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Abstract — A neural network approach is used to analyze and
diagnose a rather new and uncommon disease, Lyme
borreliosis. In order to fully exploit the method's generalizing
power, a significance analysis split the set of inputs of a
trained network into two classes (important and unimportant);
the results of this analysis lead to a new "structured" network,
whose topology and architecture reflects the estimated
relevance of symptoms. The diagnostic performance thus
obtained shows a dramatic improvement.

I. INTRODUCTION
A. Motivations and baseline

Medical diagnosis problems represent a classical and
sound testbed for Pattern Analysis techniques for many
reasons. First, medical data are often easily translated into
"patterns”; then, they have been pre-processed by experts
with a deep knowledge of the medical problem, thus
bypassing unsafe, often improper processing by non-expert
researchers. Finally, both knowledge engineers and medical
rescarchers can benefit from an interdisciplinary cross-
check; on one side, pattern analysis techniques can be tested
at solving a "real world" problem, whereas, on the other
hand, automated methods can be investigated to extract
information from medical databases.

Neural networks (NN) represent an effective tool to
perform this kind of tasks. They offer the possibility of
being trained *by examples”, i.c., learning a given data set.
Moreover, with their remarkable generalization power, new
data not included in the training set can be correctly
interpreted; this is a result of the inner (implicit)
representation of the database, learned during training.

The capability of catching the underlying structure of a
data set is an important and uscful feature of a NN. On the
other hand, this feature itself often requires expert
knowledge to interpret results and to tune a specific
classification system. Consequently, such methods generally
address problems in which complete expert knowledge is
available (e¢.g. [4]).

The problem tackled in this research is the diagnosis of
the Lyme disease. It differs from the above ones
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substantially: the medical state-of-the-art does not provide
yet an exhaustive diagnostic procedure. Many "standard"
criteria have been proposed but, despitc some peculiar
symptoms, a fixed set of discriminant symptoms can not be
identified; this is mainly due to the extreme variety of the
possible  manifestations. In  addition, the actual
characteristics are often disguising and lead to confusion
with other pathologies. This means that not all recorded
observations have the same importance, some being really
symptoms for the discase, other secondary characteristics,
and other being even unuseful data, recorded for the sake of
completeness.

This problem statement imposes a twofold research goal.
On one hand, we want the diagnostic system's performance
to be improved. On the other hand, in order to obtain the
best performance, it is necessary to assess the relevance of
the different symptoms in patient descriptions.

The NN model used for these tasks is the standard feed-
forward network, trained with the back-propagation
algorithm. The symptom-relevance problem has been
tackled by defining and evaluating the sensitivities of the NN
outputs to input symptoms. Such analysis led to an
importance-ranking ordering of the various medical
observations. The results of this step always confirmed the
expectations suggested by medical experts.

The huge number of the describing symptoms (84 network
inputs) heavily complicates classification. The related
increase of number of weights is an obstacle to proper
generalization. Therefore, an unsupervised data-
compression process treated a set of poorer-significance
symptoms (42 symptoms, as ranked out by the previous
analysis), shrinking them to a compressed representation of
five coding values. This reduced the number of inputs from
84 to 47, i.e, 42 high-significance symptoms and five
"coding" values.

Thanks to this information<oding step, diagnostic
performance reached an average error rate around 6%.
These figures, while reflecting the complexity of the actual
clinical problem, represent a notable success as far as
standard medical diagnosis rate is concerned. From a
technical point of view, the result of the described research is
a general methodology to handle complex classification
problems.
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B. Clinical context

From a medical viewpoint, the study of Lyme disecase
through pattern analysis is complicated by two factors: the
inadequacy of computer tools currently available for medical
applications, and the difficulty inherent to the disease itself.

Attempts to implement computer-aided diagnostic
processes using Al techniques are far away from technical
significance [2]. Most of them are modeled on classical
expert systems (rule-based reasoning programs), each of
them features some variation on the basic model, anyway
cvidencing that none is completely satisfactory. Average
error rates range from 10% to 25% or even more, depending
on how general a system is intended to be (that is, on the
number of diseases the system knows).

As far as the general computer-aided diagnosis scenario is
concerned, this is not a very good situation. In the Lyme-
disease case, additional difficulties arise specifically from the
problem considered. Lyme discase was discovered and
identified in 1977 (first cases studied in 1975, coming from
Old Lyme, Connecticut), but some of its aspects (under
different names and descriptions) had been known since the
early XX century. This is duc to the extreme variety of
forms it can present. Some of its symptoms are very peculiar
but also quite rare (e.g., the typical skin manifestation called
Erythema Chronicum Migrans - ECM). Other symptoms are
very confusing, and can mislead diagnosis: they range from
arthritis to neurological involvement to cardiological
complications. To make things even worse, only in a few
cases the list of symptoms is clearly related to Lyme disease:
in general, only a few of all peculiar characteristics are
present, and they may span over a time interval ranging
from months to years.

Lyme disease is caused by Borrelia Burgdorferi, a
spirocacta carried by different kinds of tick (/xodes
Dammini, Ixodes Ricinus). This means that the discase is
present only in specific geographical areas, namely, where: 1
— there are animals parasited by ticks; 2 — ticks are
parasited by Borrelia Burgdorferi; 3 — humans have the
chance to come in frequent contact with ticks (statistically, it
is not so easy to be infected). In summary, Lyme disease is
not only difficult to recognize, but also relatively rare to find.

In the experiments, the database included 741 samples of
patients; almost 200 of those were classified as Lyme-
affected, hence the rest was a set of counterexamples. After
a pre-processing of these data, we defined 84 describing
fields for each subject, including both general information
(e.g., age) and specific clinical recordings (e.g., presence of
ECM).

C. Neural context

The basic topology of the NN has 84 input units, with
continuous input values, and one hidden layer with 4-6
units. The output layer consists of 2 units, representing
diagnostic categorizations suggested by physicians (ranging
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TABLE I

LYME DISEASE -
Caused by Borrelia Burgdorferi, brought by Ixodes Dammini, Ixodes Ricinus
and other ticks
Found in specific geographic locations
Early phase (2 weeks since infection):
-ECM
- Non-specific symptoms (fever, weakness)
- Specific anticorpal response: IgM 2 256:1 (standard threshold)
Middle phase (1 to 6 months):
- Cardiac symptoms
- Neurological symptoms
Late phase (1 year or more):
- Arthritis, responding to antibiotic therapy
- Specific anticorpal response: IgG 2 256:1

from surely ill to surely unaffected). These values are
selected on an analogical scale, that could be coded by a
single real number ranging, say, from —1 to +1. With two
output values the NN can represent the same information in
two ways, and reduce uncertainty by introducing
redundancy. Therefore, one output unit represents the level
for the target attribute "ill", whereas the other unit codes the
attribute “unaffected"”.

The training algorithm used is called SuperSAB (5], and
is an accelerated version of classical back-propagation. In
SuperSAB, an individual learning step is assigned to each
possible dimension in the weight space, and is adaptively
modified during training. By combining this optimization
technique with the implementation on RISC technology, the
computation times required were limited to an acceptable
amount.

It turns out that the number of available subjects (that is,
training patterns) will not enable the NN to generalize
properly during the training phase [1). With a delicate (but
often used) procedure, new training samples have been
generated when required, based on the available data sct
with the addition of random noise [3].

y (-1,+1)=unaffected
(+1,-1)=ill

84 Input symptoms x

Fig. 1 — Diagnostic neural network



II. RESEARCH DESCRIPTION
A. Significance Analysis

Evaluating the relevance of each network input makes it
possible to order the describing attributes (features). To this
end, instead of applying statistical methods to the data set,
an already trained network has been used. The NN training
results in a group of weight matrices, one for every two
consecutive layers. These weight sets express in a
distributed form the information extracted from data during
training; they can be used to estimate the relevance of each
feature. Such an approach has the appealing characteristic to
be wholly "network-oriented". In other words, we do not try
to analyze the database with non-neural techniques, and then
apply the results to neural methodologies; rather, we "ask the
network its own opinion," so we can expect coherent results
in each phase of the research.

Arranging input features according to their relevance has
two purposes. First, providing experts with a numerical
analysis can confirm their qualitative estimate and give a
first cross-checking result. Second, poorer-relevance
features can be identified, thus compiling two lists of
attributes (important and unimportant). Those features
belonging to the second class have a smaller information
content and could be removed. Alternatively, some
rearranging can be looked for, and a smaller feature set (less
network inputs) would consequently improve performance.

Now we will go through a few mathematics. The ultimate
goal is to evaluate the effect that the variation of a quantity,
x, has on another quantity, y, (sensitivity analysis). This is
usually done by calculating the derivative of the function
y(x) with respect to x. From this point of view, a trained NN
expresses a nonlinear (vector) function of a (vector) variable,
with
Therefore, the variation of the j-th network output caused by
a variation of the i-th input can be measured by:
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where:
x™ s the activation value of the k-th unit in the n-th
network layer;
W is a vector containing all weights and biases for
the network;
'3 is the specific input value for which the
calculation is made.

The analytical expression of (1) can be derived from the

definition of neurons' activation functions. Let f (net,.("”))
be the activation function of the i-th unit of the n+1-th layer,
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the weights representing adjusted parameters.

applied to the weighted sum of inputs (coming from the n-th
layer):

N0

net™ = ng')xf,") (3)
k=1

Notice that the first subscript of weight terms indicates the
“from-unit”, the second indicates the "to-unit", and the
superscript indicates the "from-layer”. The derivative of the
j-th output with respect to the i-th input can now be
calculated for a three layer network.
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Given a specified weight set W (i.e., when the NN has
been trained), each training pattern provides an estimate T
of the relevance of the j-th symptom on the i-th output for a
particular value £ of the input. Therefore, this kind of
sensitivity analysis leads, for each output unit, to as many
estimates as the number of training patterns.



To generalize results, it is necessary to compute a
statistical characterization these data. In the presented
methodology, such a description is obtained by estimating
average value and variance of r;:

R,,(W)=E.{r,}
OJi,j(W) = E,{’},zj}—Exz{ri.j}

By combining the values obtained for the two Ry's (with
j=1 and 2 - two output units), one can get some hint about
the relevance of the i-th symptom to the overall classification
outcome. The techniques used in this interpretation process
may range from purely statistical analysis to massive
knowledge-based approaches; in our experiments, a simple
comparison rule of the two values was used, without
affecting the method's generality. However, the overall
result is a rule expressing some significance evaluation.

As this is only a rough estimate, some reliability measure
for inferred rules is also required. This can be accomplished
by analyzing variances together with average values. For
instance, low average and low variance will suggest marked
irrelevance. By contrast, low average value with high
variance will indicate some uncertainty, in which irrelevance
is not ensured; in such cases, the reason must be likely
searched for in a correlation of the considered symptom with
other features.

The numerical analysis of Lyme discase data yielded a list
of symptoms, in order of importance. By a suitable
thresholding operation, the top and the bottom portions of
the list were extracted to form two symptom groups for
medical experts (12 unimportant, 10 important features).
The "central” segment, containing not extreme cases, turned
out to be relatively wide because of the sparsity of
information through the features; the involved symptoms
have not been taken into account.

The two lists of symptoms have been of great usefulness
for medical experts: first, results confirmed qualitative
expectations and supported experts with numerical evidence;
second, the analysis also helped physicians in pointing out
irrelevant informations they could avoid to collect.

TABLE II
ESTIMATING THE RELEVANCE OF SYMPTOMS

Values of the two R's Remarks about the symptom

Low Low relevance

Only one high Characterizing but not discriminating

Both high, same sign 1If 62 's are high, there is strong correlation
with other symptoms.
Otherwise, there must be something wrong
(inconsistent result)

Both high, different sign Relevant feature

Values of the two 62's Remarks about the symptom

Low Relevance observation is reliable

One is high Probable correlation

Both high Relevance observation is not reliable
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B. Improving diagnostic performance

The complexity of training demands some reduction of
data dimensionality. This is necessary to ensure proper
generalization from the limited number of examples;
moreover, it would keep CPU time within acceptable limits,
thus making many repeated trials feasible.

Reducing data dimensionality requires to identify a higher
number of features for pre-processing. The previous analysis
pointed out the most irrelevant features. By lowering the
threshold on the histograms of average and variance, one
can identify a set of 42 symptoms that appear "more"
irrelevant than the others, although not completely unuseful.
Therefore, a cut in the feature list is no longer appropriate,
whereas a data-encoding step might reduce the inputs’
number without losing sparse, but still useful information.

Those 42 features have been compressed into 5 coding
values, using an auxiliary network trained by auto-
associative mapping.

In this schema, the 42 inputs act as input and output
patterns at the same time. The training goal for this NN is
mapping an input pattern onto itself through a S5-unit
bottleneck (Fig. 2). The activation values of the five
bottleneck units encode the compressed output. It is worth
stressing that no supervising information is provided in this
phase. As no target value other than the input itself is given
during training, the method generality is fully preserved.

The coded output can then join the remaining features,
building up a new vector with lower dimensionality (42
descriptors + 5 coding output values = 47 features, instead of
84). This vector can then be used to feed the input layer of a
conventional NN for normal (supervised) training. This
procedure is summarized in Fig. 3, where the two cascaded
NN's are integrated in a single structured network.

ﬁ: swoidwAs ;ﬁ

Fig. 2 — The coding neural structure.



coding

network

Fig. 3 — The diagnostic network integrating the two neural structures.

III. RESULTS AND COMMENTS
A. Experimental results

The method has been tested by comparison with: 1) the
classification performance of a conventional NN trained by
the standard supervised back propagation algorithm
(SuperSAB); 2) the classification performance of a
supervised-coding approach, in which coding used
supervised training with correct target values.

The target used the two-unit code described in section I,
without half-tones (that is, all possible levels were
compressed to {+1,—1] for unaffected and [—1,+1] for ill).

In each trial, a test set of about 10% of the total database
has been kept disjointed from the training set, to have a
reliable measure for the performance, thus expressed as error
rate on new patterns.

Different trials were made changing the selection of
training and test set. Test sets always featured the same
proportions between the two classes (ill/non ill) as the
original data set.

Table 111 summarizes the results. It can be seen that an
error rate of 21% in the conventional training reduced to
about 12% in the supervised coding and reached 6% in non-
supervised coding, with an error rate near (most often equal)
to 0% on ill subjects.
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TABLE III
EXPERIMENTAL RESULTS
Network structure Error rate Error on each class
il | Non-ill
Standard 21% 27.3% 19.8%
Supervised coding 12% 15% 4%
Non-supervised coding 6.2% 0% 7.4%

B. Comments

This research showed that combining significance analysis
with a coding process notably enhances the system's
diagnostic performance. This holds not only for numerical
ratings, but also from a clinical point of view. In other
words, the clinical reliability of the results, together with the
average error percentage, has been kept under observation
with medical experts supervision, showing real
improvements.

Unsupervised coding outperforms not only standard NN,
but also the method's supervised-coding version. This can
be explained by noting that auto-associative training
provides a deeper "understanding” of the underlying
structure of the data set. As shown in Table III, error
distribution among the two classes is not constant. In a
normal situation (standard NN), ill subjects feature the
greater error percentage. As they are a minor part of the data
set, patterns must be artificially generated to equilibrate the
training set and to avoid Bayesian polarization of training.
Bayesian polarization occurs when the relative frequencies



of classes are learnt, independently from any other pattern
characteristics. By applying unsupervised coding with a
suitable attribute selection, this undesired distribution is
minimized and even inverted: ill subjects may eventually
feature a lower error rating than non-ill subjects (in this
case, reaching 0%). This shows that compression does not
remove relevant information, but, on the contrary, such
information is somewhat enhanced by the reduction of data
dimensionality.
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