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3 DISI, Università di Genova, 16146 Genova, Italy

rovetta@disi.unige.it

Abstract. Thegraded possibilistic clustering paradigmincludes as the two ex-
treme cases the “probabilistic” assumption and the “possibilistic” assumption
adopted by many clustering algorithms. We propose an implementation of a graded
possibilistic clustering algorithm based on an interval equality constraint enforc-
ing both the normality condition and the required graded possibilistic condition.
Experimental results highlight the different properties attainable through appro-
priate implementation of a suitable graded possibilistic model.

1 Introduction

Let X = {xk| k = 1, ...., n} be the set of unlabeled samples;Y = {y j | j = 1, ..., c} be the
set of cluster centers (or prototypes); andU = [u jk] be thefuzzy membership matrix.

Many clustering approaches, such as C-Means (CM) [3], FuzzyC-Means (PCM) [2],
and Deterministic Annealing (DA) [9, 1], assume aprobabilistic constraint, accord-
ing to which the sum of the membership values of a point in all the clusters must be
equal to one. This is done through the so-called “probabilistic constraint” by setting
ψ(u1k, . . . , uck) =

∑c
j=1 u jk − 1. Each membership is therefore formally equivalent to the

probability that an experimental outcome coincides with one of c mutually exclusive
events.

In [5, 6], Krishnapuram and Keller showed the limits of the probabilistic approach
to clustering and proposed apossibilistic approachto it. Their approach assumes the
membership function of a point in afuzzyset (or cluster) is absolute, i.e. it is an evalua-
tion of adegree of typicalitynot depending on the membership values of the same point
in other clusters.

Krishnapuram and Keller [5, 6] presented two version of a Possibilistic C-Means
algorithm (PCM) that relax the probabilistic constraint, in order to allow apossibilis-
tic interpretation of the membership function as adegree of typicality. In PCM, the
elements ofU fulfill the following conditions:

u jk ∈ [0, 1] ∀ j, k; (1)

0 <
n∑

k=1

u jk < n ∀ j; (2)



∨

j

u jk > 0 ∀ k. (3)

Then, the possibilistic approach implies that each membership is formally equiva-
lent to the probability that an experimental outcome coincides with one ofc mutually
independentevents. This is due to the complete absence of a constraint onthe set of
membership values (ψ ≡ 0).

Note that, due to lack of competitiveness among clusters, clustering algorithms
based on the possibilistic approach, need of an initial distribution of prototypes in the
feature space and the estimation some parameters, that can be obtained using a prob-
abilistic clustering methods. E.g., in [5, 6], a Fuzzy C-Means initialization has been
applied, while Masulli and Schenone [8] used a prototypes initialization based on the
Capture Effect Neural Network(CENN) [4].

However, it is possible (and in practice it is frequent) thatpairs of events are not mu-
tually independent, but are not completely mutually exclusive either. Instead, events can
providepartial informationabout other events. Of course, this is a problem-dependent
situation and accounting for it may or may not be appropriate.

An interesting case of partial information, in the context of the present research,
is the concept ofgraded possibility. The standard possibilistic approach to clustering
implies that all membership values are independent. In contrast, the graded possibilistic
model assumes that, when one of thec membership values is fixed, the otherc−1 values
are constrained into a subset of the interval [0, 1].

Clearly, this situation includes the possibilistic model,and also encompasses the
standard (“probabilistic”) approach.

An example of such graded possibility is given by a glass and by the fuzzy concepts
of “full” and “empty”. If the glass is full or almost full, itsmembership to the concept
“empty” should clearly be around zero, and similarly for theempty or almost empty
case. However, if the glass is half filled, it is much more difficult to assess the mem-
bership in the concept “empty” with similar confidence. The profile of the membership
functions in this case should be decided according to further considerations.

In short, in these intermediate cases the membership function should not be con-
strained by the cost function, but should be arbitrary to a certain degree.

2 Modeling graded possibility

A class of constraintsψ, which includes the probabilistic and the possibilistic cases, can
be expressed by the following unified formulation:

ψ =

c∑

j=1

u[ξ]
jk − 1, (4)

where [ξ] is an interval variable representing an arbitrary real number included in the
range [ξ, ξ ]. This interval equality should be interpreted as follows:there must exist a

scalar exponentξ∗ ∈ [ ξ, ξ ] such that the equalityψ = 0 holds.



This constraint enforces both the normality condition and the required probabilistic
or possibilistic constraints; in addition, for nontrivialfinite intervals [ξ], it implements
the required graded possibilistic condition.

The constraint presented above can be implemented in various ways. A particular
implementation is as follows: the extrema of the interval are written as a function of a
running parameterα, where

ξ = α ξ =
1
α

(5)

and
α ∈ [0, 1] (6)

This formulation includes as the two extreme cases:

– The “probabilistic” assumption:
α = 1

[ξ] = [1, 1] = 1
c∑

j=1

u jk = 1

– The “possibilistic” assumption:
α = 0

[ξ] = [0,∞]
c∑

j=1

u0
jk ≥ 1

c∑

j=1

u∞jk ≤ 1

The latter case can be better understood as the limit of the process of bringing
α → 0. The interval exponent [ξ] expands, so that the actual value can be any arbi-
trary number betweenα and 1/α. Therefore, each equation containing an interval is
equivalent to a set of two inequalities:

c∑

j=1

uαjk ≥ 1
c∑

j=1

u1/α
jk ≤ 1.

This is graphically depicted in Figure 1, where the bounds ofthe feasible regions
are plotted, forc = 2, for values ofα which decrease in the direction of the arrows.

In the first limit case, the feasible values foru jk must lie on a one-dimensional set (a
line segment). In the second limit case, the feasible valuesfor u jk are in the unity square,
a two-dimensional set. In intermediate cases, the feasiblevalues are on two-dimensional
sets which however do not fill the whole square, but are limited to an eye-shaped area
around the line segment.
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Fig. 1.Bounds of the feasible region forujk for different values ofα (decreasing from 1 to 0 along
the direction of the arrows)

3 The graded possibilistic clustering algorithm

In this section we outline a basic example of graded possibilistic clustering algorithm
(Tab 1). This is an application of the ideas in the previous section. However, it is pos-
sible to apply many variations to this algorithm, so that appropriate properties can be
obtained. Some of these variations will be presented and demonstrated in the experi-
mental section.

For the proposed algorithm implementations, the free membership function has
been selected as in the DA and PCM-II algorithms:

v jk = e−djk/β j . (7)

The generalized partition function can be defined as follows:

Zk =

c∑

j=1

v κ
jk (8)

where:

κ = 1/α if
∑c

j=1 v1/α
jk > 1

κ = α if
∑c

j=1 vαjk < 1

κ = 1 else.

These definitions ensure that, forα = 1, the algorithm reduces to standard DA,
whereas in the limit case forα = 0, the algorithm is equivalent to PCM-II. Note that
in the implementation of the algorithm in Tab 1 the variationof α from 1 to 0 allow
to obtain a probabilistic initialization of prototypes anda following refinement in a
possibilistic sense.

The required value for theβ j can be assessed from previous experiments, possibly
in an independent way for each cluster (as done in PCM), or gradually lowered in an
iterated application of the algorithm (as done in DA).



Table 1.Graded possibilistic clustering algorithm

select c

select alphastep ∈ �

randomly initialize yj

for α = 1 downto 0 by alphastep do
begin

compute vjk using (7)

compute Zk using (8)

compute ujk = vjk/Zk

if stopping criterion satisfied then stop

else compute the centroids yj

end

4 Experimental analysis

In [7] we report some results aimed to highlighting the properties attainable through
appropriate implementation of a suitable graded possibilistic model. The showed results
demonstrated that:

1. the proposed implementation of the graded possibilisticmodel (Tab. 1) is able to
correctly model the membership functions of data point without need of long ex-
perimental work, as necessary with the PCM, and

2. a very high outliers rejection is attainable, by setting the upper extremum of [ξ] to
1 and the lower extremum toα.

In this section we illustrate a case of a-priori knowledge usage. We propose an
experimental demonstration where we make use of a suitable value forα to improve the
results with respect to the extreme cases (probabilistic and pure possibilistic). In this
case the optimum value is inferred from the results but not used (for lack of a test set);
in real applications it can be estimated on the training set prior to use on new data.

We show sample results from the following unsupervised classification experiment.
First, the graded possibilistic clustering procedure was applied to the Iris data set. Only
one cluster center per class was used (c = 3). Then the cluster memberships were
“defuzzified” by setting the maximum to 1 and the other two to 0. Subsequently, the
hard memberships were used to associate class labels to eachcluster (by majority).
Finally, the classification error was evaluated. The classification error percentages as a
function ofα are shown in Figure 2.

Although these are only a sample of the results, which may have been different in
other runs, the profile of the graph was qualitatively almostconstant in all trials. The
best classification performance withc = 3 was 7.3% error, which means 11 mistaken
points.

In all experiments this value was obtained forintermediatevalues ofα, between 0.3
and 0.7. In other words, the graded possibilistic model was able to catch the true distri-
butions of data better than either the probabilistic or the possibilistic approaches. The
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Fig. 2.Error percentage plot for the unsupervised Iris classification.

pure possibilistic case gave rise (as in the results presented in the figure) to a percent-
age of cases with overlapping cluster centers, in accordance with previous experimental
observations [6].

The error levels can be categorized into three classes. The first is around the opti-
mum (11 or 12 or occasionally 13 wrong classifications). The second, sometimes ob-
served in the pure possibilistic case, is the case of overlapping clusters, with about 33%
error rate. The third, above 10%, is typical of the probabilistic case, where competition
among clusters does not allow optimal placement of the cluster centers.

5 Conclusions

The concept of graded possibility applied to clustering, which has been presented in this
paper, is a flexible tool for knowledge representation. By tuning the level of possibility
it is possible to represent overlapped clusters, as in standard possibilistic clustering,
with the added capability to adapt the level of overlap to theproblem at hand. This
results in interesting rejection capabilities and in an adaptable trade-off between the
mode-seeking and the partitioning behaviors of its two special cases – possibilistic and
standard (probabilistic) fuzzy clustering.

Our current activities invvolve the application of this flexible behavior in the areas
of Web content analysis, document data mining, DNA microarray data analysis. Deeper
theoretical investigations are planned as well.
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