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K-Winner Machines for Pattern Classification
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Abstract—The paper describes the K-winner machine (KWM) part of the design criterion requires that the distortion of data
model for classification. KWM training uses unsupervised vector representation be minimized.
quantization and subsequent calibration to label data-space parti- In a VQ-based approach, the data space is mapped by a set of

tions. A K-winner classifier seeks the largest set of best-matching f t f “srotot »which lie at sianifi ]
prototypes agreeing on a test pattern, and provides a local-level reference vectors ot “prototypes,” which fie at significant loca-

measure of confidence. A theoretical analysis characterizes the tions and span a partitioning schema over the pattern distribu-
growth function of a K-winner classifier, and the result leads to tion. The algorithms so far proposed in the literature to position
tight bounds to generalization performance. The method proves prototypes pursue topological consistency [12], [13], uniform
suitable for high-dimensional multiclass problems with 1arge  4ccyrrence probability [14], uniform coverage of the data space
amounts of data. Experimental results on both a synthetic and a . : . . o

real domain (NIST handwritten numerals) confirm the approach [15], or unlfor_m approximation fqr the prob_ablllty distribution
effectiveness and the consistency of the theoretical framework.  [16]. The basic model of KWMs is actually independent of the
specific prototype-positioning algorithm adopted.

The training of a KWM is straightforward: in the unsuper-
vised training phase, VQ prototypes are placed according to the
spatial pattern distribution, regardless of pattern classes; then,
. INTRODUCTION in the supervised training phase, prototype calibration exploits

HE ESTIMATION of generalization error is the most crit-the class information contained in each data-space partition.

T ical issue in classifier design. An empirical approach to N compliance with the principle of structural risk minimiza-
this task consists in splitting available samples into a trainirfg". & K-winner machine includes a set of nested classifiers
and a test set for cross-validation [1]-[3]. Otherwise, a large Vé-Winner classifiers okWCs) characterized by specific bounds
riety of methods have been proposed to characterize a claé@the generalization error. The elementayC classifies a pat-
fier's generalization ability theoretically [4]-[7]. Among thesetern by checking the classes associated witlkthest-matching
the formulation based on the properties of the growth funrototypes: if all the classes agree, the pattern is classified ac-
tion and of the Vapnik—Chervonenkis (VC) dimension [8] ofcordingly, otherwise itis discarded. The overall KWM chooses,
fers a most general theoretical foundation. A crucial feature i €ach test pattern, the most confident classifier, that is, the
Vapnik’'s approach is that the theoretical result stems from*4VC that does not discard the test pattern, and that is charac-
worst-case analysis. The estimated classification accuracy oftgfzed by the best estimated generalization error. As a result,
falls in a pretty wide range, which may be of limited usefulnes KWM associates each class_ificgtion output w.ith the tightest
in practical applications. Therefore, Vapnik recently proposeonU”d to the expgcted generalization error, and is not subject to
domain-oriented method named support vector machine (SVAg problem of rejected patterns.
[9]-[11]. The design criterion for SVM classifiers is to max- Th_e paper shows that it is possible to characterize the growth
imize the error margin, a quantity involving distances betweddnction of akWC. The computed value depends on the number
training patterns and the separation surfaces among classes.afHrototypes and is independent of the data dimensionality.
SVM paradigm joins theoretical validity with practical impactSUch a property can notably improve classification perfor-
especially in complex domains involving huge data sets. mance, especially in applications involving high-dimensional

The domain-oriented perspective that inspires structuf®mains. The properties of the growth functions ACs
risk minimization [9], [10] leads the trend in classifier designMake it possible to label each location in the data space by a
application performance is privileged, yet preserving cofound to the expected generalization error.
sistency within a theoretical framework. In this context, the The validity of the KWM model is first demonstrated experi-
present paper describes a classification model c#ltednner mentally on an artificial testbed in a two-dimensional (2-D) do-
machine(KWM), whose novel conceptual contribution lies inmain, a_IIowing a visual interpretation of res_ults. The practical
combining unsupervised with supervised training. Vector quaioPact is then evaluated on a real testbed, i.e., the NIST hand-

tization (VQ) provides the basic paradigm, as the unsupervis@gtten numerals database, involving large numbers of patterns
from a high-dimensional data space for a complex, multiclass
. . o _ g)LobIem.
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Il. THE K-WINNER MACHINE (KWM) an efficient hardware implementation of the training algorithm

as been developed to reduce the considerable computational

The KWM adopts a dual-paradigm approach: first, a V@ost [20]. For the reader’s convenience, a sketch of the PGAS

schema uses available prototypes to render the prObab'“Sz'atlﬁorithm is given in the Appendix.

pattern distribution; then, each prototype is labeled by theIn order to build up a classification machine based on the pre-

predominant class within its data-space partition. Decouplin . : .
o : us unsupervised representation, assume now that some crite-

vector positioning from subsequent class assignment plays. a_ . . . .
rion is available to assign a class to each prototype after it has

key role in design aimed at generalization performance. ngs o . . . .

) ; en positioned. This process is conventionally named “calibra-
approach prevents an uncontrolled (and practically detrlmentfalﬁ " 112 | . h librati h

explosion of the classifier's growth function ion [.1 I Frpm agenera perspectlvg, the calibration mecha-

' nism is required to label the tessellation produced by the VQ

o training process. In KWM training, such a process labels a pro-

A. Training Procedure for the KWM totype according to the majority of patterns covered by the pro-

The KWM design criterion is to optimize the representatiototype; a possible “tie” case is solved by choosing a class at

of the data distribution by a VQ mechanism. Thaedimensional random from among the best candidates. The following defini-

data space is partitioned by a set of prototyp&s~= {w, € tions help describe the KWM training process formally:

RP, n =1, ..., Ni}, which lie at “significant” positions in ¢ — {e® k=1,... N} set of categories from

the data space; each prototype covers the patterns lying within which patterns  are

its associate partition. The process assigning a prototype to each drawn;

pattern follows a best-match criterion minimizing a distortioRy — (v, ¢ RP 5 = prototype set mapping

cost. Euclidean metrics is usually adopted to measure distortign, ', 1 the data space;

hence a data patterr,€ %, is associated with the prototype,x — {(x;,c), x1 € RP, ¢ € set of labeled training

w*(x) € W, that satisfies C,l=1,...,Ny} patterns;
P,={xeRP: w'(x)=w,} data space partition that

w"(x) = arg min, {||x - w||2} . Q) is spanned by theith
wew prototype;

The VQ-representation problem implies finding the optimats > k =1, ..., C shares  of  patterns
set of prototypesJ¥, that minimizes the overall distortion: lying in P, and be-
E(W) = [n llx — w*(x)||°p(x) dx. The pattern distribution longing (E)J each class;
is not knowna priori, hence the integral cannot be computed D am =1

analytically in any but very peculiar cases. Therefore, one usthe KWM construction procedure combines unsupervised VQ
ally resorts to an empirical estimation of the involved distortioriraining with subsequent calibration.

a set of training patternX. = {x; € ®R?, 1 = 1,..., N,},
drives vector positioning to minimize the empirical cost

K-Winner Machine (Training)

;M 0. Input: training set of labeled data,
EW) = 5 > llxi = w ()l @ | % | _
r 1= 1. (Unsupervised prototype positioning)

Apply an unsupervised VQ algorithm
Searching for the global minimum of (2) is very expensive (PGAS [19]) to adjust the prototype
from a computational point of view, hence a large variety|of set, W, minimizing (2);
iterative approaches have been proposed in the literature.| The (Calibration)
k-means algorithm [17] provides the classical pattern-recpg- Calibrate W into a labeled set of pro-
nition approach to the problem. Neural models exploit inter- totypes, W', computed as
neuron connectivity to derive a topologically consistent map-
ping of training data [12], [13]. Some methods privilege proba- W’ = {(w,,, ¢,), w, € W, ¢, € C,n=1,..., N;,}
bilistic aspects and aim at an accurate rendering of the data| dis-
tribution [14], [16]; others tend to average distortion over avail-
able prototypes through a uniform coverage of training patterns
[15], [18].
As far as the KWM model is concerned, the only constraint on ) ) ) .
the applied VQ algorithm is that it should support unsupervis& Run-Time Operation of &-Winner Classifier {\WC)
training. In principle, models privileging a consistent mapping The principle of operation of &WC lies in checking the
of the data distribution should be preferred; empirical practicagreement of reference sites in the data space to make a reli-
however, did not point out any significant differences in the seable decision on a test location. Th&/C classification process,
eral alternatives considered. The research presented in this paesoted bykWC(k, x), involves two steps. The first performs
adopted the plastic neural gas model [19] for two reasons: d) unsupervised categorization of the test pattermith the
given a constraint on final distortion, the VQ model can simubest-matching prototypes; the second considers the calibrations
taneously assess the number and positions of prototypes andfZhe prototypes and classifies the pattern accordingly.

where: ¢, = ¢, b = max{a®}.
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k-Winner Classifier (run-time operation) The K-Winner Machine (KWM)
= kWCk, x) 0. Input: a test pattern, x; a trained
0. Input: test pattern x € RP, trained and calibrated set of prototypes, W "
prototype set, W ’/, agreement level k k=1, =1,
1. ( k-winner unsupervised categoriza- 1. While: kWCE, x) does not discard x
tion) la) If ( N(k)>0) and ( n(k) < 7*)
1.1 Sort the set of prototypes, W "( x), 7 = w(k);
arranging them in order of increasing 1b) kE=k+1;
distance from X 2. Output:
2.a) classify x using EWCE — 1, x);
W (x) = {wn, € Wir <s=|x—w,]| 2.b) set the expected error proba-
<|lx=—wpll,r=1,..., Np}; bility, 7*, associated with the pro-
posed classification.
1.2 Extract the set Wi(x) <€ W’(x) in-
cluding the k best-matching prototypes
with respect to x The KWM processes a pattern starting byVEC with & = 1;
the associatéWC spans the entire domain space and supports
Wi(x) = {w,, e W(x),r =1, ..., k}; a conventional winner-take-all (WTA) categorization schema.

In the subsequent steps, the process tries to improve the confi-
dence in the decision by checking larger and larger sets of neigh-
boring prototypes; if successful, this mechanism has the effect

2. ( k-agreement classification)
If 3¢t : Vw,, €Wix)ec, =c

| then: *Classﬁy x as belonging to of reducing the bound to the error probability. This fundamental
class ¢ property will be proved in Section Ill. It is therefore reasonable
else: Discard X.

that the additional information should yield a better estimate, as

compared with that of a straightforward WTA-based classifier.

The outcome of th&WC classification process depends on Such features represent the basic difference between KWM
the agreement of all the elements of the set aeighbors as- and multiple-voter classifiers. KWMs do not involve any ma-
sociated with a pattern, and exhibits some basic interesting fgarity mechanism in the classification process, and the indi-
tures. First of all, the minimatWC configuration witht = 1  vidual contributions are drawn from the same set of prototypes
always classifies any test pattern and does not allow a “discardther than from multiple and independent experts. In compar-
output. Second, as a consequence of such a property, it is éaep with other approaches [21], the KWM model has the ad-
to show that if two differentWCs do not discard a pattern, theywantage of implicitly and easily facing multiclass classification
must necessarily prompt the same classification output, whiptoblems. Indeed, the functioning of a KWM stems from pro-
also coincides with the class prompted by the simpld8tC totype calibration, which supports any arbitrary number of cat-
with £ = 1. On the other hand, differeifWC’s are charac- egories.
terized by different generalization abilities, as indicated by the Thanks to the selection mechanism, the KWM model is not
specific growth function of eachWC and the associated boundsubject to the drawback of rejected patterns. Any input pat-
to its expected generalization performance. The latter quantigyn is labeled by a confidence levé{,, related to the associ-
depends on theWC specific levelk, and on the number of pat- ated smallest error probability. In the following, we shall denote
terns, N(k), that thekWC does not discard. In the following, by K the eventual confidence level determined by the overall
such a bound to the expected generalization error will be d€WM, and by % the agreement parameter that characterizes a
noted byr (k). The underlying theory will be provided in Sec-specifickWC.
tion III.

. . I1l. THEORY FOR THEKWM M ODEL
C. Run-Time Operation of the KWM

This section presents theoretical properties that describe the

. The C'as.s'ag“?em.e”t principle rul|nggW(? offers the pos- b?haviors oft-winner classifiers and of the overall KWM. For
sibility of discriminating between space regions on the basis o . .
the sake of the analysis, in the following we will assume that

the associate confidence in their classification. In practice, from )
) . . the prototypes have been fixed before the data sample was gen-

the highest prototype agreeme#t, attained by the family of ) . . X
kWCs on a given test location, one can infer the level of conf?—rated' Theorem proofs are given in Appendix B for clarity.
dence in the classifier's decision.

Thus, for each point in the space, one can selectiWE : -
that does not discard the test point and makes the smallest/sVinner Classifier
timated generalization error. This variable-confidence mecha-Computational Learning Theory characterizes a classifier in
nism allows one to label data-space regions according to thigrms of its VC dimension, which is the largest number of pat-
expected generalization errors. This opportunity is the principgierns that can be shattered by the classifier [22]. In the peculiar
of operation of the{-winner machine, whose algorithm is out-case ofK' = 1, however, the KWM model reduces to a proto-
lined as follows. type-based nearest-neighbor classifier that categorizes a test pat-

A. Theoretical Derivation of the Growth Function of a
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tern with the class of the best-matching prototype. In this caseents, so that for the restricted input space the nearkdiels

the following relevant property can be obtained. will always be consistent. As a consequence, on the restricted
Theorem 1: The VC dimension of &-winner classifier using input space th& WC never rejects inputs and so the generaliza-
N;, prototypes and = 1 is d% = Np. tion can be estimated by using Vapnik’s theory.

The relevance of the unsupervised training phase to the abové# [9, p. 72—73] Vapnik gives two basic results that provide
theorem can be highlighted by a simple example. Considefavorst-case estimate of the classifier's generalization error
EWC with k£ = 1 and N, = 2. If prototype positions were seton the overall data distribution. The estimator is the empirical
by a supervised training algorithm (e.g., LVQ [12]), then the rdtaining error,», defined as the ratio of misclassified training
sulting classifier would be equivalent to a Perceptron [9], and iggtterns to the total number of training patterns. The first result
VC-dim would be equal tdyc = D + 1, whereD is the space (expression 3.15 therein) is
dimensionality. By contrast, the VC-dim of the acti®/C with 1
unsupervised prototype positioning amountsl\@(% =2. TSVt 5\/‘;' (3)

For reasons that will be clarified later on, the use of unsrhe second result is given by
pervised training inhibits the application of the VC-dim when
k> 1 However, a theoretically consis_tent derivation of_ the r<u+ 3 <1 1 /1 1 @) ' 4)
growth function of thekWC can be obtained by following its 2 €
definition [22]: the growth function, Gfn), of a classifier gives
the largest number of target configurations that can be proces
correctly by the classifier for a certain number of patternds 4 7
is worth reminding that the GF of a classifier does not depend =0 (ln GF(2n) ~In Z) ®)
on any specific training set but only on its cardinality. Again, thﬁ/heren is the expected confidence in the result.

following derivations assume that the prototypes have been se order to apply these results ta&VC, we define the fol-
independently of any specific data sample. The following th'f"dwing quantities: '

Ihg quantity= is defined as ([9, 3.14])

orem derives 'the GF, GF(n), ofakWC. . N(k) number of training patterns that are processed by

USiTnhejsrem t2.tThe g;);vlzth fl,l_l’l(;t(ﬁ? thak'Vl’l'(Q?e_r cjl\a;ssllffler the kWC; this number is equal to or less than the
gV, prototypes isGF(n) = 2%r, wheredgp = [ Na/k]. total number of patternsy,,, because a share of the

Theorem 2 defines an important feature of the functioning overall training set may be discarded by f&/C;

of a kEWC, namely, that the grOWth function of the ClaSSiﬁeQ(k-) portion OfN(k') training patterns that are misclassi-

is independent of the actual dimensionality of the data space. fied by thekWC;

Conversely, the independence of the GF of the number of PatL) empirical erron/(k) = Q(k)/N(k);

terns stems mainly from the unsupervised WTA-based proge¢k) portion of a test sample, includin (k) patterns,

dure that assigns patterns to the associated data-space partitions. that are misclassified by theWC, estimated by

Any configuration of prototypes generates a unique tessella- Vapnik's worst-case theory;

tion of the data space. Therefore, once a prototype set is es@hék)(n) growth function of thesWC; Theorem 2 proves that

lished (either bya priori setting or after empirical unsupervised it is given by: GE®) (n) = odty

training), boundaries among data partitions do not depend g0 sing the result of Theorem 2 in expression (5), one can write
pattern classes, and the data partition associated with each sub-

graph remains unchanged for different class assignments. Thus e(k) = 4 [dgﬁ In2—ln ﬂ} . (6)

the number of functions that can be supported Ey\éC based N(k)

on a given prototype set is fixed, and will depend only on the \when) = 1, one will use the result of Theorem 2 in (6),
number of available prototypes. as the result of Theorem 1 would lead to a broader bound. The

As a final remark, we now briefly give the reasons why ongesigner will choose the sharper bound between (3) and (4). In
cannot define the VC-dim of @WC with & > 2. Unsupervised fact, Vapnik’s bound (4) is usually preferable when dealing with
training requires that the number of pattern§, be equal or 3 small error on the training set (< 1), and will be adopted
larger than the number of prototype¥,, in order to avoid the a5 a default throughout the paper. By using Theorem 2 and the
occurrence of dead prototypes. Therefore,dfe of the XWC  previous definitions one can prove the following property.
must be equal to or larger thaw,. At the same time, the anal- Theorem 3: For anyk-WC, the worst-case number of mis-
ysis made in the proof of Theorem 2 shows that oW, /x|  classified test patternsl(k), out of a test sample a¥ (k) pat-
pattems can be Shattered, Wh|Ch ShOWS that the VC'd|m Of Sl.téFhs is monotonica”y nonincreasing ]a'a’lcreases_

a classifier can be determined only for= 1. Theorem 3 states that increasihgreduces the worst-case
number of misclassified patterns in generalization performance.
B. Generalization Performance oftaWC Therefore, the worst-case error probability ahC is given by

In order to apply Vapnik's theory to the specifiewinner I(k) e(k) du(k)
classifier under the assumptions of Theorem 2, one restricts the"(k) = N (k) <v(k)+ — {1yl () (1)

input space to those points for which thaearest prototypes are

in the same connected component of the graph. The prototyperession (7) applies only to the patterns that are not discarded
graph can only be labeled with distinct labels on distinct compby thekWC and whenV (k) > 0. The caséV(k) = 0 denotes a
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subsampling phenomenon, which certainly occurs for very large ppatterns  p patterns
values ofk. In such peculiar situations, one cannot characterize
the associateWC, and the KWM resorts to the closest, smallest
value ofk that makes (7) valid.
+

C. Relevance to the KWM

Summarizing the above theoretical framework will highlight q patterns q patterns
some basic aspects that may help understand the actual func- g patterns

o

tion of a prototype considers only the patterns lying in the pro-
totype’s partition and does not depend on the classes of all the
other patterns in the training set. q patterns  p patterns

Calibrated prototypes support the family &WCs. Ac- o
Fig. 1. Sample problem to demonstrate the role of calibration in the KWM

Cord'_ng to the classification meCha_msm’ ahWC that dPGS operation. Stars indicate the positions of prototypes determined by unsupervised
not discard a pattern must necessarily agree wittk¥N€ with  training.

k = 1. Instead AWCs differ in their expected generalization
performances. The values af%) depend ork for two main
reasons: first, Theorem 2 states that differé/Cs have

tioning of a KWM. The crucial feature of the KWM model is D patterns
the preliminary unsupervised training phase, which strongly re-

duces the number of functions supporteddWCs. As to the

supervised training phase, it is worth stressing that the calibra-

the training set, provided the selection is made independently
. . of the resulting empirical error. The above considerations make

different growth functions; second, the number of coverecI . .
g it possible to state that the theoretical results (6) and (7) apply

patterns N (k), may depend o# for k& > 1. i .
The latter property raises the issue of discarded patterns.cﬁi'lgf('aStently ItV (), 11(k) ande(k) are used whenever appro-

Eﬁl;cvldlr?é’n?gs (;TJ Ig::ttiti\/\éosntﬂg SV: S?:;;;Z%Zn&a;c%?rgggl n?ja? The crucial difference that results from including the value
%{ k in the training process is pointed out by the following ex-

?n k. In order to prove this property, one should first ConSIderample. A two-dimensional (2-D) sample (Fig. 1) is composed of

ew fundamental facts. . .

First, the tessellation of the domain space is uniquely set Eg"r equiprobable nonc‘):,/erlap‘)‘m?g clusters, whose patterns may

prototype positions, and the resulting partitions do not depe Io_ng to tvvp _classes{— and ). In.the casev, = 4, unsu-

on pattern classes. On the other hand, calibration results st%%v'sfeq training places a prototype in the center of each cluster,

either from fixed settings or from sample-driven training tha&ogtalnl_r;gp Ta parl]tternsp gf q_) 1) i . KWM

minimizes the empirical error for each prototype; in any cas%i hoﬂs' er n%wt 3 cas% q '_82. ) ﬁf‘: trains a libra-

class assignment proceeds locally within each partition. . t t.e procedure described in ecuoq . ,proltotype calibra
é%c_)n will give the kWCs results and decision regions shown in

As prototype calibrations are mutually independent, the b ig. 2(a); the consequent 2-winner classifier will bring about a

havior of a specificdWC can be analyzed independently of th Aumber of empirical training erro(2) = g, and the number

others. The only constraint deriving from different value$ & : . : :
that N (k) > N(yj) V> k. Indeedg one can easily verify thatof discarded patterns will l@+3¢). 2) Instead, if one calibrates

. . 7. the prototypes to optimize specifically th&/C empirical error,
the quantityV(k + 1) varies in the rangé€0, 1, ..., N(k)};in : . A
the E’;\Ck of gdéitiongl information onegfarpriori only(as);rume abetter SO|Ut.'On fOkf 2will be that.presented in Fig. 2(b). the
a uniform distribution forV (% + 1) within such range. There- number of m|sclassmed patterns W'I.I BK2) = 0, whereas t.he
fore, all the quantities associated witk®&/C [i.e., the number number of discarded patterns will still amount(yo+ 3¢). This

of covered patternsy (%), and the number of error&(k)], are |mpcli|.e§ntr;2tszolzut|(r)]2 1)e'Serr]otr;(;pggglr:ts.;ansgéﬁi) 'SS f:r;]s'r?m o
determined once and for all when calibration results are set.O‘ggr ! ). however, : : Ing inimiz

can also directly see that (k) andQ2(k) are statistically inde- 2g:are_chose;|lftftere\;]aluat;%g the situation fd?.zj.' %S tr:e

pendent of each other: the former is related to the spatial dis@W training a ectgt e calibration process ot individua pro-

bution of sampleg)(x), whereas the latter results from the clas otypes, the theo_retlcal results reported in Sections II-A and B

probability, p(c|x), which is independent agf(x). Finally, we are no longer valid.

also stress that the resulting error raté;), is ultimately fixed

by calibration and is not subject to any optimization process tHat

takes into account the value bf The properties of the KWM model presented in the previous
These considerations prove that, for &WC, the mecha- sections can be extended to multiclass problems. The theory for

nism that selectsV(k) patterns out of the original sample ofa multiclass case has been developed in the literature [23], [24],

N, patterns operates independently of the quant{ly). The stating that the definition of the growth function for multiclass

independence of the relevant quantity of the pattern-selectiproblems is analogous to that for a binary-classification case:

criterion is the basic prerequisite for performing any estimatidhe number of target configurations for a number of patteins,

on a subset of the overall sample of data. This holds true alselonging toN. > 2 possible classes is given W, )" rather

to apply Vapnik’s theory, which allows one to use any subset tifan2™.

Extension to a Multiclass Case
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testbeds entail a multiclass problem: the former involves a 2-D
space allowing a visual interpretation of obtained results, the
latter addresses a well-known standard database related to a
complex and technically very significant recognition problem
(OCR).

Class= ¢-’
(zero errors)

Discarded
(2q patterns)

Class= ¢-’
(g patterns
misclassified

A. Artificial-Domain Tests: 3-Gaussian Problem
This artificial testbed combines three Gaussian distributions,
which have the same variance and are placed symmetrically on a
Discarded 2-D plane. The experiments aimed to demonstrate the space-la-
(p*q) patterns beling ability of KWM’s. The Gaussian distributions were cen-
() tered inc; = (1, 0), ¢z = (cos(27/3), sin(2x/3)), andcs =
(cos(4r/3), sin(4w/3)), and gave rise to a three-class problem.
The KWM performance was tested in three different experi-
ments. The variance value (equal for the three Gaussians) was
progressively increased from 0.1 to 0.5 and up to 1; thus the clas-
sification system was tested for problems of increasing difficulty
Discarded in separating the three classes. For each experiment, 6000 total
(24 patterns) training patterns were randomly generated [Fig. 3(a)—(c)]. Like-
wise, an equal number of test patterns were randomly gener-
ated to assess generalization performance. In the KWM training
process, the number of prototypes used in each experimental
run was always set to 30, ensuring the constant ratio 200 of the
number of training patterns to that of prototypes.
(b) The artificial nature of the problem allows one to work
Fig. 2. Decision regions and results of the two-winner classifiers trained Q”t the optimal error rate, attained by a Bayesian classifier
different strategies. (a) After KWM calibration. (b) After calibration tuned tdusing the correct decision surfaces. Such a classifier is easily
the kWC (k = 2). Case (b) yields a smaller empirical error but does not a||0\1\mp|emented by placing three prototypes in the centers of
the application of KWM theory. . L . . .
the Gaussian distributions. An alternative classical approach
involves the 1-nearest neighbor (1-NN) classifier, which
_ _ o) &) classifies each test pattern according to the best-matching
totypes in a multiclass case @'(n) = N. ", wheredir = pattern in the training set. These methods were compared with
|V /E]. the 1-winner classifier. Table | gives the classification errors
By applying the demonstration used for Theorem 2, the progicurred by the different approaches, and confirms the efficacy
is straightforward, considering that the calibration phase maythe KWM model, even in the basic caseldf= 1.
assign any of theV. classes to each prototype. The assertion The spatial effect of the variable confidence was analyzed by
follows immediately when including this fact in (10) and thern exhaustive procedure. Each point of the data space under-
substituting the result in to (11). went a KWM-based classification and was labeled by the asso-
A pattern is counted if2(k) whenever th&WC assigns it to cjate level of confidencey . Such an approach made it possible
a class different from its original one. In compliance with thﬁ) p|ot homogeneous regions of the data space, that is, those
approach described in [23, p. 112], if one includes the result @blding equally labeled points. The resulting graph provides a
Theorem 4 in the expressions derived in Section I1l-B, one cagonfidence map” and allows an easy and intuitive interpretation
rewrite (6) as of the KWM functioning. The results for the three variance set-
4 ) n tings are presented in Fig. 4. Each gray level indicates the KWC
e(k) = N [dGF InNe —In ﬂ (8) ruling a specific region of the data space; darker points indi-
o L __cate tighter bounds to the generalization error. Thus each graph
and Vapnik’s generalization theory (6) and (7) can be applledég gests the appropriate valuefotto be used at each space lo-

the multiclass case, as well. In fagt, such a property Is reporteghion As such, the confidence map can also be regarded as a
rather seldom in the literature. This depends mainly on the Corﬂép of variable bounds (7) to the error probability.

S|dergble d|ff|cult|e-s_ |n.her.ent in the cpmputatlpn of the growth In the “simple” situation [Fig. 4(a)], the symmetrical spatial
fmuggg?ng?é;;l?aséﬁgéghtlﬁ;theoor:gglctg] Eﬁ;lrjzli'gretr?zglgf\é\]{'\t/lﬁonfiguration proves a consistent separation of the classes. It
overali model i€worth not_mg that the Qark, gmform regions extend almost to

' the separation boundaries; this is the consequence of the com-
pact data distributions. The actual class-separation area is in-
dicated by bright gray and corresponds to the region of max-
This section describes the experimental verification of thenum uncertainty in the decisioff{ = 1). The fact that inter-

KWM model in a synthetic and a real-world domain. Bothmediate gray levels are virtually absent witnesses the minimum

Class= ‘-’
(zero errors)

Discarded
(p+q) patterns

Class= ‘+’
(zero errors)

Theorem 4: The growth function of &-WC usingN;, pro-

IV. EXPERIMENTAL RESULTS



RIDELLA et al: K-WINNER MACHINES FOR PATTERN CLASSIFICATION 377

Variance = (.1 Variance = 0.5

ny

(@) (b)
Variance = 1.0

(%)

Fig. 3. Different versions of the artificial three-Gaussian problem. (a) Simple; (b) Medium; (c) Difficult.

TABLE | faces tend to a smooth but steady degradation. Such results con-
THE THREEGAUSSIAN EXPERIMENTS COMPARISON OF THEACCURACIES OF  firm) the direct connection between the relative distribution of
DIFFERENT CLASSIFIERS . . -
uncertainty and the problem complexity. The ability of KWM's

Bayesian 1-NN 1-WC to associate space locations with confidence levels may prove

R Training set 0.03% - 0.05% very useful in high-dimensional domains, where class inspec-
o =01 restset 0.07% 0.03% 0.05% tion is often desirable but a visual interpretation is not feasible.
Training set 6.08% - 7.00% Finally, the theoretical analysis of generalization perfor-

0’=05 Test set 6.15% 9.15% 6.88% mance was validated by classifying the 6000 random patterns
oo |Lrainingset 14.6% - 15.80% not incl_udeql in the training set. The experimental results_in the

" | Test set 15.13% 21.73% 16.42% three situations can be deduced by comparing the experimental

error rate with the theoretical bound(k), to the generaliza-
tion error (7). As the latter quantity is subject to a statistical
overlap among the Gaussian distributions. “Medium” and “conftyctuation, its 5% confidence ranges are also provided, and are
plex” situations are depicted in Fig. 4(b) and (c), respectiveljorked out [25], when applicable, as
The dark, “certain” areas shrink when the overlap among the

classes increases, the highest-uncertainty (brightest) region be-
comes larger and larger, and intermediate confidence levels asy ;- (k) = n(2/n) N(k) > 0; n=005. (9)

sume greater importance. The appearances of the decision sur- 2N(k)
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Variance = (.1 Variance = (0.5

(©

Fig. 4. Confidence maps for the three-Gaussian experiments; darker areas indicate higher confidence. (a) Simple; (b) Medium; (c) Complex.

Fig. 5(a)—(c) displays the measured and expected generalidass problem involves three distinct data sets, which, in the fol-
tion errors in the three experiments. The comparison of theorktwing, will be denoted by “LS” (learning set), “VS” (valida-
ical expectations with empirical evidence supports the resutisn set), and “TS” (test set), respectively. LS and VS consist of
reported in Section lll. The bound (7) is a reasonable estima&® 000 patterns each, and TS is composed of 58 646 patterns
of the overall error rate; the curves show that, thanks to the lim-After normalization and slant correction [27], the database
itation imposed by the unsupervised training phase on the Gi¢luded B/W bitmaps holding 4R 32 bits, further compressed
the achievements of computational learning theory can haveiato lower-dimensional patterns by averaging squares xf#4
effective practical impact. pixels into single pixels with a four-bit resolution.

The set of prototypes for vector-quantizing the data space was
generated by the plastic neural gas algorithm [19], which eval-
uated the appropriate set cardinality. The unsupervised fitting
procedure exploits a basic property of VQ training models: the

The NIST handwritten digits database represents a significaligtortion error (2) saturates up to an asymptotical value as the
testbed for the experimental verification of the KWM model imumber of neurons increases. Fig. 6 shows experimental distor-
a real-world domain of high practical interest [26]. This multition errors (LS, VS, TS) versus prototype-set cardinality. In the

B. Real-Domain Test: The NIST Handwritten Numerals
Database
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Fig. 5. Generalization performances of the KWM in the three-Gaussian experiments (a) simple, (b) medium, and (c) complex.
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number of prototypesv;, = 300 seemed to allow a suitable
tradeoff between representation accuracy and prototype-set
complexity, so it was always used as a default in all the
experiments.

The subsequent calibration phase assigned categories to the
prototypes; the resulting class distribution is given in Table II.
In fact, calibration results provided a crucial, preliminary basis
for the practical applicability of the KWM method. The graph
in Fig. 7 is the plot of sorted prototype reliabilitg,, n =
1, ..., Ny, defined as the share of the predominant class for
thenth prototypex,, = 1naxc{a§f)}. The curve shows that the
class agreement among the patterns belonging to the same par-
tition is very high: almost all the prototypes (292/38®7.3%)

Fig. 6. VQ costs (training, validation) versus numbers of prototype§Xibit a reliability higher than 0.80, thus suggesting that there

Quantization distortion saturates for large valuesvaf

is a good matching between the spatial positions of prototypes
and the associate class regions. The varying numbers of proto-

prototype training, the progress of the empirical distortion costpes for the different classes is the consequence of the different
on VS was taken into account, disregarding pattern classes: toenplexities of the digits’ graphic patterns. Simple patterns ul-
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100 TABLE Il
NIST DATABASES. ACCURACIES OFDIFFERENT CLASSIFIERS
80 L 1-NN 1-WC
Training Set (LS) - 1.92%
-l Valid. Set (VS) 0.76% 1.94%
Test Set (TS) 4.18% 7.34%
40 B . Ty
Reliability
1 ﬁ_\\
20 | 0.8 \
0.6
0 0.4
01234567829
0.2
Fig. 7. NIST testbed: calibration results. 0 : . : : :
1 51 101 151 201 251
TABLE 1l Neurons
CALIBRATED CLASS DISTRIBUTION
Fig. 8. Confidence distribution over classes.
Class # Prototypes
0 24 : . .
1 12 Grouping patterns of the same class but with differant
2 42 values made it possible to count the different confidence levels
3 29 within each class, and therefore to deduce Kalistribution
‘5’ gg within the class itself. The results of these measurements are
6 59 given in Table IV. Fig. 8 allows a visual assessment of the con-
7 25 fidence distribution: more than 85% of the patterns belonging
8 41 to class “0” were correctly classified with® = 10. No pat-
9 28

tern of class “1” could be classified withh = 10, due to the
few (12) prototypes calibrated with that class. The graph helps
timately give rise to more aggregate clusters of patterns, amaderstand the mapping supported by the calibrated prototype
therefore require a smaller number of prototypes. For instanset. Classes “0” and “6” cover the most “certain” areas of the
class “1” clearly appears more aggregate than class “2” or “8data space, though one might say that the most reliable classi-
By analogy to the comparative approach followed in thication concerns class “1” as the percentage of patterns cor-
three-Gaussian experiment, the NIST database was procegsetly processed withk = 8 exceeds 92%. Classes “4” and
by a 1-NN classifier, using the 60000 training patterns t®” exhibit critical situations; one might ascribe them to strong
categorize the other data sets. The results are given in TabledNgrlaps with neighboring classes. Measuring uncertainty in this
the generalization performance attained by the 1-NN classifisay might help the designer to build a classifier that accounts
confirms a peculiarity of NIST databases that has been reporfedsuch a distribution, for example, by treating critical classes
previously [28]: LS and VS are drawn from a similar distributionselectively.
whereas such a property does not seem to hold for TS. ThisThe validation of the space-varying confidence mechanism
motivates the considerable generalization error of any classifeam also be attained by visualizing patterns lying in different
using TS as a testbed, after having been trained with LS.  areas of the data space. Fig. 9 presents, for each confidence
The data dimensionality of the NIST testbed prevents offevel in the range [1, 10], patterns chosen at random from those
from drawing a confidence map for visual interpretation, likeounted in Table IV. A comparative inspection of the example
the map used for the 2-D problem. Nevertheless, the feasibilitpages shows that the qualities of the pattern appearances in-
of labeling space locations by confidence values proved usefuéase a& increases. The confidence in classification increases
in clarifying interesting aspects. The basic idea is to check spatith the visual quality of a pattern. Such a nontrivial result sup-
sites with nonnull probability, hence training patterns were us@orts the “natural” representation paradigm that underlies the
to spot “landmarks” in the confidence map. For each trainingWwM model.
pattern, the level of confidence resulting from the KWM algo- The final experimental phase for the NIST database addressed
rithm was evaluated. In principle, it is not ensured that laéger the verification of the theoretical predictions concerning the ex-
values lead to tighter bounds to the generalization error, dueggected generalization error. Both VS and TS were used to mea-
a possible subsampling in (7). In fact, the experiments on there the classification error, although TS should be regarded as
NIST testbed always indicated that there is a direct connectiarmore reliable generalization testbed for two reasons: 1) VS
between the agreement leval, and the confidence in the clas-was used to cross-validate prototype positioning during unsu-
sification outcome. pervised VQ training; nevertheless, it is worth recalling that
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TABLE IV
DISTRIBUTION OF CONFIDENCE LEVELS WITHIN CLASSES(NO. OF PATTERNS)

ng | wqn | mgn | wgn | wgn | ugu | wgn | wpw | uguw | ugu

K=10| 5049 0| 4378 3597 1902| 3839 5004| 3310| 3354| 1560

K=9| 146/ 2| 160| 287| 426 253 144| 416| 249 408
K=81 116 5580 187| 266 466 226 147| 369 231 448
K=7| 95 164 178| 241| 498| 240/ 133 390 239 550
K=6| g4 19| 182 208 489 235/ 136 298 227| 580
K=5| 73 14) 177 277] 460 223 104 308| 257 570
K=4| 55 o 180| 248 481 214 91| 204 333 516
K=31 42| 10| 170 260| 470 188 77| 224 335 479
K=2| 60| 61| 160| 274| 424| 336 65 190 338 410
K=11 79| 141 208| 320/ 384| 246 99| 204 437 479

K=l o ) 3- 5 A g G or 6 q’ N \; DISCUSSION ANDCONC;USIZN |
e basic idea to use a prototype-based representation par-
K=z b I z 5 Lf : (P q 8 q adigm to span a data space for classification purposes is not
3 | F - entirely new, especially when WTA mechanisms are applied to
= \) i '3 ﬁ 4 S b 7 Q q drive space-dependent decision-making processes. In this con-
K= D 2. ﬂ, '3 H '{ c 7 %’ 9 text, a novel aspect of the presented research lies in using several
space locations to derive a measure of confidence in the clas-
K=5 o L a S ‘\‘ s G 7 ? 7 sification outcome. The KWM training procedure is also quite
= standard (VQ prototype positioning plus calibration), hence the
e g {: ? g 3 ? i’ :; g ; related model can fully benefit from the vast literature on such
K= £ subjects.
ks O ( a 3 ‘{ 5 L 7 g q The crucial issue associated with the KWM model lies in
) defining and characterizing a family of classifiers, which always
= agree in the classification outcome but differ in their growth
= O ' ;\ 3 q— S & 7 ? q functions and consequent expected generalization errors. This
K=10 0 Q 3 "f 5 6 7 8 9 makes it possible to assign a confidence level to each point in

the data space; such a level is obtained by selecting the most
appropriate classifier providing the tightest bound to the gen-
eralization performance. From this viewpoint, both theoretical
and practical demonstrations have shown that there is a sharp
pattern classes were disregarded while evaluating the distortretationship between class overlap (problem complexity) and
cost; 2) more importantly, VS was drawn from a distributiothe shape of the related confidence map (expected generaliza-
very close to that of LS, hence results appear strongly correlatédn error). Such features endow KWMs with the classification
Conversely, as anticipated by the results of the 1-NN classifiegcuracy of classical surface-based representation models, and
TS was not a twin of the training set [28]. This fact had alsalso provide the local-level inspection ability typical of proto-
been confirmed (Fig. 6) by comparing the unsupervised distaype-based paradigms.
tion cost related to TS with those relevant to {VS, LS}. An important advantage of the method is the model’s inde-
The evaluation procedure was the same as used for gendence of both data dimensionality and the possible multi-
2-D three-Gaussians problem: for each test run, the theoreticklss nature of the classification problem; as a result, the KWM
boundx(K), to the generalization error (7) was compared witapproach applies effectively to masses of data. This arouses
the empirical error rate, corrected for statistical fluctuatiorgreat interest in this method for critical practical applications.
according to (9). Fig. 10(a) and (b) present the obtained resubg contrast, the model might not work properly in undersam-
on VS and TS, respectively. The curves withess the differgpied domains, where an accurate estimation of the empirical
distributions of the processed patterns, as VS seems a defini@hssification error is unfeasible and the generalization perfor-
easier problem than TS; in this respect, TS is preferable as it imance is often difficult to evaluate experimentally.
more reliable test set. The comparison between empirical cost3he simplicity of the model also favors efficient implemen-
and the theoretical bound shows that, for the NIST testbed, toations of the overall model in dedicated hardware circuitry. In
computational learning theory turned out to yield an expectgarticular, both the pattern-prototype distance computation and
result not too far from empirical evidence. the prototype-sorting process based on the extraction akthe

Fig. 9. Sample patterns for increasing levels of confidence.
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Fig. 10. NIST database: bounded and experimental generalizati
performances. (a) Results on the validation set. (b) Results on the test set.
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peration can be summarized as follows.

The “ Neural Gas " Algorithm
0. Input: prototype set, W; total number
of iterations, I,
final and initial learning rates,
nr < no < 1; final and initial decay
parameters, Ar < Ao;
1. Initialize prototype positions (pos-
sibly random)
2. For i=11t I
2.a Get a sample pattern X;;
2.b Compute vector distances from X;:
dgf) = ||Wn - X(Z)H' n = 17 IR Nh;
2.c Sort vector list

kn‘(dﬁf)) ‘ € {0, ..., N, — 1} such that:
A <dl) =k <k
2.d Compute:
i/I A i/l
N =10 <ﬂ> ; Ai=Xo- <—I> ;
70 Ao
(@) —Fn .
h’ (kn)zexp )\ B 7’L:].,...,_Z\7h7
2.e Adjust vector positions: AwS =,

O (k) WiV —x@), n=1,..., Ny
3. Output: prototype set, W.

The “plastic neural gas” algorithm was proposed in [20] as
the adaptive version of the NGAS method, to which it added
the ability of dynamically creating and deleting prototypes. The
PGAS method is guaranteed to converge in a finite number of
steps and, as compared with the NGAS approach, does not suffer
from the problem of “dead vectors.” The principle of operation
of the PGAS method lies in adding prototypes in those regions
of the data space that are represented with insufficient accuracy
BY the current prototype set; at the same time, the prototypes
whose local accuracy appears satisfactory, are deactivated and
do not enter in the VQ optimization process. The following def-

best-matching candidates have already been adopted in Vigfiion are given:

architectures [20], [29]. The reduction in the basic VQ comp®®,,: partition of patterns covered by,, : P, = {x €
tational cost in both training and run-time operation represents Xix=wp || < |x=—w; || VJj#nij=
a crucial effort devoted to a technically valid realization of the 1, ..., Np};

overall approach. At the same time, the theoretical analysisfS, (w,,): local distortion associated with prototype, ,:
currently oriented toward a more extensive study of the prop-

erties of KWMs within the framework of structural risk mini-

mization.

APPENDIX A

OVERVIEW OF THE UNSUPERVISEDPROTOTYPEPOSITIONING

ALGORITHMS

[P |
1
EN(Wn) = 5 E ||X1 — Wn||2; X € Pn;
=1

the indexV indicates that the current sé¥/, con-
tains V prototypes.

The “Neural Gas” (NGAS) model was defined in [15] as arf(«, w,,): “prototype activation” function, defined as:
effective unsupervised algorithm to position prototypes so as to fla,wy) =1 Ex(wy,) < o fla, wy,) =0
optimize the uniform coverage of the data space. The algorithm otherwise;
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b(P,):  centroid of the data partition covered iy, :
1 P,
= P_ Z X € Pn,
k=1
E(W): total distortion associated with the prototype set:

1 Y
——E En(w,).
an:l wiwn)

See the algorithm at the bottom of the page.

APPENDIX B
PROOFS OFTHEOREMS1, 2,AND 3

Theorem 1:The VC dimension of a-Winner Classifier
using NV;, prototypes and = 1 is dy¢ = Np.

Proof: Assume to set up a set of prototyp&g, with N,
prototypes. Consider a data sit, holding N = X, patterns:
there exists a positioning schema for tNg prototypes such
that each prototype covers one pattern, héhce,, x;) € X:
Wi (X,,,) N Wy (Xb)

target configurations that can be supported by the 1-WC classi-Consider now the set” = {g; C G',j =1, ...,

fier is 2%; it follows that: dvc > N,.
On the other hand, consider a larger dataXét: XU {x'},
holding NV, + 1 patterns. The NN prototype that classifie’s
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(in particular, where,, # ¢') that cannot be classified correctly
according to the NN criterion, hence the dataXétannot be
shattered by the 1-WC. Therefo®;, < dyc < Np +1 &
dve = Np. Q.E.D.
Theorem 2:The growth functlon of ak-winner classifier
usingVy, prototypes iSGF(n) = 924G, whered(c’f% = | Nn/k].
Proof: Using the previous notations, 1&t be a data set
holdingn patterns, and I1é&V be a set ofV,, prototypes. Build
the graphG = W x W that pairwise connects all the prototypes
in W: the prototypes represent the nodessinand the arcs are
represented by pairs of nodé€sjs fully connected. Using a sim-
ilar derivation to that used for Theorem 1, further assume that
the graph structure is fixed before the data sample was gener-
ated.
Extract from G the subgraphG’, defined asG’
{{wa, wp) € G:Ix € X: wg, wy, € Wi(x)}. G includes
the pairs of prototypes (arcs) that contribute to classifying at
least one data patterns. Incidentally, note that i= 1, all
the prototypes inW are isolated, ands’ is the degenerate
subgraph that contains all the nodes and no arcs. Given any
subgraphly C G/, denote byX(g) the set of patterns classified
by g; it is defined asX(g) = {x € X : Iwy,ws) € g

= . Therefore, the number of possible w1, we € Wi (x)}. By constructionX(g) # &V g C G'.

M}
whose elements are characterized as follow$: §) € G”, g,
is connected and 2j g,, g» € G" g, Ngy, = F S v £ v. In
other words(” contains all the connected subgraph&6that

must be drawn from the available s&%,. Thus, there exists at are disjointed. By definition of theWC and by construction of

least one pair of patterns(, x’) in X’ such that:W;(x,) N

G’, any subgraph € G” contains atleagt—1 arcs and: proto-

W1 (x') # <. Butthis implies that there is a target configuratioypes. More importantly, the fact thats connected implies that

The “ Plastic Neural Gas
0. Input: a data set

" Algorithm

final and initial learning rates, n < 1Mo
)\[ < )\0;
1. Draw a random pattern Xg; Set:  w; = Xg;

N

2. For each ith input pattern; »

2.a Compute vector distances:
2.b Sort neuron list kn(dgf)) e {0,...,N

i=1, ...,

Be{l,...,N}: kp(d) =0
2.c If f(Oé7 WB) =
using NGAS)

AwS =g - hD (k) - f (a ng—n) ) W—l) _ X(i)J :

3. For each neuron
4. For n=1,...,.N
If  fla, w,) =1 AND (P, = ©)

Delete w,; Set N =N —1;

(Cn(wp) <eV¥n=1,...,N) OR (C(W

Exit and Return W,
Else

6.a

w,, such that

(P, # 9D):

5. I )€ Z)

Set Z=ZU{CW)},

6.b Select the “worst” prototype:
6.c Create a new prototype, WN41 = W;
6.d Set N =N+1; WIWU{WN+1};

6.e Loop to step 2).

w €

X, maximum tolerated cost,
W={w}; Z={0}; N=1,

iV = |fwn = x O]
— 1}; B is the index of the “best” prototype:

1 (If the best prototype is active, update all active prototpyes

Set

W: Cn(w

w,
< 1; final and initial decay parameters,

, N

n=1,...

w, = b(F,);

)2 COn(w)VweW,
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vV x1 € X(g) Ix2 € X(g): Wi (x1)NW;(x2) # . Disproving  sifier are at most as many as the errors made by:thénner
this hypothesis implies that x;: V x2 € X(¢)Wi(x1) N classifier. These properties can be expressed as
Wi(x2) = ; this means that the subgrap¥i,(x;) is dis-
jointed from the rest of;, which is impossible becaugés con- VE>INK+1) < Nk (13)
nected. _ V k> 1Q(k +1) < Q(k). (14)
Two basic properties can now be proved.
1) Each subgra_pb € G” can shatter at most one patternBy Theorem 2 (12) one has
Assume thatX(g) includes two patternsix;, x2}. The sub-
graphg € G’ therefore includes only the subgraph, (x;)
and Wy (x,). For the shattering property, the classifi?r) must
] i i ¥ 1
e . F1O (6 and (12), s 6350 very g (1) o
sification, the two sets of prototypesWa(x.), ¢¥) and ° coond unction o
(Wi(x2), ¢@), must be calibrated with different classes,
therefore they must be disjointed. This is impossible because
g is connected, sdxi, X2} cannot be shattered hy. This
property easily applies to the general caseX¢f) including
more patterns, as the above analysis can be made for ead
couple{x;, x2} such thatW;(x;) N Wy (x2) # . ® B
2) For any pair of subgraphgy, g € G’ = X(g1) N _ e(k) Q(k
X(g2) = & (the sets of patterns covered by disjointed graphs areH(k) = Uk) + N (k) 2 <1 Tyt k) ) <
disjointed, too). The fact that , go € G” implies thatg; Ng> =

V> 1d5 < d¥). (15)

V k> le(k+ 1)N(k+ e < (B)N (k). (16)

If one now uses (7), the worst-case number of errors on a test
fple of N (k) patterns is

©. Assume that there is a pattexnsuch thatx € X(g1) and  TI(k) = Q(k) + EN(k)s(k)

x € X(g2). By construction of G the subgrapiV;.(x) should 2

appear in botly; andg., hence the subgraphs would not be dis- N2(k)e2(k)

jointed any more, which contradicts the hypothesis. o T NRe(R)R(R). 17)

From Property 1), one concludes that only two target config-
urations, regardless of the number of patterns {g)Xcan be Considering inequalities (14) and (16) and the monotonicity of
processed correctly by @WVC based on a subgraghe G”; all the terms in (17), one has
therefore
VE>1T1(k+1) < TI(k).
GFy(n)=2Vn. (10) QED
From Property 2), one deduces that the GF of the classifier
based on the entire grapH & given by the product of the indi-
vidual GF's associated with all the disjointed subgraphs The authors wish to thank Dr. A. M. Colla and the staff of
Elsag SpA for their valuable assistance in performing the ex-
periments described in the paper.
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