
is adopted here because it guarantees that, at convergence, each
prototype will eventually be placed in the centroid of the asso-
ciated partition.

Pixels are not assumed to have preferential gray levels, hence
the isotropic nature of the problem makes it possible to search
for a VQ-centered interval codeword that may be expressed as

.
The training process aims to determine the widest admissible
ranges, . The analysis will
initially consider one-dimensional situations, then the result will
be extended to the general case of multidimensional codewords.

Lemma 1: Let and be VQ scalar prototypes posi-
tioned by an LBG-like algorithm [32]. The optimal half-am-
plitudes, and , of the associated intervals that preserve
VQ-based partitions are

where

and

Proof: Assume, without loss of generality, that .
The LBG-like algorithm ensures that a VQ prototype lies in
the barycentre of its data partition; therefore, there exist

such that . By definition,
is the sample belonging to the partition that

lies closest to . For this property,
. The situation is sketched in Fig. 2. Prototype can take

on any value in the range . In order to en-
sure a correct categorization of samplein the worst case, the
following condition must be fulfilled:

(4)

which can be rewritten as

(5)

By analogy, the dual condition for the second prototype leads to

(6)

By subtracting (5) from (6), one obtains

(7)

If one now assumes that the available amplitude is uniformly
split between the two intervals, imposing in (7) proves
the assertion. Q.E.D.

The previous Lemma points out that the amplitudes of an in-
terval prototype depend on the relative positions of the samples
lying closest to the partition boundaries. This property can be
extended to the multidimensional case by considering, for each
codeword, the set of neighboring prototypes in the Voronoi tes-
sellation of the space and by applying Lemma 1 to the con-
necting lines. It follows that any standard VQ codebook can be
“inflated” to a nonnull interval codebook. The empirical distri-
bution of data will drive the extent of the process. Such a prop-
erty can be formally expressed as follows:

Theorem 1: Let be a VQ code-
book obtained by an LBG-like algorithm and spanning an unam-
biguous data partition. Then there exists an interval codebook,

, spanning the same partitions set
by and having nonnull interval amplitudes.

Proof: Consider the th element of . From com-
putational geometry, work out the set of prototypes
that share a partition boundary with . Denote by

such a set of neighbors of
, and by the versor connecting to

(8)

By projecting onto the two data partitions spanned by the
two prototypes, and , respectively, one obtains the situa-
tion illustrated in Fig. 3, in which the pair of “critical” samples
is worked out as

(9)

where indicates the scalar dot product. By applying Lemma 1
to the resulting monodimensional case, one obtains the widest
range of variation, , for in the direction

(10)
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Fig. 3. Peculiarities of sample distribution constrain interval amplitudes (multidimensional case).

By hypothesis, the partitioning schema set by the VQ code-
book is not ambiguous, hence there are no samples lying at the
boundary between two partitions. As a consequence, the margin
attained by (10) is nonnull

(11)

Expression (10) makes it possible to work out a variation vector,
, defined as

(12)

The set of vectors obtained by (12) give the maximum variabil-
ities of prototype in the directions of all neighbors. Each
vector imposes a constraint on the allowable positions of
such that the original partition is preserved in that specific di-
rection. A choice for the interval amplitudes of prototype
is given by

(13)

The interval settings (13) satisfy all constraints (12), hence they
preserve the partition relevant to the -th prototype. In order
to prove that the obtained interval codewords are nonnull, from
(8) we derive

(14)

By combining (11) with (14), one can verify that there exist
nonnull interval amplitudes, thus completing the proof. Q.E.D.

B. Operational Approach to IAVQ Codebook Training

Theorem 1 motivates interval codewords from a theoretical
point of view, but it might set severe limitations on the practical
usefulness of the resulting codebook. In particular, the preser-
vation of VQ partitions might turn out to be too strict a con-
straint on the codebook-construction process. The interval am-
plitudes (13) result from a minimization process, hence one ex-
pects that nontrivial distributions of real data (e.g., pixel blocks)
will give rise to very narrow margins (10) and very small ampli-
tudes (13). Such a phenomenon often occurs due to singularities

in the spatial distribution of data: a pair of samples lying close to
a common boundary can squeeze the variation margin (10), even
if the remaining samples within each partition are tightly clus-
tered. Imposing partition consistency on interval setting leads to
a very sensitive process. A more robust strategy is required in
order to attain wider intervals, featuring some resistance against
outliers or peculiar sample configurations.

The empirical approach proposed in this paper aims to retain
the statistical distribution of data. The basic idea is to consider
each space dimension separately. Like the previous algorithm,
the training method starts from a standard-VQ codebook trained
by any LBG-like algorithm. The partitions of data points asso-
ciated with each codeword provide the statistical sample for the
analysis.

The training algorithm can be outlined as follows: let
be the probability density function that describes the values as-
sumed in theth dimension by the samples belonging to theth
partition: such that . In image-coding
applications, these values are bounded by the current pixel depth

. In the case of 8-bpp gray-level
images, and . In order to support ro-
bust statistics, the algorithm computes the histogram of the ob-
served values for each space dimension. The interval amplitude
is eventually determined by requiring that the resulting range
include a given share of the covered samples. Thus, the final
IAVQ codebook comprises, for each codeword, an interval and
its “reference” central value given by the original VQ codeword
position.

a) IAVQ training algorithm:

1) Input: ; VQ codebook trained by
an LBG-like algorithm;

; the partitions of samples
spanned by ;

; the requested coverage of
data values.

2) For each partition
1.a For each dimension

1.a.I Evaluate the histogram, , of values
such that
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Fig. 4. Wider distributions of pixel values yield larger intervals in codeword dimensions.

1.a.II Estimate the probability density function:

1.a.III Work out the amplitude, , such that:

1.b Assemble the interval codeword
as

3) Output: the interval codebook,
.

The described algorithm is quite simple and involves a lower
computational load, as compared with the theoretical approach
(9) and (10). The crucial step 1.a.III can be easily performed
by progressively inflating the average-centered interval until the
expected coverage is attained.

Peak densities, reflecting concentrated distributions of
values, will determine narrow intervals, whereas shallow
densities, suggesting widespread distributions of values, will
yield wider intervals. The situation is exemplified in Fig. 4. As
a result, space partitions with high concentrations of samples
will be represented by “narrow” interval codewords, ultimately
witnessing a higher level of confidence in the prototype po-
sition. Conversely, space regions covering scattered samples
will be represented by “wider” interval codewords, suggesting
a larger uncertainty in the optimal location of the prototype.
The possibility of absorbing information about the spatial
distribution of samples within the associated IAVQ prototype
actually represent an additional interesting feature of the overall
training method.

IV. IAVQ R UN-TIME OPERATION

A. IAVQ-Based Image Coding

The codeword-building method just described does not
guarantee that the partitioning schema spanned by the orig-
inal VQ codebook will be preserved. The histogram-based
method generates intervals at the single-dimension level and

independently of one another, hence the variability regions
associated with prototypes may (actually, they are quite likely
to) overlap. As a result, in order to match a (vector) sample
against an (interval) codeword, the winner has to be selected
by comparing interval distances. Choosing the best matching
candidate by observing overlapping interval distances might
prove not trivial. This strongly suggests that reformulating the
VQ-coding problemverbatimwith the interval formalism may
lead to possibly unnecessary complications.

The basic idea underlying IAVQ image coding is to leave
the compression strategy unaffected (i.e., supported by a stan-
dard VQ codebook and WTA competition). The encoder uses
only “reference” codeword positions (yielding scalar distances),
whereas interval information is taken into account only at the de-
coder end. Thus, the IAVQ image-coding algorithm just repeats
its VQ scalar counterpart.

b) IAVQ-based image coding:

0) Input: Set of image blocks,
VQ codebook,

1) Initialize
2) For each block

2.a Work out ;
let be the index of in ;

2.b Set
3) Output: set of codeword indexes, .

The above approach offers several benefits. First, using
standard VQ encoding does not require additional training
in the image-coding subsystem, and the resulting bitstream
describing the compressed picture remains unchanged. This
guarantees a full compatibility with any noninterval VQ-based
compression method, and preserves the space partitions
spanned by the original VQ codebook. Such an approach
decouples the image-coder and the image-decoder processes,
and the receiver acts as an augmented version of a classical
VQ decoder. Secondly, the overall system’s compression ratio
remains constant, as the encoder need not know the features
embedded in the decoding module. Finally, the additional
computational cost brought about by plugging in IAVQ is
entirely supported by the receiver. Therefore, the available
circuitry can be exploited for VQ encoding, which relieves the
IAVQ method of the need for specific hardware design.
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(a) (b)

Fig. 5. Using CNN-based filtering for IAVQ decoding. (a) The planar structure of the network. (b) Codeword intervals restrain each cell’s nonlinearity.

B. IAVQ-Based Image Decoding

Image decoding consists in retrieving and reassembling the
set of codewords associated with the blocks of a transmitted
image. As explained in Section II-C, pixels are represented by
interval quantities (Fig. 1), and IAVQ-based reconstruction re-
quires that their final values be selected from the associated
ranges to optimize picture quality. The centroid positions char-
acterizing the VQ codebook are derived by an unsupervised
training algorithm that minimizes MSE. As explained in Sec-
tion III-B, they are the centroid, “reference” positions of the
IAVQ codewords, which are inflated to create validity ranges.
All values within an interval are equally likelya priori but, in
the case of image reconstruction, it seems reasonable that the
eventual IAVQ result should privilege consistency with the orig-
inal VQ encoding. Therefore, the basic term in the cost function
penalizes the displacement from the reference scalar position,
whereas the information from surrounding pixels provides ex-
ternal conditioning. Thus, pixel estimation can be formalized as
a quadratic minimization problem subject to some constraints.

The first constraint takes into account the contiguity of
pixels, and requires that the values of adjacent pixels be not
sensibly different. This (typical) assumption about image
smoothness limits the distribution of spatial frequencies in
the image. In principle, one might use well-known deblurring
methods that implement low-pass filtering after VQ recon-
struction. Such techniques, however, would not exploit the
variability information provided by interval quantities. The
difference between a pixel value and the average value of its
neighbors originates a regularization term in the cost function.

The second constraint derives from the interval-based
codewords, and requires the final pixel values not to exceed the
associate interval bounds. By this mechanism, IAVQ introduces
a balancing action that counteracts uniform low-pass filtering.
In the approach presented in this paper, such a constraint is not
expressed explicitly in the cost function. Actually, it is buried
in the saturated nonlinearity characterizing each cell of a CNN.
The use of CNN structures [25], [26] for IAVQ has some basic
advantages. First, the cost function is expressed uniformly
throughout the image, that is, its global value results from the
sum of individual contributions from all pixels, whereas specific
bounds at the pixel level are considered locally. A simpler ex-

pression for the cost also facilitates optimization. Secondly, the
regularization task involves a quadratic-programming problem
that can be tackled by a CNN effectively. Finally, CNNs offer
a planar, distributed, loosely interconnected architecture that
greatly simplifies hardware implementations.

IAVQ might be regarded as a kind of deblurring method, al-
though the method actually uses interval bounds to prevent blur-
ring. The major advantage of IAVQ lies in driving the regular-
ization-based reconstruction of image pixels, whereas a CNN
plays a basic role in accomplishing the optimization task effec-
tively. So one could summarize that IAVQ yields the actual qual-
itative improvement, whereas CNNs provide the method with
effective and fast convergent performance.

C. CNN-Based Image Rendering

The constrained-minimization problem calls for a dedicated
structure supporting the related heavy computational load.
The pixel-reconstruction process is reformulated following the
problem-setting presented in [27]. Let us build up a CNN with
the same planar structure as the reconstructed image. The cells
show a one-to-one correspondence with the image pixels [see
Fig. 5(a)]. Let denote the reconstructed pixel value on
the image coordinates , and let be the associated
reference value. In the filtering structure [27], was
given by the original image pixel. In the present context, such a
value is obviously unknown to the decoder, hence the “central”
value of the associated interval is used instead. This value
is associated with each codeword by the training algorithm
described in Section III, and is given by the coordinates of
the original VQ prototype. For the sake of simplicity, such a
quantity is denoted by . With these notations, the cost
function to be minimized [27] is expressed as

(15)
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where and are the numbers of rows and columns in the
image, respectively, andis a positive factor. The first term bi-
ases a reconstructed pixel toward its expected value; the other
summations bring in a regularizing action that involves adja-
cent pixels, thus incorporating the smoothness constraint into
the reconstruction process. The quantitycontrols the intensity
of the network smoothing action: imposes a maximum
smoothing, and minimizes the contributions of neigh-
boring pixels and inhibits the consequent low-pass filtering ef-
fect.

Each network cell is characterized by an internal status vari-
able, [24]. The nonlinear function yielding the output
activation (i.e., the corresponding pixel value) is given
by [27]

(16)

where and are the lower and upper bounds, re-
spectively, to the interval representing the pixel at the position

. Expression (16) exhibits a slight, yet important, differ-
ence, as compared with a standard CNN model, like that adopted
in [27]. In the cell nonlinearity, the lower and upper saturation
levels are not constant and equal for all the cells (in the case of
8-bbp images, and ), but they are de-
termined, for each cell, by the lower and upper bounds to the
interval provided by the IAVQ prototype encoding the specific
location [see Fig. 5(b)]. Thus, the range information about each
codeword dimension (and the associated pixel) affects the be-
havior of the corresponding cell. The adaptiveness buried in the
distributed structure actually implements the second constraint
on the optimization process, as it sets a limit on the general-
ized low-pass filtering effect by preventing unconstrained fluc-
tuations of pixel values.

From an analytical perspective, the cost formulation (15)
under the constraint (16) implies a quadratic optimization
problem, the solution of which must be found within the
(hyper)box bounded by interval ranges. Such a complex
problem would in general be very difficult to solve analytically,
and in principle, one might question the choice of a CNN
for that purpose. In order to determine the progression of the
internal status value of each cell, from (15) we derive the
following quantity:

(17)

which is the analytical counterpart of the resistive-grid circuit
equation presented in [27]. If we now write the cell status-update
rule as

(18)

expression (18) turns out to be equivalent to the quadratic-form
minimization formulated in [24, p. 110, eq. (2)].

As a consequence, the image-reconstruction cellular network
fully complies with the formalism described in [24]. Thus, one
can benefit from the results obtained by that research, which
provided an effective CNN-based algorithm that the authors

Fig. 6. Artificial test image.

proved to solve the specific class of quadratic programming
problems, like the one involved in IAVQ-based image rendering.

The optimization method described in that paper is theoreti-
cally guaranteed to converge to the minimum of the cost func-
tion. The method was therefore adopted in the present research
to control the CNN progress. The overall image-reconstruction
algorithm can be outlined as follows:

c) IAVQ-based image reconstruction:

0) Input: Set of codeword indexes,
representing image blocks

Interval codebook,
1) Build a planar CNN with rows and columns
2) Set
3) For each index

3.a Retrieve the indexed interval codeword
3.b Set
3.c For each dimension

3.c.I Set
3.c.II Set

4) Run the CNN ruled by (16) and (18) according to the
algorithm described in [24].

5) Output: the final set of pixel values
.

D. Circuit Implementation of IAVQ

The core of the computational cost of the IAVQ-based coding
methodology lies in the codeword selection for the encoding
process. The compatibility of the block-classification schema
described in Section III-B with standard VQ makes it possible
to exploit the results of previous research. In particular, the
whole image-coding process can be supported by a dedicated
VLSI device [2]–[6] that can perform the WTA-based prototype
matching and selection.

Most of the computational cost at the receiver end is instead
associated with the CNN evolution process, which yields the



1386 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 12, DECEMBER 2000

(a) (b)

Fig. 7. IAVQ reconstruction can support selective low-pass filtering to preserve sharp edges. (a) Standard low-pass filtering. (b) IAVQ decoding.

reconstructed pixel values. Thanks to both the standard features
of the neural structure and the general validity of the optimiza-
tion algorithm implemented, the present research fully benefits
from the vast literature on effective hardware implementations
of CNNs [28]–[31]. An in-depth analysis of many possible al-
ternatives is beyond the scope of this paper, which is mainly fo-
cused on the effective use of IA to enhance VQ-based image
coding. The truly important advantage of using CNNs at the
decoder end is that the distributed structure can be efficiently
implemented in a planar hardware architecture, thus ensuring
convergence speed for real-time performance in the image-ren-
dering process.

V. EXPERIMENTAL RESULTS

The empirical validation process involves two setups to
evaluate the effectiveness of the IAVQ method. The first uses
artificial pictures to highlight the advantages of the IAVQ repre-
sentation. The second testbed involves pictures generally used
in image-compression experiments, and compares the IAVQ
reconstruction performance with that resulting from standard
low-pass and unconstrained CNN filtering. The comparison is
made both quantitatively by evaluating the MSEs in the various
cases and qualitatively by visually assessing the reconstruction
results.

A. Artificial Testbed Results

The artificial experiment was suitably designed to highlight
the effects of interval-controlled low-pass filtering. The training
set included both real, gray-level images and artificial patterns
with large black and white regions. The combination of the two
types of pictures resulted in a peculiar IAVQ codebook. The
real images with uniform distributions of gray levels yielded
codewords with wide intervals, whereas the peak distributions
characterizing the synthetic patterns gave codewords with very
narrow intervals. The resulting IAVQ codebook covered both
situations depicted in Fig. 4. The results obtained on a critical

test picture containing sharp edges (Fig. 6) confirmed the sub-
stantial difference between unconstrained and IAVQ-controlled
image filterings. The application of standard, unbounded CNNs
to the VQ-decoded picture conveyed an undifferentiated blur-
ring, which affected visual quality significantly, especially in
reconstructing sharp edges. Similar results were obtained by ap-
plying classical low-pass filtering.

By contrast, the IAVQ-based method preserved critical
boundaries. Checkerboard elements were encoded by the
“narrow” interval codewords, whose limited ranges prevented
the embedded low-pass filter from bringing in unconstrained
averaging. The reconstructed edges maintained their original
sharpness, whereas the remaining, “natural” image regions
were encoded by the wider codewords allowing a more accu-
rate reconstruction. Fig. 7 presents reconstruction results, and
enables one to to make a visual comparison of the two methods.

B. Real-Image Coding Experiments

The experiments on normal, gray-level pictures aimed at as-
sessing the actual reconstruction effectiveness of the method,
and allowed both a quantitative and a qualitative evaluation. The
training phase consisted in developing a VQ codebook from a
set of ordinary pictures, and then in building an associate IAVQ
codebook by using the method described in Section III.

The block size was set to 4 4 pixels to make the method
compatible with standard VQ systems. Moreover, in order to
highlight the actual contribution of IAVQ and to avoid that
image-enhancement methods might interfere with the mea-
surements, no specific technique (e.g., mean residual coding or
adaptive block splitting) was used in the tests; such an experi-
mental choice, however, did not affect the general validity of the
approach. Since pixel depth was eight bits in the used images,
the overall compression ratio was ,
where is the number of prototypes in the codebook.

In the test phase, a set of images not used for training were
VQ-encoded. As expected, when decoded by standard VQ
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Fig. 8. Experimental image set. The two top-leftmost pictures constitutes the training set.

Fig. 9. Comparative evaluation of the reconstruction methods performances.

the resulting pictures suffered from apparent blockiness. In
order to verify the advantages of interval representation, the
VQ-decoded pictures were processed by different deblocking
algorithms to allow a comparative evaluation. According to a
classical deblocking approach [19], first the pictures underwent
low-pass filtering. Alternatively, a standard CNN was chosen
to perform unconstrained low-pass processing [27]. The re-
sults obtained were compared with those obtained by the IAVQ
reconstruction algorithm described in Section IV. This exper-
imental setup was repeated for different compression ratios,
that is, for different values of . As the compression ratios re-
mained the same for each set of tests using: 1) standard low-pass
filtering; 2) CNN-based low-pass filtering; or 3) IAVQ-based
reconstruction, this made it possible to evaluate the specific
contribution of IA-based rendering in a comparative way.

The pictures used in the experiments are presented in Fig. 8,
showing both training ( ) and test ( ) images. The experi-
mental setup seems quite valid, as some test samples differ sen-
sibly from the training ones. The tests involved different set-

tings for the codebook cardinality, which was increased from
up to . Exper-

imental evidence showed that the benefit of IAVQ rendering
varies with the involved compression ratio. More precisely, if
is not very high, the VQ conventional approach does not bring
in any blocking artifact, nor does it provide any blurring effect.
Conversely, the effect of IAVQ-based regularization becomes
more and more visible when the compression ratio increases.
The experiments using different settings of just aimed to es-
tablish the framework within which the IAVQ technique must
be applied, and the conclusion was that IAVQ benefits can be
appreciated for .

The numerical evaluation of reconstruction results is given in
terms of measured PSNR. Fig. 9 presents a summary of such
numerical measurements. In all the experiments, the IAVQ re-
construction method proved better than its counterparts. In fact,
in some cases, numerical differences in the observed distortions
may not appear very marked, yet the steadily better performance
of IAVQ is an indirect confirmation of its efficacy.
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Fig. 10. Samples of reconstructed test images. Left: IAVQ; right: low-pass filtered VQ.

A reliable validation of the method effectiveness, however,
can be obtained by visually comparing reconstruction results.

Unconstrained filtering yielded images suffering from apparent
blurring effects. By contrast, images decoded by the IAVQ
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Fig. 11. Samples of run-time progression curves during CNN convergence.

method took advantage of low-pass filtering to remove blocki-
ness, but local details and features were preserved, thus giving
the overall pictures an evident better appearance. Unbounded
CNN-based filtering exibited an intermediate performance
between the two extrema. As expected, the gap in visual
appearance among the different methods shrinks when the
compression ratio decreases, until no visible effects can be
noticed . The pictures presented in Fig. 10 give
samples of the different performances of the reconstruction
methods.

A deeper insight into the method’s operation can be gained
by observing the PSNR progressions during the CNN run-time
convergence for the IAVQ method and the unbounded regular-
ization process. In all the experiments, like the one illustrated in
Fig. 11, the distortion curves associated with the IAVQ method
always exhibited a saturation trend, settling at constant values,
whereas unbounded filtering exhibited no cutoff behavior. Such
a phenomenon witnesses the limiting effect of IAVQ bounds on
cell nonlinearities, as they prevented uncontrolled pixel varia-
tions and ultimately inhibited image degradation.

An important issue related to IAVQ effectiveness concerns
the involved computational load. Clearly, the cost associated
with any classical enhancement method based on filtering will
compare favorably with the cost brought about by the CNN
convergence process when simulated via software modeling. In
fact, the approach presented in this paper cannot prescind from
a target circuit implementation supporting the CNN operation.
In such a case, the computational advantage of a standard filter
reduces significantly due to the distributed nature of the net-
work convergence. It is anyway worth stressing that regular-
ization-based approaches to image enhancement will typically
lead to a quadratic-programming problem. This is the case, for
example, with the frequency-based method presented in [17],
where the optimization task was tackled by a gradient-projec-
tion method that might prove cumbersome for hardware imple-
mentation. To sum up, from the previous results one might con-
clude that the higher computational cost associated with IAVQ
seems to be the price for a better performance in image recon-
struction. The ultimate choice will clearly depend on the re-
quirements for the specific application considered.

VI. CONCLUSION

The integration of the basic VQ paradigm for image com-
pression with interval-based representation is a significant
novel aspect of the research described in this paper. The
resulting methodology exploits interval quantities to control
the image-rendering process that enhances the eventual image
quality. Therefore, the IAVQ model can benefit from both the
possibility of low-pass compensation for undesired artifacts and
the data-driven adaptiveness provided by empirical training of
IAVQ codebooks. The reported results on a real generalization
testbed also confirm the method’s practical effectiveness.

However, the presented research is some way from being
conclusive, as several crucial aspects still seem worth inves-
tigating. First of all, the proposed codebook-construction al-
gorithm is simple enough for a straightforward implementa-
tion, but it might surely benefit from more sophisticated models
of pixel-value distributions. The described image-compression
process, instead, appears as the most promising approach for the
overall framework, especially in view of its simplicity and com-
patibility with standard VQ image-coding systems. It also seems
unlikely that the adopted CNN optimization algorithm will be
liable to further significant improvements, mainly thanks to its
sound theoretical framework and general validity.

The primary feature of the proposed IAVQ method, however,
lies in its full compatibility with standard research in basic
information-coding areas such as those of vector quantization
and cellular neural networks. As a result, the image-coding
methodology proposed in this paper can immediately exploit
the progress made in those specific areas, with direct advan-
tages in terms of efficient hardware implementations.
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