
Proceedings of the 1995 European Symposium on Artificial Neural Networks
Brussels, Belgium, April 1995, pp. 297-302.  © 1995 De Facto

/HDUQLQJ�WKH�$SSURSULDWH�5HSUHVHQWDWLRQ�3DUDGLJP

E\�&LUFXODU�3URFHVVLQJ�8QLWV

Sandro Ridella, Stefano Rovetta, and Rodolfo Zunino

DIBE - Department of Biophysical and Electronic Engineering
University of Genoa - Italy

$EVWUDFW� This paper presents a neural model that exhibits, in a single
architecture, the properties of other different, widely used schemes. Such a
model can be regarded as the result of generalization of different feedforward
architectures. The way its properties are achieved is very inexpensive in terms
of computational load. Moreover, although the behavior of the single unit is
conceptually different from that of the well-known “multi-layer perceptron”, the
network layout is almost identical, thus allowing one to port all the knowledge
available about the classical model onto the new scheme at very low cost.

� ,QWURGXFWLRQ

The behavior of a neural network is usually analyzed by interpreting the set of
parameters of each processing element in one of two possible ways. In the
feedforward model, such parameters are generally viewed as weighting coefficients
that describe a surface in the input space. The activation of an element is thus decided
according to a rule, and the surface represented by the element weights is the decision
boundary for that rule. The decision can be made in either a binary or a continuous
way. Other neural models imply a different interpretation of the set of coefficients,
which are viewed as coordinates of a reference point in the input space. The activation
of an element is decided according to a best match (or minimum distance) criterion
between the input pattern and the prototypal pattern learned by the processing
element. This is the standard way of implementing a network of the vector
quantization type, such as the family derived from Kohonen’s self-organizing maps.
This duality between UXOH�EDVHG and SURWRW\SH�EDVHG representations contributes to
further increase the complexity of the task of inspecting the acquired knowledge
embedded in a network’s parameters.
We analyze a particular feedforward network model called Circular Back-Propagation
(CBP), which is aimed at combining the advantages of both representation paradigms
and at overcoming individual drawbacks. It differs from classical feedforward models
– here denoted, for brevity, as Back-Propagation (BP) networks – in the inclusion of
an additional quadratic term that enables hidden units to implement (hyper)spherical
decision boundaries. A circular decision boundary allows a direct mapping of a weight
vector into the input space, as a reference point or prototype. At the same time, the
model’s feedforward structure still permits the use of conventional and effective
training algorithms – for example, back-propagation [5, 1].
In section 2, the CBP model is introduced and described. In section 3, experimental
results on artificial problems are reported and the properties of a CBP network are
assessed. In section 4, an experimental comparison between CBP and standard BP is
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made, concerning a real world classification task. In section 5, some concluding
remarks are made.

� &%3�QHWZRUNV��VWUXFWXUH�DQG�LPSOHPHQWDWLRQ

��� $�JHQHUDO�PRGHO�IRU�IHHGIRUZDUG�QHWZRUNV

The model of a neuron or processing unit can be developed in different ways.
However, a large number of these ways can be unified into the scheme shown in Fig.
1. The model behavior is summarized by the basic input-output relationship:

D I U= [ ( , )][ Z

The 0-dimensional vector [ is the input to the neuron, and the 0-dimensional vector
Z, denotes a set of parameters of the unit (i.e., its weight vector). U is a scalar function

of a vector variable, U
�

 :  5 5→ , representing what we call the neuron VWLPXOXV, and
I is a scalar function of a scalar variable, called the activation function. Finally, D is
the activation value that is obtained at the output. The properties of the model depend
on the actual implementation of the functions U and I. For example, if we adopt a dot
product as a stimulus function and a stepwise activation function, we have the
standard perceptron. If the stimulus is an Euclidean norm and the activation is
arranged so as to provide a winner-takes-all behavior, we obtain the class of vector-
quantization and self-organizing networks.
In feedforward structures, one often assumes a layered architecture. Neurons are
arranged into layers, each interconnected to only one other layer at its input; the same
holds true at the output. Of course, a layer receives an input from the outside, and
another layer sends its output to the outside.
The CBP schema is a particular instance of this general model. A Euclidean distance
stimulus is applied to a sigmoidal activation:
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In this model, the parameter vector S holds the centers of the represented prototype,
and θ implements a bias for the distance. Moreover, a gain factor J is assigned the
ultimate task of shaping the sigmoid’s slope.

��� 5HDOL]DWLRQ�RI�D�&%3�QHWZRUN

In spite of the conceptual differences between a classical BP network and a CBP
network, only a slight modification to the former is required to obtain the latter.
Through a little algebra, its easy to show that
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where we define a new parameter vector, Z, and a new input vector, ;, as follows:
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The last component ;� +1 does not require a weighted combination of the inputs, as it
is a straightforward sum. Therefore, it is the equivalent of a supplementary input, with
its usual weight (the procedure scheme is shown in Fig. 2). As a consequence, to
change from the standard BP to the circular version, only one more input and the
corresponding weight are necessary. This allows one to adopt all the well known
techniques for back-propagation training, to achieve a more powerful neural
architecture at the only expense of training one supplementary weight.
In general it is required that CBP units be placed only on the first computing layer,
which is used as a trainable feature extractor, whereas a standard perceptron layer can
be used for the actual classification process.
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��� 'DWD�UHSUHVHQWDWLRQ�LQ�&%3�XQLWV

Once a CBP network is trained, it can be inspected to obtain information on the actual
knowledge acquired. Given the particular stimulus selected, a single unit can easily be
tailored to representing different data distributions by the same input-output relation;
this requires only an (automatic) change in its trainable parameters.
The circular characteristic is defined by the presence of the “sum of squares” term. If
the weight for this term is very small, the unit reduces to a standard BP perceptron.
Therefore the knowledge representation can follow either of two possible paradigms:
when the “squares” term is very small or null, the unit represents a UXOH; when it is
comparable to the other terms, the unit represents a distance-based evaluation, that is,
a SURWRW\SH.
The prototypal data representation involves learning the position of the prototype in
the pattern space. This also is automatically achieved by training the weights. The
width of the decision region is given essentially by the bias term, which is related to
the radius of the circular region.
The region smoothness, that is, the speed at which the output value (the activation)
changes from the value 0 to 1 while entering the decision region, is learned
independently of all the other parameters. Thus it is not linked to the region width, and
can be tailored to implementing a decision at the level of smoothness required (from a
very soft fuzzy decision to a hard step), even for very large regions. In other words,
the function is more general than the Gaussian function used to approximate a
probability density function according to Bayesian decision theory.

� ([SHULPHQWDO�YHULILFDWLRQV

��� 6RPH�WHVW�SUREOHPV

To investigate the properties of the proposed model, some test problems have been
addressed, which are graphically represented in Fig. 3. The figure shows the training
set, along with the decision regions (heavier lines) learned by a CBP layer. (Note that
the dot density in the figures is not related to the sample density in the regions, which
is a random density with uniform distribution.) Fig. 3a shows the standard two-
dimensional generalized XOR, solved by a two-unit CBP layer. The decision borders
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obtained are impossible to implement using a two-unit hidden BP layer. Fig. 3b
presents another problem of the same nature, though an easier one. Whereas CBP can
learn this task using a single unit, BP again requires a larger number of units to
approximate a closed boundary, and of course needs at least two layers. A single BP
unit (a sigmoidal perceptron) cannot perform better than 25% wrong classifications, as
predicted by an elementary theoretical analysis.
Another problem is shown in Fig. 3c. Here the adaptive properties of the unit can be
exploited to obtain both perceptron-like linear rules and prototyping capabilities in a
single network. A CBP layer with three units allows the resulting weights to
approximate very closely the two circular regions and the linear border.

��� $�UHDO�GRPDLQ�DSSOLFDWLRQ

Once the basic properties of the model have been tested, the CBP network’s efficiency
has been verified in an application using a complex, real-world data base, the Lyme
disease data, which constitutes a standard for our research group. The data refer to the
description of a number of persons with suspected Lyme borreliosis, and were
collected by the Italian Working Group for the Lyme Disease. The database features
684 patterns (54 inputs plus a binary classification for the diagnosis), of which 500
were used for training and 184 for validation. The classification results were
compared with these yielded by a standard BP network [3, 4]. The validation error for
BP was 10.7%, while for CBP was 9.6%. The percent improvement obtained by the
circular stimulus is about 11%. The BP network features 605 weights, while the CBP
network has 616 parameters; hence the additional computational load is only due to a
1.8% increment in the number of weights to be trained. The sum of squares, which has
to be computed for each activation pattern, can be put off line in a pre processing
phase, as it is required only for the first layer, hence only for each input pattern.

� 'LVFXVVLRQ�DQG�FRQFOXVLRQ

The model exhibits properties that are partly shared by other approaches. However,
none of these approaches includes all the properties in a single architecture. The
straightforward model realization, similar to that of back-propagation networks,
allows one to exploit all the techniques already used for BP training, such as adaptive
training parameters, second-order algorithms, conjugate-gradient minimization, and so
on. In the standard architecture (a single CBP layer), the modification to the BP model
can be performed at the pre-processing step. The activation of each unit can be local,
thus can be similar to that of RBF networks. However, the transition slope and the
region size can be adapted to the actual needs of the representation. The distance-
based activation may also suggest the application of competitive training laws to
emulate vector-quantization networks in either a supervised or an unsupervised way.
The model belongs to the class of polynomial networks. However, it uses only one
parameter more than the linear threshold unit; as a consequence, the Vapnik-
Chervonenkis dimension (i.e. the standard measure of the representation capability of
a learning machine) is kept small, thus enabling the user to tune the overall VCdim of
the whole network by selecting an appropriate architecture (as is usually done for
standard BP networks) [2, 6]. This allows the network to reach the desired tradeoff
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between good learning during training and good generalization after training. Instead,
the general polynomial model is often used in tasks where a large number of small
classes have to be stored, without requiring a great amount of generalization, as for
recognition of complex but densely sampled patterns (e.g., vocalization of syllables).
In conclusion, the proposed neural model generalizes threshold feedforward networks,
by adding a distance-based feature that is tuned during a standard training phase at a
very low additional cost. This allows a notable improvement in the representation
capabilities of the system. Moreover, the procedure of analyzing the trained network is
easier, thanks to the adaptive nature of the representation paradigm itself. However,
the model benefits from the advances in research on feedforward networks and back-
propagation training, and can exploit them successfully.
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