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|AVQ—Interval-Arithmetic Vector Quantization for
Image Compression

Sandro RidellaMember, IEEEStefano Rovettaviember, IEEEand Rodolfo ZuninpMember, IEEE

Abstract—Interval arithmetic (IA) can enhance vector quantiza- lead to an excessive discretization of represented data. This may
tion (VQ) inimage-compression applications. In the interval arith-  give rise to undesired effects, such as blockiness. Removing ar-

metic vector quantization (IAVQ) reformulation of classical VQ, tifacts is still an open problem [17]-[21]. Any additional in-

prototypes assume ranges of admissible locations instead of being]c tion t itted t - defect tend 1o i
clamped to specific space positions. This provides the VQ-recon- Ofmaton Tansmitied 1o remove IMmage aeiects may iend to in-

struction process with some degrees of freedom, which do not af- Crease the required bandwidth, hence a myriad of deblurring ap-
fect the overall compression ratio, but help make up for coarse dis- proaches have been proposed to improve image quality at the
cretization effects. In image compression, IA attenuates artifacts decoder end without increasing the number of bits sent.

(such as blockiness) brought about by the VQ schema. This paper This paper shows that interval arithmetic (IA) [22] can be

describes the algorithms for both the training and the run-time . . - . .
use of IAVQ. Datga-driven training endows theg methodology with profitably integrated within the VQ-based paradigm. The major

the adaptiveness of standard VQ methods, as confirmed by exper- advantage is that reconstruction quality is enhanced without

imental results on real images. affecting compression performance. Interval arithmetic vector
Index Terms—Author, please supply index terms. E-mail key- guantization (IAVQ) redefines VQ prototypes and lets them be
words@ieee.org for more info. placed in ranges of admissible locations rather than specific

space positions. Thus, a VQ prototype becomes an “interval pro-
totype.” Nevertheless, the number of bits and the time for en-
coding a datum are the same as those of classical VQ coding.
ECTOR QUANTIZATION (VQ) [1] encodes information  Interval prototypes at the receiver end provide the pixel-re-
by means of a set of prototypes (codewords) in the obenstruction process with degrees of freedom, thus permitting
served domain. Each point in the data space is representedabgualitative improvement in image rendering. Evaluating
the codeword that maximizes a similarity criterion. Comprethe method quantitatively is complicated by the lack of a
sion stems from using a codebook whose (log) cardinality v&lid model of visual perception, hence the current research
smaller than the number of bits describing a datum. The fact ti@gtopts mean square error as a standard distortion measure. An
entire space partitions are encoded by the associated codewaggoach using the quantization interval has been proposed
causes VQ to be an efficient compression method. The hedoy JPEG-compressed images [18], [23], where projections
computational load represents a crucial issue of VQ schematato convex sets (POCS) constrain the reconstruction to be
It can be tackled by either dedicated hardware circuitry [2]-[@Pnsistent with the encoded bitstream subject to a smoothness
or accelerated algorithms [7]-[9]. constraint. From a regularization perspective, a frequency-do-
The index-based coding schema allows VQ to attain consigtain method to remove blocking from JPEG-encoded pictures
erable compression ratios in high-dimensional domains. THésl to a gradient-based quadratic-programming problem [17].
makes the method suitable for image compression [10]-[13].Likewise, IAVQ formulates the image-reconstruction process
Thanks to the possibility of locally representing scene conten&s a constrained quadratic-programming problem [24], where
VQ coding schemata may perform effectively in specific applinterval codewords impose bounds to the solution space. The
cations that involve image understanding [14] and multimedii@al optimization process implies a local-smoothness assump-
data processing [15]. When very low bit-rate compression muiin. In place of the gradient-based method used in [17], a cel-
be attained, VQ techniques, as well as other nonconventiohdfr neural network (CNN) [25], [26] drives the regularization
approaches (e.g., wavelets), may represent a valid alternativéaigk and supports the actual image rendering. The major ad-
standard compression algorithms such as Joint Photographverstage of adopting a CNN lies in the notable efficiency of the
Expert Group (JPEG) [14]-[16] in specific applications. eventual circuit implementation. The reconstruction method at
When considering the quality of reconstructed images, it ise decoder end differs significantly from classical low-pass fil-
well-known that quantizing the space into a few partitions mdgring [19], [27], as interval quantities strictly control (as much
as slopes in [17]) the filtering action and ultimately prevent gen-
eralized blurring effects. In IAVQ, the bounds are domain-adap-
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The application of a CNN to the decoding process exploitmages with gray-level pixels that may assume up‘tealues,
well known results reported in the literature, showing thdhe resulting compression ratio is given by
CNN structures can solve quadratic-optimization problems b d

effectively. In addition, the planar, locally interconnected = —. 2)
architectures of CNNs strongly simplify hardware circuitry [logy 7. |
[28]-[31].

1 . L For example, an 8-bpp image that is split into blocks covering
This paper describes both the training process and the, ¢ pixels (d = 64), a (typical) codebook holding;, = 256

run-time use of IAVQ codebooks. The image-coding reconygeyords yields a compression ratio= 64. Clearly, larger
struction performance of the method is evaluated in comparisgck sizes yield higher compression ratios. On the other hand,
with well known rendering approaches that can be applied afigt ¢odehook size might represent a severe problem if too large
standard VQ coding, namely, classical low-pass filtering af, s are encoded, due to the involved memory requirements
unconstrained CNN-based low-pass filtering. Experimentgyy e increased computational load. As a consequence, rela-

results show the effectiveness of the proposed methodolc1(§;oé|y small block sizes are used (typicallyx 4 or, in some
and provide numerical evaluations and qualitative VisUghnstandard cases x 8). ’

assessments. _ _ , In practice, several technical mechanisms have been added to
_ The paper is organized as follows: Section Il briefly Summagg hasic schema to improve image appearance. Mean residual
rizes VQ information coding and gives a basic formalism for "Aboding (MRC) [36] subtracts from each block its mean value
then the actual IAVQ method is presented. Section Il deals Wiffytore vQ encoding. This mechanism separates brightness in-
the interval codebook-training problem. Section IV describg§mation in advance and lets VQ represent contrast. Adaptive
the use of IAVQ for'lmage coding, and especially details its oy splitting (ABS) [37], [38] allows the encoder to choose
eration at the receiver end by means of a CNN structure. S@grins plock sizes in compliance with local image contents.
tion V reports the experlmeptal results obtained and COMPagsEtre areas containing little information are encoded by larger
the method performances with those of related approaches. ks, whereas smaller blocks cover detail-rich image regions.
nally, some concluding remarks are made in Section VI. - goth MRC and ABS can notably improve the quality of a recon-
structed image, at the cost of transmitting additional information
Il. FRAMEWORK FORIAVQ (block mean values and quadtree structure, respectively). These
_ add-ons by no means affect the basic coding schema (1), which
A. VQ-Based Data and Image Coding will keep a general validity in the following.
The basic VQ schema adopted here associates withkedich
mensional pointx € R, the best-matching element;*(x), B. Interval Arithmetic Formalism

selected from a codebook, = {w; € R%,j = 1,...,m4}, Interval Arithmetic was introduced [22] as a handy for-
such that: malism to treat quantities in the presence of uncertainty or
noise that makes exact determinations impossible. An interval

(1) any value within the interval is admissible and equally likely.
An interval X is defined as an ordered pair = [xy,, 2], such

Several algorithms have been proposed to build up a sunag?%“”’% € R and” = *u _The bounds are admissible
values for the associated quantity.

codebook for a given VQ-coding task, involving a vast literature In the following, by convention, uppercase letters will always

on pattern recognition [1], [32] and neural networks [33], [34]denote interval quantities, whereas lowercase letters will stand

The research presented in this paper adopted a plastic VeI Scalar variables. The interval formalism supports a compact
[35] of the “neural gas” model [33] to assess both the number, : bp P

o ) . . {il| ebraic notation in the space of intervals, The following
ny,, and the positions of codevectors. This choice was mamoﬁerations are define®, A4, B € T,z € R):
suggested by the availability of an efficient hardware implemen-* B ’ )
tation of the method [6]. sum
VQ-based image compression has been used in the litera-y = A+ B = YV = [ar + br, ay + by;
ture in both the transform domain and the spatial domain. lgifference
the transform domain, VQ applies to frequency-basedrepreseny = A — B = Y = [ay — by, av — by];
tations of coded images (typically, discrete cosine transformpanslation
[13]. In the spatial domain, it operates directly on image pixels, y = A+ = Y
and will be adopted as a default in the following. This choice reamplification
sults in a lower computational cost, asimages need notbetransy — . 4 = Y = [zap,zay] if x> 0;
Y
Y

} variable defines a range of possible values for that quantity;

d
w*(x) = arg min {Z (a:(i) — w§i)>2

wicw imt

=[ar + z,av + ];

formed, and it simplifies real-time applications [14].

Pixel-domain VQ divides a picture into (usually squareproduct
blocks representing coded samples,e R4, 1 = 1,...,n,, Y=A%B = Y =min{arby,avby,arbr,avbr},
whered is the number of pixels within a block, ang, is the max{arby, ayby, arbr, aybr};
number of blocks making up the picture. Each block is encodeghuare
by working out its associated best-matching codevector (1). Fory = X2 = Y = [min{2?, 2%}, max{z?, 2% }].

= [zay,zar] if z < 0;
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Fig. 1. The IAVQ-based image-coding schema.

In comparison with classical algebra, some operations requédeout by the quantization process. The crucial advantage of the
additional computations to ensure the consistency of boun¥9Q-derived schema is that both the position and the extension
The case of the square function exemplifies an 1A peculiaritf each hyperbox can be made domain-adaptive by learning
for nonmonotonic functions, as the interval functidif may from examples. Thus, the overall compression and rendering

differ from X = X, if X includes the origin. schema preserves the flexibility of basic VQ.

A d-dimensional interval vector is represented by an array The selection of the eventual pixel values stems from a
of intervals:W = (W@ ... W), The Euclidean distancesregularization process that minimizes a quadratic cost function
from W to a vectorx € R< and another interval vect® € Z¢  within the constraints set by interval codewords. The inherent
are given by smoothness constraint aims to exploit the contiguity of neigh-

boring pixels, and leads to a filtering action that involves a

d 4 N2 guadratic-programming optimization problem. This crucial

D(W,x) = Z (W( ) _“7()) task can be effectively accomplished by a cellular neural
Zjl network, whose major features are its theoretically established

; 2\ 2 i d a planar architecture allowin
_ @ (z)) convergence properties an p g
D(W, X) ; (W X ’ (3) efficient hardware implementations. Fig. 1 shows a schematic
= representation of the process.
C. Concept and Basics of IAVQ . TAVQ T RAINING

The basic idea underlying IAVQ is to extend the flexibility of In principle, the codebook-training problem requires that one
VQ schemata. A crucial drawback of VQ-based representatidatermine the positions and ranges of all interval codewords at
of information is that the encoding process results in a singlee same time. Such an exhaustive approach, however, seems
location of the data space (a codeword), which represents eveoynputationally unfeasible because of the huge number of pa-
point in the associated partition. Thus, compression is often alameters to be estimated. The simpler training strategy adopted
tained at the cost of coarseness. The purpose of augmenting M@his research proceeds in two steps: 1) a standard VQ al-
by IA is to extend the meaning of “codeword” by encoding gorithm places prototypes in the domain space and 2) interval
partition of the data space with a range of admissible space tmdewords are “inflated” around the VQ-generated initial po-
cations. In practice, a set of intervals replaces the single centrsitions. Such an approach has the following two basic reasons:
coordinates. This redefines the concept of a “prototype,” whid) splitting the optimization process into a twofold process re-
can be regarded as a “hyper-box” spanning an interval of vatidices training complexity and 2) the VQ coding schema still
coordinates along each dimension. Such a mechanism cleabplies and is comprehended as a special case of the more gen-
introduces degrees of freedom into the reconstruction processl IAVQ.
and the specific application requirements will suggest the suit-The amplitude of each interval controls the extent of the as-
able criterion to select the appropriate coordinates within tiseciated degree of freedom, hence one might intuitively ex-
box. pect that larger intervals result in a better interpolation. Indeed,

In VQ-based picture compression, codeword coordinatasing zero-width intervals reduces the whole schema to basic
have a one-to-one mapping to image pixels, hence the o coding, but the widest intervals covering the whole range of
come of IAVQ block coding is a block of “interval pixels.” possible valuef, 2” — 1] lead to unconstrained filtering, which
IAVQ-based image coding exploits the variability associateaften proves unsatisfactory. The required tradeoff between such
with each interval to compensate for the coarseness brougktremes can be worked out empirically by data-driven training.
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Fig. 2. Geometrical properties of sample distribution determine interval amplitudes (one-dimensional case).

A. Theoretical Approach to IAVQ Codebook Training which can be rewritten as

The theoretical approach to IAVQ codebook training derives
analytical values for the ranges of each interval prototype, under
the basic constraint that the interval settings should not geBy analogy, the dual condition for the second prototype leads to
erate ambiguities as to the categorization of any training sample.

Thus, the data partitions set by VQ regions will remain unaf- wa +wp < 205 — (24 + 2B). (6)
fected. Letr; denote the data partition associated with ftte
codeword, i.e., the set of samples belonging to the partition ¢
ered byw;: m; = {x;,l = 1,... ,71;,]) such thatw™*(x;) =
WJ}

In compliance with the above training strategy, interval-widthf one now assumes that the available amplitude is uniformly
optimization starts from a trained VQ codebapk= {w;}. The split between the two intervals, imposing = zp in (7) proves
only assumption made in this phase is thag adjusted by using the assertion. Q.E.D.
an LBG-like algorithm [32]. The LBG model, often also known The previous Lemma points out that the amplitudes of an in-
ask-means, is an iterative codeword-positioning algorithm, artdrval prototype depend on the relative positions of the samples
is adopted here because it guarantees that, at convergence, lyaud closest to the partition boundaries. This property can be
prototype will eventually be placed in the centroid of the assextended to the multidimensional case by considering, for each
ciated partition. codeword, the set of neighboring prototypes in the Voronoi tes-

Pixels are not assumed to have preferential gray levels, hesedlation of the space and by applying Lemma 1 to the con-
the isotropic nature of the problem makes it possible to seamécting lines. It follows that any standard VQ codebook can be
for a VQ-centered interval codeword that may be expressed“aslated” to a nonnull interval codebook. The empirical distri-
W, = W W = [l — 2wl 4 2] bution of data will drive the extent of the process. Such a prop-
The training process aims to determine the widest admissilgiy can be formally expressed as follows:
ranges,z](’)(i =1,...,d,5 = 1,...,n). The analysis will ~Theorem 1:Lety) = {w; j =1,...,n;} be a VQ code-
initially consider one-dimensional situations, then the result wilook obtained by an LBG-like algorithm and spanning an unam-
be extended to the general case of multidimensional codeworlgiguous data partition. Then there exists an interval codebook,

Lemma 1: Let w4 andwg be VQ scalar prototypes posi-¥ = {W, j = 1,...,n.}, spanning the same partitions set
tioned by an LBG-like algorithm [32]. The optimal half-am-by ¢ and having nonnull interval amplitudes.
plitudes, 4 and zp, of the associated intervals that preserve Proof: Consider thejth element of<. From com-

wa +wp > 225 + (24 + 25). (5)

(K)/y subtracting (5) from (6), one obtains

za+2zp <xp — . (7

VQ-based partitions are putational geometry, work out the set of prototypes
that share a partition boundary wittw;. Denote by
za =zp = |xp — x4/2 v; ={wjn n=1,...,n\"? < ny} such a set of neighbors of
where w;, and byu;,, the versor connecting; to w;,,
z% = arg min {|z — w W )
A gacETfA{| B|} anIM, 7121,,7153) (8)
and [Wjn — will
Th = arg Igin {Jlz —wal}. By projecting ontou;,, the two data partitions spanned by the
rETRH

two prototypesy; andr;,,, respectively, one obtains the situa-

Proof: Assume, without loss of generality, that; < wg. tion illustrated in Fig. 3, in which the pair of “critical” samples
The LBG-like algorithm ensures that a VQ prototype lies iis worked out as

the barycentre of its data partition; therefore, there existc

74,55 € g Suchthatwy < z4 < xp < wg. By definition,

s
in

T max {u;, e (x; —w;)}

. : " X C7j
a.:jf{(a:g) is the sample beIonglng to the partitian (75) that wh; = max {W, e (Wi, —x))} 9)
lies closest tavg(w.4). For this propertyws < 2% < 23 < X €T

wg. The situation is sketched in Fig. 2. Prototypg can take
on any value in the rang@vs — z4,w.4 + z4]. In order to en-
sure a correct categorization of samjplgin the worst case, the
following condition must be fulfilled:

wheree indicates the scalar dot product. By applying Lemma 1
to the resulting monodimensional case, one obtains the widest
range of variationg;,,, for w; in the directionu;,,

550 = w51 = (2, + 5)
wa — 24 — 24| < |lwg — 2z — 2 4 Zjn = = S (10)
A A 2
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Fig. 3. Peculiarities of sample distribution constrain interval amplitudes (multidimensional case).

By hypothesis, the partitioning schema set by the VQ codigthe spatial distribution of data: a pair of samples lying close to
book is not ambiguous, hence there are no samples lying at heommon boundary can squeeze the variation margin (10), even
boundary between two partitions. As a consequence, the maiidithe remaining samples within each partition are tightly clus-
attained by (10) is nonnull tered. Imposing partition consistency on interval setting leads to
a very sensitive process. A more robust strategy is required in
order to attain wider intervals, featuring some resistance against
Gutliers or peculiar sample configurations.
"The empirical approach proposed in this paper aims to retain
the statistical distribution of data. The basic idea is to consider
Zjn = ZinWin = (ZinWjnls - - - Zinlind)- (12) each space dimension separately. Like the previous algorithm,
) ) . _the training method starts from a standard-VQ codebook trained
The set of vectors obtained by (12) give the maximum variably any | BG-like algorithm. The partitions of data points asso-
ities of prototypew; in the directions of all neighbors. Eachgjated with each codeword provide the statistical sample for the
vector imposes a constraint on the allowable positionsof analysis.
such that the Qriginal par_tition is presgrved in that specific di- The training algorithm can be outlined as follows et %))
rection. A choice for the interval amplitudes of prototy®&; pe the probability density function that describes the values as-

Zjn >0 VjVn. (12)

Expression (10) makes it possible to work out a variation vect
z;n, defined as

is given by sumed in theth dimension by the samples belonging to jtte
. . partition: 204 ¢ {atgz) such thatk; € =;}. In image-coding
zZj = <w1jfflcnyj{zjn7’jnl}a SRR wlﬁlclgj{zjnﬁnd}) - (13 applications, these values are bounded by the current pixel depth

zvin < 29 < zyax Vi V. In the case of 8-bpp gray-level
The interval settings (13) satisfy all constraints (12), hence thﬁ:ﬁageSMHN = 0 andzyax = 255. In order to support ro-
preserve the partition; relevant to the/-th prototype. In order pyst statistics, the algorithm computes the histogram of the ob-
to prove that the obtained interval codewords are nonnull, frogarved values for each space dimension. The interval amplitude

(8) we derive is eventually determined by requiring that the resulting range
d include a given share of the covered samples. Thus, the final
Z ufm -1 Vi Vn. (14) 1AVQ codebook comprises, for each codeword, an interval and
= its “reference” central value given by the original VQ codeword
By combining (11) with (14), one can verify that there exis?osmon'

nonnull interval amplitudes, thus completing the proof. Q.E.D. a) 1AVQ training algorithm:

B. Operational Approach to IAVQ Codebook Training 1) Input: 4 = {w,j =1,...,ns}; VQ codebook trained by
Theorem 1 motivates interval codewords from a theoretical an LBG-like algorithm;
point of view, but it might set severe limitations on the practical m,0 =1,...,np; the partitions of samples

usefulness of the resulting codebook. In particular, the preser- spanned by);

vation of VQ partitions might turn out to be too strict a con- 0<t< T, the requested coverage of
straint on the codebook-construction process. The interval am- data values.

plitudes (13) result from a minimization process, hence one eX-For each partitionr;, j = 1,...,n4

pects that nontrivial distributions of real data (e.qg., pixel blocks) 1.a For each dimensian=1,...,d

will give rise to very narrow margins (10) and very small ampli- l.a.l  Evaluate the histogram(z-?), of values

tudes (13). Such a phenomenon often occurs due to singularities PSS {a:f) such that; € 7;}
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Fig. 4. Wider distributions of pixel values yield larger intervals in codeword dimensions.

l.a.ll Estimate the probability density function: independently of one another, hence the variability regions
p(z0D) = h(z0D) /Y associated with prototypes may (actually, they are quite likely

l.a.lll Work out the amplitude; > 0, such that: to) overlap. As a result, in order to match a (vector) sample
) against an (interval) codeword, the winner has to be selected

/ p (xw)) de =+ by comparing interval distances. Choosing the best matching

2 candidate by observing overlapping interval distances might

prove not trivial. This strongly suggests that reformulating the
VQ-coding problenverbatimwith the interval formalism may
2§ = max{a:l\,HN, wi — z} , lead to possibly unnecessary complications.

The basic idea underlying IAVQ image coding is to leave
the compression strategy unaffected (i.e., supported by a stan
dard VQ codebook and WTA competition). The encoder uses

xg’z) = min{xMAx, w](»z) + z}

1.b Assemble the interval codeword
W, =wW® . W) as

J

W]@) _ [x(ru)’ xéu)} ’ i=1,....d only “refe_rence” godewon_j pqsitions (_yielding scalar distances),

_ whereas interval information is taken into account only at the de-

3) Output: the interval codebook, coder end. Thus, the IAVQ image-coding algorithm just repeats
U ={(W,,w;),j=1...,nn}. its VQ scalar counterpart.

b) IAVQ-based image coding:
The described algorithm is quite simple and involves a lower

computational load, as compared with the theoretical appro Input:  Set of image blockst = {x1,...,x5}

(9) and (10). The crucial step 1.a.lll can be easily performe VQ codebookg)
by progressively inflating the average-centered interval until ”1‘)’ Initialize @ = &
expected coverage is attained. 2% For each block € 3
Peak densities, reflecting concentrated distributions o 2.a Work outw™ (x) :argminw@{Hw—xH?};

value_s_, will determine _narrow inte_zrvgls, _Whereas shallovy let ¢* be the index ofw*(x) in %;
dgnsmgs, s_uggestmg W|de_spr§ad .dlstnbutpr)s qf vglues, Wil 5 p sety = 6 U {g*)

yield wider mtervals._ The snya‘uqn is exemphﬁe@ in Fig. 4. ASB) Output: set of codeword indexes—= {q,
a result, space partitions with high concentrations of samples

will be represented by “narrow” interval codewords, ultimately

witnessing a higher level of confidence in the prototype po- The above approach offers several benefits. First, using
sition. Conversely, space regions covering scattered samgigandard VQ encoding does not require additional training
will be represented by “wider” interval codewords, suggestir§ the image-coding subsystem, and the resulting bitstream
a larger uncertainty in the optimal location of the prototyp lescribing the compressed picture remains unchanged. This
The possibility of absorbing information about the Spati;guaranteesafull compatibility with any noninterval VQ-based
distribution of samples within the associated IAVQ prototypgompression method, and preserves the space npartitions
actually represent an additional interesting feature of the overgif@nned by the original VQ codebook. Such an approach

. as}

training method. decouples the image-coder and the image-decoder processes,
and the receiver acts as an augmented version of a classical

IV. 1AVQ R UN-TIME OPERATION VQ decoder. Secondly, the overall system’s compression ratio
] remains constant, as the encoder need not know the features

A. IAVQ-Based Image Coding embedded in the decoding module. Finally, the additional

The codeword-building method just described does nobmputational cost brought about by plugging in 1AVQ is
guarantee that the partitioning schema spanned by the omgtirely supported by the receiver. Therefore, the available
inal VQ codebook will be preserved. The histogram-baseircuitry can be exploited for VQ encoding, which relieves the
method generates intervals at the single-dimension level d@¥Q method of the need for specific hardware design.
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Fig. 5. Using CNN-based filtering for IAVQ decoding. (a) The planar structure of the network. (b) Codeword intervals restrain each cell's bonlineari

B. IAVQ-Based Image Decoding pression for the cost also facilitates optimization. Secondly, the

Image decoding consists in retrieving and reassembling tifgularization task involves a quadratic-programming problem
set of codewords associated with the blocks of a transmittiit can be tackled by a CNN effectively. Finally, CNNs offer
image. As explained in Section II-C, pixels are represented ByplanarZ dls_mbuted, Ioose_ly mterconn_ected architecture that
interval quantities (Fig. 1), and IAVQ-based reconstruction r@€atly simplifies hardware implementations.
quires that their final values be selected from the associated”VQ Might be regarded as a kind of deblurring method, al-
ranges to optimize picture quality. The centroid positions chafough the method actually uses interval bounds to prevent blur-
acterizing the VQ codebook are derived by an unsupervisigd- The major advantage of IAVQ lies in driving the regular-
training algorithm that minimizes MSE. As explained in SedZation-based reconstruction of image pixels, whereas a CNN
tion I11-B, they are the centroid, “reference” positions of thé_)lays a basic role in accomplishing the optimization task effec-

IAVQ codewords, which are inflated to create validity rangedlVe!y: S0 one could summarize that IAVQ yields the actual qual-
All values within an interval are equally likelg priori but, in It@tive improvement, whereas CNNs provide the method with
the case of image reconstruction, it seems reasonable that&fgctive and fast convergent performance.
eventual IAVQ result should privilege consistency with the orig-
inal VQ encoding. Therefore, the basic term in the cost functiée CNN-Based Image Rendering
penalizes the displacement from the reference scalar positionThe constrained-minimization problem calls for a dedicated
whereas the information from surrounding pixels provides extructure supporting the related heavy computational load.
ternal conditioning. Thus, pixel estimation can be formalized ghe pixel-reconstruction process is reformulated following the
a quadratic minimization problem subject to some constraintgroblem-setting presented in [27]. Let us build up a CNN with
The first constraint takes into account the contiguity ahe same planar structure as the reconstructed image. The cells
pixels, and requires that the values of adjacent pixels be ”¢fow a one-to-one correspondence with the image pixels [see
sensibly different. This (typical) assumption about imageig. 5(a)]. Lety(r, ¢) denote the reconstructed pixel value on
smoothness limits the distribution of spatial frequencies the image coordinates, ), and lety,.;(r, c) be the associated
the image. In principle, one might use well-known deblurringsference value. In the filtering structure [2#}.s(r,c) was
methods that implement low-pass filtering after VQ recorgiven by the original image pixel. In the present context, such a
struction. Such techniques, however, would not exploit th&lue is obviously unknown to the decoder, hence the “central”
variability information provided by interval quantities. Thevalue of the associated interval is used instead. This value
difference between a pixel value and the average value of jisassociated with each codeword by the training algorithm
neighbors originates a regularization term in the cost functiojescribed in Section I, and is given by the coordinates of
The second constraint derives from the interval-basege original VQ prototype. For the sake of simplicity, such a
codewords, and requires the final pixel values not to exceed #gantity is denoted byyq(r, ¢). With these notations, the cost
associate interval bounds. By this mechanism, IAVQ introducgnction to be minimized [27] is expressed as
a balancing action that counteracts uniform low-pass filtering.

In the approach presented in this paper, such a constraint is not it )

expressed explicitly in the cost function. Actually, it is buried E=A Z Z(Q(T’ ¢) = uvq(rc))

in the saturated nonlinearity characterizing each cell of a CNN. 7:,01 ciOQ

The use of CNN structures [25], [26] for IAVQ has some basic ' 3 2
. " . . ~c) —y(r 1

advantages. First, the cost function is expressed uniformly + Z_% z_:o(y(“ o) ~ylre+ 1)

throughout the image, that is, its global value results from the 2 1

sum of individual contributions from all pixels, whereas specific + Z Z(y(T’ ) —y(r+1,¢))2 (15)
bounds at the pixel level are considered locally. A simpler ex- —o o
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wherem andn are the numbers of rows and columns in the
image, respectively, anklis a positive factor. The first term bi-
ases a reconstructed pixel toward its expected value; the other
summations bring in a regularizing action that involves adja-
cent pixels, thus incorporating the smoothness constraint into
the reconstruction process. The quanlityontrols the intensity

of the network smoothing actiotk = 0 imposes a maximum
smoothing, and\ >> 1 minimizes the contributions of neigh-
boring pixels and inhibits the consequent low-pass filtering ef-
fect.

Each network cell is characterized by an internal status vari-
able, u(r, ¢) [24]. The nonlinear function yielding the output
activationy(r, ¢) (i.e., the corresponding pixel value) is given
by [27]

y(r, ) = 3[lu(r, ¢) — yr(r, )| = |ulr, ¢) — yu (r, ©)|
+ (ZJL(T; C) +yu (7’7 C))], l ‘
r=1,....,m,c=1,...,n (16)

whereyr(r, ¢) andyy (r, ) are the lower and upper bounds, reFig. 6. Artificial test image.
spectively, to the interval representing the pixel at the position
(r,c). Expression (16) exhibits a slight, yet important, differproved to solve the specific class of quadratic programming
ence, as compared with a standard CNN model, like that adopfgdblems, like the one involved in IAVQ-based image rendering.
in [27]. In the cell nonlinearity, the lower and upper saturation The optimization method described in that paper is theoreti-
levels are not constant and equal for all the cells (in the casecally guaranteed to converge to the minimum of the cost func-
8-bbp imagesyniy = 0 andynax = 255), but they are de- tion. The method was therefore adopted in the present research
termined, for each cell, by the lower and upper bounds to thecontrol the CNN progress. The overall image-reconstruction
interval provided by the 1AVQ prototype encoding the specifialgorithm can be outlined as follows:
location [see Fig. 5(b)]. Thus, the range information about each c¢) IAVQ-based image reconstruction:
codeword dimension (and the associated pixel) affects the be-
havior of the corresponding cell. The adaptiveness buried in tYg Input: Set of codeword indexe = {q1,...,q8}
distributed structure actually implements the second constraint representing image blocks
on the optimization process, as it sets a limit on the general- Interval codebookl
ized low-pass filtering effect by preventing unconstrained flua) Build a planar CNN withn rows andr columns
tuations of pixel values. 2) Seta = v/d; br = mja; be =nja

From an analytical perspective, the cost formulation (1) For eachinde% = 1,...,B

under the constraint (16) implies a quadratic optimization 3.3 Retrieve the indexed interval codewdM,, € ¥
problem, the solution of which must be found within the 3 Set), = |k/bc]; by = (k— 1) mod bg

(hyper)box bounded by interval ranges. Such a complex 3.c For each dimensioh=1,...,d
problem would in general be very difficult to solve analytically, 3.cl Set=a-b,+|ifa]; c¢=ab,+(i—1)moda
and in principle, one might question the choice of a CNN 3.c.ll Setyvo(r.c) = w5

for that purpose. In order to determine the progression of the i
purp prog yr(r.¢) = w? . yulre) =wy

interngl status .value of each cell, from (15) we derive th@ Run the CNN ruled by (16) and (18) according to the
following quantity: algorithm described in [24].
g = OO e -1 9 QU e falseuipbeliaes
—y(r+1,0) —y(r,e—1) —y(r,e+1) (17)
which is the analytical counterpart of the resistive-grid circu®. Circuit Implementation of IAVQ
equation presented in [27]. If we now write the cell status-updateThe core of the computational cost of the IAVQ-based coding

rule as methodology lies in the codeword selection for the encoding

du(r, c) = —u(r,c) + | — oE +y(r, ) (18) Process. T_he compatibility Qf the block-classificatiqn schgma

dt dy(r, ) described in Section 11-B with standard VQ makes it possible

expression (18) turns out to be equivalent to the quadratic-fotm exploit the results of previous research. In particular, the
minimization formulated in [24, p. 110, eq. (2)]. whole image-coding process can be supported by a dedicated

As a consequence, the image-reconstruction cellular netwdfkSI device [2]-[6] that can perform the WTA-based prototype
fully complies with the formalism described in [24]. Thus, onenatching and selection.
can benefit from the results obtained by that research, whichMost of the computational cost at the receiver end is instead
provided an effective CNN-based algorithm that the authoassociated with the CNN evolution process, which yields the
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(b)

Fig. 7. 1AVQ reconstruction can support selective low-pass filtering to preserve sharp edges. (a) Standard low-pass filtering. (b) IAVQ decoding.

reconstructed pixel values. Thanks to both the standard featuess picture containing sharp edges (Fig. 6) confirmed the sub-
of the neural structure and the general validity of the optimizatantial difference between unconstrained and IAVQ-controlled
tion algorithm implemented, the present research fully benefiteage filterings. The application of standard, unbounded CNNs
from the vast literature on effective hardware implementations the VQ-decoded picture conveyed an undifferentiated blur-
of CNNs [28]-[31]. An in-depth analysis of many possible alring, which affected visual quality significantly, especially in
ternatives is beyond the scope of this paper, which is mainly fieconstructing sharp edges. Similar results were obtained by ap-
cused on the effective use of IA to enhance VQ-based imaglying classical low-pass filtering.
coding. The truly important advantage of using CNNs at the By contrast, the IAVQ-based method preserved critical
decoder end is that the distributed structure can be efficiendgundaries. Checkerboard elements were encoded by the
implemented in a planar hardware architecture, thus ensurlimgrrow” interval codewords, whose limited ranges prevented
convergence speed for real-time performance in the image-réme embedded low-pass filter from bringing in unconstrained
dering process. averaging. The reconstructed edges maintained their original
sharpness, whereas the remaining, “natural” image regions
V. EXPERIMENTAL RESULTS were encoded by the wider codewords allowing a more accu-
rate reconstruction. Fig. 7 presents reconstruction results, and

The empirical validation process involves two Setups {gapes one to to make a visual comparison of the two methods.

evaluate the effectiveness of the IAVQ method. The first uses
artificial pictures to highlight the advantages of the IAVQ repre-

sentation. The second testbed involves pictures generally ugedreal-Image Coding Experiments
in image-compression experiments, and compares the IAVQT
reconstruction performance with that resulting from standag%

low-pass and unconstrained CNN filtering. The comparison &hd allowed both a quantitative and a qualitative evaluation. The

made both quantitatively by evaluating the MSEs in the Vario‘ﬂ%ining phase consisted in developing a VQ codebook from a

cases and qualitatively by visually assessing the reconstructL_oeq of ordinary pictures, and then in building an associate IAVQ
results. '

codebook by using the method described in Section IIl.

o The block size was set to A 4 pixels to make the method

A. Artificial Testbed Results compatible with standard VQ systems. Moreover, in order to
The artificial experiment was suitably designed to highlightighlight the actual contribution of 1AVQ and to avoid that

the effects of interval-controlled low-pass filtering. The trainingmage-enhancement methods might interfere with the mea-

set included both real, gray-level images and artificial pattersarements, no specific technique (e.g., mean residual coding or

with large black and white regions. The combination of the twadaptive block splitting) was used in the tests; such an experi-

types of pictures resulted in a peculiar IAVQ codebook. Thmental choice, however, did not affect the general validity of the

real images with uniform distributions of gray levels yielde@pproach. Since pixel depth was eight bits in the used images,

codewords with wide intervals, whereas the peak distributiotfee overall compression ratio w&$. = 16 x 8/log 2(Ny,),

characterizing the synthetic patterns gave codewords with veviiereV,, is the number of prototypes in the codebook.

narrow intervals. The resulting IAVQ codebook covered both In the test phase, a set of images not used for training were

situations depicted in Fig. 4. The results obtained on a criticdQ-encoded. As expected, when decoded by standard VQ

he experiments on normal, gray-level pictures aimed at as-
ssing the actual reconstruction effectiveness of the method,
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Fig. 8. Experimental image set. The two top-leftmost pictures constitutes the training set.
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Fig. 9. Comparative evaluation of the reconstruction methods performances.

the resulting pictures suffered from apparent blockiness. tfings for the codebook cardinality, which was increased from
order to verify the advantages of interval representation, thg, = 64 (C, = 64) up toN;,, = 256 (C,. = 16). Exper-
VQ-decoded pictures were processed by different deblockimgental evidence showed that the benefit of IAVQ rendering
algorithms to allow a comparative evaluation. According to varies with the involved compression ratio. More precisely,.if
classical deblocking approach [19], first the pictures underwestnot very high, the VQ conventional approach does not bring
low-pass filtering. Alternatively, a standard CNN was chosen any blocking artifact, nor does it provide any blurring effect.
to perform unconstrained low-pass processing [27]. The €enversely, the effect of IAVQ-based regularization becomes
sults obtained were compared with those obtained by the IAM@ore and more visible when the compression ratio increases.
reconstruction algorithm described in Section IV. This expel-he experiments using different settingggfjust aimed to es-
imental setup was repeated for different compression ratidablish the framework within which the 1AVQ technique must
that is, for different values a¥;,. As the compression ratios re-be applied, and the conclusion was that IAVQ benefits can be
mained the same for each set of tests using: 1) standard low-pgsgreciated fo”,. > 16 (N, < 256).
filtering; 2) CNN-based low-pass filtering; or 3) IAVQ-based The numerical evaluation of reconstruction results is given in
reconstruction, this made it possible to evaluate the specife@ms of measured PSNR. Fig. 9 presents a summary of such
contribution of IA-based rendering in a comparative way. numerical measurements. In all the experiments, the IAVQ re-
The pictures used in the experiments are presented in Figc8nstruction method proved better than its counterparts. In fact,
showing both trainingLx) and test {’z) images. The experi- in some cases, numerical differences in the observed distortions
mental setup seems quite valid, as some test samples differ seay not appear very marked, yet the steadily better performance
sibly from the training ones. The tests involved different sebf IAVQ is an indirect confirmation of its efficacy.
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Fig. 10. Samples of reconstructed test images. Left: IAVQ; right: low-pass filtered VQ.

A reliable validation of the method effectiveness, howeveldnconstrained filtering yielded images suffering from apparent
can be obtained by visually comparing reconstruction resultdurring effects. By contrast, images decoded by the 1AVQ
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VI. CONCLUSION

29.4 The integration of the basic VQ paradigm for image com-
29.2 pression with interval-based representation is a significant
29 N\ novel aspect of the research described in this paper. The

g 28.8 / e ¥ resulting methodology exploits interval quantities to control

b4 28.6 2/ \m the image-rendering process that enhances the eventual image

28.4 / ‘”’xx quality. Therefore, the IAVQ model can benefit from both the
08.2 / e, _ possibility of low-pass compensation for undesired artifacts and

< L Bt the data-driven adaptiveness provided by empirical training of
28 ' ‘ ' IAVQ codebooks. The reported results on a real generalization

0 200 400 600 testbed also confirm the method'’s practical effectiveness.

—— JAVQ - VQ+CNN filter lterations (time) However, the presented research is some way from being
conclusive, as several crucial aspects still seem worth inves-

tigating. First of all, the proposed codebook-construction al-
orithm is simple enough for a straightforward implementa-
tion, but it might surely benefit from more sophisticated models
of pixel-value distributions. The described image-compression
_ process, instead, appears as the most promising approach for the
method took advantage of low-pass filtering to remove blockerq framework, especially in view of its simplicity and com-
ness, but Ioc_al details and. features were preserved, thus g'Vﬁ?ﬂibiIity with standard VQ image-coding systems. It also seems
the overall pictures an evident better appearance. Unboundgglyely that the adopted CNN optimization algorithm will be
CNN-based filtering exibited an intermediate performanggype to further significant improvements, mainly thanks to its
between the two extrema. As expected, the gap in visug,nq theoretical framework and general validity.

appearance among the different methods shrinks when therpe primary feature of the proposed IAVQ method, however,
compression ratio decreases, until no visible effects can pgs i its full compatibility with standard research in basic

noticed (¢, = 16). The pictures presented in Fig. 10 giV§nformation-coding areas such as those of vector quantization
samples of the different performances of the reconstructigiy cellular neural networks. As a result, the image-coding

methods. , _ . methodology proposed in this paper can immediately exploit
A deeper insight into the method’s operation can be gaingth hrogress made in those specific areas, with direct advan-

by observing the PSNR progressions during the CNN run—urggges in terms of efficient hardware implementations.
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