
Pergamon
PII:S0952-1976(97)00039-0

EngugApplic. Arti]. lntell. Vol. 10, No. 6, pp. 573 580, 1997
© 1998 Published by Elsevier Science Ltd. All rights reserved

Printed in Great Britain
0952-1976/97 S 17.00 + 0.00

Contributed Paper

An Efficient Technique for Implementing an Image-
Compression Neural Algorithm on Concurrent Multiprocessor

Architectures

FABIO ANCONA
University of Genoa, Genova, Italy

STEFANO ROVETTA
University of Genoa, Genova, Italy

RODOLFO ZUNINO
University of Genoa, Genova, Italy

(Received December 1996; in revised form April 1997)

The paper describes a parallel implementation of a neural algorithm performing vector quantization for very
low bit-rate video compression on toroidal-mesh multiprocessor systems. The neural model considered is a
plastic version of the Neural Gas algorithm, whose features are suitable for implementations on toroidal mesh
topologies. The architecture adopted, and the data-allocation strategy, enhance the method's scaling properties
and remarkable efficiency. The parallel approach is supported by a theoretical analysis of the efficiency of the
overall structure. Experimental results on a significant testbed and the fit between predicted and measured
values confirm the validity of the parallel approach.

© 1998 Published by Elsevier Science Ltd. All rights reserved

Keywords: Image compression, neural networks, parallel architectures, experimental and theoretical results.

I. INTRODUCTION

Digital image and video compression has become an
increasingly important and active field. Progress in com-
pression algorithms, (Mohamed and Fahmy, 1995;
Eskicioglu and Fisher, 1995; Li and Salari, 1995; Ngan et
al., 1996), VLSI technology, (Bourbakis et al., 1995; Boo et
al., 1997; Wang and Chen, 1996; Fowler et al., 1995) and
coding standards has made digital video an enabling and
penetrating technology for many applications. These appli-
cations often require a very high computational power. For
this reason, parallel architectures are often considered to fit
the characteristics of these algorithms (Allen, 1985; Seitz,
1984; Bourbakis et al., 1989). This design approach is even
more useful for the image processing based on neural

Correspondence should be sent to: Dr Fabio Ancona, Department of
Biophysical and Electronic Engineering (DIBE). University of Genoa,
Via all'Opera Pia l la, 16145 Genova, Italy.
[E-mail: ancona(~dibe.unige.it]

techniques, as the latter involve a massive computational
load for their neural training process. The field of neural
networks for image compression also includes methods
based on vector quantization (VQ), thanks to their high
compression ratio and image quality (Jain, 1981; Gray,
1990; Gersho, 1982; Gray, 1984; Linde et al., 1980). The
fact that VQ is a very good compression technique also lies
in its very simple decoder, which is much less complex than
its coder. Thus, VQ algorithms can be implemented with
easy structures; however, they require a high computational
cost, involved in repeating the same computation for each
vector of the codebook. This is the ideal condition for an
implementation using special-purpose VLSI processors
with a high degree of modularity and local interconnections
for data transfer. To this end, the use of INMOS transputers
of the T800 family (Inmos Ltd., 1989) are particularly
appropriate because they make it possible to realize both
concurrent computations and asynchronous communica-
tions by parallel languages, such as the Occam language

573

574 F. ANCONA et al.: AN EFFICIENT TECHNIQUE

(Inmos Ltd., 1984). Transputers can be considered as VLSI
building blocks to implement massively concurrent archi-
tectures.

The paper describes a methodology to implement a neural
algorithm for vector quantization on a parallel multi-
processor system. In particular, the proposed design
methodology has been developed and evaluated using a
toroidal mesh of transputers as a convenient case study of
concurrent host architectures. The final application goal is a
lossy compression of high-dimensional data for low bit-rate
communication. The high computational load of the neural
training process and the technical importance of the specific
application motivate the search for a highly efficient parallel
implementation of the quantization method. To this end, the
neural model that was chosen (Plastic Vector Quantization)
exhibits remarkable properties in terms of both consistency
(quality of the quantization process) and easy implementa-
tion. This model can be considered as a modified version of
the Neural Gas (NG) algorithm, (Martinez et al., 1993)
whose original formulation exhibits the crucial drawback of
an advance setting of the number of prototypes. This
algorithm makes it possible to add and prune neurons
dynamically, and guarantees a finite-time convergence. As
the plastic model involves the interaction of several NG
networks using different vocabularies, the parallel imple-
mentation is most effective in reducing the computational
cost of the process. The overall parallel approach is
supported by a theoretical analysis of the system perform-
ance. This analysis makes it possible to derive an analytical
expression for the prediction of the system's efficiency.
Preliminary experimental results on an image-compression
testbed and the fitting between measured and predicted
values confirm the validity of the overall approach.

Section 2 presents the neural model based on vector
quantization. Section 3 describes the parallel implementa-
tion of the algorithm, showing its notable scaling properties,
and a theoretical analysis of the system's efficiency. In
Section 4, experimental results are reported, and some
concluding remarks are made in Section 5.

2. THE NEURAL MODEL FOR VECTOR
QUANTIZATION

2.1. The neural gas algorithm

Vector quantization is the process of approximating a
large data set of multidimensional data (e.g. image blocks
for image compression) by a limited number of prototype
vectors (neurons), obtained by clustering several similar
data. This approximation resembles that used in scalar
quantization, and proceeds by minimizing some error
function (usually, the mean square error).

The NG algorithm, developed by Martinez et al., 1993 is
an iterative algorithm to train a set of prototypes. At each
iteration, a training pattern is presented and prototype
vectors are ordered according to their Euclidean distances
from the input sample. Prototypes are then adjusted
according to their positions on the ordered list: closer
vectors undergo larger modifications. The intensities of the

adaptation steps and the width of each vector's neighbour-
hood decrease during training, thus providing a stabilization
mechanism, also present in other similar algorithms (includ-
ing Kohonen's SOMs (Kohonen, 1982). The NG training
algorithm can be outlined as follows:

(1) Set W=a set of randomly initialized prototypes; set I=a
fixed number of iterations.

(2) Repeat for i = 1 to I:
(2.1) Input a sample vector x.
(2.2) Compute the distance dk=llX-Wk[[from each

prototype wk.
(2.3) Sort the list of prototypes according to dk.
(2.4) Compute the adaptation step Awk for each

prototype wk.
(2.5) Apply adaptations to each prototype.

(3) Output the set of prototypes W.

This procedure exhibits interesting properties that can be
exploited in an HW realization. A specific feature of this
algorithm guarantees the existence of an initialization such
that prototypes always lie in a bounded region, provided
that input values are themselves bounded (which is always
the case in practice). This is very important when one needs
to assess the dynamic range of a stored quantity a priori.

The training algorithm involves a number of independent
operations, and the absence of a fixed interneuron con-
nectivity simplifies a parallel implementation. The
relatively large amount of computation at the local level
allows one to achieve a high degree of parallelism;
moreover, the alternation of the computation and commu-
nication phases makes synchronization easier.

2.2. The plastic neural gas model

In comparison with the basic NG algorithm, the basic
feature of the plastic model is the ability to add and prune
neurons dynamically. The Plastic Neural Gas (PGAS)
algorithm was first proposed in Ridella et aL, 1995. Each
neuron is provided with a local analog cost (typically, the
mean square error) that measures the quality of the neuron
placement. This quantity can eventually control the algo-
rithm's computational overhead: prototypes showing
satisfactory placements are deactivated and take no further
part in the training process.

Training proceeds by iteratively adding neurons to those
regions of the data space that appear to be insufficiently
covered with available prototypes (network growing); an
opposite network pruning mechanism removes insignificant
units (dead vectors); finally, cost-checking leaves out of the
next training iterations those neurons whose analog costs
are smaller than a fixed threshold. All these phases are
controlled locally by monitoring each neuron's analog cost.
The plastic model can be outlined as follows:

(1) Input: a training data set, a test data set, a cost
threshold.

(2) Initialize the set of (at least one) prototypes.

F. ANCONA et al.: AN EFFICIENT TECHNIQUE 575

(3) Repeat until stop:
(3.1) Train the active nodes in the current vocabulary

by the standard NG algorithm.
(3.2) Remove insignificant neurons that do not cover

any training sample.
(3.3) Deactivate nodes showing satisfactory local

costs.
(3.4) Compute the overall analog cost on the test data

set.
(3.5) If the test cost has not improved significantly, as

compared with the previous iteration,
Stop the algorithm
Else
Add one neuron in proximity to the prototype
with the highest cost.

(4) Output the set of prototypes W.

The plastic method can be shown to have a finite-time
convergence; more importantly, a network's generalization
ability can be easily assessed, as well. In particular, one can
control the growing process by a sort of cross-validation
procedure: available data are split into a training set and a
test set, and the cost of test data operates as a stopping
criterion for the overall plastic process. This empirical
mechanism aims to estimate the smallest number of
prototypes required to achieve a given accuracy of the
overall data distribution.

In summary, plasticity increases the performance of a
neural structure from both a computational and a general-
ization perspective. From a computational point of view,
through neuron deactivation one can remove entire sub-
regions of the data space from the training process, and limit
the training overhead accordingly. At the same time,
generalization is enhanced by avoiding the introduction of
insignificant vectors, which might ultimately give rise to
overfitting phenomena.

3. PARALLEL IMPLEMENTATION

The computational load in signal and image processing
can also be reduced to some basic matrix operations when
they are based on neural models. These basic operations are
related to linear algebra algorithms, which are characterized
by a local and regular data flow, and a simple control flow.
These properties allow a natural parallel implementation of
these algorithms on computational arrays, (Seitz, 1984)
such as systolic arrays, (Kung, 1982) which achieve a high
degree of concurrency from both parallel processing and
regular pipeline computation (Kung et al., 1987). These
arrays can be implemented by using special-purpose VLSI
processors with a high degree of modularity and local
intereormections for data transfer, which allow recurrent and
simple operations with a regular localized data flow. The use
of these architectures must be supported by a concurrent
environment. A concurrent algorithm is structured as a
network of distributed computational tasks (processes) that
must be allocated to the available processors. The basic
feature of this type of application is a proper communication

synchronization among processes in order to ensure both the
consistency and the best efficiency of the overall system.

The Plastic Neural Gas model fits an SIMD implementa-
tion, as its features make it possible to distribute data
resources on the network, and a parallel approach becomes
useful in increasing the effectiveness of the overall system.
In addition, it is easy to verify systolic properties in the
parallel-implementation strategy adopted, which is shown
in the next subsection. These properties can be usefully
exploited by implementing the proposed application on a
systolic array, that is, on a special-purpose parallel device
composed of several processing elements whose inter-
connections have the properties of regularity and locality.
Systolic architectures are very suitable for VLSI imple-
mentations. From this perspective, INMOS T800
transputers (Inmos Ltd., 1989) are particularly appropriate
because they make it possible to realize both concurrent
computations and asynchronous communications by using
parallel languages (i.e. the Occam language (Inmos Ltd.,
1984)), and can be considered VLSI blocks in concurrent
architectures. For these reasons, the PGAS algorithm has
been developed and evaluated on toroidal meshes of
transputers (Fig. 1). In addition, this choice has also been
driven by transputers' high structural flexibility, which
allows one to design systems in compliance with target
applications. It is worth noting that both the choice of the
data-allocation strategy and the processor organization play
crucial roles for the system's efficiency (Pagano et al.,
1993).

3.1. Data allocation and algori thm implementat ion

A straightforward and effective data-allocation method is
to split the data set into N subsets, and to map them into the
mesh rows (Fig. 1). As a result, each row is entrusted with
the training of one Nth of the entire training data set.
Conversely, the mutual topological independence of neu-
rons makes it possible to partition the prototype set into as
many subsets as the mesh columns. The row and column
numbers are not fixed, and can be changed according to the
number of processors available.

D Training data

Transputer

D/N -'~

D/N -~

~D/N

K Prototypes

iiiiiii
Fig. 1. The mesh architecture and the related data-allocation strategy.
N=number of mesh rows; M=number of mesh columns; D=number of

training samples; K-- number of prototypes.

576 F.ANCONArtal.:AN EFFICIENTTECHNIQUE

The above allocation approach has important conse-
quences on the actual algorithm implementation and its
efficiency. In particular, the system’s run-time kernel is
arranged in a state machine (in the following discussion, the
terms neuron and prototype will be used as synonyms):

(1) Compute locally the distances between the current
sample and local prototypes by the Euclidean distance.

(2) Sort prototypes by adopting the following parallel

strategy:
- each mesh row works out the overall sorting phase;
- each processor sorts its local neuron portion (KIN

neurons);
- the central column of the mesh manages the overall
sorting: row-wise communications are involved for
merging the M local neuron portions;

Receive the adjustment steps d~:“l’~““, that is, the
adaptation steps computed by the processor of the
previous row and corresponding to the same column.

Update prototypes locally as follows: w~=w~+

(Aw, (““““)+ Aw f”p’r’), where Aw :I”““) is the local adapta-
tion step.

Send adjustment steps Anti ~““““’ to the next row; in this

way, the local training contribution is propagated
through the network.

This approach has several specific features enhancing a
parallel performance. The computation-intensive phase.
namely the working out of distances, is performed entirely
at the local level, thus yielding the maximum efficiency.
Likewise, the vector-adjustment step does not involve any
inter-processor communication. As to the communication
overhead, the sorting phase involves row-wise communica-
tions; as a result, the sorting process proceeds independently
along each row for one Nth of the allocated data. In
addition, the amount of transmitted information (vector
index + scalar distance values) is small, as compared with
the large amount of data stored for each datum and each
neuron. Conversely, the communication of adjustment

displacements (steps 3,5) involves a larger amount of
information, but its parallelism spreads over columns.

whose number is unbounded. This property allows the
critical part of communication costs to be reduced by
increasing the number of processors: hence efficiency is
made virtually independent of the problem scale.

3.2. Theoretical analysis of the system performance

This subsection presents a theoretical analysis of the
performance of the NGAS-algorithm training. This analysis
makes it possible to derive an analytical expression for the
prediction of the system’s efficiency. The following nota-
tions will be used:

- N=number of mesh rows;
- M=number of mesh columns;
- K=number of prototypes;
- P=number of processors;

- r=time required to transmit a data block (4 bytes);

- T”,” =time to perform a floating-point sum;

Communication overhead: At run time, two different
communication types are involved:

- horizontal-data transfer during the sorting phase (step
2), Ty’;

- vertical-data transfer in the receive and send adjustment
steps (steps 3 5) T?‘. 3 3 <

The expressions below show theoretical derivations on

communication overheads, taking into account that trans-
puters can only logically arrange link-communications as
parallel processes; in fact, current transputer devices handle
communications sequentially, because of the impossibility
of processors performing a parallel memory access.

In order to simplify the theoretical computations, the real
transmission time involved in the sort phase has been upper

bounded by TIT’. As a matter of fact, one assumes that the
first column manages the overall sorting (instead of the
central one); this simplification increases the real commu-
nication overhead, as the horizontal data flow is single and
no longer split into two flows, both flows converging from
the most external columns toward the central column at the
same time. This approximation generates an affordable
error, which, however, allows one to maintain the con-
sistency of the overall theoretical analysis. The term ~~,,~,=2r
is the time to transmit values of the vector index and the
scalar distance (each of them is composed of 4 bytes). The
operator 2 points to data-flow increases, from the Mth
column toward the first column: this increase is proportional
for each column crossing, and is equal to the term

K
. Td

K

ti M
1s the neuron-set portion allocated on each

processor). Number 2 takes into account the double wave of
the data flow (forwards and backwards), as the final vector

position must be returned to each processor. The term i is

the pattern portion allocated on each processor: it indicates
the number of data flows involved during the training phase
of the neural network.

mod 2)] ,

where m is the vector size (2)

If N is even, then the vertical transmissions are parallel
and are performed in two steps:

F. ANCONA et al.: AN EFFICIENT TECHNIQUE 577

Step 1: data transfer between the 1st and 2nd rows,
between the 3rd and 4th rows, and so on, until between
the (N-1)th and Nth rows, at the same time;

Step 2: data transfer between the 2nd and 3rd rows,
between the 4th and 5th rows, and so on, until the Nth
and 1 st rows, simultaneously.

Otherwise, if N is odd, these transmissions require three
steps: the 1st and 2nd steps are analogous to the previous
case (for the first N-1 rows), whereas the 3rd step involves
a data transmission between the Nth and 1st rows.

As the receive adjustment step corresponds to the send
adjustment of the previous row, timings of the run-time
process on each node do not take it into account.

Computational timings: At run time, each processor
performs three different computations, involving the fol-
lowing three times:

distance phase: Tpa.td).
- sorting phase: T °)" - - p a r ~

- adjustment phase: T taw)
- - p a r

The above times can be expressed as follows:

D
(~ - (3) i) Tpa r- MN.re

D
where ~ is the size of the pattern portion and w d is the time

to work out distance computations between a pattern and K
prototypes: this value is divided by M, as only the local
prototype contribution is considered.

T ~ = D (K M) ii) p~r N r~l~ + l)rm (J. - (4)

local , ~ \ global

The timing involved in the sorting phase is composed of
two contributions: the time to sort the local neuron portion,
r") and the time to merge the M sorted neuron portions s ,

(global sorting). The term rm is the time involved in merging
a vector into the global neuron list of the central column.
The first contribution is equal for each processor, whereas
the second one has a bigger computational load for the
processor of the manager column. For this reason, the above
expression considers the computational cost involved in the
manager processors, thus forcing an approximation to the
system's final efficiency expression, shown as follows:

D
iii) -p~rT(aW)-- MN (r4w+mKr,,,,) (5)

where rZw is the time to compute the vector adjustment step
for K prototypes, that is, Wk=Wk+AW~ I°cal), for k= 1 K In
the above expression, r4w is divided into M, though only the
contribution of the local prototype portion must be con-

sidered; this computational cost increases by the codevector
mK

number linearly. The other expression term, ~ - r,.,., is the

time to add the adjustment step obtained in the previous
row, AwC, "p~r)

Architecture efficiency: The efficiency of a parallel
architecture is defined as the system's speedup over the
number of processors used in the network, that is,

1
Ts,q, where T~e q and Tpar are timings for the

rl= P Tpo~
sequential and parallel executions, respectively

The timing of the sequential algorithm can be expressed
as follows:

" sTeq~" Tta~ 4 T (s) 4- T (aw)-
- - s e q - - - - s e q - - - - s e q - - (6)

=D.rd+ (distance phase)

+ D~'s + (sort phase)

+ Draw = (adaptation phase)

=D(Ta+ Ts+ %w)

where rd, rs and Taw are the timings for performing the
distance, the sorting and the adaptation steps of the NGAS
algorithm, respectively

By combining the communication overheads (1)-(2) and
the computational timings (3)-(4)-(5), one obtains the
timing of the proposed concurrent process:

Tp - T (s) 4- T (Aw) 4- T (a) 4- T (s) 4- T (aw)
a r - - - - c - - - - c - - - - p a r - - - - p a r - - - - p a r

- N r+ ~ . ~I.m.r.[2+(Nmod2)l

D D (~'~t) + M) + ~ r~+ (M - 1)r,.

D
+ ~-~ (ra~+mKw~.m)

The system's efficiency expression is obtained by com-
bining (6) and (7):

Column-wis(
updating

[
Row-wise [- - - 7

] ~ sorting ~ D [

Fig. 2, Communication structure.

578 F. ANCONA et al.: AN EFFICIENT TECHNIQUE

l D(ra+r~+Ta.)
rI= MN " 2KD(M- I) D ~ m ~ l } D

. N 7"+ N" [2+(Nmod 2)] + MN ~'a

+ D K) + D
(r!/'+ (M- 1) ~'o, M-N(ra.+mK'6,~) N \ M

~-
I+

l + [2M(M- I)+m(2+N mod 2)]K~+Mr(/)+K(M -])T~+mK~I,~
(ra+ r.,.,)

4. EXPERIMENTAL RESULTS

The overall approach (Parallel PGAS) was evaluated
using an application testbed consisting of an image-
compression task, in which a low bit-rate coding was
achieved by VQ encoding. A toroidal-mesh architecture
composed of 6 transputers (2 columns and 3 rows) of the
T800 family was used, using inter-transputer links operating
at 20 Mbit/sec. The compression system processed standard
(grey-level) images (8bpp) with 5 1 2 × 5 1 2 pixels. All
pictures were split into 4096 blocks including 8 × 8 pixels

0 .018

0 .016

0 .014

0 .012

0.01

0 .008

0 .006

0 .004 l

7I
1

I ~ I I I

11 21 31 41 61

I P I I I I I I I I I I I I I t I I
61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231

[~ Trg - - Lena

- :::i!!~:.?::: ~' • " L " !

:ii%i: :~'"

.::.:::s:#p~,.

i

Fig. 3. Plastic neural gas for image compression.(a) Analog-cost curves (x axis = number of neurons) (b) Validation performance

F. ANCONA et al.: AN EFFICIENT TECHNIQUE 579

0.8

0.7

0.6

0.5

~ 0.4
m "E

.~ 0.3'

O.

16 32 64 128

Codevector number

vector size

+ m = 1 6

--ff i-- m=64

I
190 230

Fig. 4. The efficiency of the system versus the number of neurons and the vector size.

each. In the experiments, a set of classical pictures was used
for the network training, and a different image set for the
generalization-based algorithm control (Fig. 2).

In the graph in Fig. 3a, the training and test (the Lena
picture) costs are plotted versus the number of prototypes
used. The curves show that the relative improvement in test
data decreases progressively; the fact that the test-cost curve
becomes flat, while the training one keeps decreasing,
marks an incipient overfitting, and triggers the general-
ization-based stopping condition. This situation indicates
the estimated best number of neurons which balances the
representation accuracy with the size of the vocabulary. In
the case considered, the estimated optimal cardinality of the
prototype set lies in the range [190, 230]. Figure 3b presents
the network's performance on a validation picture not used
for training or for cross-validation. Results attained a
compression ratio of 42.7, with a PSNR of 28.26
(SNR=22.71, MSE=97.90), indicating the method's nota-
ble performance as compared with classical compression
techniques (e.g. JPEG).

Figure 4 shows the system's efficiency for the NGAS-
training algorithm: efficiency curves are plotted versus the
number of neurons and versus the vector size. The training
phase has been set for a number of patterns D (training data)
equal to 100, and for a number of global iterations equal to
100 (1 iteration involves the training for the overall pattern
set). Experiments involve 16- and 64-vector sizes, as they
are considered the most significant in the image-compres-
sion domain. Better performances are obtained by a
16-vector size and by increasing the number of neurons, and

Table 1. Efficiency results

T, eq [sec.] Tmr[sec .] Measured W Predicted

K= 190 3637.8 1265.9 0.478 0.456
K=210 4255.9 1416.2 0.483 0.500
K--230 4920.2 1570.4 0.509 0.522

this is due to the higher ratio between the computational
cost and the communication one.

From a theoretical point of view, the results obtained in
estimating the system's effÉciency always gained confirma-
tion from the experimental results. In particular, the
comparison involved only the 64-size vectors, as it is the
typical vector size in the VQ-based image-compression
domain, and the most significant cardinalities of the
prototype set (K= 190, 210, and 230). The measured times
were: 1"=7.98 ~sec (including both fixed and variable
communication costs), ~'sum =4.29 ptsec, ~'m = 750/.*sec. Table
1 shows a comparison between predicted and measured
values; the fit between experimental and expected values
demonstrates the validity of the theoretical model.

5. CONCLUDING REMARKS

Vector Quantization can provide an image-coding schema
with a remarkable compression ability, thanks to the
codebook-indexing mechanism intrinsic to the quantization
process. This advantage is often obtained at the cost of some
coarseness and "blockness" affecting the reconstruction
quality. In this sense, an adaptive technique to improve the
overall generalization ability is described in Anguita et al.,
1995. A crucial issue inherent in all these methodologies is
the computational cost of the training process.

For this reason, a method for a parallel implementation
with high efficiency appears very interesting and useful
from a practical perspective. In this regard, the paper has
presented a general methodology that combines a low-cost
machinery with a scalable and effective implementation of
the neural model. This represents the basic advantage and
the main novel point of the described method. In particular,
an application testbed consisting of an image-compression
task for low bit-rate coding was implemented on a toroidal-
mesh architecture, and remarkable results were obtained.

580 F. ANCONA et al.: AN EFFICIENT TECHNIQUE

The cur ren t l ines o f research in this area concern the

d e v e l o p m e n t o f more com pl ex archi tec tures , in tegra t ing

several p rocessors for a r ea l -doma in ut i l izat ion.

REFERENCES

Allen, J. (1985) Computer architecture for digital signal processing. Proc.
IEEE, pp. 852-873.

Anguita, D., Passaggio, F. and Zunino, R. (1995) SOM-based interpolation
for image compression. Worm Congr Neut. Netw. WCNN '95.
Washington, I, 739-742.

Boo, M., Arguello, F., Brugnera, J. D., Doallo, R. and Zapata, E. L. (1997)
High-performance VLSI architecture for the Viterbi Algorithm. IEEE
Trans. Commun., 45(2), 168-176.

Bourbakis, N. G., Ale×opoulos, C. and Klinger, A. (1989) A parallel
implementation of the SCAN language. Int. Journal on Computer
Languages, 14(4).

Bourbakis, N. G., Brause, R. and Alexopoulos, C. (1995) SCAN image
compression/encyption hardware system, CA . SPIE Int. Conf. on
Electronic Imaging, 2419, (Feb.) 419-428.

Eskicioglu, A. M. and Fisher, P. S. (1995) Image quality measures and their
performances. IEEE Trans. Commun., 43(12), 2959-2965.

Fowler, J. E., Adkins, K. C., Bibik, S. B. and Ahalt, S. C. (1995) Real-time
video compression using differential vector quantization. IEEE Trans.
on Circuits and Systems for Video Technology, 5(1), 14-24.

Gersho, A. (1982) On the structure of vector quantizer. IEEE Trans.
Inform. Theory, IT-28, 157-162.

Gray, R. M. (1984) Vector quantization. IEEE Acoustics, Speech, and
Signal Processing Magazine, 1, 4-29.

Gray, R. M. (1990) Source Coding Theory. Kluwer Academic Publishers,
Boston, MA.

Inmos Ltd. (1984) OCCAM programming manual, Prentice-Hall Int.

lnmos Ltd. (1989) IMS T800 transputer reference manual. Prentice-Hall
Int.

Jain, K. (1981) Image data compression: a review. Proc. IEEE, 69,
349-389.

Kohonen, T. (1982) Self-organization and associative memories. Springer,
Heidelberg.

Kung, H. T. (1982) Why systolic architectures?. IEEE Comp., 15, 37-46.
Kung, S. Y., Lo, S. C., Jean, S. N. and Hwang, J. N. (1987) Wave-front

array processors---concept to implementation. IEEE Comp., 20, 18-33.
Li, W. and Salari, (1995) A fast vector quantization encoding method for

image compression. IEEE Trans. on Circuits and Systems for Video
Technology, 5(2), 119-123.

Linde, Y., Buso, A. and Gray, R. M. (1980) An algorithm for vector
quantizer design. IEEE Trans. Commun., COM-28, 84--95.

Martinez, T. M., Berkovich, S. G. and Schulten, K. J. (1993) Neural-Gas
network for vector quantization and its application to time-series
prediction. IEEE Transaction Neural Networks, 4, 558-569.

Mohamed, S. A. and Fahmy, M. M. (1995) Image compression using VQ-
BTC. 1EEE Trans. Commun., 43(7), 00

Ngan, K. N., Chai, D. and Millin, A. (1996) Very low bit rate video coding
using 14263. IEEE Trans. on Circuits and Systems for Video Technology,
6(3), 308-312.

Pagano, F., Parodi, G. and Zunino, R. (1993) Parallel implementations of
associative memories for image classification. Parallel Computing, 19,
667~584.

Ridella, S., Rovetta, S. and Zunino, R. (1995) Generalization-based
approach to plastic vector quantization. Worm Congn Neur Netw
WCNN '95. Washington, 1,505-508.

Seitz, C. L. (1984) Concurrent VLSI architectures, IEEE Trans., C-33,
1247-1265.

Wang, C.-L. and Chen, K.-M. (1996) A new VLSI architecture for full-
search vector quantization. IEEE Trans. on Circuits and Systems fop"
Video Technology, 6(4), 389--398.

