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INTRODUCTION

In this paper an implementation of the back propagation (BP) algorithm (Rumelhart86) on a

cluster of workstations is presented. In a previous paper (Anguita94), we proposed an efficient

implementation of BP on RISC architectures (Matrix Back-Propagation - MBP): now we

extend that work to clusters of workstations using PVM.

Several methods have been proposed for the implementation of BP on distributed and parallel

architectures. In Table 1 some of the implementations available in literature are summarized.

The speed is measured in MCUPS (Millions of Connections Updates Per Second). The three

top computers are dedicated machines for neurocomputing applications, making use of

massive parallelism to obtain high performances (the number of processors is indicated in

parenthesis). This explains the large gap between general-purpose and dedicated computers.

Among the large amount of implementations available in literature, there are virtually no

examples on clusters of workstations. The most interesting work in this field is (Chu92): the

subject of the work is the study of the optimal mapping, with respect to the learning time, for a

multi-layer feedforward network on message-passing multicomputers. The problem is

obviously combinatorial and some heuristic must be introduced in order to solve it in

reasonable time.

The novelty of our approach lies in developing a structured version of the back-propagation

algorithm (MBP) that minimizes the learning time on a single machine and then extending it

to the multiprocessor case (Distributed Matrix Back-Propagation - DMBP1 ).

A DISTRIBUTED IMPLEMENTATION ON A CLUSTER OF WORKSTATION

Our research focuses on a static mapping of the BP learning algorithm on a cluster of

workstations; in other words, the load distribution is decided once at the beginning of the

                                                          
1 
MBP and DMBP are available through anonymous ftp on risc6000.dibe.unige.it

Computer Speed (MCUPS) Ded. Ref.

CNS-1 (1024) 166000 Y Asanovic93

CNAPS (512) 2379 Y Ienne93

SNAP (64) 302 Y HNC94

CM-5 (32) 72 N Adamo94

FUJITSU VP-2400/10 60 N Sanchez94

CM-2 (64k) 40 N Zhang90

Cray Y-MP (2) 40 N Liu94

IBM RISC/6000 15 N Anguita94

DEC Alpha 3.2 N Mueller94

Transputer (16) 0.7 N Petrowsky93

PC486 0.5 N Mueller94

Table 1 –Distributed and parallel back propagation implementations



computation. This allows us to model easily the available computational power, to compute in

negligible time an optimal mapping and to forecast the behavior of the communication

network. Further research could be done to analyze a dynamic mapping and our method can

be used as a starting point for this work.

In order to model our problem, let us consider C identical workstations; each of one of them

can achieve a computational speed V (measured in MFLOPS). This is quite a general

assumption because, as shown in (Anguita94) it is possible to optimize the core operations of

the backpropagation on a single machine in order to obtain a computational speed independent

from the size of the problem. The workstations are connected by a network that can transmit

data at the rate of 1/Tbit (measured in bit/sec) where Tbit is the transmission time of one bit.

The speed of the network is guaranteed to be maintained constant for large enough packets

thanks to PVM.

The neural network is a multi-layer feed-forward perceptron of L layers: each one composed

of nl  neurons (0 ≤ ≤l L  ). If we have np  training patterns, we can define a matrix Sl  (n np l× )

for each layer where the status of layer l for each training pattern is stored. The weights of

layer l are stored in matrix Wl  (n nl l× −1).

We explored two techniques to split matrices Sl  and Wl  into sub-matrices and distribute them

on the cluster. The first technique is called by pattern: each Sl  is divided into P sub-matrices

Slp  (1≤ ≤p P ) of size ′ ×n np l  where ′ =n n Pp p / . The second technique is called by net: the l-

th layer is divided into N groups of neurons so that matrix Wl  resulting in sub-matrices Wln

(1≤ ≤n N ) of size d nl l× −1 where d n Nl l= / . In the same way we obtain a sub-vector bln of

size dl ×1 from the bias vector bl  of size nl ×1. If we assign to each workstation a fixed

number of sub-matrices, our problem is to find N and P such that the total time for one

complete epoch (computation+communication) is minimum. Obviously N P C⋅ ≤ . In Table 2

the steps of DMBP are reported: we assume that k1 and k2  are the number of operations

needed to compute respectively the activation function and its derivative. Due to lack of space

it is not possible to explain in detail the table.

The computation time TOP  is the sum of the number of operations (column II of the table)

divided by V. The communication time TC  is the following:
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where D is the size of the data to be transmitted (usually 32 or 64 bits).

Step # of transm. # of operations

Feed Forward:

computation of S
( )2 11′ +−n n d

p l l + ′k n dp l1

Reconstruction of S ′ −n d Np l ( )1

Error Back Propagation:

computation of  ∆
( )k d nL p2 2+ ′

Reconstruction of  ∆ ′ −n d Np l ( )1 ( )k n d nl l p2 11 2+ + ′+

Partial Weight variation:

computation of ∆W and ∆b

2 1d n n d nl p l l p′ + ′−

Transmission of ∆W d nl l( )− +1 1    if p≠1

Total Weight variation:

sum of partial variations

( ) ( )P d nl l− +−1 11

Transmission of ∆W and ∆b ( ) ( )P d nl l− +−1 11   if p=1

Weight Updating 4 11d nl l( )− +
Table 2 – Calculation of execution time



We can circumvent the problem of a non homogeneous cluster, composed by workstations of

different computational power, if we model each machine as a sub-cluster of identical virtual

workstation whose computational power is the greatest common divisor of all the

workstations in the cluster. Obviously, the communication time between virtual workstations

that compose a single real workstation must be considered null.

DMBP was implemented on a cluster composed by an IBM RISC6000/550, an HP 9000/750

and an HP 9000/720. The measured sustained performance of the Ethernet with PVM

software was about 3.5 Mbit/s.

EXPERIMENTAL RESULTS

To test the asyntotical behavior of our model we implemented a large parity-problem

(500x500x1): this is a classic toy problem used in literature to test the learning performance of

a network. In Fig. 1 the comparison of the distributed and serial version of the program is

presented. The speed of the learning is measured in MCUPS (Millions of Connections

Updates per Second).
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Fig. 1 – Learning speed of DMBP

Fig. 2 shows the difference between our mathematical model and the actual speed of DMBP.

The model is pessimistic about the performance of DMBP if compared to the actual observed

data: this derives from the assumption that the computation and communication phases cannot

be overlapped. This assumption is, in our case, not true.
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Fig. 2 – Fitness of the model

DMBP was used mainly for large learning experiments in the field of image compression with

neural networks (Passaggio94). The network is an autoassociative MLP (256-16-256) with

2048 patterns. We measured 8.1 MCUPS compared to 3.7 MCUPS for the serial version.

Furthermore, this application was unable to run in serial mode on the smallest machine due to

main memory shortage, while it executed flawlessly on the cluster.
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