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ABSTRACT

The design methodology uses Peano-Hilbert 2-D curves to build
up efficient circuits that destroy the spatial autocorrelation of an
image. The approach applies to several crucial areas of
information processing, such as cryptography and associative
memories, and its validity stems from the fractal structure of the
curves. The fractal curve topology drives the VLSI circuit
layout, which includes many elementary cells operating at the
local level. The resulting distributed architecture supports
pseudo-random pixel remapping, and the self-similarity of the
layout strongly simplifies electronic circuit implementations.

1. INTRODUCTION

A spatial-decorrelation process transforms a “natural” image into
a noise-like 2D pattern (Fig.1) by a pseudo-random, deterministic
procedure. Image decorrelation applies to crucial information-
processing domains such as encryption and distributed storage of
information; the need for efficient and real-time operation drives
the research in electronic implementations.

This paper shows that Peano-Hilbert curves yield excellent
decorrelation performance and a flexible architecture. The space-
filling nature of the curves allows a modular circuit layout with
inherent scalability; the chaotic behaviour resulting from the
fractal layout supports the pseudo-random remapping function.

Associative storage of images is the sample application
considered in this paper, without loss of generality. The “noise-
- like coding” model of associative memory [1] is the reference
paradigm, thanks to its impressive performances in image
understanding [2]. The core of the associative model’s theory lies
in mapping a natural image into a noise-like “key” [1]. A key is a
2D pattern whose pixels are characterized by: 1) normalization,

Fig.1 — Natural and spatially decorrelated images
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2) zero-mean value, and 3) mutual statistical independence. Such
conditions require a pseudo-randomizing process to destroy both
numerical and spatial correlations within the original image. A
general solution using chaos provides numerical decorrelation
[3], normalization, zero-mean value, and statistical independence
at the pixel level, but it does not remove mutual correlation
among neighbouring pixels.

2. FRACTAL CIRCUIT-LAYOUT
IMPLEMENTATION

2.1 Fractal curves for pixel remapping

Spatial decorrelation calls for pixel remapping, which can be
supported by the family of Peano-Hilbert curves [4]. The basic
idea is to plot a Peano curve over the image plane: a one-
dimensional rule drives the plotting, which draws the layout of
the pixel-remapping circuitry. The overall decorrelation system
includes many elementary units (providing numerical
decorrelation), which are pairwise connected by a pixel-shifting
bus according to the fractal-curve layout.

The approach exploits two theoretical features [4]: 1) a Peano
curve follows a single “wire” traversing all locations
independently of the actual resolution; 2) the curve can be built
up by multiple reproductions of a basic elementary pattern
(Fig.2).

The space-filling property ensures that the curve plot will
traverse all image pixels. The self-similarity property guarantees
a resolution-independent behaviour: if one divides the image into
two subparts, the curve is cut at only two points. This is valid at
any resolution (Fig.2). Such a feature is crucial to an efficient
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Fig.2 — Self-similarity and cutting properties of the Peano-
Hilbert curves
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Fig.3 — The fractal layout connects pixel-processing units

implementation as it ensures that the spatial layout can be
partitioned into subsections. Each curve segment communicates
with the others by just two links and independently of its own
size; multiple chip integration to build up very complex curves is
immediate.

For the benefit of VLSI implementation, the fractal curve maps
directly into a circuit layout with a cross-free, planar, one-
dimensional topology. Thanks to the space-filling property, the
available silicon area is fully exploited, hence the implementation
is also optimal in terms of area complexity.

Each pixel-processing unit operates locally and supports the
functions described in {3] by using elementary circuitry: a buffer,
a counter, a pseudo-random number generator [5], and an XOR
operator. Figure 3 illustrates the local-level schema of a system
element. The decorrelation process iterates the following steps (3
is a shift-length parameter):

a) Cyclic-translate image pixels by & positions according to the
curve plot;

b) for each location in the layout,update its value with a pseudo-
random locally computed value.

2.2 7 Predicting decorrelation performance

The algorithm highlights the simplicity of the system’s
architecture, involving two elementary operations (shift and
XOR). The only parameter to be adjusted is the extension, 8, of
the shifting process.

In order to evaluate the method’s performance, disregarding
border effects, one can consider the displacement vector, d, of a
generic pixel in the image after applying the above aigorithm.
The amplitude, Ay, of d is a function of the shift extension, §; its
average value over all pixels can be computed numerically
(Fig.4).

The fractal nature of the curve implies that the direction of d is
uniformly distributed, which can be proved by considering the
average phase of d:

E{®g}=0 M

This peculiar property of fractal curves holds at any resolution
and is not shared by other remapping approaches such as linear
or diagonal shift registers. The graph in Fig.4 also confirms
another result that can be demonstrated, ie., the linear
relationship between displacement amplitude and shift extension
(for sufficiently large values of 8). Thus the average
displacement, Ay , of a pixel is a linear function of the curve-

shift amplitude, §:
Ay (B)=Ay +B-8 (8 > e = 140) @)

where Ay=9 and B=0.0322.

Figure 4 and its Piece-Wise Linear approximation (1) show how
many shift steps along the curve are required to attain the desired
displacement of pixels.

This offers a powerful tool both for making the decorrelation
method image-adaptive and, more importantly, for designing the
adjustable parameter §. The image autocorrelation function,
Y(a), evaluates the correlation between pixels lying at the
distance a on the image plane:

‘P(a): -f jl(x, y)l(x +acosg, y+asen (p)ctvdyd¢a 3)

0 Image

Inspection of the distribution of ‘Y(a) allows one to tune the
decorrelation system as follows:

1) evaluate \P(a) by standard FFTs;

2) dctermine from W(a) the highest degree, a*. of correlation
that may be kept by the decorrelation process;

3) set the proper number of shift steps, &, for the
decorrelation system by using (1):

5" =(a"-4,)/B.
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Fig.4 — Average pixel displacement as a function of
curve-shift extension, 3.

3. EXPERIMENTAL RESULTS

Experiments with natural images of reasonable sizes (typ.
512x512) indicated that the average pixel correlation does not
exceed a* = 24, hence a pixel-level cell requires at most a 9-bit
counter (in practice, 8 bits always proved more than satisfactory).
The experiments also aimed to assess the effectiveness of the
image-decorrelation approach.

An assessment of the spatial randomness of a pixel distribution is
in fact difficult to render quantitaively; results from the the
obvious autocorrelation function may be misleading. A visual
inspection of decorrelated images is often the most reliable way
to validate a method’s effectiveness.

In order to adopt a comparative approach, Figure 5 presents the
results from three circuit approaches, each involving a pixel-
pipeline structure like the one adopted in the paper. The shifting
process used the same parameters (i.e., number and extension of
shift steps) for all circuits; local pseudorandomizing of pixels
was disabled to enable visual displacement of pixels. A linear
and a diagonal shift register yielded the images shown in Fig.5
(top) and Fig.5 (center), respectively; Fig.5 (bottom) presents the
result of the fractal-layout circuit approach.

The pictures indicate the better performance of the fractal
methodology, which in addition exhbitis superior flexibility and
modular design. Adding local pixel pseudorandomizing
eventually resulted in the image shown in Fig.1b.

Fig.5 — Comparison of different image-decorrelation
circuit approaches
(top: linear, center: diagonal, bottom: fractal-based)

A preliminary VLSI system implementation adopted 0.7n AMS
technology, and up to 4,096 cells could be included in a single
die; the clock operating speed was < 200MHz.

As final implementation steps the use of 0.35p technology and
further circuit optimization to increase the number of cells within
a single chip are envisioned.

4. SUMMARY

The problem raised in this paper ultimately can be stated as
follows: how can one determine whether an image is random or
not? In fact, the literature does not offer an established
foundation providing statistical tests about 2-D randomness. tests
for images.

Although such tests do exist for spatial sample distributions, such
as the Kolmogorov-Smirnov 2D test, no corresponding
procedure seems to exist so far for “natural” images. With
respect to those methods, the image-randomness problem
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addresses a family of “unlabelled” signals, and does not concern
classification domains.

Therefore, evaluating the quality of a (pseudo)-randomizer
applied to vsual signals has to be performed visually, and this
motivates the evaluation procedure adopted in the paper.

Nevertheless, current research on this subject is trying to define
some objective and numerical criterion that enables one to assess
a visual signal’s randomness automatically.
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