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Abstract— This paper presents thegraded possibilistic model.
After reviewing some clustering algorithms derived from c-
Means, we provide a unified perspective on these clustering
algorithms, focused on the memberships rather than on the cost
function. Then the concept of graded possibility is introduced.
This is a partially possibilistc version of the fuzzy clustering
model, as compared to Krishnapuram and Keller’s possibilistic
clustering. We outline a basic graded possibilistic clustering
algorithm and highlight the different properties attainab le by
means of experimental demonstrations.

I. I NTRODUCTION

Clustering algorithms underlie a whole family of neural
network techniques, including for instance kohonen’s Self
Organizing Maps and Learning Vector Quantization. In this
framework, clustering problems are usually stated as the task
of partitioning a set of data vectors or patternsX = {xk},
k ∈ {1, . . . ,n}, xk ∈ �

n by attributing each data pointxk to a
subsetω j ⊂ X, j ∈ {1, . . . ,c}, defined by itscentroid yj ∈�

n.
This attribution is made based on a given distanced(·, ·).

A very widely used clustering method is theFuzzy c-Means
[1] (FCM) algorithm, a “fuzzy relative” to the simplec-Means
technique [2]. FCM defines theω j as fuzzy partitions of the
data setX. Variations over this basic scheme try to overcome
some of its well-known limitations. TheDeterministic Anneal-
ing (or Maximum Entropy) approach [3] does not minimize
a simple cost term, but a compound cost function which is
the sum of a distortion term̂E and an entropic term−H.
Optimization is done by fixing a constant value for one of the
two terms and minimizing the other; then this step is iterated
for decreasing values of the constant, until a global optimum
is reached. With this technique it is possible to alleviate the
false minima problem.

In decision-making and classification applications, algo-
rithms should feature several desirable properties in addition
to the basic decision function. For instance, it is often required
that in certain configurations a decision is not made (pattern
rejection), typically in the presence of outliers. This problem
is very well-known and well studied (e.g. see [4][5][6]), and
is tackled in a convenient way within the framework of soft-
computing, fuzzy, and neural approaches [7][8][9].

However, the clustering problem as stated above implies
that the outlier rejection property cannot be achieved. This
is because the membership valuesu jk are constrained to sum
to 1 (theprobabilistic model). By giving up the requirement
for strict partitioning, and by resorting to a “mode seeking”
algorithm, Krishnapuram and Keller proposed the so-called
possibilistic approach[10][11], where this constraint is relaxed

essentially to

u jk ∈ [0,1] ∀k,∀ j (1)

With this model outlier rejection can be achieved, but at the
expense of a clear cluster attribution and other computational
drawbacks. The same issue of analyzing the membership
interactions on a local basis, as opposed to the global effects
induced by the probabilistic model, is considered in [12].

In the remainder of this paper, we discuss thegraded
possibilistic model, which introduces notable flexibility in
the clustering process, while at the same time allowing for
some behaviors (such as outlier rejection) not attainable with
standard approaches.

II. U NIFIED VIEW OF SOME CLUSTERING ALGORITHMS

A. The c-Means family

We will now review some clustering algorithms derived
from the basic c-Means: (“hard”) c-Means (HCM) [2],
entropy-constrained fuzzy clustering by Deterministic Anneal-
ing (DA) [3], Possibilistic c-Means with an entropic cost
term (PCM-II) [11], Fuzzy c-Means (FCM) [13]. All of
these techniques are based on minimizing the following cost
function:

Ê =
c

∑
j=1

n

∑
k=1

u jkd jk. (2)

(this includes also FCM, although in the usual formulation this
is not evident; see ref. [14]). We will refer collectively tothese
algorithms as thec-Means (CM) family.

Here u jk ∈ U is the degree of membership of patternxk

to clusterω j andY = {y1, . . . ,yc}. Ê can be termed approxi-
mation error, distortion or quantization error, energy, orrisk,
depending on the application and the nature of the problem.

Miyamoto and Mukaidono [15] show that these algorithms
are obtained by adding to the basic costÊ in (2) either
regularization terms or the maximum-entropy term

−H =
c

∑
j=1

n

∑
k=1

u jk logu jk (3)

which represents the (negative) entropy of the clustering
defined byY,U . We will introduce a formalism to provide an
alternative, unified perspective on these clustering algorithms,
focused on the membershipsu jk rather than on the cost
function. We will show that, apart from the possible addition of
an entropic term, these algorithms are characterized by specific
feasible regionsfor the membership values.
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B. A unifying formalism

A CM clustering problem is defined by fixing the pair
{J,ψ}, where:

• J is the cost function
• ψ is the constraint on the set of cluster memberships,

such that

ψ(u1k, . . . ,uck) = 0 ∀k∈ {1,n}

All the CM algorithms considered define eitherJ = Ê or J =
Ê−H. Moreover, all the CM algorithms considered require
that u jk ∈ [0,1] ∀ j ∈ {1,c}, ∀k∈ {1,n} (normality condition).
Let v jk be the solution of a CM problem without constraintψ
(formally this can be implemented withψ ≡ 0). We propose
to call v jk the free membershipof patternxk in clusterω j .

Therefore for all the CM algorithms considered the cluster
centroidsY are computed as:

y j =
∑n

k=1u jkxk

∑n
k=1u jk

(4)

characterizing thec-Means principle and therefore the CM
family. Memberships are computed as:

u jk =
v jk

Zk
, (5)

whereZk is the (generalized) partition function.
These CM algorithms are summarized in Table I.

C. Review of the CM family

All algorithms are fuzzy techniques, since they adopt the
concept of “partial membership” in a set. HCM itself can be
cast without imposing the constraint of binary memberships.
The relationships among these algorithms are clear from the
table.

A method to allow for non-extreme solutions is the maxi-
mum entropy criterion, which is implemented in the DA and
PCM-II algorithms. They are related by the use of the entropic
term−H, implying a parameterβ j . This parameter is different
for each cluster and fixed in PCM-II, while it is constant for
all clusters and varying with the algorithm progress in DA.

In the optimization perspective, the parametersβ j arise from
the Lagrange multiplier related to the entropic term. They are
related to cluster width. In PCM-II their role is crucial, since
membership values are not constrained (ψ ≡ 0) and are thus
allowed to be simultaneously all zero; a means of biasing the
solution toward nontrivial values is necessary.

The entropic term in the cost gives rise to free memberships
having the functional form

v jk = e−d jk/β j , (6)

which characterizes both DA and PCM-II.
An alternative way to obtain non-extreme solutions is intro-

ducing nonlinear constraints. The memberships of FCM are
equivalent to ouru1/m

jk , rather thanu jk. Apart from this con-
stant transformation, our alternative formulation is equivalent
and shows that the FCM problem optimizes the same cost
function as HCM, but its feasible region is nonlinear (ψ is
nonlinear). This allows non-extreme solutions by acting on
the membership model.

III. T HE GRADED POSSIBILISTIC MODEL

A. The concept of graded possibility

The classic membership model (either hard or fuzzy) imple-
ments the concept of partitioning a set into disjoint subsets.
This is done through the so-called “probabilistic constraint”
by settingψ(u1k, . . . ,uck) = ∑c

j=1u jk −1. Each membership is
therefore formally equivalent to the probability that an exper-
imental outcome coincides with one ofc mutually exclusive
events.

The possibilistic approach implies instead that each mem-
bership is formally equivalent to the probability that an experi-
mental outcome coincides with one ofc mutually independent
events. This is due to the complete absence of a constraint on
the set of membership values (ψ ≡ 0).

However, it is possible and frequent that sets of events
are neither mutually independent nor completely mutually
exclusive either. Instead, events can be loosely related. Often
this situation can be modeled by a statistical correlation.

Another interesting case of partial information is the concept
of graded possibility. The standard possibilistic approach to
clustering implies that all membership values are independent.
In contrast, the graded possibilistic model assumes that, when
one of the c membership values is fixed, the otherc− 1
values are constrained into a given interval contained in[0,1].
Clearly, this situation includes the possibilistic model,and also
encompasses the standard (“probabilistic”) approach.

B. Modeling graded possibility

A class of constraintsψ, including the probabilistic and the
possibilistic cases, can be expressed as follows:

ψ =
c

∑
j=1

u[ξ]
jk −1, (7)

where [ξ] is an interval variable representing an arbitrary
real number included in the range[ξ,ξ ]. This interval equal-
ity should be interpreted as follows: there exists a scalar
exponentξ∗ ∈ [ξ,ξ ] such that the equalityψ = 0 holds.
This constraint enforces both the normality condition and the
required probabilistic or possibilistic constraints; in addition,
for nontrivial finite intervals[ξ], it implements the required
graded possibilistic condition.

The constraint presented above can be implemented in vari-
ous ways. We suggest the following particular implementation
which accounts for the probabilistic and possibilistic models
as limit cases.

The extrema of the interval are written as a function of a
running parameterα, where

ξ = α ξ =
1
α

(8)

and
α ∈ [0,1] (9)

This formulation includes as the two extreme cases:
• The “probabilistic” assumption:

α = 1 ; [ξ] = [1,1] = 1 ;
c

∑
j=1

u jk = 1
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TABLE I

THE CM FAMILY OF CLUSTERING ALGORITHMS

J ψ vjk Zk Notes

DA Ê−H ∑c
j=1 ujk −1 e−d jk/β ∑c

j=1 vjk β ∈ �, β > 0 is the inverse temperature
parameter to be increased during the “an-
nealing” process.

PCM-II Ê−H 0 e−d jk/β j 1 β j ∈ �, β j > 0 are cluster width pa-
rameters to be selected a priori before
optimization.

FCM Ê ∑c
j=1 u1/m

jk −1 1/djk

(

∑c
j=1 v1/(m−1)

jk

)m−1
m ∈ �, m > 1 is the fuzzification
parameter.

HCM Ê ∑c
j=1 ujk −1 See note See note v jk and Zk can be written as for FCM,

but their values should be computed for
m→ 1.
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Fig. 1. Bounds of the feasible region forujk for different values ofα
(decreasing from 1 to 0 along the direction of the arrows)

• The “possibilistic” assumption:

α = 0 ; [ξ] = [0,∞] ;
c

∑
j=1

u0
jk ≥ 1 ,

c

∑
j=1

u∞
jk ≤ 1

Each equation containing an interval is equivalent to a set
of two inequalities:

c

∑
j=1

uα
jk ≥ 1

c

∑
j=1

u1/α
jk ≤ 1.

This is depicted in Figure 1 (c= 2), where the bounds of the
feasible regions are plotted forα decreasing in the direction
of the arrows.

In the first limit case, theu jk are constrained on a one-
dimensional locus (a line segment). In the second limit case,
the locus of the feasible values foru jk is the unit square,
which is two-dimensional. In intermediate cases, the loci of
feasible values are two-dimensional, but they do not fill the
whole square, being limited to eye-shaped areas (increasing
with α → 0) around the line segment.

Another implementation of the interval constraint is used
in the outlier rejection application as explained in Subsection
V-C. In this case the upper extremum of[ξ] is fixed to 1 and
the lower extremum isα.

IV. SAMPLE ALGORITHM

In this section we outline a basic example of graded
possibilistic clustering algorithm. This is an application of the

ideas in the previous section. It is also possible to apply many
variations to this algorithm to obtain specific properties.

For the proposed implementation, the free membership
function has been selected as in DA and PCM-II:

v jk = e−d jk/β j . (10)

The generalized partition function can be defined as follows:

Zk =
c

∑
j=1

vκ
jk (11)

where:

κ = 1/α if ∑c
j=1v1/α

jk > 1

κ = α if ∑c
j=1vα

jk < 1

κ = 1 else.

These definitions ensure that, forα = 1, the algorithm
reduces to standard DA, whereas in the limit case forα = 0,
the algorithm is equivalent to PCM-II.

In both cases,β j can be experimentally estimated (as in
PCM) or iteratively “annealed” (as in DA).

Algorithm: Graded possibilistic clustering

select c ∈�, alphastep ∈�

randomly initialize y j

for α = 1 downto 0 by alphastep do
begin

compute v jk using (10)

compute Zk using (11)

compute u jk = v jk/Zk
if stopping criterion satisfied then stop

else compute y j using (4)

end

V. DEMONSTRATIONS AND APPLICATIONS

A. Demonstration of the Graded Possibilistic approach

To show the properties of graded possibilistic clustering we
use the toy training set shown in Figure 2. It is a simple,
two-dimensional data set composed of 2 Gaussian-distributed
clusters (50 points each), with centers indicated by the larger,
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Fig. 2. Toy problem to evaluate the behaviour of the algorithm.

black squares. Centers are located at (.7,.7) for cluster 1 and
(.3,.3) for cluster 2. All data lie in the unit square.

We run the graded possibilistic clustering algorithm in 10
steps, withξ = 1/α andξ = α as in the sample algorithm of
Section IV, andα decreasing from 1 to 0. We analyze the
resulting memberships for different settings of the constraints.

We focus on memberships of three representative points.
Point #9 in the data set is located at (.3,.3), i.e., it coincides
with one cluster center. Point #10 is at (.53,.51), half-way
from each center. Point #67 is at (.84,.34), quite far from both
centers.

Figure 3 shows the membership of each of these three data
points in cluster 1 (solid line) and in cluster 2 (dashed line)
for various steps of the clustering algorithms, corresponding
to decreasing values ofα from 1 to 0.

Point #9 is clearly attributed to cluster 2. Its distance is so
small that its membership are “stuck” at 0 (for cluster 1) and
1 (for cluster 2), respectively.

Point #10 should be attributed to both clusters with approx-
imately the same membership value. However, since it is on
the separating boundary, it is far from any cluster, so that,
whenα decreases and the model becomes more possibilistic,
the memberships also decrease from .6 and .4 to .15 and .25
(respectively for clusters 1 and 2).

Point #67 is clearly an outlier. However, in the first step
of the algorithm, it is classified as belonging in cluster 1 with
high degree (almost 1). In the further steps, with the transition
to the possibilistic model, the values are reduced to about 0
and .07, respectively.

Figure 4 shows the membership values along the line
connecting the two cluster centers for three values ofα, two
extreme and one intermediate (1.0, 0.5, and 0.0).

A similar analysis is presented in Figure 5. However this
experiment is performed on the usual Iris dataset obtained
from the UCI Machine Learning Repository [16]. (The Iris
problem is a 4-dimensional, 150-pattern data set with 3 classes
represented by 50 patterns each.)

Here the profiles of memberships are plotted for 2 of
the 3 clusters and for 2 of the 4 input dimensions, so that
two-dimensional analysis is again possible. The figure shows
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Fig. 3. Memberships of points #9, #10, and #67 in each cluster.

membership profiles forα = 1.0, α = 0.5, andα = 0.0. It is
possible to tune the desired trade-off between the possibilistic
clustering and the partitioning behavior, by deciding to what
extent the algorithm should be forced to make a decision on
data points on the decision border or on the exterior part of
the data distribution.

B. Using a-priori knowledge

This experimental demonstration illustrates the use of a
suitable value forα to improve the results with respect to
the extreme cases (probabilistic and pure possibilistic).In this
case the optimum value is inferred from the results but not
used (for lack of a test set); in real applications it can be
estimated on the training set prior to use on new data, in a
semi-supervised setting.

We show sample results from the following unsupervised
classification experiment. First, the graded possibilistic clus-
tering procedure was applied to the Iris data set. Only one
cluster center per class was used (c = 3). Then the cluster
memberships were “defuzzified” by setting the maximum to
1 and the other two to 0. Subsequently, the hard memberships
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Fig. 4. Memberships along the line connecting the two cluster centers in the
toy problem. Above:α = 1.0; middle: α = 0.5; below: α = 0.0.

were used to associate class labels to each cluster (by major-
ity). Finally, the classification error was evaluated.

The classification error percentages as a function ofα are
shown in Figure 6. Although these are only a sample of the
results, which may have been different in other runs, the profile
of the graph was qualitatively almost constant in all trials. The
best classification performance withc = 3 was 7.3% error,
which means 11 mistaken points.

In all experiments this value was obtained forinterme-
diate values of α, between 0.3 and 0.7. In other words,
the graded possibilistic model was able to catch the true
distributions of data better than either the probabilisticor
the possibilistic approaches. The pure possibilistic casegave
rise (as in the results presented in the figure) to a percentage
of cases with overlapping cluster centers, in accordance with
previous experimental observations [11]. We again note that
in real applicationsα could be experimentally estimated on
the training set.

The error levels can be categorized into three classes. The
first is around the optimum (11 or 12 or occasionally 13 wrong
classifications). The second, sometimes observed in the pure
possibilistic case, is the case of overlapping clusters, with
about 33% error rate. The third, above 10%, is typical of the
probabilistic case, where competition among clusters doesnot
allow optimal placement of the cluster centers.
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Fig. 5. Two-dimensional plot of memberships forα = 1.0 (above), forα = 0.5
(middle), and forα = 0.0 (below) for the Iris dataset (same analysis as in
Figure 4).
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Fig. 6. Error percentage plot for the unsupervised Iris classification.

C. Outlier rejection

To implement the outlier rejection functionality, the feasible
region should be made asymmetric:

c

∑
j=1

u jk ≤ 1 and
c

∑
j=1

uα
jk ≥ 1. (12)

When there is competition among the clusters (many mem-
berships approach 1) the membership values are normalized
to sum to 1 by the first constraint. When memberships are all
low, there is no clear attribution to any cluster, so they arefree
to take on low values (second constraint). Rejection is done
by selecting a membership threshold, possibly different for
each cluster. Patterns for which no membership in any cluster
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Fig. 7. Dataset for the outlier rejection demonstration.
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Fig. 8. Results for the outlier rejection demonstration. Black circles: true
cluster centers; triangles: centers found withα = 0 (maximum rejection);
squares: centers found withα = 1 (no rejection).

exceeds the appropriate threshold are rejected.
Even without explicit outlier analysis, the algorithm be-

comes very robust with respect to the presence of outliers.
The experiments involve a set of three Gaussian clusters,

plus a very wide background data distribution (see Figure 7).
There are 600 data points, in the unit square, of which a given
percentage is clustered in 3 Gaussian clusters (again centers
are marked with black squares), and the others are spread in
the background, with higher density in the proximity of the
unit square corners and perimeter. The proportion of outliers
to clustered points was varied from 10% to 90%.

From the experimental results in Figure 8, obtained with
an outlier-to-clustered ratio of 90%-10%, it is possible to
compare the behavior of the graded possibilistic model with
the behavior of standard “probabilistic” clustering. Centers
found with the proposed model are clearly much closer to true
cluster centers than those found with the “probabilistic” model
(the residual error being due mostly to the random sampling,
so that the barycenter of the data points in a given cluster
does not coincide with the true cluster center). By inspection
of the membership values, we have verified that this is not a

true possibilistic case: no two memberships ever approach 1
simultaneously. Therefore, either a pattern is rejected, or it is
uniquely labeled.

VI. CONCLUSION

The concept of graded possibility applied to clustering,
which has been presented in this paper, allows the implemen-
tation of specific properties in thec-Means family of clustering
techniques. With appropriate selection of some parameters,
an entropy-constrained version ofc-Means can implement
partitioning, mode-seeking, constraining by prior knowledge,
outlier rejection. This flexible behavior can be exploited in
several currently active research areas, often featuring aclus-
tering step as an essential component.
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