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Abstract. Thegraded possibilistic clustering paradigincludes as the two ex-
treme cases the “probabilistic” assumption and the “pdsstib” assumption
adopted by many clustering algorithms. We propose an imghtation of a graded
possibilistic clustering algorithm based on an intervalaify constraint enforc-
ing both the normality condition and the required gradedsitiléstic condition.
Experimental results highlight theftBrent properties attainable through appro-
priate implementation of a suitable graded possibilistaziei.

1 Introduction

LetX = {x| k = 1, ....,n} be the set of unlabeled sampl¥s: {y;|j = 1, ..., c} be the
set of cluster centers (or prototypes); = [uj] be thefuzzy membership matrix

Many clustering approaches, such as C-Means (CM) [3], FGzeans (PCM) [2],
and Deterministic Annealing (DA) [9, 1], assumepeobabilistic constraint accord-
ing to which the sum of the membership values of a point intedl ¢lusters must be
equal to one. This is done through the so-called “probatilonstraint” by setting
Y(Ugk, . .., Uck) = Z?zl ujk — 1. Each membership is therefore formally equivalent to the
probability that an experimental outcome coincides witle ohc mutually exclusive
events.

In [5, 6], Krishnapuram and Keller showed the limits of thelpabilistic approach
to clustering and proposedpmssibilistic approachto it. Their approach assumes the
membership function of a point infazzyset (or cluster) is absolute, i.e. it is an evalua-
tion of adegree of typicalityiot depending on the membership values of the same point
in other clusters.

Krishnapuram and Keller [5, 6] presented two version of asiilgstic C-Means
algorithm (PCM) that relax the probabilistic constraimt,arder to allow gpossibilis-
tic interpretation of the membership function aslegree of typicalityln PCM, the
elements ofJ fulfill the following conditions:
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Then, the possibilistic approach implies that each menhigeis formally equiva-
lent to the probability that an experimental outcome calasiwith one ot mutually
independenevents. This is due to the complete absence of a constraititeoset of
membership valueg/(= 0).

Note that, due to lack of competitiveness among clustetsteting algorithms
based on the possibilistic approach, need of an initiatidigion of prototypes in the
feature space and the estimation some parameters, thataantdined using a prob-
abilistic clustering methods. E.g., in [5, 6], a Fuzzy C-Meanitialization has been
applied, while Masulli and Schenone [8] used a prototypé#kiization based on the
Capture Hect Neural Network(CENN) [4].

However, it is possible (and in practice it is frequent) thaits of events are not mu-
tually independent, but are not completely mutually exekieither. Instead, events can
providepartial informationabout other events. Of course, this is a problem-dependent
situation and accounting for it may or may not be appropriate

An interesting case of partial information, in the contektlee present research,
is the concept ofjraded possibility The standard possibilistic approach to clustering
implies that all membership values are independent. Irrastitthe graded possibilistic
model assumes that, when one of thmembership values is fixed, the otleerl values
are constrained into a subset of the intervall]Jo

Clearly, this situation includes the possibilistic modmtd also encompasses the
standard (“probabilistic”) approach.

An example of such graded possibility is given by a glass artié fuzzy concepts
of “full” and “empty”. If the glass is full or almost full, itsnembership to the concept
“empty” should clearly be around zero, and similarly for #mapty or almost empty
case. However, if the glass is half filled, it is much morffidilt to assess the mem-
bership in the concept “empty” with similar confidence. Thefite of the membership
functions in this case should be decided according to fudbesiderations.

In short, in these intermediate cases the membership amstiould not be con-
strained by the cost function, but should be arbitrary toreagedegree.

2 Modeling graded possibility

A class of constraintg, which includes the probabilistic and the possibilistises, can
be expressed by the following unified formulation:

C
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where E] is an interval variable representing an arbitrary real banincluded in the
range [, £]. This interval equality should be interpreted as follotrgere must exist a

scalar exponent' € [g_f,E] such that the equality = 0 holds.



This constraint enforces both the normality condition drelrequired probabilistic
or possibilistic constraints; in addition, for nontrivigite intervals ], it implements
the required graded possibilistic condition.

The constraint presented above can be implemented in waways. A particular
implementation is as follows: the extrema of the interval aritten as a function of a
running parameter, where
-1
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and
a €[0,1] (6)

This formulation includes as the two extreme cases:

— The “probabilistic” assumption:
a=1

[f1=[1]=1

— The “possibilistic” assumption:
a=0

(€] = [0, o]
D=1 Dup<i
=1 '

The latter case can be better understood as the limit of theeps of bringing
a — 0. The interval exponent] expands, so that the actual value can be any arbi-
trary number betweea and J«. Therefore, each equation containing an interval is
equivalent to a set of two inequalities:
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This is graphically depicted in Figure 1, where the boundtheffeasible regions
are plotted, forc = 2, for values ofx which decrease in the direction of the arrows.

In the first limit case, the feasible values fg¢ must lie on a one-dimensional set (a
line segment). In the second limit case, the feasible vdhrasy are in the unity square,
a two-dimensional set. In intermediate cases, the feagihles are on two-dimensional
sets which however do not fill the whole square, but are lichitean eye-shaped area
around the line segment.
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Fig. 1. Bounds of the feasible region fay, for different values of (decreasing from 1 to 0 along
the direction of the arrows)

3 The graded possibilistic clustering algorithm

In this section we outline a basic example of graded possililclustering algorithm
(Tab 1). This is an application of the ideas in the previoutisa. However, it is pos-
sible to apply many variations to this algorithm, so thatrappiate properties can be
obtained. Some of these variations will be presented anddstrated in the experi-
mental section.

For the proposed algorithm implementations, the free meshiie function has
been selected as in the DA and PCM-II algorithms:

Vi = & A, Y

The generalized partition function can be defined as follows

Z = Z Vik (8)

where:
k=1/a if gzlv}(" >1
K=« if le v‘j’k <1
k=1 else

These definitions ensure that, fer= 1, the algorithm reduces to standard DA,
whereas in the limit case fer = 0, the algorithm is equivalent to PCM-II. Note that
in the implementation of the algorithm in Tab 1 the variatafre from 1 to O allow
to obtain a probabilistic initialization of prototypes aadfollowing refinement in a
possibilistic sense.

The required value for thg; can be assessed from previous experiments, possibly
in an independent way for each cluster (as done in PCM), atugtdy lowered in an
iterated application of the algorithm (as done in DA).



Table 1. Graded possibilistic clustering algorithm

select ¢
select alphastep € R
randomly initialize Y;
for @ =1 downto O by alphastep do
begin
compute Vi using (7)
compute Zyx using (8)
compute Uj = ij/zk
if stopping criterion satisfied then stop
else compute the centroids Yj

end

4 Experimental analysis

In [7] we report some results aimed to highlighting the prtips attainable through
appropriate implementation of a suitable graded possililnodel. The showed results
demonstrated that:

1. the proposed implementation of the graded possibilisticiel (Tab. 1) is able to
correctly model the membership functions of data point authneed of long ex-
perimental work, as necessary with the PCM, and

2. avery high outliers rejection is attainable, by settimg tipper extremum o] to
1 and the lower extremum .

In this section we illustrate a case of a-priori knowledgages We propose an
experimental demonstration where we make use of a suitable fora to improve the
results with respect to the extreme cases (probabilisticpame possibilistic). In this
case the optimum value is inferred from the results but netl {for lack of a test set);
in real applications it can be estimated on the training get [0 use on new data.

We show sample results from the following unsupervisedsifigation experiment.
First, the graded possibilistic clustering procedure wesiad to the Iris data set. Only
one cluster center per class was used=( 3). Then the cluster memberships were
“defuzzified” by setting the maximum to 1 and the other two t&Qbsequently, the
hard memberships were used to associate class labels tcckeatér (by majority).
Finally, the classification error was evaluated. The cfasgion error percentages as a
function ofa are shown in Figure 2.

Although these are only a sample of the results, which mag haen dierent in
other runs, the profile of the graph was qualitatively almomststant in all trials. The
best classification performance with= 3 was 73% error, which means 11 mistaken
points.

In all experiments this value was obtained ftlermediatevalues ofa, between 0.3
and 0.7. In other words, the graded possibilistic model vaes t@ catch the true distri-
butions of data better than either the probabilistic or tbssjbilistic approaches. The
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Fig. 2. Error percentage plot for the unsupervised lIris classitioat

pure possibilistic case gave rise (as in the results predéntthe figure) to a percent-
age of cases with overlapping cluster centers, in accoeaith previous experimental
observations [6].

The error levels can be categorized into three classes. Mdtésfiaround the opti-
mum (11 or 12 or occasionally 13 wrong classifications). Téwmoad, sometimes ob-
served in the pure possibilistic case, is the case of oveiriglusters, with about 33%
error rate. The third, above 10%, is typical of the probabdicase, where competition
among clusters does not allow optimal placement of the eticsinters.

5 Conclusions

The concept of graded possibility applied to clusteringiclinas been presented in this
paper, is a flexible tool for knowledge representation. Byirtg the level of possibility
it is possible to represent overlapped clusters, as in atdngossibilistic clustering,
with the added capability to adapt the level of overlap to pheblem at hand. This
results in interesting rejection capabilities and in anpaalale trade-fi between the
mode-seeking and the partitioning behaviors of its two speases — possibilistic and
standard (probabilistic) fuzzy clustering.

Our current activities invvolve the application of this flele behavior in the areas
of Web content analysis, document data mining, DNA mictaadata analysis. Deeper
theoretical investigations are planned as well.
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