until the difference between the current boundary fields and
updated boundary fields at the next iteration process reduces to
the prescribed error criterion. Since this iteration process is com-
pleted within only several repetitions, the proposed method is con-
sidered to give an efficient solution for waveguide discontinuities.

Numerical results: For a circular aperture with radius 0.3cm in
WR-90, the performance of the proposed method is compared
with that of the finite element-boundary integral method [3]. As
shown in Fig. 3, the proposed method gives a result in good agree-
ment with [3] and is more efficient in terms of computation time,

Conclusions: A novel iterative finite element method has been
applied to a waveguide problem. The proposed method is shown
to be not only simple to use but also very effective since it exploits
a typical finite element procedure with only a small number of
meshes and it requires only several periods of iterations. There-
fore, this method is thought to represent an efficient tool for the
analysis of various types of waveguide discontinuities.
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Circuit implementation of K-winner machine

S. Ridella, S. Rovetta and R. Zunino

The K-winner machine (KWM) model for supervised
classification enhances vector quantisation by characterising
classification outcomes with confidence levels. Each data-space
location is assigned a specific local bound to the error probability.
Structural simplicity makes the implementation compatible with
circuitry for classical VQ, and features high speed and efficiency.

KWM model: A prototype-based schema spans the data space by
a set of reference positions (‘prototypes’, ‘codewords’). The maxi-
mum similarity drives the categorisation process, which classifies
each sample with the class of the best-matching prototype. Thus
vector quantiSation (VQ) involves a winner-takes-all (WTA)
schema, and partitions the data space into as many Voronoi sub-
regions as the number of prototypes. The samples lying in a region
are classified according to the related prototype. WTA-based cate-
gorisation is not usually characterised by a confidence measure: as
far as classification is concerned, all points within a region are
equivalent and with an equal confidence value.

The K-winner machine (KWM) overcomes such a drawback by
taking into account, for each test sample, a larger set of proto-
types including K elements (K 2 1). Similarly to WTA, the KWM
uses the ‘winning’ prototype to set classification; however, it also
seeks the largest number X of best-matching prototypes that agree

with the winner. The level of agreement depends on the test loca-
tion, hence each data point yields a specific value of K. The basic
assumption is that a point with a large K value denotes high confi-
dence in the associate classification. The KWM embeds classical
WTA in the minimal case K = 1: when even the second best-guess
disagrees with the winning candidate, confidence reaches its mini-
mum. A WTA classifier and a KWM involve the same representa-
tion structure, i.e. a set of class-calibrated prototypes positioned in
the data space by some VQ algorithm. Thus KWM training does
not differ from any conventional VQ-classifier setup. Instead, the
KWM run-time operation for classifying a sample x can be out-
lined as follows:
(i) compute the distance d, between x and each prototype w,, j = 1,
vees N
(i) sort the list of prototypes in order of increasing d,
(iii) work out the largest X value such that Class(w,) = Class(w,)
Vk=1,...K
(iv) a classify x according to the winning prototype, Cl(w,) (=
WTA classification).
b prompt K as the confidence level for the present classifica-
tion outcome.
Measuring the agreement among prototypes (step (iii)) helps pre-
dict the generalisation performance: it can be proved [1] that the
Vapnik-Chervonenkis dimension [2] of a K-winner machine can be
computed exactly as

dvc = |Nn/K| 1)

Therefore, by using eqn. 1 and basic results from generalisation
theory [1], we set a bound on the KWM classifier’s error probabil-
ity m, given by

_ 1 2N\ o m
S e e

where v is the classification error for a training set including N,
samples, and 1 (typ. = 0.05) is a confidence parameter.

Fig. 1 KWM results on Gaussian-mixture testbed

a Training data (three classes)
b Confidence map; darker areas denote higher K and higher confi-
dence; bright regions (low K) span class boundaries

In summary, for each test location in the data space, we first
compute the local K value, then by using [1, 2] we determine a
bounded estimate of the expected error probability. The opportu-
nity to predict the generalisation ability analytically and at the
local level represents a crucial advantage of the KWM model. A
KWM differs from a voting schema substantially, as prototypes
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are not trained independently of one another, and the number K
depends on each specific sample. Incidentally, when K increases,
i.e. when more neighbours agree on a sample classification, the
associate error probability (eqn. 2) decreases, thus confirming the
intuitive expectation that a larger consensus yields higher confi-

- dence. The operation on a Gaussian-mixture testbed (Fig. 1)
shows that the ‘confidence map’ spanned by K renders and sup-
ports the class distribution consistently.
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Fig. 2 Use of VQ-circuitry bulding blocks in KWM
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Fig. 3 KWM subcircuit

Circuit implementation: The implementation of a KWM exploits
previous research into hardware support of vector quantisers.
Basic architectural blocks are a distance-computing and a dis-
tance-sorting device, which have already been developed in ana-
logue circuitry (Fig. 2). The VQ chip [3] computes sample-
codeword distances in parallel (step (1)), maximising flexibility and
speed. The sorting chip [4] allocates a cell to each prototype and
processes distances (in a current-mode representation) from the
VQ chip. Each cell has two outputs: WIN, which is high when the
cell processes the currently smallest distance, and CL, which
encodes the class of the associate prototype (for simplicity, a two-
class case is assumed). Prototype sorting (step (ii)) proceeds
sequentially: at the sth clock cycle, WIN is high in the cell having
rank #» in the sorted list. As a result, in Fig. 2, CL(n) indicates the

class associated with the nth prototype on the list. The actual
KWM circuitry is illustrated in Fig. 3. After reset, the first clock
cycle yields the ‘winning’ prototype and classifies the sample
according to CL(1) (step (iv)a). The D flip-flop FF1 triggers FF2
to store Class(w,). Further clock cycles yield the successive proto-
types in the sorted list from the sorting chip. These are progres-
sively counted until the XOR circuitry detects a difference between
CL(w,) (i.e. the class of the kth prototype) and the contents of
FF2 (the class of the winner). Then the stop signal becomes low,
and the status of count gives the final value of K.

The current implementation of the KWM circuit includes 200
prototypes, hence an 8 bit counter is required. The basic devices
have already been fabricated using 1 ym CMOS technology (3, 41,
whereas the elementary KWM circuitry has been successfully sim-
ulated at layout level using HSPICE level 13. Current research is
being carried out into integrating the three subsystems within a
single VLSI chip.

Conclusions: The KWM model greatly enhances VQ classifiers by
providing a measure of the confidence in the categorisation result.
Conversely, the electronic implementation is straightforward and
takes advantage of basic VQ-support building blocks. The impor-
tance of the final application domain (handwritten OCR) justifies
the implementation effort.
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Neural network approach to graph colouring

S.A. Rahman, Jayadeva and S.C. Dutta Roy

A neural network for colouring a graph of N nodes is proposed
which uses only N neurons and A? weights. In contrast, N?
neurons and N* interconnections are required by Hopfield net
based approaches. Experiments with a breadboard realisation
using discrete components yielded promising results.

Introduction: Neural networks have evolved in the last two dec-
ades into a new paradigm for solving difficult optimisation prob-
lems. The literature is replete with neural network solutions for
combinatorial optimisation tasks, most of which are based on the
Hopfield net [1]. One such task is the graph colouring problem
(GCP), which arises in several contexts, including assignment,
resource allocation, and job scheduling. The GCP involves assign-
ing a colour to each node in a graph G with N nodes, such that no
two adjacent nodes have identical colours. While four colours are
sufficient to colour a planar graph, N colours would be needed in
the case of a clique of N nodes. The colour assigned to a node can
thus be represented by an integer in the range 1 — N.

The GCP for any graph with N nodes can be mapped onto a
Hopfield net with N x N neurons. Let Y; denote the output of the
neuron in row i and column j where i and j range from 1 — N. ¥,
is either 0 or 1; if ¥, = 1, then this indicates that node i in the
graph is assigned colour j. Therefore, in a valid colouring, only
one Y in each row is equal to 1.
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