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Abstract—The paper describes the K-winner machine (KWM)
model for classification. KWM training uses unsupervised vector
quantization and subsequent calibration to label data-space parti-
tions. A K-winner classifier seeks the largest set of best-matching
prototypes agreeing on a test pattern, and provides a local-level
measure of confidence. A theoretical analysis characterizes the
growth function of a K-winner classifier, and the result leads to
tight bounds to generalization performance. The method proves
suitable for high-dimensional multiclass problems with large
amounts of data. Experimental results on both a synthetic and a
real domain (NIST handwritten numerals) confirm the approach
effectiveness and the consistency of the theoretical framework.

Index Terms—Pattern classification, supervised learning, unsu-
pervised learning, vector quantization.

I. INTRODUCTION

T HE ESTIMATION of generalization error is the most crit-
ical issue in classifier design. An empirical approach to

this task consists in splitting available samples into a training
and a test set for cross-validation [1]–[3]. Otherwise, a large va-
riety of methods have been proposed to characterize a classi-
fier’s generalization ability theoretically [4]–[7]. Among these,
the formulation based on the properties of the growth func-
tion and of the Vapnik–Chervonenkis (VC) dimension [8] of-
fers a most general theoretical foundation. A crucial feature of
Vapnik’s approach is that the theoretical result stems from a
worst-case analysis. The estimated classification accuracy often
falls in a pretty wide range, which may be of limited usefulness
in practical applications. Therefore, Vapnik recently proposed a
domain-oriented method named support vector machine (SVM)
[9]–[11]. The design criterion for SVM classifiers is to max-
imize the error margin, a quantity involving distances between
training patterns and the separation surfaces among classes. The
SVM paradigm joins theoretical validity with practical impact,
especially in complex domains involving huge data sets.

The domain-oriented perspective that inspires structural
risk minimization [9], [10] leads the trend in classifier design:
application performance is privileged, yet preserving con-
sistency within a theoretical framework. In this context, the
present paper describes a classification model calledK-winner
machine(KWM), whose novel conceptual contribution lies in
combining unsupervised with supervised training. Vector quan-
tization (VQ) provides the basic paradigm, as the unsupervised
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part of the design criterion requires that the distortion of data
representation be minimized.

In a VQ-based approach, the data space is mapped by a set of
reference vectors of “prototypes,” which lie at significant loca-
tions and span a partitioning schema over the pattern distribu-
tion. The algorithms so far proposed in the literature to position
prototypes pursue topological consistency [12], [13], uniform
occurrence probability [14], uniform coverage of the data space
[15], or uniform approximation for the probability distribution
[16]. The basic model of KWMs is actually independent of the
specific prototype-positioning algorithm adopted.

The training of a KWM is straightforward: in the unsuper-
vised training phase, VQ prototypes are placed according to the
spatial pattern distribution, regardless of pattern classes; then,
in the supervised training phase, prototype calibration exploits
the class information contained in each data-space partition.

In compliance with the principle of structural risk minimiza-
tion, a K-winner machine includes a set of nested classifiers
( -winner classifiers orWCs) characterized by specific bounds
to the generalization error. The elementaryWC classifies a pat-
tern by checking the classes associated with thebest-matching
prototypes: if all the classes agree, the pattern is classified ac-
cordingly, otherwise it is discarded. The overall KWM chooses,
for each test pattern, the most confident classifier, that is, the

WC that does not discard the test pattern, and that is charac-
terized by the best estimated generalization error. As a result,
a KWM associates each classification output with the tightest
bound to the expected generalization error, and is not subject to
the problem of rejected patterns.

The paper shows that it is possible to characterize the growth
function of a WC. The computed value depends on the number
of prototypes and is independent of the data dimensionality.
Such a property can notably improve classification perfor-
mance, especially in applications involving high-dimensional
domains. The properties of the growth functions ofWCs
make it possible to label each location in the data space by a
bound to the expected generalization error.

The validity of the KWM model is first demonstrated experi-
mentally on an artificial testbed in a two-dimensional (2-D) do-
main, allowing a visual interpretation of results. The practical
impact is then evaluated on a real testbed, i.e., the NIST hand-
written numerals database, involving large numbers of patterns
from a high-dimensional data space for a complex, multiclass
problem.

Section II describes -winner classifiers and the KWM
model. Section III analyzes the growth function of aWC and
the generalization performance of a KWM. Section IV reports
on experimental results. Finally, some concluding remarks are
made in Section V.

1045–9227/01$10.00 © 2001 IEEE
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II. THE K-WINNER MACHINE (KWM)

The KWM adopts a dual-paradigm approach: first, a VQ
schema uses available prototypes to render the probabilistic
pattern distribution; then, each prototype is labeled by the
predominant class within its data-space partition. Decoupling
vector positioning from subsequent class assignment plays a
key role in design aimed at generalization performance. This
approach prevents an uncontrolled (and practically detrimental)
explosion of the classifier’s growth function.

A. Training Procedure for the KWM

The KWM design criterion is to optimize the representation
of the data distribution by a VQ mechanism. The-dimensional
data space is partitioned by a set of prototypes,

, which lie at “significant” positions in
the data space; each prototype covers the patterns lying within
its associate partition. The process assigning a prototype to each
pattern follows a best-match criterion minimizing a distortion
cost. Euclidean metrics is usually adopted to measure distortion,
hence a data pattern, , is associated with the prototype,

, that satisfies

(1)

The VQ-representation problem implies finding the optimal
set of prototypes, , that minimizes the overall distortion:

. The pattern distribution
is not knowna priori, hence the integral cannot be computed
analytically in any but very peculiar cases. Therefore, one usu-
ally resorts to an empirical estimation of the involved distortion:
a set of training patterns, ,
drives vector positioning to minimize the empirical cost

(2)

Searching for the global minimum of (2) is very expensive
from a computational point of view, hence a large variety of
iterative approaches have been proposed in the literature. The

-means algorithm [17] provides the classical pattern-recog-
nition approach to the problem. Neural models exploit inter-
neuron connectivity to derive a topologically consistent map-
ping of training data [12], [13]. Some methods privilege proba-
bilistic aspects and aim at an accurate rendering of the data dis-
tribution [14], [16]; others tend to average distortion over avail-
able prototypes through a uniform coverage of training patterns
[15], [18].

As far as the KWM model is concerned, the only constraint on
the applied VQ algorithm is that it should support unsupervised
training. In principle, models privileging a consistent mapping
of the data distribution should be preferred; empirical practice,
however, did not point out any significant differences in the sev-
eral alternatives considered. The research presented in this paper
adopted the plastic neural gas model [19] for two reasons: 1)
given a constraint on final distortion, the VQ model can simul-
taneously assess the number and positions of prototypes and 2)

an efficient hardware implementation of the training algorithm
has been developed to reduce the considerable computational
cost [20]. For the reader’s convenience, a sketch of the PGAS
algorithm is given in the Appendix.

In order to build up a classification machine based on the pre-
vious unsupervised representation, assume now that some crite-
rion is available to assign a class to each prototype after it has
been positioned. This process is conventionally named “calibra-
tion” [12]. From a general perspective, the calibration mecha-
nism is required to label the tessellation produced by the VQ
training process. In KWM training, such a process labels a pro-
totype according to the majority of patterns covered by the pro-
totype; a possible “tie” case is solved by choosing a class at
random from among the best candidates. The following defini-
tions help describe the KWM training process formally:

set of categories from
which patterns are
drawn;
prototype set mapping
the data space;
set of labeled training
patterns;
data space partition that
is spanned by the th
prototype;
shares of patterns
lying in and be-
longing to each class;

.
The KWM construction procedure combines unsupervised VQ
training with subsequent calibration.

K-Winner Machine (Training)
0. Input: training set of labeled data,

;
1. (Unsupervised prototype positioning)

Apply an unsupervised VQ algorithm
(PGAS [19]) to adjust the prototype
set, , minimizing (2);

2. (Calibration)
Calibrate into a labeled set of pro-

totypes, , computed as

B. Run-Time Operation of a-Winner Classifier (WC)

The principle of operation of aWC lies in checking the
agreement of reference sites in the data space to make a reli-
able decision on a test location. TheWC classification process,
denoted by WC( ), involves two steps. The first performs
an unsupervised categorization of the test pattern,, with the
best-matching prototypes; the second considers the calibrations
of the prototypes and classifies the pattern accordingly.
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-Winner Classifier (run-time operation)
WC

0. Input: test pattern , trained
prototype set, W , agreement level

1. ( -winner unsupervised categoriza-
tion)

1.1 Sort the set of prototypes, W ( ),
arranging them in order of increasing
distance from

1.2 Extract the set in-
cluding the best-matching prototypes
with respect to

2. ( -agreement classification)
If

then: Classify as belonging to
class

else: Discard

The outcome of the WC classification process depends on
the agreement of all the elements of the set ofneighbors as-
sociated with a pattern, and exhibits some basic interesting fea-
tures. First of all, the minimalWC configuration with
always classifies any test pattern and does not allow a “discard”
output. Second, as a consequence of such a property, it is easy
to show that if two different WCs do not discard a pattern, they
must necessarily prompt the same classification output, which
also coincides with the class prompted by the simplestWC
with . On the other hand, differentWC’s are charac-
terized by different generalization abilities, as indicated by the
specific growth function of eachWC and the associated bound
to its expected generalization performance. The latter quantity
depends on theWC specific level, , and on the number of pat-
terns, , that the WC does not discard. In the following,
such a bound to the expected generalization error will be de-
noted by . The underlying theory will be provided in Sec-
tion III.

C. Run-Time Operation of the KWM

The class-agreement principle ruling aWC offers the pos-
sibility of discriminating between space regions on the basis of
the associate confidence in their classification. In practice, from
the highest prototype agreement,, attained by the family of

WCs on a given test location, one can infer the level of confi-
dence in the classifier’s decision.

Thus, for each point in the space, one can select theWC
that does not discard the test point and makes the smallest es-
timated generalization error. This variable-confidence mecha-
nism allows one to label data-space regions according to their
expected generalization errors. This opportunity is the principle
of operation of the -winner machine, whose algorithm is out-
lined as follows.

The K-Winner Machine (KWM)
0. Input: a test pattern, ; a trained

and calibrated set of prototypes, W ;
; ;

1. While: WC( ) does not discard
1.a) If ( ) and ( )

;
1.b) ;

2. Output:
2.a) classify using WC( );
2.b) set the expected error proba-

bility, , associated with the pro-
posed classification.

The KWM processes a pattern starting by aWC with ;
the associateWC spans the entire domain space and supports
a conventional winner-take-all (WTA) categorization schema.
In the subsequent steps, the process tries to improve the confi-
dence in the decision by checking larger and larger sets of neigh-
boring prototypes; if successful, this mechanism has the effect
of reducing the bound to the error probability. This fundamental
property will be proved in Section III. It is therefore reasonable
that the additional information should yield a better estimate, as
compared with that of a straightforward WTA-based classifier.

Such features represent the basic difference between KWM
and multiple-voter classifiers. KWMs do not involve any ma-
jority mechanism in the classification process, and the indi-
vidual contributions are drawn from the same set of prototypes
rather than from multiple and independent experts. In compar-
ison with other approaches [21], the KWM model has the ad-
vantage of implicitly and easily facing multiclass classification
problems. Indeed, the functioning of a KWM stems from pro-
totype calibration, which supports any arbitrary number of cat-
egories.

Thanks to the selection mechanism, the KWM model is not
subject to the drawback of rejected patterns. Any input pat-
tern is labeled by a confidence level,, related to the associ-
ated smallest error probability. In the following, we shall denote
by the eventual confidence level determined by the overall
KWM, and by the agreement parameter that characterizes a
specific WC.

III. T HEORY FOR THEKWM M ODEL

This section presents theoretical properties that describe the
behaviors of -winner classifiers and of the overall KWM. For
the sake of the analysis, in the following we will assume that
the prototypes have been fixed before the data sample was gen-
erated. Theorem proofs are given in Appendix B for clarity.

A. Theoretical Derivation of the Growth Function of a
-Winner Classifier

Computational Learning Theory characterizes a classifier in
terms of its VC dimension, which is the largest number of pat-
terns that can be shattered by the classifier [22]. In the peculiar
case of , however, the KWM model reduces to a proto-
type-based nearest-neighbor classifier that categorizes a test pat-
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tern with the class of the best-matching prototype. In this case,
the following relevant property can be obtained.

Theorem 1: The VC dimension of a-winner classifier using
prototypes and is .

The relevance of the unsupervised training phase to the above
theorem can be highlighted by a simple example. Consider a

WC with and . If prototype positions were set
by a supervised training algorithm (e.g., LVQ [12]), then the re-
sulting classifier would be equivalent to a Perceptron [9], and its
VC-dim would be equal to , where is the space
dimensionality. By contrast, the VC-dim of the actualWC with
unsupervised prototype positioning amounts to .

For reasons that will be clarified later on, the use of unsu-
pervised training inhibits the application of the VC-dim when

. However, a theoretically consistent derivation of the
growth function of the WC can be obtained by following its
definition [22]: the growth function, GF , of a classifier gives
the largest number of target configurations that can be processed
correctly by the classifier for a certain number of patterns,. It
is worth reminding that the GF of a classifier does not depend
on any specific training set but only on its cardinality. Again, the
following derivations assume that the prototypes have been set
independently of any specific data sample. The following the-
orem derives the GF, GF , of a WC.

Theorem 2: The growth function of a -winner classifier
using prototypes is , where .

Theorem 2 defines an important feature of the functioning
of a WC, namely, that the growth function of the classifier
is independent of the actual dimensionality of the data space.
Conversely, the independence of the GF of the number of pat-
terns stems mainly from the unsupervised WTA-based proce-
dure that assigns patterns to the associated data-space partitions.
Any configuration of prototypes generates a unique tessella-
tion of the data space. Therefore, once a prototype set is estab-
lished (either bya priori setting or after empirical unsupervised
training), boundaries among data partitions do not depend on
pattern classes, and the data partition associated with each sub-
graph remains unchanged for different class assignments. Thus
the number of functions that can be supported by aWC based
on a given prototype set is fixed, and will depend only on the
number of available prototypes.

As a final remark, we now briefly give the reasons why one
cannot define the VC-dim of aWC with . Unsupervised
training requires that the number of patterns,, be equal or
larger than the number of prototypes, , in order to avoid the
occurrence of dead prototypes. Therefore, the of the WC
must be equal to or larger than . At the same time, the anal-
ysis made in the proof of Theorem 2 shows that only
patterns can be shattered, which shows that the VC-dim of such
a classifier can be determined only for .

B. Generalization Performance of a-WC

In order to apply Vapnik’s theory to the specific-winner
classifier under the assumptions of Theorem 2, one restricts the
input space to those points for which thenearest prototypes are
in the same connected component of the graph. The prototype
graph can only be labeled with distinct labels on distinct compo-

nents, so that for the restricted input space the nearestlabels
will always be consistent. As a consequence, on the restricted
input space theWC never rejects inputs and so the generaliza-
tion can be estimated by using Vapnik’s theory.

In [9, p. 72–73] Vapnik gives two basic results that provide
a worst-case estimate of the classifier’s generalization error
on the overall data distribution. The estimator is the empirical
training error, , defined as the ratio of misclassified training
patterns to the total number of training patterns. The first result
(expression 3.15 therein) is

(3)

The second result is given by

(4)

The quantity is defined as ([9, 3.14])

(5)

where is the expected confidence in the result.
In order to apply these results to aWC, we define the fol-

lowing quantities:
number of training patterns that are processed by
the WC; this number is equal to or less than the
total number of patterns, , because a share of the
overall training set may be discarded by theWC;
portion of training patterns that are misclassi-
fied by the WC;
empirical error ;
portion of a test sample, including patterns,
that are misclassified by theWC, estimated by
Vapnik’s worst-case theory;

GF growth function of the WC; Theorem 2 proves that
it is given by: GF .

By using the result of Theorem 2 in expression (5), one can write

(6)

When , one will use the result of Theorem 2 in (6),
as the result of Theorem 1 would lead to a broader bound. The
designer will choose the sharper bound between (3) and (4). In
fact, Vapnik’s bound (4) is usually preferable when dealing with
a small error on the training set ( ), and will be adopted
as a default throughout the paper. By using Theorem 2 and the
previous definitions one can prove the following property.

Theorem 3: For any -WC, the worst-case number of mis-
classified test patterns, , out of a test sample of pat-
terns is monotonically nonincreasing asincreases.

Theorem 3 states that increasingreduces the worst-case
number of misclassified patterns in generalization performance.
Therefore, the worst-case error probability of aWC is given by

(7)

Expression (7) applies only to the patterns that are not discarded
by the WC and when . The case denotes a
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subsampling phenomenon, which certainly occurs for very large
values of . In such peculiar situations, one cannot characterize
the associateWC, and the KWM resorts to the closest, smallest
value of that makes (7) valid.

C. Relevance to the KWM

Summarizing the above theoretical framework will highlight
some basic aspects that may help understand the actual func-
tioning of a KWM. The crucial feature of the KWM model is
the preliminary unsupervised training phase, which strongly re-
duces the number of functions supported byWCs. As to the
supervised training phase, it is worth stressing that the calibra-
tion of a prototype considers only the patterns lying in the pro-
totype’s partition and does not depend on the classes of all the
other patterns in the training set.

Calibrated prototypes support the family ofWCs. Ac-
cording to the classification mechanism, anyWC that does
not discard a pattern must necessarily agree with theWC with

. Instead, WCs differ in their expected generalization
performances. The values of depend on for two main
reasons: first, Theorem 2 states that differentWCs have
different growth functions; second, the number of covered
patterns, , may depend on for .

The latter property raises the issue of discarded patterns. In
particular, one might wonder whether Vapnik’s theory still ap-
plies when the quantities that describe aWCs behavior depend
on . In order to prove this property, one should first consider a
few fundamental facts.

First, the tessellation of the domain space is uniquely set by
prototype positions, and the resulting partitions do not depend
on pattern classes. On the other hand, calibration results stem
either from fixed settings or from sample-driven training that
minimizes the empirical error for each prototype; in any case,
class assignment proceeds locally within each partition.

As prototype calibrations are mutually independent, the be-
havior of a specific WC can be analyzed independently of the
others. The only constraint deriving from different values ofis
that . Indeed, one can easily verify that
the quantity varies in the range ; in
the lack of additional information, one cana priori only assume
a uniform distribution for within such range. There-
fore, all the quantities associated with aWC [i.e., the number
of covered patterns, , and the number of errors, ], are
determined once and for all when calibration results are set. One
can also directly see that and are statistically inde-
pendent of each other: the former is related to the spatial distri-
bution of samples, , whereas the latter results from the class
probability, , which is independent of . Finally, we
also stress that the resulting error rate, , is ultimately fixed
by calibration and is not subject to any optimization process that
takes into account the value of.

These considerations prove that, for anyWC, the mecha-
nism that selects patterns out of the original sample of

patterns operates independently of the quantity . The
independence of the relevant quantity of the pattern-selection
criterion is the basic prerequisite for performing any estimation
on a subset of the overall sample of data. This holds true also
to apply Vapnik’s theory, which allows one to use any subset of

Fig. 1. Sample problem to demonstrate the role of calibration in the KWM
operation. Stars indicate the positions of prototypes determined by unsupervised
training.

the training set, provided the selection is made independently
of the resulting empirical error. The above considerations make
it possible to state that the theoretical results (6) and (7) apply
consistently if , and are used whenever appro-
priate.

The crucial difference that results from including the value
of in the training process is pointed out by the following ex-
ample. A two-dimensional (2-D) sample (Fig. 1) is composed of
four equiprobable nonoverlapping clusters, whose patterns may
belong to two classes (“” and “ “). In the case , unsu-
pervised training places a prototype in the center of each cluster,
containing patterns ( ).

Consider now the case of : 1) If one trains a KWM
with the procedure described in Section II-A, prototype calibra-
tion will give the WCs results and decision regions shown in
Fig. 2(a); the consequent 2-winner classifier will bring about a
number of empirical training errors , and the number
of discarded patterns will be . 2) Instead, if one calibrates
the prototypes to optimize specifically theWC empirical error,
a better solution for will be that presented in Fig. 2(b): the
number of misclassified patterns will be , whereas the
number of discarded patterns will still amount to . This
implies that solution 1) is nonoptimal as long as is consid-
ered; in case 2), however, the calibration settings to minimize

are chosenafterevaluating the situation for . As the
WC training affects the calibration process of individual pro-

totypes, the theoretical results reported in Sections II-A and B
are no longer valid.

D. Extension to a Multiclass Case

The properties of the KWM model presented in the previous
sections can be extended to multiclass problems. The theory for
a multiclass case has been developed in the literature [23], [24],
stating that the definition of the growth function for multiclass
problems is analogous to that for a binary-classification case:
the number of target configurations for a number of patterns,,
belonging to possible classes is given by rather
than .
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(a)

(b)

Fig. 2. Decision regions and results of the two-winner classifiers trained by
different strategies. (a) After KWM calibration. (b) After calibration tuned to
thekWC (k = 2). Case (b) yields a smaller empirical error but does not allow
the application of KWM theory.

Theorem 4: The growth function of a -WC using pro-

totypes in a multiclass case is , where
.

By applying the demonstration used for Theorem 2, the proof
is straightforward, considering that the calibration phase may
assign any of the classes to each prototype. The assertion
follows immediately when including this fact in (10) and then
substituting the result in to (11).

A pattern is counted in whenever the WC assigns it to
a class different from its original one. In compliance with the
approach described in [23, p. 112], if one includes the result of
Theorem 4 in the expressions derived in Section III-B, one can
rewrite (6) as

(8)

and Vapnik’s generalization theory (6) and (7) can be applied to
the multiclass case, as well. In fact, such a property is reported
rather seldom in the literature. This depends mainly on the con-
siderable difficulties inherent in the computation of the growth
function of a classifier; this opportunity, peculiar to the KWM
model, greatly facilitates the theoretical characterization of the
overall model.

IV. EXPERIMENTAL RESULTS

This section describes the experimental verification of the
KWM model in a synthetic and a real-world domain. Both

testbeds entail a multiclass problem: the former involves a 2-D
space allowing a visual interpretation of obtained results, the
latter addresses a well-known standard database related to a
complex and technically very significant recognition problem
(OCR).

A. Artificial-Domain Tests: 3-Gaussian Problem

This artificial testbed combines three Gaussian distributions,
which have the same variance and are placed symmetrically on a
2-D plane. The experiments aimed to demonstrate the space-la-
beling ability of KWM’s. The Gaussian distributions were cen-
tered in , , sin , and

, sin , and gave rise to a three-class problem.
The KWM performance was tested in three different experi-
ments. The variance value (equal for the three Gaussians) was
progressively increased from 0.1 to 0.5 and up to 1; thus the clas-
sification system was tested for problems of increasing difficulty
in separating the three classes. For each experiment, 6000 total
training patterns were randomly generated [Fig. 3(a)–(c)]. Like-
wise, an equal number of test patterns were randomly gener-
ated to assess generalization performance. In the KWM training
process, the number of prototypes used in each experimental
run was always set to 30, ensuring the constant ratio 200 of the
number of training patterns to that of prototypes.

The artificial nature of the problem allows one to work
out the optimal error rate, attained by a Bayesian classifier
using the correct decision surfaces. Such a classifier is easily
implemented by placing three prototypes in the centers of
the Gaussian distributions. An alternative classical approach
involves the 1-nearest neighbor (1-NN) classifier, which
classifies each test pattern according to the best-matching
pattern in the training set. These methods were compared with
the 1-winner classifier. Table I gives the classification errors
incurred by the different approaches, and confirms the efficacy
of the KWM model, even in the basic case of .

The spatial effect of the variable confidence was analyzed by
an exhaustive procedure. Each point of the data space under-
went a KWM-based classification and was labeled by the asso-
ciate level of confidence, . Such an approach made it possible
to plot homogeneous regions of the data space, that is, those
holding equally labeled points. The resulting graph provides a
“confidence map” and allows an easy and intuitive interpretation
of the KWM functioning. The results for the three variance set-
tings are presented in Fig. 4. Each gray level indicates the KWC
ruling a specific region of the data space; darker points indi-
cate tighter bounds to the generalization error. Thus each graph
suggests the appropriate value ofto be used at each space lo-
cation. As such, the confidence map can also be regarded as a
map of variable bounds (7) to the error probability.

In the “simple” situation [Fig. 4(a)], the symmetrical spatial
configuration proves a consistent separation of the classes. It
is worth noting that the dark, uniform regions extend almost to
the separation boundaries; this is the consequence of the com-
pact data distributions. The actual class-separation area is in-
dicated by bright gray and corresponds to the region of max-
imum uncertainty in the decision . The fact that inter-
mediate gray levels are virtually absent witnesses the minimum
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(a) (b)

(c)

Fig. 3. Different versions of the artificial three-Gaussian problem. (a) Simple; (b) Medium; (c) Difficult.

TABLE I
THE THREE-GAUSSIAN EXPERIMENTS: COMPARISON OF THEACCURACIES OF

DIFFERENTCLASSIFIERS

overlap among the Gaussian distributions. “Medium” and “com-
plex” situations are depicted in Fig. 4(b) and (c), respectively.
The dark, “certain” areas shrink when the overlap among the
classes increases, the highest-uncertainty (brightest) region be-
comes larger and larger, and intermediate confidence levels as-
sume greater importance. The appearances of the decision sur-

faces tend to a smooth but steady degradation. Such results con-
firm the direct connection between the relative distribution of
uncertainty and the problem complexity. The ability of KWM’s
to associate space locations with confidence levels may prove
very useful in high-dimensional domains, where class inspec-
tion is often desirable but a visual interpretation is not feasible.

Finally, the theoretical analysis of generalization perfor-
mance was validated by classifying the 6000 random patterns
not included in the training set. The experimental results in the
three situations can be deduced by comparing the experimental
error rate with the theoretical bound, , to the generaliza-
tion error (7). As the latter quantity is subject to a statistical
fluctuation, its 5% confidence ranges are also provided, and are
worked out [25], when applicable, as

(9)
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(a) (b)

(c)

Fig. 4. Confidence maps for the three-Gaussian experiments; darker areas indicate higher confidence. (a) Simple; (b) Medium; (c) Complex.

Fig. 5(a)–(c) displays the measured and expected generaliza-
tion errors in the three experiments. The comparison of theoret-
ical expectations with empirical evidence supports the results
reported in Section III. The bound (7) is a reasonable estimator
of the overall error rate; the curves show that, thanks to the lim-
itation imposed by the unsupervised training phase on the GF,
the achievements of computational learning theory can have an
effective practical impact.

B. Real-Domain Test: The NIST Handwritten Numerals
Database

The NIST handwritten digits database represents a significant
testbed for the experimental verification of the KWM model in
a real-world domain of high practical interest [26]. This multi-

class problem involves three distinct data sets, which, in the fol-
lowing, will be denoted by “LS” (learning set), “VS” (valida-
tion set), and “TS” (test set), respectively. LS and VS consist of
60 000 patterns each, and TS is composed of 58 646 patterns

After normalization and slant correction [27], the database
included B/W bitmaps holding 40 32 bits, further compressed
into lower-dimensional patterns by averaging squares of 44
pixels into single pixels with a four-bit resolution.

The set of prototypes for vector-quantizing the data space was
generated by the plastic neural gas algorithm [19], which eval-
uated the appropriate set cardinality. The unsupervised fitting
procedure exploits a basic property of VQ training models: the
distortion error (2) saturates up to an asymptotical value as the
number of neurons increases. Fig. 6 shows experimental distor-
tion errors (LS, VS, TS) versus prototype-set cardinality. In the
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(a) (b)

(c)

Fig. 5. Generalization performances of the KWM in the three-Gaussian experiments (a) simple, (b) medium, and (c) complex.

Fig. 6. VQ costs (training, validation) versus numbers of prototypes.
Quantization distortion saturates for large values ofN .

prototype training, the progress of the empirical distortion cost
on VS was taken into account, disregarding pattern classes: the

number of prototypes seemed to allow a suitable
tradeoff between representation accuracy and prototype-set
complexity, so it was always used as a default in all the
experiments.

The subsequent calibration phase assigned categories to the
prototypes; the resulting class distribution is given in Table II.
In fact, calibration results provided a crucial, preliminary basis
for the practical applicability of the KWM method. The graph
in Fig. 7 is the plot of sorted prototype reliability, ,

, defined as the share of the predominant class for
the th prototype: . The curve shows that the
class agreement among the patterns belonging to the same par-
tition is very high: almost all the prototypes (292/30097.3%)
exhibit a reliability higher than 0.80, thus suggesting that there
is a good matching between the spatial positions of prototypes
and the associate class regions. The varying numbers of proto-
types for the different classes is the consequence of the different
complexities of the digits’ graphic patterns. Simple patterns ul-
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Fig. 7. NIST testbed: calibration results.

TABLE II
CALIBRATED CLASS DISTRIBUTION

timately give rise to more aggregate clusters of patterns, and
therefore require a smaller number of prototypes. For instance,
class “1” clearly appears more aggregate than class “2” or “8.”

By analogy to the comparative approach followed in the
three-Gaussian experiment, the NIST database was processed
by a 1-NN classifier, using the 60 000 training patterns to
categorize the other data sets. The results are given in Table III;
the generalization performance attained by the 1-NN classifier
confirms a peculiarity of NIST databases that has been reported
previously [28]: LS and VS are drawn from a similar distribution,
whereas such a property does not seem to hold for TS. This
motivates the considerable generalization error of any classifier
using TS as a testbed, after having been trained with LS.

The data dimensionality of the NIST testbed prevents one
from drawing a confidence map for visual interpretation, like
the map used for the 2-D problem. Nevertheless, the feasibility
of labeling space locations by confidence values proved useful
in clarifying interesting aspects. The basic idea is to check space
sites with nonnull probability, hence training patterns were used
to spot “landmarks” in the confidence map. For each training
pattern, the level of confidence resulting from the KWM algo-
rithm was evaluated. In principle, it is not ensured that larger
values lead to tighter bounds to the generalization error, due to
a possible subsampling in (7). In fact, the experiments on the
NIST testbed always indicated that there is a direct connection
between the agreement level,, and the confidence in the clas-
sification outcome.

TABLE III
NIST DATABASES: ACCURACIES OFDIFFERENTCLASSIFIERS

Fig. 8. Confidence distribution over classes.

Grouping patterns of the same class but with different
values made it possible to count the different confidence levels
within each class, and therefore to deduce thedistribution
within the class itself. The results of these measurements are
given in Table IV. Fig. 8 allows a visual assessment of the con-
fidence distribution: more than 85% of the patterns belonging
to class “0” were correctly classified with . No pat-
tern of class “1” could be classified with , due to the
few (12) prototypes calibrated with that class. The graph helps
understand the mapping supported by the calibrated prototype
set. Classes “0” and “6” cover the most “certain” areas of the
data space, though one might say that the most reliable classi-
fication concerns class “1” as the percentage of patterns cor-
rectly processed with exceeds 92%. Classes “4” and
“9” exhibit critical situations; one might ascribe them to strong
overlaps with neighboring classes. Measuring uncertainty in this
way might help the designer to build a classifier that accounts
for such a distribution, for example, by treating critical classes
selectively.

The validation of the space-varying confidence mechanism
can also be attained by visualizing patterns lying in different
areas of the data space. Fig. 9 presents, for each confidence
level in the range [1, 10], patterns chosen at random from those
counted in Table IV. A comparative inspection of the example
images shows that the qualities of the pattern appearances in-
crease as increases. The confidence in classification increases
with the visual quality of a pattern. Such a nontrivial result sup-
ports the “natural” representation paradigm that underlies the
KWM model.

The final experimental phase for the NIST database addressed
the verification of the theoretical predictions concerning the ex-
pected generalization error. Both VS and TS were used to mea-
sure the classification error, although TS should be regarded as
a more reliable generalization testbed for two reasons: 1) VS
was used to cross-validate prototype positioning during unsu-
pervised VQ training; nevertheless, it is worth recalling that
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TABLE IV
DISTRIBUTION OF CONFIDENCELEVELS WITHIN CLASSES(NO. OF PATTERNS)

Fig. 9. Sample patterns for increasing levels of confidence.

pattern classes were disregarded while evaluating the distortion
cost; 2) more importantly, VS was drawn from a distribution
very close to that of LS, hence results appear strongly correlated.
Conversely, as anticipated by the results of the 1-NN classifier,
TS was not a twin of the training set [28]. This fact had also
been confirmed (Fig. 6) by comparing the unsupervised distor-
tion cost related to TS with those relevant to {VS, LS}.

The evaluation procedure was the same as used for the
2-D three-Gaussians problem: for each test run, the theoretical
bound, , to the generalization error (7) was compared with
the empirical error rate, corrected for statistical fluctuations
according to (9). Fig. 10(a) and (b) present the obtained results
on VS and TS, respectively. The curves witness the different
distributions of the processed patterns, as VS seems a definitely
easier problem than TS; in this respect, TS is preferable as it is a
more reliable test set. The comparison between empirical costs
and the theoretical bound shows that, for the NIST testbed, too,
computational learning theory turned out to yield an expected
result not too far from empirical evidence.

V. DISCUSSION ANDCONCLUSION

The basic idea to use a prototype-based representation par-
adigm to span a data space for classification purposes is not
entirely new, especially when WTA mechanisms are applied to
drive space-dependent decision-making processes. In this con-
text, a novel aspect of the presented research lies in using several
space locations to derive a measure of confidence in the clas-
sification outcome. The KWM training procedure is also quite
standard (VQ prototype positioning plus calibration), hence the
related model can fully benefit from the vast literature on such
subjects.

The crucial issue associated with the KWM model lies in
defining and characterizing a family of classifiers, which always
agree in the classification outcome but differ in their growth
functions and consequent expected generalization errors. This
makes it possible to assign a confidence level to each point in
the data space; such a level is obtained by selecting the most
appropriate classifier providing the tightest bound to the gen-
eralization performance. From this viewpoint, both theoretical
and practical demonstrations have shown that there is a sharp
relationship between class overlap (problem complexity) and
the shape of the related confidence map (expected generaliza-
tion error). Such features endow KWMs with the classification
accuracy of classical surface-based representation models, and
also provide the local-level inspection ability typical of proto-
type-based paradigms.

An important advantage of the method is the model’s inde-
pendence of both data dimensionality and the possible multi-
class nature of the classification problem; as a result, the KWM
approach applies effectively to masses of data. This arouses
great interest in this method for critical practical applications.
By contrast, the model might not work properly in undersam-
pled domains, where an accurate estimation of the empirical
classification error is unfeasible and the generalization perfor-
mance is often difficult to evaluate experimentally.

The simplicity of the model also favors efficient implemen-
tations of the overall model in dedicated hardware circuitry. In
particular, both the pattern-prototype distance computation and
the prototype-sorting process based on the extraction of the
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(a)

(b)

Fig. 10. NIST database: bounded and experimental generalization
performances. (a) Results on the validation set. (b) Results on the test set.

best-matching candidates have already been adopted in VLSI
architectures [20], [29]. The reduction in the basic VQ compu-
tational cost in both training and run-time operation represents
a crucial effort devoted to a technically valid realization of the
overall approach. At the same time, the theoretical analysis is
currently oriented toward a more extensive study of the prop-
erties of KWMs within the framework of structural risk mini-
mization.

APPENDIX A
OVERVIEW OF THE UNSUPERVISEDPROTOTYPE-POSITIONING

ALGORITHMS

The “Neural Gas” (NGAS) model was defined in [15] as an
effective unsupervised algorithm to position prototypes so as to
optimize the uniform coverage of the data space. The algorithm

peration can be summarized as follows.

The “ Neural Gas ” Algorithm
0. Input: prototype set, W; total number

of iterations, ;
final and initial learning rates,

; final and initial decay
parameters, ;

1. Initialize prototype positions (pos-
sibly random)

2. For to
2.a Get a sample pattern ;
2.b Compute vector distances from :

, ;
2.c Sort vector list

such that:
;

2.d Compute:

2.e Adjust vector positions:
, ;;

3. Output: prototype set, W.

The “plastic neural gas” algorithm was proposed in [20] as
the adaptive version of the NGAS method, to which it added
the ability of dynamically creating and deleting prototypes. The
PGAS method is guaranteed to converge in a finite number of
steps and, as compared with the NGAS approach, does not suffer
from the problem of “dead vectors.” The principle of operation
of the PGAS method lies in adding prototypes in those regions
of the data space that are represented with insufficient accuracy
by the current prototype set; at the same time, the prototypes
whose local accuracy appears satisfactory, are deactivated and
do not enter in the VQ optimization process. The following def-
inition are given:

: partition of patterns covered by

;
: local distortion associated with prototype ,:

the index indicates that the current set, , con-
tains prototypes.

: “prototype activation” function, defined as:
;

otherwise;
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: centroid of the data partition covered by :

: total distortion associated with the prototype set:

See the algorithm at the bottom of the page.

APPENDIX B
PROOFS OFTHEOREMS1, 2,AND 3

Theorem 1: The VC dimension of a -Winner Classifier
using prototypes and is .

Proof: Assume to set up a set of prototypes,, with
prototypes. Consider a data set,, holding patterns:
there exists a positioning schema for the prototypes such
that each prototype covers one pattern, hence , :

. Therefore, the number of possible
target configurations that can be supported by the 1-WC classi-
fier is ; it follows that: .

On the other hand, consider a larger data set, ,
holding patterns. The NN prototype that classifies
must be drawn from the available set,. Thus, there exists at
least one pair of patterns ( ) in such that:

) . But this implies that there is a target configuration

(in particular, when ) that cannot be classified correctly
according to the NN criterion, hence the data setcannot be
shattered by the 1-WC. Therefore,

. Q.E.D.
Theorem 2: The growth function of a -winner classifier

using prototypes is , where .
Proof: Using the previous notations, let be a data set

holding patterns, and let be a set of prototypes. Build
the graph that pairwise connects all the prototypes
in : the prototypes represent the nodes in, and the arcs are
represented by pairs of nodes;is fully connected. Using a sim-
ilar derivation to that used for Theorem 1, further assume that
the graph structure is fixed before the data sample was gener-
ated.

Extract from the subgraph , defined as
, . includes

the pairs of prototypes (arcs) that contribute to classifying at
least one data patterns. Incidentally, note that if , all
the prototypes in are isolated, and is the degenerate
subgraph that contains all the nodes and no arcs. Given any
subgraph , denote by the set of patterns classified
by ; it is defined as:

. By construction, .
Consider now the set

whose elements are characterized as follows: 1) ,
is connected and 2) , . In
other words, contains all the connected subgraphs ofthat
are disjointed. By definition of theWC and by construction of

, any subgraph contains at least arcs and proto-
types. More importantly, the fact thatis connected implies that

The “ Plastic Neural Gas ” Algorithm
0. Input: a data set , maximum tolerated cost, ;

final and initial learning rates, ; final and initial decay parameters,
;

1. Draw a random pattern ; Set: ; ; ; ;
2. For each th input pattern;

2.a Compute vector distances: ; ;
2.b Sort neuron list ; is the index of the “best” prototype:

: ;
2.c If (If the best prototype is active, update all active prototpyes

using NGAS)

3. For each neuron such that : Set
4. For

If AND
Delete ; Set ;

5. If OR (
Exit and Return ;

Else
6.a Set ;
6.b Select the “worst” prototype: ;
6.c Create a new prototype, ;
6.d Set ; ;
6.e Loop to step 2).
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: . Disproving
this hypothesis implies that :

; this means that the subgraph is dis-
jointed from the rest of , which is impossible becauseis con-
nected.

Two basic properties can now be proved.
1) Each subgraph can shatter at most one pattern.

Assume that includes two patterns, . The sub-
graph therefore includes only the subgraphs
and . For the shattering property, the classifier must
support correctly all target configurations, including ,

, . To perform a correct -Winner clas-
sification, the two sets of prototypes, and

, must be calibrated with different classes,
therefore they must be disjointed. This is impossible because

is connected, so cannot be shattered by. This
property easily applies to the general case of including
more patterns, as the above analysis can be made for each
couple such that .

2) For any pair of subgraphs, ,
(the sets of patterns covered by disjointed graphs are

disjointed, too). The fact that , implies that
. Assume that there is a patternsuch that and

. By construction of G, the subgraph should
appear in both and , hence the subgraphs would not be dis-
jointed any more, which contradicts the hypothesis.

From Property 1), one concludes that only two target config-
urations, regardless of the number of patterns in X, can be
processed correctly by aWC based on a subgraph ;
therefore

(10)

From Property 2), one deduces that the GF of the classifier
based on the entire graph Gis given by the product of the indi-
vidual GF’s associated with all the disjointed subgraphs

(11)

As each disjointed connected subgraph contains at leastpro-
totypes, the largest number of disjointed subgraphs is reached
when

(12)

Substituting into (11) proves the
assertion. Q.E.D.

Theorem 3: For any -Winner classifier, the worst-case
number of misclassified patterns, , on a test sample of

patterns, is monotonically nonincreasing asincreases.
Proof: First, consider that, for any pattern,

. A pattern that is not discarded by the -winner
classifier is not discarded by the-winner classifier either. As a
consequence, the patterns mistaken by the -winner clas-

sifier are at most as many as the errors made by the-winner
classifier. These properties can be expressed as

(13)

(14)

By Theorem 2 (12) one has

(15)

From (6) and (12), it is easy to verify that is a nonin-
creasing function of

(16)

If one now uses (7), the worst-case number of errors on a test
sample of patterns is

(17)

Considering inequalities (14) and (16) and the monotonicity of
all the terms in (17), one has

Q.E.D
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