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Abstract

The design and implementation of a vector quantization neural network is presented. The
training algorithm is Neural Gas. The implementation is fully parallel and mainly analog
(only control function and long-term memory are digital). A sequential implementation of
the required sorting function allows to compute the Neural Gas updating step.

1 Introduction

Vector-quantization (VQ) neural networks are useful for many neural processing and generic
signal-processing applications. For instance, image compression/processing is frequently ap-
proached through VQ. A neural approach allows concepts and algorithms developed in the fields
of neural modeling and physics to be exploited in other research areas. This is the approach of
the work presented here.

Martinetz et al. proposed the Neural Gas (NG) neural network in [1]. They adopted the
standard vector-quantization scheme for recall, without modifications; however, they proposed
an interesting training algorithm. The NG training procedure is a stochastic gradient descent
on a cost function defined by the distortion criterion adopted, which is assumed to be Euclidean
distance. To avoid local minima, the algorithm adopts a strategy similar to that of Kohonen’s
Self Organizing Maps (SOM) [2]: optimization begins with generalized updates (each neuron is
somewhat moved at each training step) and end with very specific updates (only the appropriate
neuron is moved). Accordingly, local minima in the error function emerge slowly during training,
so that they can be avoided. However, SOMs propagate the updating step from the winner to its
neighbors exploiting topology relations inherent to the network. NG instead uses a rank-based
distribution, that allows to overcome some drawbacks of the fixed topology.

Specifically, the training step for NG is summarized as follows. xl is the l-th input vector, wi

the i-th reference vector, ε a constant (learning coefficient). NG first sorts all reference vectors
with respect to their distance from xl, then defines a function ki(xl) that maps the i-th reference
vector into its position in the ordered list (its rank). Finally, the rank ki of each reference vector
is used to compute an appropriate step size through the function h(ki). The updating step is
therefore simply

∆wNG
i = ε · h(ki(xl)) · (xl − wi). (1)

The result of this strategy is that very good minimum points can be found by the NG
algorithm, as compared to SOM or other techniques such as k-means, and they are obtained in
a low number of steps.
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Figure 1: Functional diagram of the encoder.

x
-

neuron w(1)

(x1 − w
(1)
1 )2 -

(x2 − w
(1)
2 )2 -

.

.

.

(xm − w
(1)
m )2 -

∑
-

d(1)

-

neuron w(2) -
d(2)

.

.

.

-

neuron w(n) -
d(n)

W T A

-

index

-

value

Implementation of any VQ optimization algorithm can be costly in terms of time, since they
all require computing all distances from the input vector. In addition, NG training is more
computationally expensive due to the need for sorting. Therefore, for real-time VQ (both recall
and training) a hardware implementation is advisable.

This paper presents such a realization. In the relevant literature, the main electronic im-
plementations of VQ are in digital technology and tailored for signal-processing applications
only (mainly image compression) [3][4]. Although it adopts the same reference application, the
implementation of the proposed project is mainly analog, with some digital control subsystems.
Moreover, the majority of systems are time-multiplexed, whereas the proposed project is fully
parallel, with an O(1) time complexity (operation is independent of both vector size and num-
ber of reference vectors). Some VQ implementations with similar features can be found [5][6];
however, they often make compromises such as reduced number of neurons, non-standard vector
size, or external implementation of some function. This project features full support for recall
mode and implements the functions required for training.

2 The analog VLSI realization

The basic encoder functions for VQ [7] are presented in Figure 1. It is possible to notice that
the circuit features both the standard output of a VQ encoder (index of the winning reference
vector), and an analog output, that is, the distance of the winning reference vector from the
input vector. This is a key feature to implement NG learning, and also for connecting multiple
chips in a modular fashion to build networks with the desired number of neurons.

All blocks shown in Figure 1 are implemented in the circuit, and most of them are in analog
form. Each neuron stores its reference vector in a medium-term memory, a MOS capacitor.
The long-term memory is kept in an external RAM, from which the analog memory is refreshed
through an analog bus and D/A converters.

The analog memory is used to compute the distance from the input vector:

D∑

j=1

(xl,j − wi,j)
2, (2)

where xl and wi are represented as voltage values. The square of difference is implemented with



Figure 2: Circuit for the square of a difference.
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Figure 3: Competition and selection circuit.
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the block represented in Figure 2. Its output is a current, proportional to the desired value. To
obtain the sum, it is sufficient to feed the current outputs of all blocks into a single node.

The subsequent block is the competition/selection subsystem, also termed “winner-take-all”.
The original structure has been proposed by Lazzaro et al. [8]. In this system, the standard
WTA circuit has been modified [9] (see Figure 3) to implement both the analog output (distance
of the winner from the input) and the “minimum” instead of “maximum” selection function.

3 Implementation of the “Neural Gas” updating

The encoding system described in the above section supports the VQ encoding function. An
external circuitry is used to implement the training step. The NG adaptation step ∆wNG

i

is computed as a sum of decreasing terms. However, some of these terms give only a little
contribution to it [10], and, given the stochastic nature of on-line training, can be neglected
without effect (since they act essentially as an additive noise of small intensity). Therefore only
a limited number of terms of the sum in Equation 1 is necessary. Experimental verifications
have demonstrated that in the cases of interest only 7-8 terms are required.

The training procedure is implemented in mixed analog/digital technology, since the weights
are stored in a digital RAM, but the distances ||xl − wi||

2 are analog quantities. The sorted
list of distances is computed sequentially, through the circuit shown in Figure 5. The circuit,
presented in [11] and [12], is based on two iterated steps: searching the maximum, performed by
the standard encoding circuit, and inhibiting the winner for subsequent operations. A simulated
experiment is shown in Figure 6. At each training step, the first n distances are output in by



Figure 4: Layout of two competition cells.

Figure 5: The sort circuit.
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Figure 6: Simulation results on the sort circuit.
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the sort circuit, and their value is used to compute the value of ∆wNG
i according to Equation 1.

The result is then converted into digital form (8 bits) and used to update the RAM long-term
memory.

4 Remarks

The VQ chip has been designed and carefully simulated with HSPICE level 13 parameters for
the ECPD10 1µm CMOS ES-2 technology. The experimental verifications have been performed
on the extracted netlist, including all parasitics as modeled by the layout editor. The chip is
currently being realized as a prototype for testing. The sorting function has been simulated,
and a chip for its implementation and for the step of updating parameters is under study.

The authors wish to thank the graduate students A. Novaro, G. Oddone, and G. Uneddu
and acknowledge their contribution to the development of this work.
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