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Abstract. The increasing use of video compression standards in
broadcasting television systems has required, in recent years, the
development of video quality measurements that take into account
artifacts specifically caused by digital compression techniques. In
this paper we present a methodology for the objective quality as-
sessment of MPEG video streams by using circular back-
propagation feedforward neural networks. Mapping neural networks
can render nonlinear relationships between objective features and
subjective judgments, thus avoiding any simplifying assumption on
the complexity of the model. The neural network processes an in-
stantaneous set of input values, and yields an associated estimate
of perceived quality. Therefore, the neural-network approach turns
objective quality assessment into adaptive modeling of subjective
perception. The objective features used for the estimate are chosen
according to the assessed relevance to perceived quality and are
continuously extracted in real time from compressed video streams.
The overall system mimics perception but does not require any ana-
lytical model of the underlying physical phenomenon. The capability
to process compressed video streams represents an important ad-
vantage over existing approaches, like avoiding the stream-
decoding process greatly enhances real-time performance. Experi-
mental results confirm that the system provides satisfactory,
continuous-time approximations for actual scoring curves concern-
ing real test videos. © 2002 SPIE and IS&T.

[DOI: 10.1117/1.1479703]

1 Introduction

The shift from analog to digital techniques has allowed TV
broadcasters to offer new advanced services. Nevertheles
the technical quality of the video displayed may still com-

There exist several techniques for assessing the quality
perceived by viewers. Subjective methbdamply ask hu-
man assessors to score the quality of a series of test scenes.
Up to now subjective tests have been the basic tools with
which to characterize video quality, despite the complexity,
cost, and varying results of such tests.

From a different perspective, objective quality assess-
ment aims to emulate human response to perceived quality
by processing numerical quantities that describe video
streams. As a result, this technique no longer requires in-
puts from human operators. Thus, objective assessment
leads to deterministic models and makes real-time monitor-
ing of perceived quality feasible. The need for objective
measures in the area of digital TV has a commercial ratio-
nale, too: the number of coders on the market will increase
in the next years, hence both manufacturers and broadcast-
ers will necessarily face the problem of comparing video
quality at the user’s level. Several objective methods have
been proposed in the literatuiet* Most approaches are
based on decompressed video: objective parameters are de-
rived by comparing pictures with original scenes at the re-
ceiver end. The comparison is made either in feature space
or in the ;z)icture domain, and typically applies differencing
methods:? Other recent approaches measure blocking arti-
facts without using reference imag€s®in addition, com-
mercial tools have already been issued that can measure the

guality of MPEG-2 video streams without referring to

original sequence®.
From a scientific perspective, most of the above ap-

promise the success of digital TV production. The crucial N _ . : ;
issue is that digital encoding brings about specific visual Proaches aim at modeling perceived quality and imply
artifacts; hence, traditional techniques for evaluating analogSP™Mea priori assumptions of the underlying mathematical

signals often prove ineffective in measuring the perceived model. These 5.'”?9"fy'”9 hypothesgs may somehow affect
quality of a digitally compressed video. the general validity of results; in this respect, one should

also consider that no valid model of human perception
seems to have been developed yet, due to the highly non-

- , ) , linear nature of the phenomena involved.
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cepted for publication Feb. 4, 2002.
1017-9909/2002/$15.00 © 2002 SPIE and IS&T.

In this paper we present a method that uses neural
networks’ for automated evaluation of subjective assess-
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ment. Previous neural-based approaches to MPEG quality original video
evaluation mainly addressed video coding control, and ex-
ploited neural networks to implement quality/rate ENCODER

strategies®1® Those works used conventional, specifically

tuned neural modelgeither multilayer perceptrons or | MEEG2 Drstmam
radial-basis function networkswhich entered the control v
process at the inpuencoder end. The research presented
in this paper, instead, focuses on real-time monitoring of -
perceived quality at the decoder end, and exploits an ad- ¢ v
vanced, flexible neural _model. The network operates on ———— ppp—
compressed data only: it processes numerical features ex- :-. EXTRACTOR
tracted continuously from the video stream, and generates ----- !
the associated quality rating. This mode of operation re- *
moves the need for any information about either the origi- —
nal video or the decoding process. From an engineering NETWORK
standpoint, the adaptive neural framework decouples the
evaluation task from both the specific video source and ¢
decoder issues. Quality

The present approach bypasses the objective of a deeper score <

insight into the mechanism of quality perception; indeed, it _ _ _
aims to mimic such a perception. This goal is attained by F9- 1 Single-ended system for automated quality assessment. The
. . . 7 neural network yields a continuous-time evaluation of perceived
using circular back-propagatioitBP) neural networks! quality.
These networks support a general paradigm to deal with
complex mathematical models, and remove the need for
any a priori assumption aimed at simplifying an analytical fectiveness of the neural-network approach lies in its capa-
model. , ) . bility to decouple the problem of feature selection from the
The paper is organized as follows. In Sec. 2 we describegesign of an explicit mathematical model. The neural net-
the architecture of the neural-network-based system foryori directly yields the quality assessments associated with
video-quality evaluation, and the criteria for feature selec- jnpyt vectors of extracted features; the function that maps
tion and feature run-time sampling. In Sec. 3 we outline the faatyre vectors into quality ratings is learned from ex-
neural model adopted and the advantages of using this netymples by use of an iterative training algorithm. Therefore,

work in the multimedia application considered. In Sec. 4 {he design of the objective metric set is not involved in the
are the experimental results, demonstrating the method'ssetyp of the mapping function.

validity under different conditions and for different input The implicit neural metrics rely entirely on a represen-
sources. Some concluding remarks are made in Sec. 5. ation support—the compressed bit stream—that bypasses
2 Obijective Assessment of Video Quality the need for human assessors’ ratings altogether. This

The proposed approach aims at an automated quality evalugrealtly improves the method's real-time performance, be-

ation of MPEG-2 bit strean® The method can be re- Ccause the broadcaster can monitor perceived quality at
garded as being “objective” since it operates on numerical :Laenrser?e'izr?getgpiiolgzﬂdI|2#eg?5m$§s§§$ elﬂdes% pr:;/rltlsgt]ﬁ:
quantities (feature$ that are worked out directly from 9 ’ y supp

MPEG-2 bit streams and feed a neural network to obtain basic model's performance, since blockiness represents the

quality ratings. Figure 1 shows a schematic representationmoSt S|gn|f|.cant visual impairment. Nevertheless, the_ bit
of the overall system stream carries complete information about the coded video

L ; (including detail-related quantities such as quantization ma-
; The modgl operates o.n a framg by frame basis .andtrices), hence the neural quality-evaluation system can re-
yields a continuous output; as such, it provides a real-time

monitoring tool for displayed video quality. Therefore, the produce percejved quality assessments qui;e accurately, es-
objective system lies within the single-stimulus continuous pecially since it can manage all the information available to

. ! - O ~ "~ the end user.
ggggxeﬁglﬁtggficﬁzliﬁ);rsglggi tigigﬂlsnlggretgﬁtrdf ’ _For the reader’s convenience, recall that MPEG-2 attains
standard cases, by human obsereFse technical frame- still-image quality by standard discrete cosine transform

. . : DCT) compression. Information on motion is treated by
work for the evaluation schema adopted is a sin Ie—ended(. - . ;
“No-Reference” paradigm. The systpem does nogt require dividing each framepicture into several macroblockef

uncompressed original videos, unlike “Full Reference” or 16x 16 pixels eachand by encoding the apparent move-

“Reduced Reference” approaches, which also involve con- ment of the macroblocks within time-consecutive frames.

sidering the source of the video in the evaluation process. . o )
In t?le design of objective-assessment systepms, ong-1 Feature Selection for Objective Quality

should take into account thét) several features that char- Assessment

acterize video streams jointly affect subjective judgments, The set of processed features plays a crucial role for the

and (2) nonlinear relationships and unknown mechanisms effectiveness of the overall methodology. A single-ended

may complicate the modeling process. The CBP networkparadigm requires that quite a large set of parameters be

provides a paradigm by which to deal with multidimen- extracteda priori from video streams. Examples of such

sional data characterized by complex relationships. The ef-quantities are the number of bits per picture and the mean
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value over a picture of motion vector absolute values. The (2) might cause poor generalization due to overfitting prob-
Appendix lists the complete feature set worked out from lems. Thus, an empirical criterion that supports the feature-
MPEG-2 compressed streams. selection process is needed.

A subsequent statistical analysis, therefore, must sort out The present procedure uses skewness and kurtosis as
truly significant features. As expected, a considerable por-paradigms to characterize the statistical activity of the fea-
tion of all the features could be discarded because theytures. The underlying hypothesis is that quantities with a
either do not carry important information or are mutually non-normal distribution are most likely to be informative;
correlated. Anyway, the present approach does not implyof course, one must be aware that, in principle, normally
anya priori assumption of the significance of the encoding distributed features can provide useful information as well.
parameters, and only aa posteriori statistical analysis Therefore, ultimate validation of the antinormal selection
drives the feature-selection criterion. To this end, the fol- will only stem from testing the empirical performance of

lowing quantities are defined: the quality-evaluation system on the tentative feature set.
W is a library{¢,...,y } of L test streams, composed In this respect, the algorithm described has been pre-

of P frames each; ferred to alterrzwative approachpsg., principal component
£0)(y;) is the value assumed by tlkh feature for the ~ analysis(PCA???], mainly for the high data dimensionality

jth frame in theith stream; . involved in such methods. Numerical precision issues in

working out eigenvectors, in particular, the presence of

The feature-selection algorithm can be outlined as fol- . . .
possible outliers, sometimes may affect the performance of

lows: S . . .
0. (input): a set of measured valugs,, for each objective PCAIn h|gh-<_j|men3|otﬁnfal.doma|nsh By ﬁontrast, tk;]e explor-
feature: atory projection pursuit is a met od that uses the same
' paradigm as the proposed algorithm.
Fk={f(kj)(¢i),i=1,...1_, i=1,..P}, k=1,..N;. 1) 2.2 Fe.atuTe Run-Time Sampling |
The objective-assessment system generates continuous-
1. (Rescaling Fork=1,..N;: time quality ratings. In principle, one can feed the CBP

network with the feature values continuously extracted

i [alk)
l.a compute the 0.05 and 0.95 percentile§)s and o each sequence frame. In fact, some specific mecha-

xi%s, respectively, for the values iRy ; nisms of human perception should be taken into account:
1.b build up a normalized sé&, by rescaling each ele- (1) the assessor’s reaction times are subject to défays,
ment of F, into the rangd —1, 1J: (2) the most recent segment of a sequence has a greater
effect on the instantaneous quality ratffg, and (3) time-
Fe={fiii=1,.L; j=1,..P} () consecutive frames tend to interfere with one ancdthér.
- e B ' ’ the literature, such phenomena are known as “the asses-
sor’s response time,” “time-weighted averaging,” and “the
where masking phenomenon,” respectively.
All of these aspects have been parametrized in the
def [f& D( ¢i)_xgk% feature-extraction procesFkig. 2). The _parameteA refers
fi=2—m—m~—1 ©) to the delay between the subjectlve judgment and the last
- (X0.95~ X0.0 frame that has influenced it. To compensate for time-

weighted averaging, a set &f frames generates a single
2. (Descriptive statistigs Compute the two sets and the score. Within this set, groups diV consecutive frames

associated threshold values: make up a single feature vector, thus accounting for the
S={skew;k=1,..N;} where skew=skewnesst,); masking phenomenon. In order to preserve information

skew;,= 0.5 percentile of5; about the percelved. quality over each intervalVigfpic-
K={kurt;;k=1,..N;} where kurt=KurtosisE,); tures, the eventual input vector, to the neural network

includes, for each feature selected by the above-described
analysis, one of the three values worked out as follows:

FCw)=maxtt (ga),...H" D),

fye Z& (skew>skewy,) and (kurt>kurty,); " F2) =min{fO (). FIW"D g, (5)
k=1,..Ny. FG) =avd (), F V)

As a I‘esu|t, sel includes the features that, due to their For instance, with the feature “number of bits per pic-
asymmetrical distribution, are unlikely to stem from a tyre ” interest is in the smallest value over a set\Wf

Gaussian distribution; this selection criterion can be justi- frames, because it is expected that the smaller the number

fied as follows. _ . of bits, the larger the degradation of the picture.
The main goal of the above procedure is to drive selec-

tion of the neural-network input vector. In principle, one 3 Neural Networks for Quality Estimation

might feed the neural network with the whole set of objec- Feedforward neural network®Ns) map the feature vec-
tive features; in fact, such a large number of inp(ts tors that describe video frames into the associated quality
would increase the complexity of the neural network and assessments. This problem formulation treats the quality

kurty,= 0.5 percentile oK.
3. (Feature selection Compile the feature seE, keeping
the objective features that satisfy
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Fig. 2 Feature run-time sampling process according to perceptual mechanisms.

scores used for training as a discrete set of scalar labelswhereo(x)=(1+e X) 1. The termg, anda, are usually
and network outputs are reported as scalar quantities. Ircalled the neurostimulusandactivation respectively. The

this sense, efficiency requiremerit®., the storage size of outputlayer provides the actual network responsgs, by
the parametejsand generalization issuése., NN perfor- a similar transformation:

mance over data not used for trainjngtimately result in
the problem of properly sizing the number of neurons in the nh

NN. Fy=W, ot > Wy uay; v=21..Nc. (78
u=1

3.1 CBP Architecture y,=a(r,); v=1,.n,. (7b)

Neural-network research has shown that multilayer percep-
trons(MLPs)*® can efficiently tackle problems in whichthe A quadratic cost function measures the distortion be-

target-mapping function can be supported by few param-tween the actual network outyist and the expected refer-

eters with a global scope. Instead, if the target-mappingence outpus) on a sample of training patterns. The cost is
process can be best expressed as a superposition of locallyxpressed as

tuned contributions, radial-basis-functitRBF) network®
typically perform better. This implies that the unknown

characteristics of the specific mapping problem further g 1

np Ng

> > (tW—yh2, (8)

1v=1

complicate the choice of the nature and size of the NN. The NoNp i
basic advantage of the circular back-propagation model is

that it has been provétito encompass both MLP and RBF
paradigms; the choice of the more appropriate representa-

tion is implicit because it is performed during the training z‘;g HL’:’%N OL‘;%{

process and depends on the empirical problem at hand.
A CBP network includes a two-layer architectuieg.

3). The input layer connects th input valueqfeatureg to

each neuron of the “hidden layer.” Theth “hidden” neu-

ron first computes a linear combination of input values,

which are weighted by coefficientéw, ,;u=1,...n;k

=1,.n}:

nj nj
— 2. —
ry=Wyot k21 Wu,kxk+Wu,ni+1k21 X5 u=1,..n,.

(6a)

Then each neuron performs a nonlinear, sigmoidal trans-
formation of the result:

Fig. 3 Schematic representation of a CBP architecture. The CBP
a,=a(ry); u=1l..n,, (6b) model includes one additional input to the standard MLP.
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wheren,, is the number of training patterns, ahdare the  the convergence of the overall training process, compared
desired training outputs. In the present applicatiof: 1 with conventional random initialization methods.

and the expected output is given by the quality assessment The CBP network training applies an accelerated
(scoré measured experimentally from a human panel. An Variant? of the back-propagation algorithm. The possibility

alternative to Eq(8) is thethreshold cosfunction E;(y): of using conventional techniques to train an advanced net-
work structure is the major advantage of the CBP model.

np n
Er(y)= LE > g(lt(v')—yfj')l); 4 Experimental Results
MoMp =1 =1 The effectiveness of the neural approach to objective qual-
ity assessment was verified experimentally by a library of
o( ):[Oﬁxg 7*] 9 MPEG-2 videos provided by the Research Center of the
lex>y ) Italian Radio and Television CorporatidRAl). The test-
bed included 12 frame-coded MP@ML sequences, each 70
where the distortion cost is expressed as the percentage of long; the picture size was 72%76 pixels. The sequence
outputsy, that differ from the expected scotg in more  contents varied from fiction to sport, and were encoded at
than a fixed thresholg. different bit rates in the range of 4—8 Mbits/s.

Training algorithms usually aim to minimize E¢8) Assessments of all the sequences were collected by non-
mainly because, for that cost formulation, one can derive aexpert viewers; the subjective tests were carried out with a
gradient expression and use conventional gradient-descer6 SCQE technique at a sampling rate of two scores per sec-
techniques. The back-propagation algorithis by far the ond. Quality ratings were represented by a continuous scale
most widely used and most effective method for weight ranging in[—1, 1].
optimization in feedforward neural networks, and is

adopted for CBP training as well. 4.1 Experimental Setup

From a structural perspective, the quadratic term in ex- The neural-network training process involved the Z set of
pression(6a) sets the difference between the CBP model aining p ;
features that the statistical analysis had selected from the

and a conventional MLP. Such augmentation is attained byglobal feature set listed in the Appendix. In order to en-

simply including one additional inpufFig. 3, which just hance the CBP network’s generalization performance, the

sums the squared values of all the other network inputs'dimensionalit of the input data space was further reduced
The additional unit allows the overall network to exhibit . y Inp ;
with a feature-selection technigte.The eventual four-

standard, sigmoidal behavior, or to drift smoothly to a be"'PdimensionaI feature space covered the quantiebits

shaped, Gaussian-like radial function; this makes the CB o
' ' Xg_scale(1l), Xmv(1l),and Smy.dev_std. The objective

model able to choose autonomously from MLP and RBF . . : . : L
- ; - .. metric handles information about intracodifguantization
representation paradigms. At the same time, the limited N ctors. number of bits per pictyrand intercodingmotion

crease in the network parameters does not affect the exvectors) properties of the video stream; therefore, as antici-

pected generalization performance of the mddeThe : . .
weight configuration resulting from the network-training p%tggl Ighire;étezzéiégisqgfmé 3Y§e|léat'on system can manage

process ultimately fixes the most suitable representation The data set included 1320 patterns generated by the

setting for the mapping problem. . . i
The effectiveness of a neural network-based approacr{un't"hne sampling process presented in Sec. 2, with

may not be intuitively obvious, especially when consider- — 24, W=6 andA=17. The numerical values of these pa-
ing its degree of correspondence with human visual percepfameters were determined by using standard values pro-
tion. The connection between the CBP architecture and vi-Posed in the literaturé'~**The training and test sets were
sual perception mainly lies in the capability of the obtained by dividing the data set into two subsets of 820
empirically trained network to catch some of the nonlin- @nd 500 patterns, respectively.

earities inherent in human perception. The resulting model N order to avoid overfitting problems, the number of
is implicitly buried in the network parameters, hence most Nodes in the hidden layer was chosen by using the plastic
likely it proves difficult to interpret. As a natural feature of V_Q algorithm, which processgd the training samp'les to de-
any empirical model, system effectiveness will strongly de- SIgn the neural network configuration. The resulting value

pend on the adequacy and completeness of training data. "h= 14 set the number of hidden units in the feedforward
structure.

3.2 Neural Network Setup 4.2 Results

The network configuration(i.e., the number of hidden Figure 4 shows the test results obtained for the selected
units) has been designed by use of a specific initialization feature set. Figures(d) and 4b) compare the quality rat-
technique that exploits the equivalence of the CBP model toings by human assessors with the corresponding outputs of
vector-quantizatiofVQ) paradigms? In particular, a VQ  the neural network. For display clarity, the human ratings
preliminary phase using the plastic neural gas algorithm were sorted in increasing order, each point on xthexis
assessed the proper number of reference vectors to repreepresenting a single evaluation event. Figu(a 4hows
sent the available sample distribution. The subsequent conthe plot of the numerical results obtained for the whole
figuration phase directly plugged the number and space polibrary of test videos, that is, the 12 MPEG-2 video
sitions of the VQ vectors in the CBP netwoitk.That streams. It also presents an asymmetric distribution of sub-
weight initialization proved most effective in accelerating jective scores, 44% of the original scores exceed 0.5. Since
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Fig. 4 Neural-network scoring performance: (a) results obtained on Fig. 5 Correlation between the actual subjective score and the es-
the whole test library; (b) results obtained on sport videos. timated objective score: (a) training results; (b) test results.

. shows the scatter plot for the test results, which exhibit a
the lower scores appear subsampl_ed, they_ are subject t<§Iightly lower correlation; Pearson’s correlation coefficient
larger errors due to the lower statistical confidence. Never-i,p o< value of 0.93 and the Spearman rank order correla-
theless, the CPB neural network attained an average errof,, . ~oefficient takes a value of 0.8.

Prer=—0.001 over the test set. The average error over the  The significance of these results is supported by the
absolute values of the prediction errors wag, = 0.06. comparison with the experimental results obtained by pic-
Figure 4b) presents results obtained for a subset of the yre appraisal ratingPAR),'® a single-ended quality mea-

testbed. The subset includes videos with sport contentsyre for MPEG used in a commercial product for video
only. Figure 4b) shows that human quality ratings exhibita quality control. PAR achieves a Pearson correlation coeffi-
higher variance for this kind of video. In addition, the se- cient of 0.93 between the estimated outputs and the peak
quences with sport contents are a small subset of the tes§ignal-to-noise ratidPSNR, which is used as a reference
library, hence the neural network suffered from larger er- measure of quality and is worked out on the difference
rors due to the lower statistical confidence. In this case, thepetween original and decoded frames. Compared with PAR,
neural-network system achievefle,=—0.01 and iy the proposed neural-based approach obtains on test results
=0.12. the same correlation coefficient between estimated outputs
In order to show the generalization ability of the model, and reference quality measures. Furthermore, the present
Fig. 5 shows a comparison of training and test results ob-work uses as reference quality ratings the subjective scores
tained with the complete testbed. Figu@5gives a scatter  rather than an objective measure such as the PSNR. In this
plot of the training results, with the actual subjective score sense, it can be asserted that the neural network yields a
as thex axis and the estimated objective score asythgis. more reliable estimate of video quality as perceived by hu-
Pearson’s correlation coefficient for the training results man assessors.
takes on a value of 0.97; the Spearman rank order correla- Figure Ga) shows a plot of the error distribution ob-
tion, a nonparametric and distribution free test, gives atained for the whole library of test videos. The graph pre-
value of 0.85 as the correlation coefficient. Figur@)5  sents the distribution together with the related best-fitting
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Fig. 6 Error distribution obtained for the whole library of test

streams: (a) actual error distribution together with N(0,0.05); (b)
comparison of quantiles of the normal distribution N(0,0.05) vs the
corresponding sample quantiles of the prediction errors.

Gaussian approximatioN(0,0.05). The correctness of the

(b)

sample quantiles of the prediction errors.

Fig. 7 Error distribution obtained for video streams with sport con-
tents: (a) actual error distribution together with N(0,0.13); (b) quan-
tiles of the normal distribution N(0,0.13) vs the corresponding

The analysis of the confidence intery@ll) for we, con-

Gaussian assumption was verified by carrying out afims the method’s effectiveness. For large sample sizes

Kolmogorov—SmirnoKS) normality test, which satisfied
the null hypothesis to a high degree of confidenge (

>0.95). TheQ-Q plot shown in Fig. @) confirms that
the error distribution follows a normal distribution. The s
graph demonstrates that almost all the actual observed vals, ey
ues of the prediction errors lie on the dashed line that rep- n
resents the Gaussian distributibif0,0.05).

Figure 1a) shows the error distribution obtained for test
videos with sport contents. The actual error distribution is

plotted together with the associate best-approximating

Table 1 Test results.

the 1— « CI for a distribution with unknown meap and
unknown variancer? can be approximated by

(10

Gaussian distributioN(0,0.16). Figure @) presents the

correspondin@—Q plot, which strengthens the hypothesis

Complete set

Sport content only

about a normal distribution, as most of the observed values@ier
lie on the dashed line indicating Gaussian distribution deq

N(0,0.16).

~2
T err

The overall numerical results are summarized in Table 1, e

which also gives the cosis and er(y) derived from the

neural-network test.

e(0.15)

0.06
—0.001
0.01
0.01
0.1022

0.12
—0.01
0.02
0.0251
0.3011
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Fig. 8 Plot of the confidence interval for sample mean [, as a
function of the confidence level 1-a.

where v is the sample mear,, is the 1— «/2 percentile

of the standard normal distributioN(0,1), ands is the
sample standard deviation. The graph in Fig. 8 plots
2,25/ \N(=|fren— mer]) as a function of the confidence
level 1— « for the test result obtained on the complete set
(n=500). Figure 8 compares the results obtained by as-
sumingsto be

« the sample standard deviation measured on the whole
sample set$=0.1);

* the estimate of the sample standard deviation by using
the Gaussian approximation of the error distribution

Fig. 9 Video quality analyzer.

(s=0.05).
The graph shows that the 0.95 Cljig,+=0.0087 fors  perimental evidence confirmed the validity of the approach,
=0.1 andfte,+ 0.0043 fors=0.05. because the system always provided satisfactory,
_ continuous-time approximations for the actual scoring
5 Conclusions curves related to test videos.

In this work we have presented an automated method for
objective quality assessment by use of neural networks
(Fig. 9. The evaluation system handles MPEG-2 video Acknowledgments

streams. Numerical observations are computed for each]—he authors wish to thank P. Badino and P. Tedesco for

frame of the processed MPEG sequence and enter the Neypqir assistance in developing the method and performing
ral network consisting of a circular back-propagation archi- the experiments described in this paper.

tecture. The statistical model supported by the trained neu-
ral network yields an output scalar value, which provides a
numerical representation of perceived quality. Appendix: Objective Features

_The major result of the proposed method is the possibil- pp \MpEG-2 bit stream has a hierarchical structure that
ity of reproducing human perception consistently by using o1os one to get information at multiple levels, i.e., se-
quantitative, data-driven - models. The neural-network g ance group of pictures, picture, slice, macroblock and
model is specifically tuned to learn the perceptual phenom-p0y |n“the present work, objective features have been

enon from examples, and exploits a known effective aug- cpogen to characterize the stream at the picture level.
mentation of standard back-propagati@®P) networks. The following quantities are defined:

A crucial advantage of the methodology described is the

system’s capability to handle compressed video streams. q 16 16
Avoiding the need for decompressed pictures enhances the gpergy= — m imin2 Al
method’s effectiveness in real-time production applications. 9= 25620 jzo (Mboerd L) (A

The experimental setup involved both a training phase
with observations collected from evaluation panels andwherembpc[i][j] are the DCT coefficients of a P or B
generalization testing using sequences and the associatetiacroblock. This quantity gives the energy of the correc-
quality assessments not included in the training sets. Ex-tion to the predicted macroblock.
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Table 2 Features worked out from MPEG stream.

Feature name

Feature description

Pmb_no_pred
Pmb_fwd

Pmb_back

Pmb_bidir
Pmb_I
Pmb_skipped

Pb_sk_luma
Pb_sk_chroma

Smv_mean
Sq_scale_mean
Senergy_mean
Smv_dev_std
Sq_scale_dev_std
Senergy_dev_std

Percentage (macroblocks)
n,,=macroblocks with no motion vectors

nm,p=macroblocks with forward motion
vector only

nmp=macroblocks with backward motion

vector only

n,p= bidirectional macroblocks
n,p=intramacroblocks
Nmp=Sskipped macroblocks

Percentage (blocks)
n,=skipped luminance blocks
ny,=skipped chrominance blocks

Statistical figures

mean-p;=|motion vector|
mean-p,=q_scale
mean-p;=energy

standard deviation- p,=|motion vector|
standard deviation-p;=q_scale
standard deviation-p,=energy

Smv_var variance- p;=|motion vector|

Sq_scale_var variance-p;=q_scale

Senergy_var variance-p,=energy

Percentile
Xmv(a) p;=mean of [motion vector|
Xq_scale(a) p=q_scale
Xenergy(a) p=energy
Xq_mv(e) pi=q_mv
Xe_mv(a) p=e_mv
g_scale
m=-— A2
a-mo = m_v]y’ h2)

where g_scale is the quantizer-scale factor in a macro-

block, and({|m_v|) is the mean amplitude value of the

motion vectors in the same macroblock.
« e_mu=energy(/m_o|), (A3)

wheree_mu is the weighted energy of a macroblock.

Table 2 lists the objective features worked out from the ;4
coded bit stream. The following four classes of measures

can be identified.

» Percentage of macroblocks: Features are defined as

Nmb

fk:m, (A4)
T

wheren,,, is the number of macroblocks of the type

specified in the second column of Table 2, a8 is
the total number of macroblocks in the picture.

» Percentage of blocks: Features are defined as

k=" (A5)
k n®

wheren,, is the number of blocks of the type specified
in Table 2, andh{" is the total number of blocks in the
picture.

» Statistic features are defined as

mearip)
f,=1 std deviationp)
varianceép)

(AB)

where p is a vector of valuegp; computed on each
macroblock of the picturep; is given in Table 2.

¢ Percentiles: Features are defined as

fi=Xa(P) (A7)

wherex,, is the a percentile ofp.

The last feature included in the objective seNiits, i.e.,
the number of bits per picture.
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