
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 2, MARCH 1999 415

Worst Case Analysis of Weight Inaccuracy Effects in Multilayer Perceptrons
Davide Anguita,Member, IEEE,Sandro Ridella,Member, IEEE,and Stefano Rovetta

Abstract—We derive here a new method for the analysis of
weight quantization effects in multilayer perceptrons based on
the application of interval arithmetic. Differently from previous
results, we find worst case bounds on the errors due to weight
quantization, that are valid for every distribution of the input
or weight values. Given a trained network, our method allows to
easily compute the minimum number of bits needed to encode
its weights.

Index Terms— Interval arithmetic, multilayer perceptron,
quantization, robustness.

I. INTRODUCTION

ELECTRONIC implementation of multilayer perceptrons
is mainly focused on the issue of weight inaccuracies.

In digital implementations the inaccuracies are due to the
limited size of the registers used to store the values of weights.
In analog implementations, noise and other artifacts (biases,
component tolerance, etc.) have a similar effect, decreasing
the accuracy of weights.

These inaccuracies result in undesirable effects in the be-
havior of neural devices both in training and in feedforward
phases. For these reasons, several methods have been proposed
in the literature that deal with this problem. One possible
solution aims at finding modified learning algorithms [1] that
reduce the accuracy requirements of the network; a second, but
equally important idea is to analyze the effect of weight errors
in order to predict the final performance of the network. This
has always been done using statistical or heuristic techniques
[2]–[5] that can give an answer only in an average sense;
furthermore, several limiting assumptions must be done (e.g.,
weight probability distributions, linearity conditions, etc.) in
order to carry on the derivation of the formulas in closed form.

In this paper we propose a new method, based on in-
terval arithmetic [6], to perform a worst case analysis of
the effects produced by weight inaccuracies. The use of
interval arithmetic in artificial neural networks was originally
proposed in [7] as an extension of the multilayer perceptron.
Some applications include, for example, methods for fuzzy
regression [8] and new training algorithms for obtaining robust
networks [9]. Building on these results, we show how to
obtain inaccuracy bounds that are valid regardless any input or
weight distribution, as far as they are limited quantities. Due
to space constraints, we cannot review in detail the application
of interval arithmetic to neural networks and refer the reader
to the work described in [8] and [9].

Manuscript received February 26, 1998; revised July 7, 1998 and November
13, 1998.

D. Anguita, S. Ridella, and S. Rovetta are with the Department of
Biophysical and Electronic Engineering, University of Genova, Genova, Italy.

Publisher Item Identifier S 1045-9227(99)01912-8.

In Section II we briefly review the interval arithmetic mul-
tilayer perceptron (IAMLP), as proposed by Ishibuchi [8]. The
main results of this work are described in Section III and
experimental results are presented in Section IV.

II. I NTERVAL ARITHMETIC MULTILAYER PERCEPTRON

An interval is a compact representation for all the values
of between two extreme points

(1)

where (obviously, if then the interval
reduces to a real value). In this work, we will indicate intervals
with capital letters () and the corresponding lower
and upper bounds with lower case letters with appropriate
superscripts (). We use the notation
proposed in [8] throughout this paper. An example are the
relation operators, defined as follows: an intervalis greater
than an interval () iff ; an interval is said to
contain another interval () if and .

It easy to show that interval arithmetic is not a straightfor-
ward extension of arithmetic on reals; there are many subtle
differences that arise dealing with intervals that are far from
obvious. Deeper insight on interval arithmetic and examples
of its application can be found in [6] and [10].

A multilayer perceptron (MLP) with interval weights is
called interval arithmetic multilayer perceptron (IAMLP) [8],
[9]. The equations describing it are the following, assuming,
for simplicity, one hidden layer and one output neuron

(2)

(3)

The input of the IAMLP consists of a vector of real values
. The weights and biases of the network , are

intervals and, consequently, so are the quantities, , ,
and . In the following, we will assume that both the inputs
and the weights of the network are bounded quantities, in
particular: and . As usual,
the activation function of the neurons is the logistic function

except in regression problems where
the output coincides with the stimulus .

Analogously to the MLP, it has been showed [8] that
training an IAMLP can be performed defining an error function
and rewriting the back propagation algorithm for the case
where the weights of the network are intervals (IABP [8],
[11]).

1045–9227/99$10.00 1999 IEEE

416 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 2, MARCH 1999

III. W ORST CASE ANALYSIS OF INACCURACIES

We develop here an inaccuracy analysis assuming that the
weights can be implemented with a prescribed tolerance: this
implies that a weight can be described through an interval

(4)

where the interval represents all the possible values that a
weight can assume due to noise, quantization errors or any
other undesired effect. For example, in digital implementations

where is the quantization step.

A. General Inaccuracy Bounds

We compute the bounds on the inaccuracy of the variables
of the network in a backward way, starting from the output
and going toward the input.

Let us consider the output of the network
and the corresponding stimulus

. Using the fact that the logistic function is
strictly increasing, we have

(5)

by noting that the maximum derivative of the activation
function (1/4) is obtained at the origin.

Proceeding backward we can bound the inaccuracy at the
output of the hidden layer (). Let be the number of
weights, including the bias, of the output layer, then

(6)

Using the rules of interval arithmetic we can expand the right
size of (6)

(7)

Let where , are,
respectively, the number of positive and negative weights and

is the number of weights containing zero. Recalling that
, we can write

(8)

and find the following relation:

(9)

from which the main result follows:

(10)

For simplicity, we have considered the bias in the same way
of the other weights: in this case (10) bounds the inaccuracy
of its fixed input.

Equation (10) can be easily simplified when the following
reasonable assumptions on the network hold: 1) positive and
negative weights are approximately equally numerous (

); 2) weights containing zero are very rare (); and
3) the inaccuracies are negligible with respect to the weights
range (). Assumption 2) is supported by the fact
that implies .

The simplified bound is

(11)

Equation (11) gives us an intuitive relation between the
inaccuracy of the weights and the inaccuracy of the stimulus,
considering that

(12)

Similar bounds can be easily derived for the weights of the
first layer (), for each hidden neuron, relating , ,
and .

If desired, less stringent bounds can be found, starting from
(7). In fact, if we know both and , we can compute
the error of the network as a function of these quantities and
its inputs, using (2) and (3). This issue will be developed
in the following section, but it is important to note that the
above bounds are valid for any input pattern, any number of
hidden neurons or inputs and any weight distribution. They are
useful as general guidelines and in the synthesis of circuits by
inverting the formulas.

B. Inaccuracy Bounds in Practice

In this example we target a digital implementation, therefore
the weights inaccuracies are due to a quantization effect. For
simplicity we will choose , where

is the quantization step and .
The inaccuracy of the output is

(13)

where and is the number of bits used to
describe it. If then the output of the network is purely
binary, while allows a finer evaluation of the output
of the network. The output range depends on the activation
function of the neuron: if we choose the logistic function, then

; if the output is linear (e.g., in regression
problems) then .

From (10), or (11), the accuracy needed at the output of
the hidden layer can be derived as a function of the accuracy
of the weights. In practice, we would like to find a value of

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 2, MARCH 1999 417

as large as possible in order to minimize the number of
bits needed to implement the weights. In fact, the following
obvious relation holds:

(14)

where is the word size in bits of the weights.
Let us suppose that a trained IAMLP with weights

has been obtained, for which the output error
is less or equal to the desired error. We know that for any
particular choice of weights , the network will behave
as expected; then we can choose the following quantization
step:

(15)

With this choice we guarantee that at least one of the
quantized values lies inside an interval weight.

Let us consider a trained MLP whose weights have
been found by a conventional learning algorithm. We build
an IAMLP by transforming each real weight in an interval
using a slack variable : . Then, we are
faced to solve the following constrained optimization problem:
maximize with the constraint where is
the error function of the network and is its maximum
admissible value, as defined by the user. This is a simple
monodimensional optimization problem, albeit a constrained
one, noting that is a nondecreasing function of.

Sometimes, in practice, it is worthwhile to find different
quantization steps for each of the two layers of the MLP, as
in the previous sections; in this case it is sufficient to consider
two slack variables and perform a two-dimensional
optimization.

IV. EXPERIMENTAL RESULTS

We present here some experimental results on both artificial
and real classification problems.

Some comments are necessary in order to correctly interpret
the output of the IAMLP when used for classification prob-
lems. It is worthwhile to recall that the output is an estimate
of the conditional probability of a class , where the index
spans all the possible classes, with respect to the input vector

[12]; therefore, the interval output indicates the range of
admissible values of such probability. Let us consider a simple
two-class case (i.e.,): we are usually interested
in the decision deriving from the observation of ,
therefore, observing the interval output, we have

.

(16)

The case corresponds to an output interval for which
both classes are admissible. More subtle analysis of the interval
output of the network can be performed, especially in the
multiclass case, but the discussion of these issues is out of the
scope of this paper and we refer the reader to [13] for further

TABLE I
EFFECT OF WEIGHT INACCURACIES ON NETWORK OUTPUT

insights. Condition (16) corresponds to a correct classification
of a pattern with target if and only if

(17)

In the following experiments, the error function will be the
percentage of patterns not satisfying (17).

The artificial example is a simple two class problem pro-
posed by Lippmann [14]: a square unit area is divided in two
regions by a centered circle of area , corresponding to
a radius . We generated 1000 random
points inside the square, assigned them to two different classes
according to their position relative to the circle and, finally,
trained a network with four hidden neurons. The discriminating
surface of this network, after learning, is able to reproduce
almost perfectly the circle that separates the two classes.
Obviously, the output of the IAMLP is an interval that
corresponds, approximately, to two circles of radii and

: they are obtained by fitting the curves corresponding to
and .

In Table I the approximate difference of the radii of the
two circles is reported, when varying the number of bits used
to represent the weights of the network. This gives a clear
indication of the influence of inaccuracies on the size of the
uncertainty region ().

The results on real-world problems are presented using plots
of number of bits versus the percentage of misclassification
(Fig. 1). The curves are obtained deriving from the actual
number of bits the size of the intervals
from (14) and applying this value to the IAMLP, as described
by (2) and (3). Finally, using (17), the percentage of errors
can be computed. Worst case bounds are computed starting
from (14) and using (10); this allows to quantify the number
of additional bits required, in general, to correctly implement
the network without any additional information.

The “Breast Cancer Wisconsin” dataset has been obtained
from the UCI repository1 and is a two-class classification prob-
lem. We trained a network with nine inputs and two hidden
neurons on the 683 patterns of this dataset, obtained discarding
the ones with missing values. Equation (10) suggests that the
trained network can be implemented with only 12 bits per
weight. Using the less general bounds, as depicted in (Fig. 1),
it is possible to implement the network with eight bits or
even five bits if the user can accept a classification error of
approximately 10%.

1UCI repository of machine learning databases [http://www.ics.uci.edu
/˜mlearn/MLRepository.html]. Irvine, CA: University of California, Depart-
ment of Information and Computer Science.

418 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 2, MARCH 1999

Fig. 1. The real-world problems: precision requiredBw versus percentage of misclassificationsE.

The “Sonar” dataset is another well-known example of a
difficult, although linearly separable, classification problem; it
consists of 208 patterns, each one composed of 60 features.
The results are obtained training a single perceptron, without
hidden neurons. We can observe that the problem requires a
greater accuracy, and the dependency is less regular than in
the previous case. As a comparison, note that an accuracy of
11 bits is required if we want to keep the error below 10%.
The general bound gives a minimum accuracy of 15 bits. Note
that these values are comparable with similar results obtained
empirically on the same classification problem [4].

V. CONCLUSION

In this work we presented a method for estimating the
admissible level of accuracy for multilayer perceptron weights,
given the desired output error. Interval arithmetic is used
to express the relevant quantities. This results in a compact
representation of the problem and in simple calculations.
The proposed approach differs from many other techniques
in that it is a worst case analysis; therefore, its estimates
are independent of data distributions and do not require any
assumption on probability densities.

REFERENCES

[1] S. Sakaue, T. Kohda, H. Yamamoto, S. Maruno, and Y. Shimeki,
“Reduction of required precision bits for back-propagation applied to
pattern recognition,”IEEE Trans. Neural Networks,vol. 4, pp. 270–275,
Mar. 1993.

[2] J. Y. Choi and C. H. Choi, “Sensitivity analysis of multilayer perceptrons
with differentiable activation functions,”IEEE Trans. Neural Networks,
vol. 3, pp. 101–107, Jan. 1992.

[3] Y. Xie and M. A. Jabri, “Analysis of the effects of quantization in
multilayer neural networks using a statistical model,”IEEE Trans.
Neural Networks,vol. 3, pp. 334–338, Mar. 1992.

[4] M. Hoehfeld and S. E. Fahlman, “Learning with limited numerical
precision using the cascade-correlation algorithm,”IEEE Trans. Neural
Networks,vol. 3, pp. 602–611, July 1992.

[5] G. Dündar and K. Rose, “The effects of quantization on multilayer
neural networks,”IEEE Trans. Neural Networks,vol. 6, pp. 1446–1451,
Nov. 1995.

[6] G. Alefeld and J. Herzberger,Introduction to Interval Computation.
Reading, MA: Addison-Wesley, 1986.

[7] H. Ishibuchi and H. Tanaka, “An extension of the BP-algorithm to
interval input vectors—Learning from numerical data and expert’s
knowledge,” in Proc. 1991 IEEE Int. Joint Conf. Neural Networks,
Singapore, Nov. 18–21, 1991, vol. 2, pp. 1588–1593.

[8] H. Ishibuchi, H. Tanaka, and H. Okada, “An architecture of neural
networks with interval weights and its application to fuzzy regression
analysis,”Fuzzy Sets Syst,vol. 57, pp. 27–39, 1993.

[9] D. Anguita, S. Ridella, S. Rovetta, and R. Zunino, “Limiting the effects
of weight errors in feed forward networks using interval arithmetic,”
in Proc. IEEE Int. Conf. Neural Networks,Washinghton DC, June 3–6,
1996, pp. 414–417.

[10] R. B. Kearfott, M. Dawande, K. Du, and C. Hu, “INTLIB: A portable
fortran 77 interval standard-function library,”ACM Trans. Math. Soft-
ware, vol. 20, no. 4, pp. 447–459, Dec. 1994.

[11] D. Anguita, S. Ridella, S. Rovetta, and R. Zunino, “Incorporatinga
priori knowledge into neural networks,”Electron. Lett.,vol. 31, no. 22,
pp. 1930–1931, Oct. 1995.

[12] D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley, and B. W. Suter,
“The multilayer perceptron as an approximation to a Bayes optimal
discriminant function,”IEEE Trans. Neural Networks,vol. 1, Dec. 1990.

[13] H. Ishibuchi and A. Miyazaki, “Determination of inspection order for
classifying new samples by neural networks,” inProc. IEEE Int. Conf.
Neural Networks,Orlando, FL, June 27–29, 1994, vol. 5, pp. 2907–2910.

[14] L. P. Lippmann, “An introduction to computing with neural nets,”IEEE
Acoust., Speech, Signal Processing Mag.,vol. 4, pp. 4–22, 1987.

