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ABSTRACT

The paper describes a methodology based on Vector
Quantization (VQ) to support visual vehicle identification:
license plate location is the specific task involved by VQ-based
image coding. Using VQ yields superior picture compression
for archival purposes and supports effective location at the same
time. VQ encoding can give some hints about the contents of
image regions; such information is exploited to enhance
location performance. Training the VQ system by examples
gives the advantage of adaptive on-field tuning. The approach
has been tested in a real industrial application and included
satisfactorily in an ATS for vehicle identification.

1. INTRODUCTION

A visual vehicle-identification system in mainly made up of a
few distinct modules with specific signal-processing functions
[1-3]: 1) a low-level imaging module restores signal quality by
application-specific techniques; 2) the location of interesting
scene regions is attained by a segmentation process; 3) location
results feed the actual vehicle-identification module including
Optical Character Recognition (OCR) methods. In some
applications requiring archival facility for time-logging
purposes, image-compression algorithms can also be applied to
reduce storage space.

This paper tackles the problem of license plate location in visual
signals, and presents a novel methodology that exploits Vector
Quantization (VQ) [4] as the basic image-processing paradigm.
As compared with related approaches, using VQ enables an
ATS to support both plate location and image coding
simultaneously and efficiently. The baseline is that VQ-based
image coding gives satisfactory visual quality at high
compression ratios; the proposed research shows theoretically
and practically that specific and proper use of VQ methods can
make location straightforward as well.

2. USING VQ FOR PLATE LOCATION
AND IMAGE CODING

2.1 Vector quantization techniques
Compression is the reference application area of Vector

Quantization [4] in 2-D signal processing [S]. In the present
context, VQ-based image coding operates in the pixel domain.
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The processed image is split into elementary blocks {xi,....xz},
which define vectors in a data space where the quantization
process exploits a predetermined, fixed “codebook” of reference
vectors (“codewords™) {w,...,wn}. The coding process
associates each block x; with the codeword w*(x;) that optimizes
a similarity criterion; the block is encoded by the codeword’s
index. The Euclidean distance usually measures the distortion of
the block-codeword matching. Compression results from using a
codebook that is “small” as compared with the number of
possible blocks. Therefore, VQ image coding is a lossy process,
as reconstructed images differ from original ones due to
quantization noise. The research presented here adopted a novel
training algorithm specifically designed to place codewords
optimally and minimize codebook size [6].

Mean Residual Coding (MRC) subtracts a block’s mean value
from the block’s pixels before VQ encoding; MRC makes block
coding brightness-independent. A variable block size enhances
compression: as not all image regions convey the same amount
of information, uniform regions may be covered by larger
blocks, whereas detail-rich image portions require smaller
blocks. The dynamic setting of block size is driven by a
thresholding mechanism on the variance of pixel values within
the block. If square blocks are used and each block-splitting
yields four subblocks, a quadtree minimizes the structural
arrangement of blocks within a whole picture. The result of VQ-
based image-coding (Fig.1) includes three data structures: a
quadtree ruling block layout, a set of mean values giving the
average brightness within each block, and a corresponding set of
codeword indexes to render details.

2.2 Using VQ for plate location
Most location methods consider aspect features of candidate

portions (e.g., edges [2], contrast [1], etc.). The drawback of
such approaches is that the location module often ignores
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Fig. 1 - Schema of size-adaptive image compression
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whether the regions considered contain plate-pertinent
information so that the crucial textual analysis is remitted to
succeeding steps of the image-understanding process. The
quantization principle helps overcome such limitations just
because the coding process involves an implicit analysis of
image contents. A codebook is defined in the same (pixel) space
as the encoded blocks, hence associating each block with its
best-matching codeword implies a classification of the block
content. The classification result may give some hint about the
block content itself, in particular, it may establish whether the
block is likely to cover a license plate. A license plate can be
realistically assumed to be framed by a rectangular box; in the
following, the associated rectangular regions will be denoted by
the term “stripes”. The general location problem is equivalent
to locating the image region $* that satisfies:
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where #(x,y), is equal to 1 if location (x,y) belongs to a license
plate, and is zero otherwise.

In size-adaptive image coding, a stripe’s boundaries lie along
the grid of blocks. Such an image-partitioning schema and the
VQ-based approach impose a reformulation of the overall
location problem: First, the integral (1) becomes a sum of
contributions from blocks rather than from single pixels.
Secondly, when considering the result of VQ block
classification, the limited number of codewords gives rise to an
ambiguity problem: the same codeword may encode both
“interesting” and “insignificant” blocks. The contribution from
each block must express the average probability that the block’s
pixels convey plate information. The VQ-based location
problem (1) is restated as

$* =max 2 p(z =llb) (2)
S pes

where b indexes the codewords associated with the blocks in
region S, whereas p(t = llb) denotes the average probability that

a block’s pixels contain plate information, given that the block
is coded by codeword b. In VQ-based location, with each
codeword a “score” is associated that estimates the
corresponding probability of conveying plate information. The
probability of a region will result from the contributions of all
codewords involved in the coding of the region itself. Location
results directly from sorting out the highest-score region in the
image.

2.3 VQ-based training of codeword scores

Conditional probabilities in (2) cannot be estimated directly
from a training set, as this would imply knowing the actual
distribution of b, i.e., considering all occurrences of codeword b
in all possible images. However, one can use Bayes’ theorem
and, disregarding constant terms, derive a new problem
formulation:
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Fig.2 - Global schema of the image-compression and
license-plate location systems

which makes empirical training viable. The denominator of each
term in summation (3) is the overall probability of codeword b,
and can be evaluated from relative frequencies by counting the
occurrences of b. The numerator is the probability of using
codeword b when the encoded block is known to cover a license
plate. In order to estimate the conditional probability, one can
reconsider the images in the training set, crop the image
portions holding the license plates, and keep track of the used
codewords accordingly. Again, relative frequencies will give the
required estimates.

In practice, the final implementation may also differentiate
between scoring terms: therefore, the codewords coding either
license-plate blocks or insignificant image portions may get
different rewards or penalties, respectively. The scoring process
is computed off line on the image set after training the codebook
for VQ compression: each codeword is augmented by a content-
dependent parameter that reflects the likelihood that the
codeword may contribute to coding a license plate.

2.4 Stripe extraction

Stripe extraction is the system process selecting the candidate
regions to be considered in (2). It exploits the same adaptive
mechanism as adopted by VQ encoding: image regions with
higher contrast and more details are mapped by smaller blocks.
License plates belong to such a class of regions for the high
contrast between text and background. Thus the set of
interesting image regions can be easily compiled by searching
the image structure (quadtree) for contiguous areas mapped by
small-size blocks. Such criterion is quite robust because the
quadtree contrast-coding information is brightness independent
(block mean values arc removed). The only parameter in such
process is the expected stripe size. In fact, the stripe width and
height do not exhibit high variance values, as the eventual stripe
size mostly depends on sensor positioning. Thus training a stripe
extractor just consists in averaging the stripe size from examples
containing license plates.
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Fig. 3 — (a) Sample input picture and its quadree
decomposition; (b) candidate stripes extracted from (a)
and their associate aspect scores.

Spatial VO Final
Stripe 1 ~100 -1.66 ~101.66
Stripe 2 0 -1.46 -1.46

Stripe 3

Stripe 5 0 -2.21 -2.21

Table I. Scores assigned to candidate stripes. Shaded
row: the final selection

At this stage, stripe extraction can prompt an arbitrary number
of selected candidates. Each stripe is scored by rewarding its
consistency with the expected size; too long or too short stripes
get a penalty term before undergoing VQ-based location.

2.5 Stripe scoring and final license plate location

After stripe extraction has worked out a set of candidate regions,

the location module first compiles the set of codewords used to
encode the blocks in the extracted stripes. Summing up the
related probabilities characterizes each stripe accordingly. Thus
the final score associated with a stripe results from two additive
terms: the partial term from stripe extraction accounts for the
external aspect, whereas the term summing codeword scores
takes into account the actual content of the coded blocks. The
location process eventually selects the highest-score stripe from
the final sorted list.  Figure 2 presents a schematic
representation of the complete system, and indirectly points out
the deep-rooted link with the VQ-based compression paradigm.

The schema need not issue a location result for each input
image, as the system can “reject” an input signal and prompt a
null output. This useful feature is easily attained: if no candidate
stripe exhibits a satisfactory score, no image region meets the
reliability requirement for license-plate location. The rejection
ability is actually boosted by using VQ to inspect a stripe’s
content.

3. EXPERIMENTAL RESULTS

The target ATS supported vehicle identification in a parking
area in Madrid, Spain. The location system processed input
fields (i.e., interlaced half frames) from a standard PAL camera;
the input signal was converted into a digital picture holding
768%256 pixels with 256 gray-scale levels (8 bpp). The output
of the location process was fed into a dedicated OCR module for
license-plate interpretation [7]. In the current PC-based C++
implementation, a complete image-understanding cycle took
about 200 ms on a standard Intel Pentium board (200Mhz). This
performance proved cost-effective for the target application. The
system training involved ten images acquired under different
environmental conditions.

The use of VQ coding for archival purposes is motivated by the
superior performance of that method at high compression ratios
(i.e., Cr 2 40), as compared with standard JPEG algorithm [6].

31 Sample of the system operation

Figure 3a displays a sample of system input and its quadtree
representation; Figure 3b presents the five extracted candidates;
finally, Table I gives the scores associated with each stripe and
points out the correct license-plate location. Anyway, placing the
correct stripe as the best guess is not a strict requirement for the
complete system, as OCR modules typically accept a few areas
for the text-search process. In the specific OCR adopted, a set
of at most two stripes give a valid OCR input.

3.2 Location performance

The test set used for validating the method included more than
300 pictures, taken under quite different environmental
conditions For the OCR module adopted, a location process is
considered successful if the license plate appears in the first two
stripes of the list. Results in Table II indicate that the overall
system performance is satisfactory, as it exhibits a 2% error
rate. This performance meets industrial requirements, and
compares favourably with related approaches in the literature.

Iv-137



License plate in the best guess 87.6%
License plate in the second guess 10.4%
Location error 2%

Table II. Statistical summary of location results
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