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Abstract—Using conditional class entropy (CCE) as a cost func-
tion allows feedforward networks to fully exploit classification-
relevant information. CCE-based networks arrange the data
space into partitions, which are assigned unambiguous symbols
and are labeled by class information. By this labeling mechanism
the network can model the empirical data distribution at the local
level. Region labeling evolves with the network-training process,
which follows a plastic algorithm. The paper proves several theo-
retical properties about the performance of CCE-based networks,
and considers both convergence during training and general-
ization ability at run-time. In addition, analytical criteria and
practical procedures are proposed to enhance the generalization
performance of the trained networks. Experiments on artificial
and real-world domains confirm the accuracy of this class of
networks and witness the validity of the described methods.

Index Terms— Class-entropy networks, clustering methods,
generalization, minimum entropy methods, noise-injection,
pruning.

I. INTRODUCTION

CONDITIONAL class entropy (CCE) can be used in clas-
sification problems as a cost function to drive supervised

training. A CCE-based network has a standard multilayer
feedforward architecture with hard-limiter units [1]: at each
layer, the configuration of neuron outputs supports a library of
symbols, and the training process must minimize the ambiguity
associated with each symbol. In that case, quantities from
information theory replace the traditional mean square error
cost function.

A CCE-based network implements a digital encoding of
input data: the first layer partitions the data space into regions,
to which each neuron contributes with a separating boundary.
Classification is accomplished by labeling each region with
one class. Consistent training implies that all symbol-class
associations are unequivocal, i.e., all samples encoded by a
symbol belong to the same class. Previous research showed
that conventional Hebbian learning preserves the global en-
tropy of a data set [2]; CCE-based networks aim to best exploit
the information related to classification [1]. The lack of a
gradient-based learning rule leading to a practical algorithm is
the main drawback of using class entropy as a cost function.
Anyway, simulated annealing [3], [4] or random search [5]
provide effective optimization methods for tuning weights.
Computational-cost issues typically impose the use of plastic

Manuscript received May 22, 1996; revised May 28, 1998. This work
was supported in part by the Italian Ministry for University and Research
(MURST).

The authors are with the Department of Biophysical and Electronic Engi-
neering, University of Genoa, 16145 Genova, Italy.

Publisher Item Identifier S 1045-9227(99)00921-2.

approaches for training “growing” networks, whose neurons
are tuned sequentially and incrementally.

This paper presents methodologies both to set up CCE-based
classifiers and to use trained networks for domain analysis
and interpretation. After describing an augmentation of the
basic neuron model to support circular boundaries [6], the
paper discusses convergence properties for the general class
of plastic CCE networks. Then proof is given of several the-
oretical properties, which relate the CCE cost function to the
eventual classification performance. Finally, the generalization
ability of trained networks is addressed. Theory derives an
analytical criterion to control network complexity by injecting
noise into data, whereas two practical algorithms are given to
simplify and interpret training results (pruning and clustering,
respectively).

In the presented approach, joining infomation theory with
neural models endows the resulting networks with good clas-
sification accuracy. At the same time, the model exhibits
interesting features for domain analysis that might be difficult
to implement with other classical approaches. For example,
by its partitioning ability a CCE-based network can give hints
about the number of significant regions in the data space.
Likewise, the network can be used to segment regions of the
data space according to the local classifier’s confidence.

The experimental verification of the overall framework
mainly aimed both to validate theoretical expectations and
to characterize generalization performance on a substantive
statistical basis. Therefore, experiments covered a few syn-
thetic and several real-world standard testbeds available in
the literature. Synthetic domains include nested-spirals [7],
the generalized XOR [8], and the modeling of a randomly
chosen classification problem. Real-domain testbeds include
the “sonar” [9], “BCancer” [10], “Phoneme” [11], “Vowel”
[12], and “Vowel 2D” [13] databases.

Section II presents the framework for CCE-based networks,
including the neuron augmentation to circular unit and the
proof of the theoretical properties of CCE. Section III ad-
dresses the generalization issue and describes several methods
that can be included within the CCE framework to control a
network’s complexity. Section IV presents the set of experi-
mental results from the various experiments. Some concluding
remarks are made in Section V.

II. THEORY OF CONDITIONAL CLASS-ENTROPY NETWORKS

A. Basic Theory for CCE-Based Networks

This brief overview of CCE-related theory follows the
same outline as presented in [1]. A CCE-based network has
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a feedforward structure with hard-limiter units; the (binary)
output activation of the th neuron at level , is given
by the Heaviside function, , of a weighted
combination (stimulus) of input variables,

and a bias

(1)

where the terms make up a neuron’s set of adjustable
coefficients. At the first layer, coincides with the dimen-
sionality of the input space, where input variables may be
either digital or analog. The collection of neuron activations
at each layer comprises a set of binary variables, whose
configurations form a vocabulary, , of symbols

(2)

Thus, at each level, the network’s transfer function can
be regarded as a mapping, , of input variables into
symbols. For levels above the first one, the mapping process
can be expressed as elementary combinatorial functions of
binary codes; feedforward network theory [14] shows that
one additional layer can support any symbol-to-class function,
and such approach is followed in [1]; however, this mapping
functionality can be implemented by look-up table, or, more
conveniently, by decision trees [15]–[17] as well.

In fact, the relevant coding process takes place in the
first layer, where the input space is partitioned into regions
and corresponding symbols are assigned. Since the goal of
this research is to exploit CCE properties for domain anal-
ysis, in the following, only the first-layer mapping will be
considered without loss of generality. Consequently, the level-
indexing superscript will be omitted for simplicity. Fig. 1 gives
a schematic representation of the network structure, and a
sample of the data-space partitioning mechanism.

Classification is performed by considering, for each symbol,
the classes of covered samples, and by measuring the ambigu-
ity associated with the occurrence of the symbol itself. That
quantity measures the uncertainty in classification when an
input sample has been mapped into a given symbol. Thus, if

indicates the th class among the possible classes, one
has to evaluate the conditional probability that a pattern,,
encoded by symbol , belongs to the class

(3)

Entropy [18] measures the uncertainty associated with theth
symbol

(4)

The analysis presented in [19] shows that the number of
symbols, , depends on the space dimensionality, , and
on the number, , of units in the first layer, and is upper

Fig. 1. The sample encoding mechanism in the first layer.

bounded as follows:

(5)

where if . When , the bound (5)
confirms an intuitive expectation: .

The uncertainty associated with the overall encoding system
is obtained by averaging entropy (4) over all symbols; symbols
are weighted with their probabilities of occurrence, .
The weighted sum covers all occurred symbols and yields CCE

(6)

The exact evaluation of the quantities related to CCE de-
pends on the actual data distribution, which is often unknowna
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priori , hence such quantities are estimated empirically from the
training set [1]. The following notations are now introduced:

Total number of samples in the training set.
Counts the occurrences of symbol , and
equals the number of samples encoded by.
Counts the number of samples which are en-
coded by and belong to the th class.

With these notations one can write empirical assessments
of the required probabilities

(7)

Substituting such estimates for the actual values in (3) and
(6) yields the total cost function associated with the encoding
system

CCE (8)

B. Training Strategies

The goal of the training process is to find out an optimal
weight set for the mapping system,, minimizing expression
(8). The global minimum is zero and indicates a perfect clas-
sifier with no ambiguities over training data. Imposing CCE
(8) as a cost function inhibits the application of gradient-based
optimization strategies. As a consequence, typical approaches
to weight tuning involve either simulated annealing [3], [4] or
random-search [5] methodologies.

The optimization problem is further complicated by the fact
that the proper number, , of neurons is not known. There-
fore, constructive strategies with increasing are usually
adopted to train CCE networks, according to two different
approaches.Batch training progressively adds units and read-
justs the whole parameter set after each neuron insertion. This
procedure ensures that the weight set is fully exploited in the
optimization task, but optimization complexity increases with
a network’s size and might require massive computational
efforts.Incrementaltraining adds one unit after each optimiza-
tion run, but freezes the weights of existing (previously added)
neurons. This keeps the complexity of the optimization process
constant, but represents a sort of “hill climbing” in the weight
space and most likely fails to bring in the smallest number of
neurons. The incremental nature of network building makes
the overall CCE-training problem similar to other constructive
models of neural networks [20], [21]. Incremental training will
be assumed as a default throughout the paper; the following
is an outline of the basic training process [1], [22]:
0) Input: a data set; empty hidden layer ;
the maximum tolerated CCE value,;
1) Repeat

Insert and random initializea new unit;
;

Repeat
Computethe quantities (7) and the cost function (8)
with the current weight set;
Adjust the weights of the newly added unit
accordingly;

Until the optimization algorithm stops;
Until CCE .

(a) (b)

Fig. 2. Freezing symbols reduces computational cost. (a) Data space parti-
tioning. (b) Symbol heirarchy.

The plastic network-construction algorithm makes it pos-
sible to further reduce the computational cost of training as
follows. A “homogeneous” symbol, covering samples belong-
ing to the same class, yields null local entropy, hence its
contribution to the total cost (8) is null. Therefore, as soon as
a set of weights are “freezed” after optimizing a new neuron,
one can sort out homogeneous symbols and remove all their
covered samples from the training set. This mechanism has
two major effects: first, pruning the sample set reduces the
computational cost for adjusting future neurons; second, the
symbol set keeps limited, since all symbols derived from a
homogeneous one need not be computed. The latter property
permits a hierarchical structure of occurred symbols, which
makes it possible that several, “virtual” symbols are not
accounted for explicitly.

A sample of symbol construction and the involved hierarchy
is illustrated in Fig. 2. Neurons A, B, C are included sequen-
tially: after the optimization of the first neuron (“A”), symbol

(“0”) is detected as homogeneous and does not proliferate.
Virtual subsymbols “000,” “010,” and “011” will not appear
in the table. Likewise, the homogeneous symboldoes not
expand after the optimization of neuron “B.”

The freezing mechanism generating virtual symbols makes
for a notable saving of computational cost and memory space
in symbol handling; in the above example, the final number of
stored symbols amounts to instead of the expected

. More importantly, the possibility of delimiting
space regions by half-hyperplanes allows the network to
define complex structures difficult to represent by standard
perceptrons. This property is specific of the CCE network
construction process and will be extensively exploited when
dealing with generalization performance.

C. Circular Augmentation of Neurons

As shown in expression (1), each neuron in the network is a
classical perceptron. A linear boundary is adequate in simple
cases, but approximating more complicate class distributions
may require combinations of many hyperplanes, thus failing
to retain some features of the classification problem. In other
words, the representation of the separating surfaces is done
by an unnecessarily large number of components. This is an
obstacle to an understandable domain representation. In such
cases, it is often useful to approximate separating surfaces with
boundaries with only a local support (closed surfaces).

Moreover, classification requires a rejection ability (or con-
fidence assessment). Rejection requires the classifier to im-
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(a)

(b)

Fig. 3. (a) The circular neuron model. (b) A sample of partitioning.

plement a representation of data distribution, with closed
boundaries for the high-confidence regions. It has been proved
[23] that with a limited number of hidden units, desirable for
many reasons, it is difficult to guarantee closed boundaries
with a standard multilayer perceptron, and it is even impossible
when .

The authors have also proved [6] that in many senses the
optimal choice for implementing a closed-boundary unit is the
“circular” model. Specifically, it is based on the only second-
order discriminating function which guarantees closed bound-
aries, and features the maximum efficiency [defined as gain in
representation ability versus increase in Vapnik–Cervonenkis
(VC)-dimension or number of parameters] with respect to the
standard perceptron.

In the “circular” neuron model, a neuron’s stimulus includes
a term that sums the squares of input values (Fig. 3). The
augmented formulation of a neuron’s output function can be
rewritten as

(9)

It is easy to show that the argument in expression (9) draws a
circular boundary; since only one additional input is involved,
the increase in complexity is limited. It is known that the
increase in the number of network weights has limited effects
on the generalization requirements in terms of VC dimension
[6], since the VC-dim of the circular unit is equal to the number
of parameters [24]. Therefore, the circular neuron can be
regarded as a standard perceptron, in which the quadratic input
behaves as a normal additional dimension in the data space.

Incidentally, this neuron model is a superset of the basic
linear perceptron, to which it reduces when . However,

the ultimate choice between a linear or a circular representation
relies on the optimization process and not on somea priori
model setting. Letting the network choose the appropriate rep-
resentation paradigm is the major advantage of the described
augmentation [22].

D. Convergence of CCE Networks

This section analyzes some important properties of CCE as a
cost function and of CCE-based classifiers. Basic properties of
the entropy function and quantities derived from information
theory will be used extensively.

Definition: The entropy associated with a probability dis-
tribution, , is

where the summation of terms covers all values of .
When , the entropy of two terms, and , will be
denoted as

Property: Information theory states the concavity of the
entropy function [24, Th. 2.7.3, p. 30], from which follows,
by Jensen’s inequality [24]

(10)

In the interval , the following property will be
used in the analysis:

(11)

Definition (Partition of a Data Set):Given a set of sam-
ples, , a partition of is a collection of
subsets such that:

. For simplicity, we use a common notation
for symbols and for subsets of samples. This notations is
unambiguous since the network supports a one-to-one mapping
between symbols and data partitions; in the following,cluster
will be also used as a synonym for subset of data. The fraction
of samples in (with respect to the whole training set) will be
denoted by , and the fraction of samples in (with respect
to the total number of samples in ) belonging to theth class
will be denoted by , hence .
The CCE (8) associated with a partition is
worked out as

CCE CCE

Definition (Nontrivial Partitioning Operator):Given a
data set, , including at least two samples, a nontrivial
partitioning operator is any mapping such that

, with and .
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Definition (Homogeneous Partition):A partition is ho-
mogenous if all samples in the partition belong to the same
class.

Property 1 (Partitioning Does Not Increase CCE):Let
be a partition of a data set , and

a partition derived
from : . CCE is a mono-
tonically nonincreasing function: CCE CCE .

Proof: This property derives directly from Jensen’s in-
equality (10)

CCE CCE

CCE

The fact that splitting a data partition reduces CCE can be
exploited to prove convergence of CCE iterative training. The
following theorem encompasses the general class of CCE
network models.

Theorem (Convergence of Plastic CCE Network):Let
be a nontrivial partitioning operator. Then, for any data
set, , there exists a finite sequence of instantiations of

, that splits into clusters such that
CCE . The sequence is obtained by the
following procedure:
CCE Network Training Algorithm
Initialize partition : set ; set ;
Repeat

1) Pick a cluster, , (if existing) from such that
CCE ;

2) If exists:

b.1 Apply to , and obtain a derived partition ;
b.2 Replace with

3) Set ;

Until CCE .
Proof: The theorem does not make any specific assump-

tion about the partitioning operator, except for its nontrivial
splitting, and exploits the validity of Property 1 at each
algorithm iteration. The general statement addresses a whole
class of plastic algorithms, for which a proof of convergence
exploiting the nonincreasing property of the cost function can
be found in [25].

In the algorithm, each instance of further splits but does
not recombine the partitions set by previous instances; this
implements incremental network construction. The theoretical
framework connects to neural network modeling: an instantia-
tion of the operator has a one-to-one correspondence with the
inclusion of a neuron, hence Theorem 1 ensures convergence
for CCE-based neural networks.

Proving that an operator is nontrivial ensures that the
operator can be successfully used for CCE network training.
This encompasses a wide class of operators, some of which
will be accounted for in the following; it is worth stressing
that the literature presents a wide collection of convergence
theorems for specific operators, which are typically sharper
than the one here mentioned. Comparisons between different
constructive algorithms can be found in [26].

Operator 1 (Linear Perceptron):The hyperplane-based
partitioning schema, implemented by the linear perceptron,
trained with the “pocket” training algorithm [27], is clearly
nontrivial and satisfies the convergence theorem. Incidentally,
this is the schema adopted in [1] for building CCE networks;
a convergence theorem for this operator is given in [28].

Operator 2 (Circular Perceptron):The previous operator
, when applied to the augmented neuron model defined

in Section II.3, supports a nontrivial partitioning scheme,
, drawing a hypersphere in the data space [22].

Operator 3a (Hull Clipping): Let be an operator
separating a point on the boundary of from the rest of the
data; for example, might simply isolate an element of
the convex hull of . By construction, is nontrivial
and fulfils the convergence conditions. Computing the convex
hull can be very expensive in higher dimensions, hence this
approach has a mere theoretical value, since there are much
more efficient ways to locate boundary points. The application
of is ultimately equivalent to Huang’s analysis [29] of
the maximum number of hard-limiter units in feedforward
networks.

Operator 3b (Cluster Aggregation):

Apply either or in such a way that

one generated cluster, is homogeneous and

is as large as possible;

Returnthe partition composed by clusters:

This algorithm improves the convex-hull clipper, as it allows a
cluster to include several samples, whereas a decrease in CCE
is still ensured by the homogeneous nature of created clusters.
In fact, maximizing a homogeneous cluster’s size may require
careful optimization. is computationally more reason-
able than and yields a more efficient representation, as
it generates a smaller number of partitions. Convergence theo-
rems for operators 3a–3b have been published in [30] and [31].

E. Theoretical Properties of CCE

The use of CCE as a cost function for training raises some
issues about its relation with the sample distribution and with
the classifier network’s performance. This section analyzes
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some theoretical properties of CCE that can help a designer
in setting up a neural classifier.

Property 2 (CCE Training as a Monte Carlo Minimization):
The network training strategy based on the minimization of
expression (8) implements a data-driven, Montecarlo version
of the minimization of the cost function,

(12)

where

• is the probability that a sample in cluster
belongs to class , and is estimated by ;

• is the indicator function defined as:
if and
otherwise

;

• is the (joint) probability that a sample lies at
position and belongs to class .

This property is direct consequence of the fact that a sample-
driven Montecarlo training of a network based on function (12)
is obtained by evaluating the cost,, on a discrete sample,

Thus CCE-based training is equivalent to the empirical min-
imization of a cost function supported by the true sample
distribution, ; that important property guarantees that
increasing the number of samples improves convergence on
the true statistics of the observed domain.

Conversely, one might wonder how minimizing CCE relates
to a system’s eventual classification error, both on the training
data and, more importantly, on the overall data distribution.
The following properties express such relations in terms of
bounds on the CCE value.

Property 3 (Bounds on CCE—Training):Let denote the
total classification error on training data (i.e., the ratio of
misclassified samples to the total number of samples). The
following bounds can be set to the CCE value:

(13)

Proof: Consider the th cluster, , and let denote the
local classification error within . Computing involves
a calibration process, which is performed by identifying the
locally predominant class, , and labeling the cluster accord-
ingly. If the cluster has several equally predominant classes,

one of them is selected at random. With these notations

(14)

To prove the lower bound, the “winning” class in is
considered separately; applying a known property [24] to local
entropy yields

(15)

By using the nonnegative nature of entropy, expression (14),
and property (11), one obtains

(16)

Summing contributions from all clusters and applying (16)
gives

(17)

which completes the first part of the proof.
As to the upper bound, one first derives an upper bound for

(15) by considering that entropy is maximum for a uniform
distribution of values

(18)

Applying (18) and Jensen’s inequality (10) to the expression
for CCE gives the upper bound

which completes the proof.
The above properties may be useful during network training,

especially because the lower bound witnesses the fact that CCE
is an effective estimator of the classification error. Conversely,
an upper bound may be useful to some training strategies that
do not pursue perfect training, but rather must meet some
requirements on classification error.
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When dealing with real applications, however, one is most
interested in the classifier’s performance on the actual data
distribution, which is not usually knowna priori. This raises
the problem of the generalization ability of CCE networks. In
practice, generalization performance is estimated by observing
the classifier’s performance on a data set not used to train the
network; cross-validation is widely used in the literature for
generalization assessment [14]. The following analysis defines
the use of cross-validation in CCE networks, and relates the
CCE value at cross-validation to the corresponding classi-
fication error. CCE at cross-validation, , is defined
as

(19)

where counts the partitions that are covered by test data;
in analogy with the definitions given for training,
indicate, for the th cluster, the total share of test samples
and the relative share of test samples belonging to class,
respectively.

It is important to stress that the data-space partitioning
schema is fixed, and has been wired into the network weights
by the training process. This explains why expression (19) uses
probabilities in the argument of the logarithm. In order to
evaluate , one must: 1) supply the trained network
with test data to observe the covered partitions; 2) evaluate
probabilities , accordingly; and 3) use results in (19).
Quantity (19) has no longer the properties of an entropy;
nevertheless, it features interesting properties when regarded
as a complexity measure of data distribution.

Property 4 (Description-Length Interpretation of CCE):
measures the average extra bits that are required to

represent the test data distribution when using the training
data distribution as an estimator.

Proof: Consider the single th cluster covered by test
data; clearly, the smallest amount of bits to represent the
related classification problem within such cluster is given by

(20)

Instead, the term in that uses training outcome as an
estimator is

(21)

The difference between these quantities is computed as

(22)

Expression (22) is the Kullback–Leibler distance between
the empirical distribution of classes in test data, , and

the distribution expected from training results, . This
(nonnegative) quantity gives, for theth cluster, the number
of extra bits deriving from the mismatch between empir-
ical (cross-validation) and expected (training) distributions.

By construction and neglecting constant terms, as
computed in (19) averages such distortion over the entire test
set.

Cross-validation CCE can be used as a description-length
measure of distortion in estimating local class distribution. The
practical usefulness of this process lies in the possibility of
estimating the overall generalization performance on a limited
sample of data. There is a clear practical interest in relating
the cost function at cross-validation, , with the corre-
sponding generalization performance; the following property
states such relations in terms of bounds on classification error.

Property 5 (Bounds on CCE—Cross Validation):Let
denote the total classification error on cross-validation data.
The following bound can be set on the value of

(23)

Proof: Let denote the predominant class in theth
cluster resulting from calibration after training; class distri-
bution is such that: .
Substituting this result in (19) gives

The lower bound ensures that is a consistent estimator
of the classification error. As compared with the lower bound
for training, convergence is not as fast, since the doubling
factor is missing.

Unfortunately, a finite upper bound on cross-validation cost
cannot be stated in the general case: there may exist a sample
distribution such that: (i.e., some test data
show up in a cluster not covered by the training set), which
invalidates the argument of the logarithm, hence

An upper bound to cross-validation cost would have allowed
one to assess a system’s generalization ability. The lack of
such an expectation raises the crucial problem of controlling
a network’s generalization performance during training. This
basic issue has been extensively studied in the literature,
following both practical and theoretical approaches. The fol-
lowing section addresses this problem in both ways, and shows
how some specific features of CCE-based networks can be
exploited to that purpose.

III. GENERALIZATION ISSUES INCCE NETWORKS

The training algorithm described in Section II-B pursues
CCE minimization by sequentially adding and adjusting neu-
rons until the cost function nullifies. In theoretical tratments
of such classifiers, “convergence” typically means reaching
complete, exact classification of training samples. In fact,
training a classifier to the point where it correctly classifies
100% of the training data often results in extremely poor
generalization. Besides, one has to provide some mechanism
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for preventing exponential growth in either the size of the
network or the number of steps in the algorithm. Although
the VC dimension of the “circular” node is not much different
from the linear node [6], allowing a network to grow arbitrarily
might lead to solutions with very large VC dimensions due to
a huge number of parameters.

Those issues ultimately call for a methodology that controls
network complexity. The lack of a gradient-based optimiza-
tion algorithm makes dynamic techniques like weight decay
practically unfeasible. Otherwise, inflating the training set
by injection of random noisemay improve generalization
performance [32], [33]; such an artificial data processing
enhances generalization by “smoother” separation surfaces.
Due to the plastic training algorithm, thisper se does not
limit the eventual number of nodes, hencepruningalgorithms
therefore seem the most promising approach to reducing
network complexity in CCE-based classifiers. A network is
let grow unconstrained, then complexity is reduced by some
pruning algorithm affecting weights, nodes, or both [34]. This
section first describes and sets the proper conditions for noise
injection to improve local separation surfaces, then presents
two algorithms to reduce network complexity.

A. Noise Injection

Adjusting the weights of a newly added unit implies the
training of a perceptron. The discrete nature of the digital
cost function and the random-search strategy of the training
algorithm do not ensure that the eventual solution is optimal
at generalization—a boundary may yield null cost on training
data without best reflecting the true data distribution. In
this sense, the addition of some random noise to training
samples aims to improve the error margin associated with the
decision boundary. This involves the artificial replication of
each training sample into a number of additional distorted
copies associated with the same class

(24)

where is a random vector having the same dimensionality,
, of training samples. The beneficial effects on training are

balanced by an increased computational cost of the training
process, since 1) the number of processed samples is increased
and 2) boundaries are more difficult to work out.

Fig. 4 gives a sketch of the underlying principle of opera-
tion. The progression of boundaries obtained with different
noise levels shows the possible beneficial effects of noise
injection to the “quality” of the resulting error margin. The
example also indicates that the amount of injected noise
heavily affects the ultimate result.

Estimating the distortion level properly is critical [33], [32];
the research presented here describes an analytical method to
work out the maximum amount of tolerable injected noise. The
method takes into account both the specific neural problem
(perceptron training) and the empirical distribution of data
(classes and positions of samples).

In the lack of specific information about the spatial distribu-
tion probability of samples, an isotropic model of noise should

be used. Under this assumption, noise is modeled by

(25)

where the random vector is uniformly distributed in the
hypercube . Noise energy is a random variable,
whose instantaneous and average values,and , respectively,
are computed as

(26)

The “worst” pair of data is the pair of closest samples that
belong to different classes; let denote the (square) distance
between such samples

(27)

To evaluate the maximum noise, one imposes that, on
average, the “cloud” of random-generated artificial samples
does not overlap with training samples of different classes.
This implies that the space region around a noise-inflated
sample lie within a given range from the closest training
sample belonging to a different class. If indicates the factor
controlling the cloud overlap (typ., ), the expression
for the optimal noise level stems from imposing the above
constraints in (26) and (27)

(28)

It is worth stressing that noise injection aims to improve
the classifier’s structure rather than to limit its complexity; the
number of neurons might increase arbitrarily if no growth-
control mechanism is provided. In the practical approach
presented here, one typically sets a fixed, upper limit to the
total number of neurons during network construction, then
applies pruning to remove the inessential units that might have
been generated erroneously by early optimization cycles.

B. Use of CCE Networks for Data Analysis

The possibility of listing the samples belonging to a partition
is a crucial feature of CCE networks; indeed, the labeling of
space regions gives this neural model a specific effectiveness
at data analysis which is not easily shared by other approaches,
and which makes it possible to use CCE networks for domain-
space analysis. The basis for this task is the hierarchical
arrangement of symbols and their one-to-one mapping to data
partitions, which will be used extensively in the pruning and
clustering algorithms. The theoretical treatment will use the
following definitions.

Definition (Depth of a Symbol):The depth of a symbol,
, is defined as the number of bitsexplicitly composing

(i.e., a symbol’s depth counts only the bits defined before
any “freezing” operation). In the example of Fig. 2,

.
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Definition (Expansion of a Symbol to a More Specific One):
Consider two symbols, , and , such that lies at a
higher hierarchical level than , i.e., . The
expansion of to is defined as the bit configuration,

, such that

if
if

(29)

An expanded symbol has the same label of the higher-
level symbol. In the example of Fig. 2, “ ” and

“ .” It is most important to stress that, in force
of property (5) and depending on , not all bit configurations
represent valid symbols (as is the case, in Fig. 2, for “101”).
Therefore, expanded symbols require a validity check. This
can be carried out either empirically, by checking whether
a sample yields the considered symbol, or analytically, by
verifying whether the set of inequalities associated with the
bit configuration admits valid solutions in the domain space.

Definition (Neighboring Partitions):Two partitions are
neighboring if their associated symbols 1) are both valid and
2) are at unity Hamming distance. Likewise, two partitions
are -neighboring if they are neighboring and their associated
symbols differ in the th bit position (i.e., the th neuron
separates them).

Definition (Strongly Compatible Partitions):Two parti-
tions, , are strongly ( -) compatible if they are (-)
neighboring, and are labeled with the same class. Two (-)
neighboring partitions that are both unlabeled are strongly (-)
compatible. The operator that indicates strong compatibility
will be denoted as , returning one iff and
are strongly compatible, and zero otherwise. Likewise,

denotes strong -compatibility.
Definition (Weakly Compatible Partitions):Two partitions,

, are weakly ( -) compatible if they are (-) neighbor-
ing and only one of them is labeled. The operators indicating
weak compatibility, and weak -compatibility will be denoted
as and , respectively, returning one
iff and are weakly ( -) compatible, and zero otherwise.

C. Pruning Algorithm

Sequential training conveys inefficiences in neuron place-
ments, especially in the early algorithm steps and with complex
data distributions. The neuron linearity and the plastic training
strategy may generate redundant boundaries whose effect is
overriden by later ones; in such cases irrelevant neurons can
be removed. The pruning process seeks those “cuts” in the
data space whose actions are overriden by subsequently added
units.

The principle of operation for pruning is that a redundant
cut may not separate two partitions that are labeled with
different classes. In other words, if two incompatible regions
share a boundary, then the neuron spanning that boundary
may not be removed. Conversely, theth neuron can be
eliminated if all pairs of symbols lying across its associated
boundary are -compatible. Some issues might arise if some
space regions lying on boundaries are unlabeled; their trea-
ment ultimately depends on performance requirements and are
imposed by the target application. In particular, one might
choose a conservative strategy, which privileges consistency
over network simplification; in this case, strong compatibility
between neighboring symbols should be required to allow
boundary pruning. Conversely, accepting weak compatibility
to permit boundary cancellation implies a kind of “optimistic”
strategy that favors network simplification. The latter approach
makes for a larger number of pruned nodes, hence it will
be adopted in the algorithm formulation shown at the bottom
of the page. The algorithm operation is illustrated in Fig. 5,
where the generalized-XOR problem is used as a testbed [22].
Fig. 5(a) presents the initial situation after network training,
where neurons are marked by their progressive insertion order.
Fig. 5(b) highlights a pruned unit (neuron 1), and points out
the pairs of compatible symbols that are considered by the
pruning algorithm. Fig. 5(c) presents the final situation after
pruning all irrelevant units.

D. Clustering Algorithm

Network simplification is not the only opportunity that is
offered by the explicit labeling of space regions; indeeed, one
might exploit the concept of neighborhood among partitions
to inspect the internal structure of the domain space. In
this case, the analysis typically aims to assess the number
and composition of space portions that have a topological

0) Input: a trained network, including units and spanning symbols over the data space;
1) For eachneuron :

1.A For eachsymbol, :
For eachsymbol, :

begin
a. If set

elseif set
else set

b. If abort the check for the th unit andgoto Step 1
end

1.B Mark the th neuron as ‘pruned’
2) Eliminatepruned neurons
3) Recomputethe symbol table.
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(a)

(b)

(c)

Fig. 4. The effect of noise injection on the separating boundaries. (a)
Rendom-search training on the original data set may lead to boundaries with
poor error margin. (b) and (c) Increasing noise injection improves the margin
quality of the separating boundary.

significance for classification. Therefore, the inspection starts
from the collection of elementary partitions labeled by a
trained CCE-network, and leads to complex structures that
might help understand the underlying problem nature.

Such operation is here referred to as “clustering,” and
takes full advantage of the possibility of directly observing
neighboring regions. In the present context, a cluster is defined
as a nonempty set of pairwise-contiguous partitions that are
labeled by the same class; the cluster is labeled accordingly.

The principle of operation of clustering is that two elemen-
tary partitions (as well as entire clusters) may merge when 1)
they are labeled with the same class and 2) they face across a
segment of a common boundary. This definition again involves
the concept of neighborhood among partitions, whereas the
constraint on equal classes requires strong compatibility. As
opposed to pruning, the clustering process intentionally does
not adopt weak neighborhood, so that undecided space regions
may be preserved in the eventual structural representation.

Thanks to its most general definition, a cluster may span
a quite complex portion of the data space, which typically
cannot be represented by elementary boundaries easily. On
the other hand, the number of compact subregions shrinks
drastically, hence an analyst may get some hint about the
number and displacement of significant zones in the data
distribution. Besides, if a cluster is regarded as a collection of

(a)

(b)

(c)

Fig. 5. Operation of the pruning system for the generalized-XOR problem.
(a) Situation before pruning. (b) Pruning context for Neuron 1. (c) Final
situation.

digital symbols, any classical reduction algorithm from binary
logic can apply to the bit configurations to sinthesize out sim-
plified expressions. This approach to simplification resembles
a rule-extraction process. It does not guarantee, however, a
decrease in a classifier’s complexity and VC-dimension, since
intercluster boundaries may be so intricate that no reduction is
possible in their representation. Therefore, one might say that
clustering is useful in simplifying interpretation rather than
representation.

In the following outline of the clustering algorithm, will
denote the th cluster, and its associated class. By ob-
vious extension, two clusters are mergeable when they include
two partitions that are mergeable as shown in the algorithm at
the bottom of the next page. It is easy to prove that, in force
of the condition imposed at step 1.B.b, all symbols and related
space regions included in a cluster will belong to a same class.
In addition, thank to the neighborhood consistency, there exists
a finite and uninterrupted walk connecting all points within a
cluster; in other words, the space portion defined by a cluster
is compact.

The clustering algorithm has a limited computational cost
(since it operates at the symbol level); in addition, it applies di-
rectly to multiclass problems and possibily quite complex data
distributions. It is worth noting that the clustering algorithm
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is totally independent of the pruning algorithm previously
discussed; indeed, the clustering action converges to the same
solution when it is applied either before or after network
pruning. In the generalized-XOR problem, for example, the
algorithm invariantly yields four clusters for both the situa-
tion in Fig. 5(a) and that in Fig. 5(c). The operation of the
clustering algorithm is exemplified in Fig. 6, where the CCE
network faces an artificial classification problem spanned by
five random lines in the two-dimensional (2-D) plane. Fig. 6(a)
presents a sample distribution of training data (the test was
repeated several times successfully on different data sets).
Fig. 6(b) displays the space tessellation as obtained by the
trained network, which includes seven neurons; symbols at
different hierarchical levels are apparent. Fig. 6(c) presents
the result of the clustering algorithm, which converges to four
clusters, and demonstrates the possibly complex nature of the
aggregated regions.

IV. EXPERIMENTAL RESULTS

The experimental evaluation of the described methods and
algorithm aims to verify the consistency of the derived the-
oretical properties, and the efficacy of the various criteria
proposed for network construction. To this end, the empirical
analysis took into account several different domain problems,
and tested each of them under several different conditions,
mainly to remove any bias from estimated results.

The problems considered include both artificial domains,
which can drive an easier (typically visual) interpretation of
the methods’ performances, and real-world testbeds, which
allow significant comparisons with related achievements in
the literature. The empirical approach conveyed a remarkable

(a)

(b)

(c)

Fig. 6. Sample operation of the clustering algorithm on a random-net learn-
ing test.

experimental effort, hence a summary of obtained results will
be here presented; the presentation is arranged according to
the various domains considered.

0) Input: a trained network, including units and symbols;
1) For eachsymbol

Begin
1.A If does not exist such that (create new cluster if necessary)

Set ;
1.B For eachsymbol : (match symbol with table)

Begin
1.B.a.If (expand higher symbol if necessary)

Set
Elseif

Set
Else

Set
1.B.b. If (Allow only strong compatibility)

Begin
If does not exist such that (If the symbol has not been assigned yet)

Set (join to )
Else

Begin (merge clusters)
Set
Delete ; Set ;
End

End
End

End
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A. Generalized XOR

This testbed [22] conveys a classification problem that
most stresses a CCE network’s representation power. The
optimal solution requires only two units whose boundaries
coincide with the coordinate axes. As far as incremental CCE
training is concerned, the problem is especially interesting
because any plastic optimization-based approach would fail
to catch the problem’s nature and would necessarily miss
the simplest solution. Indeed, to attain optimality, the first
neuron must draw a boundary along one axis, accepting
a singular partitioning that does not decrease uncertainty:
however, when using incremental network construction, any
optimization approach will reject the (correct) solution at the
first step, and will choose one of the many partitionings along
nonsingular directions that decrease CCE.

A sample solution found by CCE training involving linear
units has already been shown in Section III-C. The problem’s
difficult topology has been used in that situation to demonstrate
the efficacy of the pruning algorithm. In this specific testbed,
the circular model does not bring in a significant advantage
over linear units; however, in both cases the pruning algorithm
ends up with two neurons and the clustering algorithm con-
verges to the correct solution of one cluster for each quadrant.

B. Nested Spirals

This quite famous testbed [7] involves a highly nonlinear
class distribution. A backpropagation network requires three
hidden layers of sigmoidal neurons [35] to represent the
problem with a considerable optimization effort. Including
circular neurons in multilayer perceptrons makes it possible
to classify samples correctly with one layer of at most six
units [6], convergence failures are most rare.

When applied to the nested-spirals testbed, CCE networks
with linear units require more than 30 neurons and the resulting
representation may appear unsatisfactory with respect to the
data distribution. The use of circular units improves the quality
of problem solution in both training and generalization. The
number of neurons decreases to a range of 8–10, and Fig. 7
(left, middle) allows a visual comparison of the resulting prob-
lem representations. The advantage derives from the fact that
the circular model is a superset of conventional perceptrons
and simply covers a wider class of problems with a limited
increase in complexity.

The nested-spiral problem can demonstrate visually the
enhancements in generalization performance brought about
by the techniques described in Section III. Fig. 7(c) displays
the final representation resulting from a joint application of
1) noise injection for network training and 2) the clustering
algorithm. To obatin the result displayed in the picture, the
original data set (including points classes) has been
artificially inflated tenfold, using a noise level estimated ac-
cording to theoretical prediction (28). The network’s number
of neurons has been limited to 30 for stopping training.
The clustering process has been then applied to the space
partitioning spanned by the trained network, yielding to the
three elementary clusters distinguished by the different colors.
The experimental evidence presented is merely a sample of

(a)

(b)

(c)

Fig. 7. Sample solutions for the nested-spirals problem. (a) and (b) Network
mappings using linear and circular neurons (without noise injection). (c) The
three clusters identified by the clustering algorithm.

the several tests performed. All experiments on this problem
led to similar results, and are not displayed here for brevity.

The results on such a complex testbed are significant mainly
because they confirm theoretical expectations about the noise-
injection criterion. In addition, the outcome of the clustering
algorithm witnesses the power of the data-inspection tool that
we obtain from joining complexity control (noise injection)
with posttraining simplification (clustering).

C. Random Teacher Network

These tests investigate the performance of CCE networks
when learning the classification schema spanned by a set of
random linear dichotomies. Choosing a two-dimensional data
space facilitates interpretation of results; a sample solution for
one of the several runs performed has already been given in
Section III-D—Fig. 6.

Such experiments involved a massive computational effort,
involving problems at increasing complexity: several runs used
an increasing number of random dichotomies over the unit
square (typ. 15 runs for each schema, ranging from
two to seven dichotomies). For each random schema, a training
data set has been sampled and used to build a CCE-based
classifier; due to the hyperplane-based schema, only linear
units have been considered. Network training has involved
noise-injection at increasing noise levels; generalization has
been evaluated by measuring classification accuracy over the
entire square interval.

The graphs in Fig. 8 give the results obtained for a subset
of such experimental cases; similar achievements have been
obtained in all tests, and are not shown here for brevity. In the
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(a) (b)

Fig. 8. Classification results at increasing noise levels for the random-network problem. (a) Five-dichotomies case. (b) Seven-dichotomies case.

graphs, each point represents a network-training result: the-
axis gives the noise level adopted to inflate the basic training
set, whereas the-axis measures the overall generalization
error measured for the trained network. The results confirm the
validity of noise-injection: classification error has a minimum
at a nonnull noise level, which depends on the specific problem
considered, and that matches theoretical expectation satisfac-
torily, as will be statistically supported in the next sections.

D. Sonar

Training runs on this testbed served to verify the advantage
of circular units over linear ones in a real and very well-
known domain [9], that involves a two-class problem and
a 60-dimensional data space; the training set includes 104
samples. The classification problem is known to be linearly
separable [36], and both approaches actually converged to the
optimal solution after a considerable optimization effort. In
this sense, the reported results relate to suboptimal solutions
with more than one neuron, yet allow a comparison between
the two neuron models.

To ensure statistical significance, the comparative analysis
involved forty pairs of training runs, including the linear and
the circular neuron models under equal optimization conditions
and with equal parameters. Thus any test sample consisted in
the number of units required for convergence on the training
set; in practice, this number always kept in the range

.
Table I gives the empirical distribution of number of units

for the two neuron models, showing a marked preference for
the circular model, which typically requires fewer neurons.
Table II gives some statistical parameters summarizing the
convergence results. The superior performance of the circular

TABLE I
DISTRIBUTION OF UNIT NUMBERS

Neuron model Number of runs
w/ 2 neur. w/ 3 neur. w/ 4 neur.

Linear 8 26 6
Circular 18 19 3

TABLE II
STATISTICAL SUMMARY

(40 runs) Avg. neurons Variance
Linear 2.950 0.356
Circular 2.625 0.394

model is confirmed by such measures, for which Student’s
test indicates that the two means are significantly different

. Indeed, the 95% confidence intervals for the given
average and variance values are and
for the circular and the linear neuron models, respectively.

The graph in Fig. 9 plots test error percentage versus
increasing noise level for both linear and circular neurons,
and demonstrates the efficacy of noise-based generalization
control. Remarkably, best generalization is attained by the
predicted noise level. A final remark concerns the optimization
effort required for network training (for ), which appears
impressively smaller (less than 70 000 random search steps)
than the equivalent effort for backpropagation training.

E. BCancer

Wisconsin’s Breast Cancer database [10] collects 699 cases
for such diagnostic samples. This testbed involves a two-class
discrimination problem, and the two categories are almost
balanced in the original patient set. The data dimensionality is
10, but patient’s ID can be removed for the present purposes,
hence a nine-dimensional domain was considered. In addition,
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Fig. 9. Generalization perf. versus noise level—“sonar.” Thin line: linear
units; thick line: circular units.

the 16 sample cases including “missing” values were removed
from the data set, whose cardinality eventually amounts to 683.
Since the numerical representation of features for each patient
spans a quite wide numerical range, the data were normalized
along each coordinate axis.

In order to assess generalization, the sample set was split
randomly into a training and a test set for cross-validation;
the training set included 400 samples, whereas the test set
included the remaining 283. This procedure was repeated
several times to remove possible bias deriving from the
random sampling. The graphs in Fig. 10 presents a sample
result of the generalization performance for the linear-neuron
classifier; the average advantage of using noise-injection is
apparent and also matches theoretical predictions, as will be
further detailed in the following.

F. Phoneme

The experiments on the Phoneme database [11] consider
network performance from a twofold perspective: first, to
compare the classification accuracy resulting from either cir-
cular or linear units; second, to verify experimentally the
validity of the noise-injection procedure on a complex, real-
world problem. The Phoneme problem is interesting because
it demonstrates the general applicability of the CCE-based
approach in a multiclass classification problem, in which the
ability of segregating space portions becomes crucial to the
overall classifier’s performance.

In each run, the original database has been half-split at ran-
dom into a training and a test set. The experiments followed the
same procedure adopted for the previous testbed. Likewise, the
graphs in Fig. 11 plot generalization error versus noise level;
two curves are given, one for each kind of unit. The results
obtained support the validity of the noise-injection method for
controlling generalization performance, no significant differ-
ence has been detected between linear and circular boundaries.

G. Vowel

The “vowel” testbed [37] provides a challenging 11-class
case study involving speech identification. The database in-
cludes a training set and a test set, made up of 528 and
462 samples, respectively; the data-space dimensionality is
10. The cited work on this testbed [12] allows a comparative

(a)

(b)

Fig. 10. Generalization perf. versus noise level—“BCancer.” (a) linear units;
(b) circular units.

analysis of a method’s accuracy and generalization ability. In
a first set of experiments, for simplicity of implementation and
without loss of generality, the classification task was divided
into several twin-class problems. A network was trained to
discriminate each class from the remaining ones, which were
in turn unified under a unique label; this mapped one 11-
class problem into 11 two-class subtasks. Those experiments
considered the different behaviors of linear and circular units.
For each class, five networks were brought to convergence
on training data, and the resulting average number of neurons
was worked out. The same process, under equal optimization
conditions, was performed using both the linear and the
circular neuron models. The total number of trained networks
(110) witnesses the massive experimental effort involved.
Table III gives the average number of units required for each
class, and confirms the overall advantage of circular units over
linear ones; the odd behavior for class 5 is a consequence
of imperfect optimization. Interestingly, evidence also shows
that Class 1 can be separated from the other classes by one
circular unit.

An additional set of experiments studied the consistency of
noise-injection for generalization control. Therefore, no exact
training was pursued, but rather the number of neurons in a
network wasa priori limited to a maximum of 30; classifi-
cation on the test set gave the actual evaluation parameter;
all categories were considered simultaneously in a multiclass
network-building problem. Fig. 12 reports the classification-
error curves (using the conventions previously adopted), and
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Fig. 11. Generalization error versus noise level for three sample runs on the
phoneme database. Thin line: linear units; thick line: circular units.

TABLE III
“V OWEL” TRAINING

Class Avg. No. of Units
Linear Circular

1 2 1
2 4.2 4.2
3 4.6 3.2
4 4.6 4
5 5.2 5.7
6 6.4 6.3
7 6.6 5.3
8 4 2.8
9 6.8 6.1
10 3.8 3.4
11 5.6 5.6

proves both the benefit of noise injection to generalization and
the advantage of circular units over linear ones.

H. Vowel2D

The “Vowel2D” database [13] resembles the previous one
since it relates to a very similar problem (i.e., speech recog-
nition). This testbed is interesting since it is defined over a
two-dimensional space, hence some visual inspection of the
classifier’s behavious is feasible [13]. Vowel2D is a multiclass

Fig. 12. Classification error % versus noise level for “vowel.” Thin line:
linear units; thick line: circular units.

Fig. 13. Gereralization error % versus noise level for the “Vowel2D” testbed.

(a) (b)

Fig. 14. Domain partitioning for the “Vowel2D” testbed. (a) linear units; (b)
circular units.

problem of peculiar difficulty, since classes are quite
intermixed within one another; the database is split into a train-
ing and a test set, including 338 and 333 samples, respectively.

The difficulty of this real-world classification problem give
the experiments some additional validity in confirming the
generalization-control mechanisms. In particular, the differ-
ence in behavior between linear and circular units is apparent,
and the consistency of the noise-injection criterion is strongly
validated. As usual, Fig. 13 compares the related classification
error curves at increasing noise level, whereas Fig. 14-left)
and right) show the domain partitioning when using linear
and circular units, respectively.

I. Numerical Validation of the Noise-Injection Criterion

This section reconsiders the noise-injection criterion and
gives statistical evidence of the theoretical prediction given
in (28), exploiting the experimental results from the testbeds
previously illustrated. Table IV summarizes the relevant quan-
tities for the analytical computation of the optimal noise
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TABLE IV
THEORETICAL (K = 1:5) AND EXPERIMENTAL

NOISE LEVELS AT OPTIMAL GENERALIZATION

Testbed Noise Level
Name d0 �

2 Theor. Actual

XOR 2 0.05 0.075 0.03
Spirals 2 0.14 0.176 0.1
RndNet(5) I 2 0.047 0.0705 0.09
RndNet(5) II 2 0.07 0.1050 0.07
RndNet97) I 2 0.047 0.0705 0.05
RndNet(7) II 2 0.03 0.0450 0.09
Sonar 60 0.507 0.1388 0.11
BCancer 9 0.529 0.37 0.38
Phoneme I 5 0.045 0.0427 0.03
Phoneme II 5 0.031 0.0294 0.04
Phoneme III 5 0.048 0.0455 0.05
Vowel 10 0.427 0.2864 0.35
Vowel 2D 2 0.0095 0.013 0.05

Fig. 15. Comparison of theoretical (K = 1:5) and experimental noise levels
at optimal generalization.

level, and compares theoretical expectations with the actually
measured values for the various testbeds. The comparison is
also illustrated graphically in Fig. 15.

From experimental measures it was established that the
optimal value for parameter in expression (28) is ,
which implies that the artificial cloud of patterns around an
original sample may extend beyond its maximum limit. Such
adjustment is mostly general and is not tuned to any specific
testbed. The increase in is explained by considering that the
theoretical expectation for noise level has been obtained from
the worst case, i.e., the pair of closest heterogenous samples;
in fact, the statistics of intersample distances over the whole
training set is wider and the related constraint may be relaxed.

The data reported give evidence of the consitency of the
noise-injection criterion; Pearson’s correlation index among
the two sets of values, amounting to ,
strongly validates the noise-injection estimator on a statistical
basis. It is worth stressing that a very similar result

was obtained when using , so that
one may conclude that the above-mentioned correction is not
essential to the overall method’s validity.

V. CONCLUSION

The major apparent difference between CCE and backprop-
agation networks for classification is the entropy-based cost
function, which determines a different behavior in setting
sepration boundaries, and imposes a different strategy in
optimizing a network’s parameters. However, a crucial feature

of CCE models is that they proceed by partitioning and
labeling regions of the data space explicitly. Such ability to
represent the empirical data distribution at the local level is a
major advantage of the overall approach, which widely makes
up for the (possibly) cumbersome use of nongradient-based
algorithms for training.

In this regard, the adoption of a plastic model for network
building aims to limit the huge computational cost involved
by random-search optimization. The consequent danger of
combinatorial explosion in the network’s complexity (in-
volving poor generalization) is compensated by posttraining
algorithms, which remove the inefficiencies conveyed by the
plastic approach in the early phases of the training process. The
pruning and the clustering algorithms reduce a network’s com-
plexity by cutting inessential parameters and by simplifying
representation, respectively. Conversely, artificially inflating
the training set by controlled noise injection enhances general-
ization performance, since the resulting separation boundaries
exhibit a wider margin of classification error.

The techniques described in this paper for improving gen-
eralization should be therefore regarded as an integrated ap-
proach to network construction. In particular, noise injection
improves boundary placement, whereas joining plastic growth
with pruning trades off a lighter computational load for a wider
memory occupation. This seems to place the overall approach
in a memory-based paradigm for network construction that is
recently getting increasing interest, especially in view of the
constantly decreasing cost of hardware implementation.

The experimental evidence collected in the reported research
also indicated that the CCE-based approach never suffered
(or even came close to suffer) from the above-mentioned
combinatiorial explosion in symbol labeling. This empirical
result holds for both artificial and (especially) real-world
domains, and directly confirms the equivalent observations
preliminary reported in [1].

From this viewpoint, the current lines of research in this field
include the design of analog VLSI architectures supporting the
presented paradigm, which should greatly reduce development
costs in terms of optimization time. At the same time, the
development of specific and more sophisticated training algo-
rithms is also being investigated, thus leading to an integrated
paradigm unifying CCE-based and classical backpropagation-
based neural models.
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