On the Importance of Sorting in ""Neural Gas" Training of Vector Quantizers

Fabio Ancona, Sandro Ridella, Stefano Rovetta, and Rodolfo Zunino

DIBE - Department of Biophysical and Electronic Engineering - University of Genoa
Via all’Opera Pia 11a - 16145 Genova - Italy - Email: zunino @ dibe.unige.it

Abstract— The paper considers the role of the sorting proc-
ess in the well-known “Neural Gas” model for Vector
Quantization. Theoretical derivations and experimental
evidence show that complete sorting is not required for ef-
fective training, since limiting the sorted list to even a few
top units performs effectively. This property has a signifi-
cant impact on the implementation of the overall neural
model at the local level.

1. Introduction

Vector Quantization (VQ) represents an important
paradigm for information representation from both a
theoretical point of view [1] and an applicative perspec-
tive [2]. This is mainly due to the possibility of easy in-
terpretation of training outcomes and to the remarkable
performances attained by VQ-based compression.

The "Neural Gas" (NG) model [3} provides an effec-
tive algorithm for adaptive training of vector quantizers
by a simple principle of operation: neurons are iteratively
adjusted, each unit moves proportionally to its similarity
to training samples. As compared to k-means clustering
[4], NG seems to be less subject to getting trapped in lo-
cal minima. Theory proves [3] that the iterative NG al-
gorithm implements a stochastic gradient descent of an
analytical cost function, as opposed to Kohonen's Self-
Organizing Maps [5], for which no such property has
been established. Moreover, NG involves a matching-
based rather than a topology~driven ordering of neurons:
although a dynamic version of NG has been proposed for
flexible-topology networks [6,7], the basic NG model
does not assume any interconnection schema among neu-
ron units. This simplifies hardware implementations, and
motivates the interest in the NG algorithm, as the re-
search presented here aims to a hardware support of VQ
training: both a digital [8] and an analog [9} approach
yield a "VQ-coprocessor" for reducing huge computa-
tional training loads.

Most of the neural model can be supported at the local
level, that is, each neuron operates independently of the

0-7803-4122-8/97 $10.0001997 IEEE

1804

others; network-wide inter-neuron communications only
take place in ordering the matching scores of neurons.
The analysis presented here addresses the relevance of
sorting to the algorithm's performance, with a twofold
goal: from a a theoretical point of view, the investigation
clarifies important features of the basic training model;
from a practical perspective, simplifying sorting without
affecting overall performance can reduce computational
costs dramatically and facilitate hardware realizations, as
well. A formal analysis first characterizes the sorting
process by measuring the relevance of each position in
the list. Relative importances decrease monotonically
from “top” positions in the list to “bottom” ones: in other
words, identifying the list head accurately is more impor-
tant than the tail. Moreover, as a result of the annealing
process, the gap in importance between non-top list posi-
tions progressively shrinks during training, and eventu-
ally only the best-matching neuron is really important.

Complete, exact sorting is a basic condition for the va-
lidity of the original NG theoretical model; nevertheless,
the present analysis shows that in practical implementa-
tions complete sorting may be avoided, and determining
only a few “top” positions in the neuron list is sufficient.
The practical impact of such derivations is greatest on
large codebooks, since detecting the best k-out-of-V units
is simpler than sorting a long list completely; this is true
both in software (by cutting computational costs) and in
hardware, where the circuitry for exhaustive sorting may
be quite complex [10-12]. When considering that NG
optimization supports a fuzzy clustering strategy {3],
partial sorting can be regarded as implementing a sort of
constrained version of k-means clustering, in which only
k units are active at any iterations.

A set of experimental results support theoretical pre-
dictions. Experiments include tests on the synthetic data
set used by Fritzke [6] to demonstrate VQ algorithms,
and tests on a real application involving VQ-based image
compression [2,13]. Experiments aim to assess the im-
portance of the sorting process quantitatively, by measur-

ing the effect of incomplete or incorrect sorting on the
algorithm’s distortion performance; the statistical valida-
tion of obtained results required a massive amount of in-
dependent runs. Experimental evidence yields two con-
clusions: first, partial, exact sorting performs better than
complete but noisy sorting; second, even a few units in
partial sorting is sufficient to attain a final distortion
equivalent to that attained by ideal NG.

2. Sorting in “Neural Gas” training

“Neural Gas” iteratively adjusts neurons’ positions ac-
cording to their similarities to input patterns. In order to
coordinate adjustments without a fixed topological
schema, the training process uses Euclidean distances
from training samples for sorting neurons. A nonlinear
time-controlled scheduling weights the reward for each
neuron’s ranking; thus training evolves from a distrib-
uted-activation pattern, in which several neurons are ad-
justed at the same time, to a truly Winner-Take-All
(WTA) schema, in which only one neuron is affected by a
training sample. Theory [3] shows that the asymptotical
positions of neurons in the data space span a uniform
coverage over data. In the following, a set of neurons
{w;, i=1,...,N }are positioned in a d-dimensional domain
space, X; the terms 'neuron’ and 'codevector' will be used
as synonyms. The NG algorithm can be outlined as fol-
lows:

For iterations t =0 to 7':
1. Draw at random a training sample, x € X;
2. V neuron, w;, compute the Euclidean distance:
d;=|w,-x| Vi 1)
3. Sort neurons in order of increasing d(i);
let k(i) = 0,...N denote the rank of the i-th neuron
in the sorted list;
4. Adjust neurons according to their positions in the
sorted list:

wiD = wO 4 pe)- mlk (). o] (w,(-’) - x) Vi (2)

The rewarding function, A(), balances the distribution of
weight updates during training and drives the training
process. An implementation of 4() is given in [3], and the
overall scheduling functions can be written as:

©))

7lt)= 77.0 (%Z—J% Ale)= 4 (—21)%

0 0

H[k(i), 1] = exp(_ %Ir_))

Due to the satisfactory results obtained, implementa-
tion (3) will be adopted as a default throughout the paper.
The settings for the annealing schedule — A = 10, Ay =
0.01, no = 0.65, ny= 0.05 — proved effective in all ex-
periments. NG as a training algorithm is interesting from
several viewpoints. As to distortion performance, empiri-
cal evidence (reported in [3] and verified in the present
research) indicates that, on average, NG yields smaller
distortion than other algorithms; in addition, overall con-
vergence typically requires a smaller number of iterations
(training samples). As to implementation, the model's
features meet hardware-related requirements very well,
especially when considering that the neural model does
not involve any topological structure. Most of a neuron's
activity performs independently of the other units. As
distance computations (1) and weight adjustments (2)
only involve local information, the bulk of the computa-
tional load can be supported by neuron-embedded cir-
cuitry [9].

Sorting is the only process requiring inter-neuron cir-
culation of information for evaluating list positions k(i);
in a full impementation of NG, complete, exact sorting
demands network-wide communications. In training
huge networks for a real application (e.g., image com-
pression), this may prove very expensive in terms of
hardware connectivity and layout design [10-12). Thus
one might wonder how accurate and complete the sorting
process must be to ensure effective training; the overall
goal is to reduce the information flow through the net-
work.

Two basic questions arise: the first concerns sorting
accuracy: can each unit be allowed just to estimate its
own list ranking by using limited information? Con-
versely, the second question concerns sorting complete-
ness: can proper training be attained by identifying
(exactly) a subset of the total sorted list of neurons? Both
problems lead o an analysis of the sensitivity of the
training process to sorting errors. Weight update (2)
evolves as: (k1) = n(0)-h(k,t) where the neuron index, i,
is omitted for simplicity. “Sensitivity” will be expressed
by :

!
S(k, 1) = 2-e(k,) = —1‘9-[’”)“’) d exp[—f‘-J @)
ok Ao \Mohrr 1)
Thus sensitivity measures how much a variation from the
k-th list position at time ¢ affects the weight update of the
associated neuron. Normalized sensitivity, a trivial sim-

plification of (4), better fits practical purposes:
t

S,,(k,t):(::;::)F -exp[—z(]%J ®)

1805

0000 Importance ()

€000

4000

2000

200
1504 =0

100

50]

00 200 4000 | B000 aoa0 000¢ T

Ill_ln_..,,,,__-.

0000 0
! 1234567 ﬁ 9 10112131415

6000

8000

Fig.1 - Sensitivity analysis for different positions in the sorted list of neurons

a) - Normalized sensitivity
at top position, k=0

b) - Normalized sensitivity
at general positions, k>1

c) Overall Importance
at general positions, k>1

Analyzing the family of curves (5) parameterized by &
points out interesting features of the training progress.

First of all, the graphs in Fig.la and Fig.1b show that
normalized sensitivity for the top position in the list (the
best-matching neuron with k=0) is substantially different
from all others (note the different scale on the graphs).

Second, the importance of the "winning" unit increases
while training proceeds, whereas the importances of all
other positions decrease. This is analytically derived by
verifiying that:

N1 Ao (_k)
- €X N
ToAr P /Lf
limS, (k,t)=0 Vk 21
>0

S,k,T)= (6)

limS, (O,t) = o0
{0

The limits (6) are well approximated in practice; with the
parameter settings above cited (e.g., Ay = 0.01), final
sensitivity S, (k,T) is very large when k=0 and virtually
vanishes even for small positive values of k.

Finally, comparing curves shows that sensitivity de-
creases from higher to lower ranks (ie,
k' <k" =8, (k',t)>S,(k",1)). A quantitative “overall
importance”, I (k), of the k-th list position is given by:

1(k)= }S,,(k,t)dt

Importances (7) give relative weights of the various list
positions throughout the entire training process. Inte-
grals can be computed numerically: results for the first 15
positive values of k are reported in Fig.1c; the importance
value for k=0 far exceeds any other (by at least 50 times)
and has not been included. Relative importance clearly
drops to insignificant values even for small values of k.
- This strongly supports partial sorting.

Q)

1806

To sum up, the theoretical analysis of the sorting proc-
ess in NG training lead to a few basic conclusions:
Correct identification of the best-matching neuron be-
comes more and more important while training pro-
ceeds; conversely, sensitivity for non-top positions
tends to a null value during training.

Sensitivity is not uniformly distributed among list
positions. More precisely, it decreases when £ in-
creases; however, the gaps among different curves
shrink when % increases.

The specific importances of positions in the list
(weighted over the entire training process) indicate
that a few top positions convey most of the overall
importance; partial sorting is acceptable in practice.

3. Experimental results

This sections discusses practical methods to take
maximum advantage of the conclusions drawn by the
above theoretical analysis. In particular, two crucial is-
sues are considered: 1) if partial sorting is supported, how
many positions in the list must be computed exactly to
attain an acceptable distortion? 2) what is the best proc-
essing strategy for the positions not included in the partal
list? Due to the complexity of a theoretical analysis to
this purpose, an empirical approach has been adopted and
different domains have been considered to validate con-
clusions. The procedure used in all tests involves two ex-
perimental set-ups:

1. a few (top) list positions are computed exactly and
the corresponding neurons adjusted accordingly;
uniform noise affects the sorting process for other
neurons, whose list positions are somehow offset. In
the simulations, noise injection is controlled by how
much a rank can be misplaced. '

2. a few (top) list positions are computed exactly and
the corresponding neurons adjusted accordingly; all
other neurons remain unaffected.

3.1. Tests on synthetic data

This two-dimensional synthetic domain was proposed
by Fritzke to demonstrate VQ training algorithms visu-
ally [6,7]. In such tests, the number of neurons has been
set to 30 after estimation with the Ying-Yang criterion
[14]; the training set includes about 4,500 samples.
Noise injection for inaccurate-sorting tests has been
simulated by allowing each list position to randomly de-
viate from its original value by at most 5%, 10%, 15%
and 20%, respectively. The algorithm’s performance has
been measured by its eventual dis-
tortion (mean square error) on
training data; for each noise percentage, 40 independent
training processes have been run in order to define statis-
tical confidence intervals. Results on this testbed are pre-
sented in Fig.2a; the graph plots increments in distortion
versus noise injection under experimental conditions A).
Horizontal lines indicate the performances for experimen-
tal conditions B), which are noise-free.

Experimental evidence proves the effectiveness of par-
tial sorting. In noisy sorting fexp. A)], performance de-
grades significantly when reducing from 5 to 1 exact list

Distortion increment (%)

250 % ==as e | Unit OK, rest null

-------- 2 UnitsOK, rest null

5 Units OK, rest null ./

200 | ¥ =« wx NG unifs guaranieed ,'

Oeemenn o First 2 units always OK R

" ® First 5 units always OK '/

*
150 | J
,
”Y .
100 + ‘ -
Ideal N.Gas

Sort noise (%)

positions; confidence intervals enlarge accordingly. More
importantly, the graph points out that disregarding sub-
sequent list positions [exp. B)] is greatly preferable to
noisy sorting. By determining just five positions distor-
tions are equivalent to the ideal algorithm’s performance.

3.2. Tests on image-compression data

The application of the presented analysis to VQ-based
image compression [13] confirms and supports the results
obtained on synthetic data. In this testbed, each gray-level
8bpp image includes 512x512 pixels and is split into
4,096 elementary square blocks; each block includes 8x8
pixels and represents a sample. In all tests, the codebook
holds 256 neurons: the codebook size was determined by
generalization-based criteria [15].

The experiments adopted the same procedure followed
for synthetic data; again, sorting affected by increasing
noise percentages is compared with partial exact sorting;
distortion results are presented in Fig.2b. The differences
between eventual distortions are less marked than those
shown in Fig.2a; in other words, taking into account 1, 2,
or 5 units, respectively, yields similar results. This phe-
nomenon is due to the fat that the underlying data distri-
bution is quite complex, and “natural” clusters are not
well segregated: as a consequence, a quasi-uniform dis-
tribution of neurons in the data space makes sorting accu-

Distortion increment (%)

120 ¢

= eeme 1 Unit OK, rest null
------- 2 UnitsOK, rest null
100 L 5 Units OK, rest null
==+ -=x% No units guaranteed
Qenvee © First 2 units always OK
80 | m—u First § units always OK
60

Sort noise (%)

Fig.2 - Comparison results between noisy and partial sorting

Fig.2a - Fritzke's synthetic data

1807

Fig.2b - Image compression

racy less important. Nevertheless, experimental evidence
still supports the advantage of using partial sorting, since
the straight horizontal lines for noiseless partial sorting
[exp. B)] indicate smaller distortions than their counter-
parts involving noisy sorting [exp.A)]. Indeed, the
overall performance of partial sorting approximates the
quality attained by ideal NG very closely; this result is
even more relevant when considering that it is obtained
in a complex, real-world experimental domain.

4. Concluding Remarks

Studying the role of sorting in a VQ training algorithm
aims to simplify implementation issues by reducing the
exchange of information throughout a network. This is
especially attractive in the NG model, whose nature in-
herently stresses a local-level approach, since neurons
operate independently of one another in the crucial, com-
putation-intensive steps of the training process. The pa-
per considered the sorting subprocess in NG from a for-
mal perspective, by deriving analytical expressions for the
importances of specific positions in the list of neurons.

The strongest conclusion is that the best-matching unit
deserves some special attention and requires accurate
evaluation - this is indirectly confirmed by the existence
of algorithms using only “winning” nodes. When dealing
with the specific NG model, the analysis indicates the
validity of partial sorting, i.e., not all positions in the list
need exact evaluation. The accuracy and completeness
issues in sorting have also been addressed from an ex-
perimental perspective, involving both synthetic and real-
domain data. Empirical evidence supports theoretical
predictions, and indicates that a few (typ. five-ten) “top”
positions in the list are sufficient to attain almost ideal
results in terms of distortion. Such results open views
over current research about simplified circuitry for partial
sorting, which appears simpler and more effective than
classical hardware architectures for exhaustive sorting.

5. References

{11 IEEE Trans. Inf-Theory, Speclssue on Vector
Quantization, March 1982, vol.IT-28, No.2
Nasrabadi N, King R "Image Coding Using Vector
Quantization:A Review", IEEE Trans. Commun.,
Aug. 1988, pp. 957-971

2]

1808

Martinetz TM, Berkovich SG, Schulten KJ "
“Neural Gas” network for vector quantization and
its application to time-series prediction", JEEE
Trans. on Neur.Net., 1993, vol.4, No.4, pp.558-569
Linde Y, Buzo A, Gray RM "An Algorithm for
vector quantizater design", JEEE Trans. Commun.,
Vol. COM-28, pp. 84-95, Jan, 1980
Kohonen T, Self-organization and Associative
Memory 3rd Ed., 1989, Springer Verlag
Fritzke B, "A growing Neural Gas network learns
topologies”, in Tesauro G, Touretzky DS, and Leen
TK (Eds.), Advances in Neural Information Proc.
Sys. 7 NIPS-7, MIT Press Cambridge MA, 1995
Fritzke B, "Growing Grid - a self-organizing net-
work with constant neighborhood range and adap-
tation strength" Newral Proc. Letters, 1995, vol.2,
No.5, pp.1-5
Ancona F, Rovetta S, Zunino R “Hardware architec-
tures for Vector Quantization in very low bit-rate
image coding”, Int. Workshop on HDTV HDTV'96 -
Los Angeles - October 1996
Oddone G, Rovetta S, Uneddu G, Zunino R “WTA
circuit with proportional output®, World Congr.
Neural Networks WCNN’96 - SanDiego USA -
September 1996, pp.1376-1379
K. Tsang and B.W.Y. Wei, “A VLSI architecture
for a real-time code book generator and encoder of a
vector quantizer”, [EEE Transactions on VLSI Sys-
tems, vol. 2, no. 3, pp 360-364, Sept. 1994
[11] Blair96 G.M. Blair, “Low cost sorting circuit for
VLSL” IEEE Trans. Circ. Syst. I, vol. 43, no. 6,
Jun. 1996 ‘
[12] Fang Y, Cohen MA, Kincaid TG “Dynamics of a
Winner-Take-All network”, Neural Networks, vol.9,
No.7, 1996, pp.1141-1154
{13] Carrato S, Passaggio F, Rovetta S, Zunino R
“Interpolation approaches to Vector Quantization
for image compression”, JEEE Workshop Neur.Net.
in Signal Proc. NNSP'96 - Kyoto - September 1996,
pp.391-400
{14] Xu L “Bayesian-Kullback coupled YING-YANG
machines: unified learnings and new results on
vector quantization”, Int.Confon Neur.Inf-Proc.,
Bejing, Oct.1995, pp.977-988
[15] Ridella S, Rovetta S, Zunino R “Generalization-
based approach to plastic vector quantization”,
World Congress on Neural Networks WCNN'95,
Washington, July 1995, vol. I, pp.505-508

B3]

(4]

5]
(6]

(7]

(8]

91

(10]

