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Abstract— This paper presents thegraded possibilistic model.  essentially to
After reviewing some clustering algorithms derived from c- , ;
Means, we provide a unified perspective on these clustering Uik € [0,2] Vk.vi @

algorithms, focused on the memberships rather than on the . . . L .
function. Then the concept of graded possibility is introdiced. With this model outlier rejection can be achieved, but at the

This is a partially possibilistc version of the fuzzy clustering €Xpense of a clear cluster attribution and other computalio
model, as compared to Krishnapuram and Keller's possibiliic drawbacks. The same issue of analyzing the membership
clustering. We outline a basic graded possibilistic clusteng interactions on a local basis, as opposed to the globaltsffec
algorithm and highlight the different properties attainable by ;quced by the probabilistic model, is considered in [12].
means of experimental demonstrations. . . .

In the remainder of this paper, we discuss tip@aded
possibilistic model which introduces notable flexibility in
the clustering process, while at the same time allowing for
some behaviors (such as outlier rejection) not attainalile w

Clustering algorithms underlie a whole family of neurastandard approaches.
network techniques, including for instance kohonen’s Self
Organizing Maps and Learning Vector Quantization. In this
framework, clustering problems are usually stated as thle ta
of partitioning a set of data vectors or pattetis= {x}, A. The c-Means family
ke {1,...,n}, x € R" by attributing each data poink to a

bsetw; C X, j € {1,...,c}, defined by it troid R". 1
subset; C X, j € { c}, defined by itscentroid y € from the basic c-Means: (“hard”) c-Means (HCM) [2],

This attribution is made based on a given distad¢e-). : trained f lustering by Deterministioiaal
A very widely used clustering method is tReizzy c-Means entropy-constrained fuzzy clustering by Deterministimaal-

[1] (FCM) algorithm, a “fuzzy relative” to the simpleMeans Itng (Dé)CIE/?]I’I Pc;_SlS'b'll_lSt'C C-M'Sans W'?C&n egmp'zl COfSt
technique [2]. FCM defines the; as fuzzy partitions of the erm ( i ) [11], Fuzzyc eans (. ) ) [13]. 0
data sefX. Variations over this basic scheme try to overcomt ese techniques are based on minimizing the following cost
some of its well-known limitations. ThBeterministic Anneal- unction: A c n
ing (or Maximum Entropy approach [3] does not minimize E= Z z Ujkdjk. 2
a simple cost term, but a compound cost function which is j=1k=1

the sum of a distortion ternkE and an entropic term-H.

I. INTRODUCTION

II. UNIFIED VIEW OF SOME CLUSTERING ALGORITHMS

We will now review some clustering algorithms derived

T - this includes also FCM, although in the usual formulatiois t
Optimization is done by fixing a constant value for one of th| not evident; see ref. [14]). We will refer collectively tioese
two terms and minimizing the other; then this step is itdatealgorithms as, the-Means (CM) family.

for decreasing values of the constant, until a global optimu Here uj € U is the degree of mer.nbership of pattegn
is reached. With this technique it is possible to allevidte tto clustery andY = {y1,...,yc}. E can be termed approxi-

fallse (Tm.m.m probllgm. d classificati licati | mation error, distortion or quantization error, energyyisk,
n decision-making and classification applications, agcfi’epending on the application and the nature of the problem.

:|tr;rr?sbsh9ulgl fe'altur? se\?aral ges!ralt)le proggme; |nt.mxdd| Miyamoto and Mukaidono [15] show that these algorithms
0 the basic decision function. For instance, itis ofterurezyl are obtained by adding to the basic cdstin (2) either

th?‘t n certam confyguraﬂons a decision IS not mgﬂettern regularization terms or the maximum-entropy term
rejection), typically in the presence of outliers. This problem

is very well-known and well studied (e.g. see [4][5][6]),can cn

is tackled in a convenient way within the framework of soft- —H=3 > uilogui ©)
. J=1k=1

computing, fuzzy, and neural approaches [7][8][9].

However, the clustering problem as stated above impliedich represents the (negative) entropy of the clustering
that the outlier rejection property cannot be achievedsThiefined byY,U. We will introduce a formalism to provide an
is because the membership valugs are constrained to sumalternative, unified perspective on these clustering #lyuos,
to 1 (the probabilistic model). By giving up the requirementfocused on the membershipgk rather than on the cost
for strict partitioning, and by resorting to a “mode seeKingfunction. We will show that, apart from the possible additaf
algorithm, Krishnapuram and Keller proposed the so-callesh entropic term, these algorithms are characterized hyifape
possibilistic approacifil0][11], where this constraint is relaxedfeasible regiongor the membership values.
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B. A unifying formalism I1l. THE GRADED POSSIBILISTIC MODEL
A CM clustering problem is defined by fixing the pairA. The concept of graded possibility

{Jan},_Whefei _ The classic membership model (either hard or fuzzy) imple-
o J IS the cost fungtlon ~ments the concept of partitioning a set into disjoint suhset
« Y is the constraint on the set of cluster membershipshis is done through the so-called “probabilistic consitai
such that by settingy (Ui, - .., Uek) = ¥ §_1 Ujk — 1. Each membership is
WUk, ., Ug) = 0 Yk € {1,n} therefore formally equivalent to the probability that ampex

R imental outcome coincides with one ofmutually exclusive
_ Allthe CM algorithms considered define eithke=E orJ = events.
E —H. Moreover, all the CM algorithms considered require The possibilistic approach implies instead that each mem-
thatuj € [0,1] Vj € {1,c}, Yk € {1,n} (normality condition). bership is formally equivalent to the probability that apes-
Let vix be the solution of a CM problem without constraimt mental outcome coincides with one ©mutuallyindependent
(formally this can be implemented witly = 0). We propose events. This is due to the complete absence of a constraint on

to call vix the free membershipf patternx in clusterw;. the set of membership valueg £ 0).
Therefore for all the CM algorithms considered the cluster However, it is possible and frequent that sets of events
centroidsY are computed as: are neither mutually independent nor completely mutually
TR UjkX exclusive either. Instead, events can be loosely relatéegnO
Yi= m (4)  this situation can be modeled by a statistical correlation.

. . Another interesting case of partial information is the czic
characterizing the-Means principle ar.1d therefore the CMo¢ graded possibility The standard possibilistic approach to
family. Memberships are computed as: clustering implies that all membership values are indepand

o Vik 5y In contrast, the graded possibilistic model assumes thagnw
u]k - 9 ( ) . . .
Z one of thec membership values is fixed, the other- 1
whereZy is the (generalized) partition function. values are constrained into a given interval containel@,if).
These CM algorithms are summarized in Table I. Clearly, this situation includes the possibilistic modgid also

encompasses the standard (“probabilistic”) approach.
C. Review of the CM family

All algorithms are fuzzy techniques, since they adopt tHe: Modeling graded possibility
concept of “partial membership” in a set. HCM itself can be A class of constraintg, including the probabilistic and the
cast without imposing the constraint of binary membershipsossibilistic cases, can be expressed as follows:
The relationships among these algorithms are clear from the c
table. Y= z uﬁj -1, @)

A method to allow for non-extreme solutions is the maxi- =1
mum entropy criterion, which is implemented in the DA angyhere [¢] is an interval variable representing an arbitrary
PCM-Il algorithms. They are related by the use of the entropjeal number included in the rang®,Z]. This interval equal-
term—H, implying a paramete;. This parameter is different jty should be interpreted as follows: there exists a scalar
for each cluster and fixed in PCM-II, while it is constant foéxponent&* c [EE] such that the equalityp = 0 holds.
all clusters and varying with the algorithm progress in DA. This constraint enforces both the normality condition amel t

In the optimization perspective, the paramefirarise from  required probabilistic or possibilistic constraints; iddition,
the Lagrange multiplier related to the entropic term. They afor nontrivial finite intervals[€], it implements the required
related to cluster width. In PCM-II their role is crucialnse graded possibilistic condition.
membership values are not constraingo=(0) and are thus  The constraint presented above can be implemented in vari-
allowed to be simultaneously all zero; a means of biasing t3gs ways. We suggest the following particular implemeatati

solution toward nontrivial values is necessary. which accounts for the probabilistic and possibilistic raksd
The entropic term in the cost gives rise to free membershigs |imit cases.
having the functional form The extrema of the interval are written as a function of a
Vi = e di/B (6) running parameten, where
. . = 1
which characterizes both DA and PCM-II. {=a &= 3 (8)

An alternative way to obtain non-extreme solutions is intro
ducing nonlinear constraints. The memberships of FCM argd
equivalent to ourujllfm, rather tharujx. Apart from this con- a € [0,1] 9)
stant transformation, our alternative formulation is eqlent This formulation includes as the two extreme cases:
and shows that the FCM problem optimizes the same cost, ¢ “probabilistic” assumption:
function as HCM, but its feasible region is nonlinedr is c
nonlinear). This allows non-extreme solutions by acting on a=1; [f=[11=1 ; Z U =1
the membership model. =
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TABLE |
THE CM FAMILY OF CLUSTERING ALGORITHMS

J 1] Vik Zy Notes
DA E-H 3% ux—1 e dix/P ¥5_1Vik BeR, B> 0 is the inverse temperature
parameter to be increased during the “an-
nealing” process.
PCM-Il | E-H 0 e dik/Bi 1 Bj € R, Bj > 0 are cluster width pa-
rameters to be selected a priori before
optimization.
. -1 . S
FCM E yo,u™-1 1y (zlev}k/““*l))m meR, m>1 is the fuzzification
parameter.
HCM E yS_1uk—1  See note See note Vjk and Zx can be written as for FCM,
but their values should be computed for
m— 1.
1 . . . . . .
T~ ideas in the previous section. It is also possible to applgyma
oo \ variations to this algorithm to obtain specific properties.
For the proposed implementation, the free membership
function has been selected as in DA and PCM-II:

0.5

\ Vik = e /i (10)

The generalized patrtition function can be defined as follows

0.25

0 ~ c
0 0.25 0.5 0.75 1 Zk — Z V]Kk (11)
=1

Fig. 1. Bounds of the feasible region far, for different values ofa .
(decreasing from 1 to 0 along the direction of the arrows) where:

K=1/a if zf:lv]ﬁfo‘ >1

« The “possibilistic” assumption: K=0 if Z?:lv?k <1

c K=1 else

C
a=0 ; []=[0,0] ; ZU?kzl ;Y U<t
1= =1 These definitions ensure that, for = 1, the algorithm
Each equation containing an interval is equivalent to a setduces to standard DA, whereas in the limit caseofes O,

of two inequalities: the algorithm is equivalent to PCM-II.
c C 1 In both casesfj can be experimentally estimated (as in
> uj>1 D> U <1 PCM) or iteratively “annealed” (as in DA).
2 )
= i=

Algorithm: Graded possibilistic clustering
select ¢ € N, alphastep €R
randomly initialize Yy;j

This is depicted in Figure Ic& 2), where the bounds of the
feasible regions are plotted for decreasing in the direction
of the arrows.

In the first limit case, theujx are constrained on a one tf:;iro: =1 donto O'by alphastep do
dimensional locus (a line segment). In the second limit case .
the locus of the feasible values fary is the unit square, | ComPute Vik using (10)

Wb _ : - L a 1 compute Zy using (11)
which is two-dimensional. In intermediate cases, the Idci 0  compute Ujk = Vik/Zk
feasible values are two-dimensional, but they do not fill the if stopping criterion satisfied then stop
whole square, being limited to eye-shaped areas (incrgasin €lse compute yj using (4)
with a — 0) around the line segment. end

Another implementation of the interval constraint is used
in the outlier rejection application as explained in Sulisec

V-C. In this case the upper extremum [§f is fixed to 1 and ) o
the lower extremum ist. A. Demonstration of the Graded Possibilistic approach

V. DEMONSTRATIONS AND APPLICATIONS

To show the properties of graded possibilistic clusterireg w

IV. SAMPLE ALGORITHM use the toy training set shown in Figure 2. It is a simple,

In this section we outline a basic example of grademlvo-dimensional data set composed of 2 Gaussian-distibut
possibilistic clustering algorithm. This is an applicatiof the clusters (50 points each), with centers indicated by thgelar
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Fig. 2. Toy problem to evaluate the behaviour of the algorith g '
£
£ 0.2 [t Pt S T e
black squares. Centers are located at (.7,.7) for clusterdl a S N T ——
(.3,.3) for cluster 2. All data lie in the unit square. o 1 2 3 4 5 6 7 8 9
We run the graded possibilistic clustering algorithm in 10 step
steps, with = 1/a and§ = o as in the sample algorithm of _ #67(084,034)
Section IV, anda decreasing from 1 to 0. We analyze the N

resulting memberships for different settings of the caaists. guster

We focus on memberships of three representative points.
Point #9 in the data set is located at (.3,.3), i.e., it calasi
with one cluster center. Point #10 is at (.53,.51), half-way
from each center. Point #67 is at (.84,.34), quite far frorthbo USSR S RS Do~ SE U
centers. R L S N N R o e

Figure 3 shows the membership of each of these three data O [
points in cluster 1 (solid line) and in cluster 2 (dashed)line
for various steps of the clustering algorithms, corresjrugnd
to decreasing values af from 1 to 0.

Point #9 is clearly attributed to cluster 2. Its distanceds §9- 3. Memberships of points #9, #10, and #67 in each cluster
small that its membership are “stuck” at O (for cluster 1) and
1 (for cluster 2), respectively. ) ] .

Point #10 should be attributed to both clusters with approf2embership profiles foa = 1.0, a = 0.5, anda = 0.0. It is.
imately the same membership value. However, since it is G@SSible to tune the desired trade-off between the possioil
the separating boundary, it is far from any cluster, so thatlustering and the partitioning behavior, by deciding toawh
whena decreases and the model becomes more possibilisftent the algorithm should be forced to make a decision on
the memberships also decrease from .6 and .4 to .15 and data points on the decision border or on the exterior part of
(respectively for clusters 1 and 2). the data distribution.

Point #67 is clearly an outlier. However, in the first step
of the algorithm, it is classified as belonging in cluster thwi
high degree (almost 1). In the further steps, with the tteonsi
to the possibilistic model, the values are reduced to about 0This experimental demonstration illustrates the use of a
and .07, respectively. suitable value fora to improve the results with respect to

Figure 4 shows the membership values along the litbe extreme cases (probabilistic and pure possibilidtic)his
connecting the two cluster centers for three values,ofwo case the optimum value is inferred from the results but not
extreme and one intermediate (1.0, 0.5, and 0.0). used (for lack of a test set); in real applications it can be

A similar analysis is presented in Figure 5. However thigstimated on the training set prior to use on new data, in a
experiment is performed on the usual Iris dataset obtainedmi-supervised setting.
from the UCI Machine Learning Repository [16]. (The Iris We show sample results from the following unsupervised
problem is a 4-dimensional, 150-pattern data set with Fekas classification experiment. First, the graded possibdlistus-
represented by 50 patterns each.) tering procedure was applied to the Iris data set. Only one

Here the profiles of memberships are plotted for 2 dfluster center per class was used=(3). Then the cluster
the 3 clusters and for 2 of the 4 input dimensions, so thatemberships were “defuzzified” by setting the maximum to
two-dimensional analysis is again possible. The figure shoW and the other two to 0. Subsequently, the hard memberships
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Fig. 4. Memberships along the line connecting the two clustaters in the Fig. 5. Two-dimensional plot of memberships tor=1.0 (above), fom = 0.5

toy problem. Aboven = 1.0; middle: o = 0.5; below:a = 0.0. (middle), and fora = 0.0 (below) for the Iris dataset (same analysis as in
Figure 4).
35 L
were used to associate class labels to each cluster (by-major %0

25 -

ity). Finally, the classification error was evaluated.

The classification error percentages as a functioa afre
shown in Figure 6. Although these are only a sample of the

20 —

error %

15 —

. . . . 10 — /S ]
results, which may have been different in other runs, thélpro s T~ i
of the graph was qualitatively almost constant in all tridlse o
best classification performance with= 3 was 73% error, L 0.75 05 0.25 0

which means 11 mistaken points.

In all experiments this value was obtained fioterme- ) o
diate values ofa, between 0.3 and 0.7. In other WordS,F'g' 6. Error percentage plot for the unsupervised Irissifastion.
the graded possibilistic model was able to catch the true
distributions of data better than either the probabilisiic
the possibilistic approaches. The pure possibilistic agsee
rise (as in the results presented in the figure) to a percentag T0 implement the outlier rejection functionality, the féds
of cases with overlapping cluster centers, in accordantie wi€gion should be made asymmetric:
previous experimental observations [11]. We again noté tha c c
in real applicationsa could be experimentally estimated on Z uk<1 and z u(j’k > 1 (12)
the training set. =1 =1

The error levels can be categorized into three classes. ThaVhen there is competition among the clusters (many mem-
first is around the optimum (11 or 12 or occasionally 13 wronlgerships approach 1) the membership values are normalized
classifications). The second, sometimes observed in the pto sum to 1 by the first constraint. When memberships are all
possibilistic case, is the case of overlapping clustersh wilow, there is no clear attribution to any cluster, so theyfege
about 33% error rate. The third, above 10%, is typical of th® take on low values (second constraint). Rejection is done
probabilistic case, where competition among clusters doés by selecting a membership threshold, possibly differemt fo
allow optimal placement of the cluster centers. each cluster. Patterns for which no membership in any cluste
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! AP R | true possibilistic case: no two memberships ever approach 1
\ o ‘ ﬁ- L. : simultaneously. Therefore, either a pattern is rejectedt, is
: 1 | | : uniquely labeled.

VI. CONCLUSION

The concept of graded possibility applied to clustering,
which has been presented in this paper, allows the implemen-
tation of specific properties in theMeans family of clustering
. | | . techniques. With appropriate selection of some parameters
0255 et po e | an entropy-constrained version cfMeans can implement

: 5 5 Ny : partitioning, mode-seeking, constraining by prior knatge,
outlier rejection. This flexible behavior can be exploited i
several currently active research areas, often featuriclgs
tering step as an essential component.

e e e :

0 0.25 0.5 0.75 1
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