An Object Oriented Machine
for Control Applications

Giuliano Donzellini, Stefano Nervi, Domenico Ponta,
Sergio Rossi, and Stefano Rovetta

Department of Biophysical and Electronic Engineering, University of Genova
Via all'Opera Pia 11a — 16145 Genova (Italy)

donzie @dibe.unige.it, nervi@dibe.unige.it, ponta@dibe.unige.it,
rossi @dibe.unige.it, rovetta@dibe.unige.it

Abstract — Microprocessor design and manu-
facturing have experienced great improvements
in the last years. However object-oriented con-
cepts, in spite of their widespread diffusion as a
programming principle, have not been given
great attention in hardware design. This paper
presents an object-oriented machine, currently
under development, which incorporates (at the
machine-code level) some mechanisms needed for
manipulating objects and methods. The proces-
sor, oriented to control applications, is composed
of a commercial, full-32-bit RISC processor
acting as the computing core, and additional
circuitry. The additional elements constitute a
shell, providing dedicated registers and functions
for dealing with class instances and related
methods. A mechanism for tracking called
methods, by hardware support of the Virtual
Method Table, is provided in parallel to the
normal calling operation of the processor. The
overhead associated with this mechanism, nor-
mally taken in charge by the core processor, is
therefore left to the additional circuitry.

INTRODUCTION

The fast improvement in microprocessor architec-
ture design and manufacturing has caused object—
oriented programming to reach a widespread and
generalized applicability. In the last few years, it
has become a major area of interest mainly as a
result of the consequent increase in power of very
low—cost machines. However, from a metho-
dologic point of view, we should also account the
large number of applicative areas that can benefit
of the added value of an object—oriented design,
namely, the strong capabilities of information—
hiding and generic typing. These features are all
aimed at a strong modularity of the applications,

ICECS 96 - 1127

so that higher-level programming is easier and
the user can concentrate more on the specific
application than on details of the programming
environment. Re—engineering of existing appli-
cations is also greatly facilitated by an object-
oriented approach. As a result, most of the re-
cently designed programming and scripting lan-
guages (e.g., JAVA [1], Object Pascal [2]) and
many operating systems (e.g., OS/2 [3]) incorpo-
rate concepts from the object-oriented model.
Industrial control applications are an interesting
area for the development of object-based solu-
tions. In this context, engineers that are skilled in
their specific fields may take advantage of
object—oriented development environments and
of the availability of dedicated hardware.

The strong development in hardware per-
formances has thus caused a progress in high-
level software tools. However, to date this has not
caused a cerresponding increase in specific hard-
ware support to these tools. This paper presents
preliminary results on the design of an object-
oriented processor, namely, a RISC architecture
[4,5,6,7] augmented with additional circuitry that
implements (directly in hardware) some low-
level processing and control steps required by the
object—oriented model. The specific design pre-
sented here refers to a protoype implementation
that is currently under development (as a part of
Esprit Project 7517 SUMIS). Due to time and
availability of resources, this first step is built-
around a commercial RISC microprocessor
(ARM7, by Advanced RISC Machines Ltd) [8]
with the additional circuitry interfaced as a
coprocessor. This implementation is oriented to
control applications, and aims mainly at pro-
viding control engineers with flexible and power-
ful programmable devices, that nevertheless re-
tain a simple high-level programming interface.

A CLOSER LOOK AT OBJECT -
ORIENTED TECHNIQUES

An Object Oriented Machine (OOM) should sup-
port the basic concepts of Object Oriented Pro-
gramming (OOP): Encapsulation, Inheritance and
Polymorphism [9,10]. Object oriented languages,
while featuring no theoretical advantage in this
respect over traditional programming techniques,
nevertheless make the application of these con-
cepts straightforward [2,9,10]. An object oriented
compiler will translate an object oriented solution
into suitable, low level, software control and data
structures, according to the capability of the tar-
get processor.

To examine how the basics concepts of OOP
could be supported by the hardware, it is neces-
sary to take a closer look at object oriented tech-
niques, at a quite low level [11, 2].

Encapsulation allows combining both data
and code in classes. For each instance of a class
(an object), memory space is allocated to store all
the data encapsulated with it. Moreover, for each
class type declared in the source code, the com-
piler constructs a table, here referred as Virtual
Method Table (VMT), containing function
pointers and class type information. In the data
space of each instance, a location is reserved to
store a reference to the VMT of its own class. In
general, the execution of object oriented code is
centered on the use of instances and tables.

Inheritance information is registered in the
VMT of the class. For instance, if a class CHILD
inherits all its characteristics from a class
PARENT, in the VMT of CHILD we find a
pointer to the VMT of PARENT. This pointer is
part of a linked list that ends with the common
ancestor of all the instanced classes.

The main aim of the VMT is to support the
polymorphical behavior of the classes. Poly-
morphism allows sharing the name of a function
up and down the class hierarchy, with each class
in the hierarchy implementing the action in a
“customized” way. :

A function of this type is usually called a
virtual method. The VMT stores an indexed table
of pointers to the virtual methods. The new class
CHILD may redefine some functions with respect
to the ancestor PARENT. The VMT's of the
classes CHILD and PARENT will therefore differ
accordingly. Some new pointer entries will be
added, some others will be overridden.

DESIGN ISSUES

At run-time, when an instance of a class
CALLER needs to call a virtual method of an in-
stance of a class CALLED, a low level trip

around tables and pointers needs to be made to
satisfy the required call.

The software implementation of this se-
quence is quite time-consuming. First, CALLER
needs to get the address of the instance of
CALLED. Then, by pointing in memory with this
address, it picks up the pointer to its VMT. At
run-time, the source name of the function corre-
sponds to an index into the VMT, so another ac-
cess in memory will be performed this time to get
the address of the function to be actually exe-
cuted. Finally, the address of the instance of
CALLED and the return address will be pushed
onto the stack, and the function will be executed.

Because of the need to call a function of an
object from everywhere, the software implemen-
tation cannot distinguish among the origins of the |
calls. That is, if a function is called from an in-
stance of the class it belongs to, the call sequence
will be the same, and the code will implement a
trip to get some pointers that, as matter of fact, it
already has.

Without a hardware support, the call se-
quence must be the same, because the low-level
return sequence is inevitably the same.

Another issue can be noted. The executable
code of an object needs to access its data. How-
ever, an instance is known to itself only because
its own address has been pushed onto the stack.
Again, all the needed stack accesses may be very
time consuming, especially when an object re-
quires repeatedly or recursively virtual functions
of its own class.

DESIGN SOLUTIONS

The consideration above suggested us to op-
timize the access to the YVMT, during the method-
call sequence. The travel between pointers and
tables can be done by a dedicated hardware,
while the main processor executes other tasks. In
this way we can also limit the effects of the re-
quired wait-states in external memory accesses.
Note that it is not possible to allocate a VMT-
reserved RAM on a chip, because object oriented
programs utilize a lot of different classes: the
required size of the RAM would be impractically
high.

We also chose to reserve an internal register
to hold the address of the current instance (i.e.,
the instance of the class currently in execution).
Obviously, this choice permits the maximum ef-
ficiency in the accesses to the current instance
data fields, but creates the necessity of saving and
restoring the content of the register during the

1128 - ICECS '96

32 bit

Internal BUS

External BUS
/l;

RISC

Vv’

Core

A 7S

=

==X

Instruction

ROM
PIPE

A

Lo | Timing & |+
Control |-+

Handshake
Signals

Temp CR_self

CR_saved_self

CR_control

CR_VMT

]

Object Coprocessor

Fig.l: The structure of the processor.

context switching between objects. We save and
restore this register via hardware support.

To optimize the method call sequences, we
decided to distinguish via hardware a) the calls
made between two different instances and b) the
calls made internally by the same instance. In the
case a) it is necessary to save the current instance
address and get the new one; in the case b) we
can optimize efforts leaving unchanged the cur-
rent instance address. This distinction is possible
only if the hardware is able to discriminate cases
a) and b), at the time of the function return.
Actually, as seen before, the same function can
be called in both cases and, consequently, the
return sequence needs to know wether the pre-
vious instance address must be restored or not.

An ideal solution would be to design com-
pletely from scratch the whole processor, but this
would consume a lot of time and resources. We
have decided instead to search, among available
CPU standard cells, the one that could be suitable
to be "object-extended".

Naturally, we have tried to identify a rea-
sonable compromise among feasibility, effi-
ciency, cost compatibily and the ideal target. For

instance, using an existing "black-box" CPU, itis

not possible to preview the current state of the

internal CPU sequencer, modify the existing in-
struction execution sequences, or read the CPU
flags.

Nevertheless, we found that ARM?7 standard
cell was suited to the purpose. ARM7 is a full 32
bit RISC processor, that can be efficiently con-
nected to a coprocessor to extend its capabilities.
Moreover, among the remarkable features of the
ARM architecture, there is an efficient implemen-
tation of the indexed-by-register addressing
mode, so it is reasonably suitable for the imple-
mentation of object oriented languages.

The actual structure is composed by the CPU
core and the "object" coprocessor. The resulting
set acts as a new processor, with the instruction
set extended to "object” treatment capabilities.

SOME TECHNICAL INSIGHTS

The 32 bit RISC core is connected to the object
coprocessor (OCP) via an internal bus and a few
handshake lines (Fig.1). The internal bus and the
external system bus feature a line by line corre-
spondence, but they are separated by a bi-
directional buffer, The OCP has access to both
the internal and external busses.

ICECS 96 - 1129

The CPU core sees the OCP as a normal
coprocessor, but the latter is able to take control
of the execution flow when needed. This double
connection allows the OCP to disconnect the core
and at the same time to control both the core and
the external memory systems. During the normal
flow of instruction execution, when no "object
instruction" (OI) is fetched, the coprocessor stays
idle, while the core remains connected to the
external bus. As soon as an OI is fetched, the
OCP starts its activities.

The typical OI consists in two synchronized
sequences: one seen by the CPU core, the other
seen by the external system. The OCP begins to
fill the CPU core instruction pipe with a few in-
struction codes, using the OCP internal ROM. In
parallel, the OCP interacts with memory to
read/write pointers and save/restore registers,
according to the needs of the current Ol. When
needed, the external and internal activities are
linked together: for instance, in some situation,
the CPU core picks up an address from the OCP
rather than from memory, as normally expected
according to the instruction format.

Because of the internal ROM, we need no
wait state in fetching the OCP-given instructions,
so we obtain a gain in speed, as we compare each
sequence with the normal case in which fetches
from external memory are required.

In the OCP structure some registers are used
to store the current and previous instance ad-
dresses (CR_self, CR_saved_self), and to control
the overall operation (CR_control). A temporary
register (CR_vmt) stores the VMT address during
the virtual method call operations. An arithmetic
circuit is used to calculate the indexed addresses.

CONCLUSIONS

The new OI's let the resulting processor to
speed some basic operation, typical of object
oriented languages. Even if the object coproces-
sor is flanked to and not really integrated with the
CPU core, preliminary results show sensible gain
in speed and generality of formulation of the as-
sociated object model.

REFERENCES

[11 M. Campione and K. Walrath, The Java Tutorial,
Addison-Wesley, to be published. Draft available
on-line (http://www javasoft.com).

[2) Borland Delphi for Windows: Object Pascal
Language Guide, Borland International, Inc., 1995.

[3] G.Letwin, Inside 0S/2, Microsoft Press, 1988,

[4] D.A Patterson, "Reduced Instruction Set Com-
puters", Commun. ACM, 28:1, Jan 1985, pp.821.

{51 C.E.Gimarc and V.M.Milutinovic, "A Survey of
RISC Processors and Coputers of the Mid-1980s",
Computer, Sept 1987, pp. 59-69.

6] ‘ W.Stalling, "Reduced Instruction Set Computer
Architecture”, Proc. of the IEEE, Jan 1988,
pp.38-55.

[71 D.A Patterson and J.L.Hennessy, Computer archi-
tecture: A quantitative approach, Morgan
Kaufmann, 1990.

[81 ARM7DMI Data Sheet, Advanced RISC Machines
Ltd (ARM) 1994.

[9]1 B.Stroustrup, The C++ programming language
(2nd edition), Addison-Wesley, 1991.

[10] Turbo Pascal for Windows User's Guide, Borland
International, Inc., 1991.

[11] Open Architecture Handbook, Borland Interna-
tional, Inc., 1991,

1130 - ICECS 96

