
An ensemble approach to variable selection for
classification of DNA microarray data

Francesco Masulli1,2 and Stefano Rovetta1,3

(1) INFM, the National Institute for the Physics of Matter, Italy
(2) Department of Computer Science, University of Pisa, ViaF. Buonarroti 2 - 56127 Pisa Italy

(3) Department of Computer and Information Sciences, University of Genoa, Via Dodecaneso 35 - 16146 Genova Italy

E-mail: masulli@di.unipi.it - rovetta@disi.unige.it

Abstract— The paper addresses the issue of assessing the
importance of input variables with respect to a given dichotomic
classification problem. Both linear and non-linear cases are
considered. In the linear case, the application of derivative-based
saliency yields a commonly adopted ranking criterion. In the non-
linear case, the method is extended by introducing a resampling
technique and by clustering the obtained results for stability of
the estimate. The work is preliminary, and many properties and
options are to be investigated in future research.

I. I NTRODUCTION AND PROBLEM STATEMENT

We are given a labeled training samplex = X ⊂ �d of n
observations. Labels define a dichotomy onX, i.e., the task to
be learned is two-class classification. We refer to the problem
of assigning an importance ranking to each individual input
variablexi with respect to the classification task, with the aim
of pointing out which input variables contribute most to the
classification performance.

This problem is properly calledinput variable selection,
although it is commonly termed also “feature selection” or
even “feature extraction” (which is, more correctly, the task
of optimal pre-processing and combining the raw inputs into
more significant composite variables).

Variable selection has always been a central problem in
pattern recognition. The traditional emphasis has always been
on technological issues (enhancing performance of automated
recognition methods, lowering computational requirements,
reducing the cost of data acquisition, e.g. [1]). However, in
relatively recent years, the problem of assessing the relevance
of variables has found many applications in basic science.

A clear example of this type of task arises from DNA mi-
croarray data. This technology provides high volumes of data
for each single experiment, yielding measurements for hun-
dreds of genes simultaneously. When inspecting for instance
the outcome of a gene expression experiment to identify the
“signature” corresponding to a given pathology, the procedure
involves almost invariably the application of an automated
classification method and the subsequent analysis of the results
in seek of the most significant input variables. In this case,
input variable selection is a tool supporting scientific inquiry.

The method we propose aims at pinpointing the variables
which have the largest influence on the classification per-
formance, also providing a relevance ranking. We are not

necessarily interested in finding a good (or optimal) set of
variables on which to build a better classifier. We address a so-
calledwrapperapproach [2] to supervised variable selection.
Wrapper techniques are those relying on the performance of a
given learning machine (thus “wrapping” around the learning
task). The alternativefilter approach is based on extracting
intrinsic knowledge from the data, by evaluation of some
measure of influence of inputs over output such as mutual
information [3] or simple correlation [4][5]. Finally, we focus
on dichotomic (two-class) classification problems.

Given this problem setting, we are interested in obtaining
an indication on the possible causes to be included in a more
refined model. Therefore in a sense the “selection” phase itself
is not even strictly necessary, and we focus on the phase of
assessing “input saliency rankings”.

The method has been designed for use in typical tasks
of analysis of gene expression data (a well known instance
of which is represented by [5]), and has been preliminarily
validated on actual microarray data.

II. D ERIVATIVE -BASED RANKING OF INPUT VARIABLES

A. General approach

Let the input variablesxi be standardized, i.e.,E{xi}= 0∀i
andE

{

x2
i

}

= 1 ∀i. These assumptions can be easily satisfied
by pre-processing the input space based on the training set,as
in the standard practice. This is especially true of microarray
data, where all measurements are made on the same scale
and accurate normalization is viewed as a standard part of
the preparation of data [6]. Inferring normalization parameters
from data with sufficient statistical confidence is not so imme-
diate in general cases where variables are not homogeneous
in nature and scale.

Let r = g(x) be the discriminant or decision function,
defined on thed-dimensional input vectorx ∈�d and taking
values in �, the discrimination criterion being the value
of y = sign(r). We assume that a good classifierr = g()
is given. This is an important assumption. However current
classification methods (support vector machines [7]) provide
optimal solutions with a minimum of parameter tuning, so
that, given a data set, a good classifier is readily obtained.

If we want to analyze what input variables have the largest
influence over the output function, we should evaluate the

0-7803-7898-9/03/$17.00 ©2003 IEEE 3089



derivatives of r with respect to each variable. This should
be done in a neighborhood of the locus{x|g(x) = 0}, and
of course requiresg() to be locally differentiable (which is
a reasonable assumption since smoothing is required by the
discrete sampling of data).

This is the so-calledderivative-based saliency. It is a way to
assess the sensitivity of the output to variations in individual
inputs. This approach has been used in many contexts and has
been experimentally shown to be quite efficient [8].

In the analysis, the following quantities are used:
• The (local) discriminant feature at data pointx

w = ∇g(x)|x=x (1)

• The saliency vector

t =
w

maxi {wi}
, (2)

wherewi are the individual components of vectorw
• The saliency rank vector

s : si = rank(ti , t), (3)

wheresi andti are the individual components of vectorss
andt respectively, and rank(ti) is the rank of component
ti among the set of component values of vectort.

Given the ranking provided by∇g(), a variable selection
procedure can then be based on a criterion similar to one of
the following:

• Fix a numberm of input variables and select the firstm
variables in the ordered list

• Fix a percentage of the total weights and select the inputs
which account for that percentage

• Fix a maximum allowed increase in classification error
and select the minimum number of variables in the
ordered list (starting from the top) for which the error
threshold is not exceeded.

The appropriate variable selection strategy depends on the
availability of ad-hoc metrics for the applicative problemat
hand and also on the problem perspective, since input space
reduction aims at the minimum loss of information, while
model selection aims at explaining in the clearest way the
observed experiments. As a consequence, in the former case
bounds on the error will be preferred, while in the latter case
the constraint will rather be on the number of inputs.

B. The linear case

The popularity of linear classifiers is vast. Early work on
classification [9][10] had concentrated on linear classifiers
mainly due to computational constraints. In the recent past,
linear classifiers have received renewed attention becauseof
their relevance in kernel-based classifier theory and the support
vector approach. This justifies the interest of the linear case
by itself. Moreover, the linear case can be used to approach
nonlinear situations as well, as explained in the following.

In the linear case,g(x) = w ·x and

∇r =

[

∂r
∂x1

, . . . ,
∂r

∂xd

]

= w (4)

In this case, the derivative-based saliency measure can be
justified in terms of “percentage of variance explained”. The
covariance of the inputx has been assumed to be the unit
matrix Σx = I . The variance of the outputr is thereforeσ2

r =
wTΣxw = ||w||2. It is clear that, under the assumptions made,
the input which gives the largest contribution to the variance
of r is the one with the largest coefficient in the vectorw. (The
assumption above, especially thatΣx = I , can be relaxed.)

The single featurer discriminates between the two classes
(r > 0 andr < 0). This feature is given by a linear combination
of inputs, with relative weightsw. Thus, by sorting the inputs
according to their weights, the “importance” ranking is directly
obtained.

The mapping from the input space to the discriminant
featurer is an orthogonal projection, therefore the selection
of the best input variables by evaluation of output sensitivity
yields also the projection with minimal error in terms of
Euclidean distance (by Luenberger’s projection theorem [11]).
This justifies the derivative-based approach also from a vector
approximation perspective.

C. The general nonlinear case

In the non-linear case, it is not possible to define a single
clear ranking which holds in any region of the input space. A
global approach can employ statistical evaluation of saliency
based on data [8], but this requires large datasets which are
not generally affordable, and especially so in the case of the
DNA microarray methodology.

Our approach involves partitioning the decision function
g(), and performing local saliency estimates in sub-regions
whereg() can be approximated with a linear decision function.
This local linearization is likely to introduce small errors, due
to the local sparsity of data introduced by subsampling.

We can identify three kinds of region:empty regionscontain
no data points;homogeneous regionscontain points from one
class only;mixed regionscontain points from both classes.

In the simplest approach, local linearization is made on
the basis of an arbitrarily selected partitioning of the data
space. Homogeneous and empty regions are discarded. General
regions, containing points from both classes, may be crossed
by the true decision surface, and in any case a classifier can be
built within them; thus they are retained for saliency analysis.

This basic method has several drawbacks:

• Subsampling reduces the cardinality of data (sub)sets,
lowering the confidence of classifiers induced on each
localized region;

• If the correct decision surface lies between two different
localized regions, each of which is homogeneous and
has a different class, both regions are discarded and the
analysis is distorted by this artifact;

• The number of regions is to be selected a priori, but there
is no clear way to decide it;

• The saliency rankings obtained in one region may or may
not be in agreement with those in neighboring or other
regions, but in most cases they will agree only in part,
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Fig. 1. An arbitrarily partitioned dataset showing empty regions, regions
with few samples, homogeneous neighboring regions of different classes.

and there is no way to decide whether several rankings
should be combined or kept distinct.

The proposed method addresses all these issues, and will
be presented in the remainder of the paper.

III. T HE RANDOM VORONOI RESAMPLING METHOD

A. Outline

We start with an exposition of the overall method; then the
steps will be detailed in the following.

The method is summarized below:

1) Establish a random Voronoi partitioning of the data
space;

2) Discard homogeneous Voronoi cells;
3) Compute a linear classifier on each remaining Voronoi

cell;
4) Store the obtained saliency vector along with the cell

site;
5) Repeat steps 1-4 until a sufficient number of saliency

vectors are obtained;
6) Perform joint clustering of the saliency vectors and cell

centers;
7) Retrieve cluster centers and use them as estimated local

saliency rankings.

B. Random Voronoi sampling

A Voronoi partition is induced by drawing aVoronoi
diagram [12] in the data space. A Voronoi diagram is a
tessellation defined by a set of reference points (sites); for
each site, the correspondingcell is the locus of all points in
the data space which are closer to that site than to any other
site.

Voronoi tessellations are a very common tool in surface
reconstruction for 3D graphics, and have also applicationsin

the physics of matter. In particular, random Voronoi diagrams
can efficiently model complex, collective properties of phys-
ical systems. Higher dimensional Voronoi tessellations are at
the core of vector quantization methods.

A random Voronoi partition is obtained by throwing a set of
random points in the data space. Since this is likely to generate
many empty regions, the random diagram is initialized by
a rough vector quantization step, to ensure that sites are
placed within the support of the data set. Subsequent random
partitions are obtained by perturbation of the initial set of
points.

C. Local linear classification

Within each Voronoi region, a linear classification is per-
formed. There are many options for analyzing linear separa-
bility within a region. The state-of-the-art method is Support
Vector Machines (SVM) [7] with a linear kernel. SVMs do
not suffer from initialization and parameter sensitivity as other
more traditional learning classifiers (e.g. perceptrons),and they
provide a single parameter to be tuned for trading off strict
separation with robust classification (and generalization).

Since the present approach is based on subsampling, the
computational complexity of SVM training is small.

D. Saliency vectors

Saliency vectors, as computed in (2), are stored along with
their respective sites. This retains the locality information
associated with each saliency vector.

The whole set of saliency vectors stored during the iterations
of the procedure are analyzed, at the end of the run, by
applying a clustering step.

E. Building the ensemble: the resampling step

Resampling is one of the techniques used to obtain an
Ensemble method[13]. Ensemble methods work by combining
the outcome of many learning machines or many different
instances of a learning machine (as in the present case). The
subsequent clustering step acts as the integrator, or arbiter: its
role is to integrate the individual outcomes and to output a
global response.

In this work, we are interested in partitioning the data space
and in obtaining localized “experts”. One peculiarity of this
approach is that the integrator may output a single response,
but it may also output a set of combined responses, each
specialized on a given region of the data space. The method
can be thus viewed as a sort of “ensemble of ensembles”,
where the learning machine which is replicated by resampling
is in turn a committee of local experts.

Resampling is the key step of the method. It ensures that the
data set is smoothly covered and contributes to the stability of
the outcomes, by averaging the strong statistical fluctuations.
In the proposed approach, the random Voronoi subsampling
is replicated by randomly perturbating the initial sites. In our
experiments, we applied uniform perturbations with amplitude

3091



TABLE I

RELEVANT INPUTS FOR THE SYNTHETIC PROBLEM

Voronoi sites Saliency vectors Saliency rank vectors

1 0.91 1.00 0.89 0.79 2 1 3 4

2 0.58 1.00 0.46 0.41 2 1 3 4
1.00 0.67 0.36 0.51 1 2 4 3

4 1.00 0.41 0.33 0.34 1 2 4 3
0.30 1.00 0.27 0.27 2 1 3 4
0.84 0.60 1.00 0.51 2 3 1 4

8 1.00 0.21 0.12 0.19 1 2 4 3
0.64 1.00 0.25 0.19 2 1 3 4

16 1.00 0.57 0.31 0.33 1 2 4 3
0.51 1.00 0.44 0.11 2 1 3 4
0.91 0.88 0.13 1.00 2 3 4 1

related to the pairwise distances between data points (e.g.by
setting the amplitude equal to the maximum distance).

Unfortunately, it is difficult to obtain theoretical guidelines
on how many replications are required as a function of the
dimension of the data space and on how to compute the
perturbations. This is because theoretical results on stability of
Voronoi neighbors are available only for low dimensions [14],
and typically rely on assumptions related to the dimension (so
that they cannot be generalized to other dimensions).

F. Integration of the results: clustering saliency vectors

We use the Graded Possibilistic Clustering technique [15]
to ensure an appropriate level of outlier insensitivity.

This technique is a generalization of the Possibilistic ap-
proach to fuzzyc-Means clustering of Keller and Krishnapu-
ram [16], in which cluster membership can be constrained to
sum to 1 (as in the standard fuzzy clustering approaches),
can be unconstrained (as in the Possibilistic approach), or
can be partially constrained. Partial constraints allow the
implementation of several desirable properties, among which
there is a user-selectable degree of outlier insensitivity.

The number of cluster centers is assessed by applying
a Deterministic Annealing schedule [17] to the resolution
parameterβ, which is used in the algorithm implementation
presented in [15]. The number of clusters is selected to be an
arbitrary and abundant quantity at the start of the procedure,
when β equals a suitably chosen initial valueβ(i). Cluster
centers collapse in early iterations, but with decreasingβ they
start to differentiate where required by the data distribution.
The annealing can stop whenβ reaches a predefined final
value β( f ), chosen according to a reasonable criterion. For
instance,β( f ) may be comparable to the average pairwise
distance between data points.

IV. PRELIMINARY EXPERIMENTAL RESULTS

Since the method is in an early stage of development, many
design decisions are still to be evaluated and experimental
results are preliminary. In particular, comparative results are
needed for proper assessment of the method efficacy, and
the performance on actual biological data should be more
thoroughly assessed.

A. Results on a synthetic dataset

Let’s consider now an artificial dataset. The four-
dimensional data (200 points) have been generated by a
mixture of 3 two-dimensional gaussian clusters, one for the
first class and the other two for the second class, at the vertices
of a triangle. The separating surface between the points of
the two classes was therefore approximately hyperbolic. The
gaussian mixture data formed the first two components of the
input space; the other were generated at random.

Table I reports the results for varying number of Voronoi
sites. The true relevant components are 1 and 2. Note that in
some cases there are clusters in which the values are all close
to 1, and the corresponding ranking has no significance. These
may be “lost” clusters from the clustering phase, due to a value
of the resolution parameterβ that is too small. However, in the
majority of cases, only two clusters emerge, and they indicate
correctly the two most significant directions for classification.

B. Results on a gene expression dataset

The method has undergone a preliminary validation by
comparing its results on the data published by Golub et al. [5].
Data refer to the study, at the molecular level, of two kinds
of leukemia, Acute Myeloid Leukemia (AML) and Acute
Lymphoblastic Leukemia (ALL) The data were obtained by
DNA microarray experiments (high-density oligonucleotide
microarray by Affymetrics) reporting on the expression level

3092



TABLE II

RELEVANT INPUTS FOR THELEUKEMIA DATA

Gene description Gene accession number Correlated class Sign of saliency

GPX1 Glutathione peroxidase 1 Y00787 AML −

PRG1 Proteoglycan 1, secretory
granule

X17042 AML −

CST3 Cystatin C (amyloid
angiopathy and cerebral
hemorrhage)

M27891 AML −

Major histocompatibility complex
enhancer-binding protein mad3

M69043 AML −

Interleukin 8 (IL8) gene M28130 AML −

Azurocidin gene M96326 AML −

MB-1 gene U05259 ALL +

ADA Adenosine deaminase M13792 ALL +

of 6817 human genes plus controls. Observations refer to 38
bone marrow samples, used as a training set, and 34 samples
from different tissues (the test set). The original experiments
aimed at class discovery and prediction.

In this experiment, we used only the training data for
the class discovery (also known as classification) task to
discriminate ALL from AML. Classes are in the proportion
of 27 ALL and 11 AML observations. The parameters used
are as follows: number of sites= 4; β decreasing from
β(i) = 0.1 to β( f ) = 0.01 in 10 steps with exponential decay
law; perturbation with uniform noise of maximum amplitude
0.5, independent on each input coordinate; 100 perturbations
resulting in 400 random partitions of which 61% with mixed
classes (the rest being either empty or homogeneous).

The results obtained are summarized in Table II, which
compares the most important genes with those obtained by
the original authors. Genes that were indicated both in [5] and
by our technique are listed with the sign of the corresponding
saliency value. Our technique indicates that, among the top
20 genes found by the final analysis described in Subsection
III-F, 8 of the 50 genes listed in the original work feature
the maximum discriminating power. We choose to restrict the
analysis to few genes, since a good cluster validation step
is not included in the method yet. However, the results may
indicate that, among the 50 most correlated genes found by
Golub et al., not all contribute to the actual discrimination
to the same extent. In fact, the large number of variables
compared to the small number of observations calls for a
careful statistical evaluation of the significance of the results
obtained.

The ALL class was encoded with+1 and the AML class

with −1; it is possible to notice that all genes whose expression
was found to be correlated with ALL have positive saliency,
while those correlated with AML have consistently a negative
saliency value. Of course, absolute values are not reported
since they are not of interest in the present context.

V. D ISCUSSION AND OPEN TOPICS

There are a number of design options and theoretical topics
that can be investigated. Some have been touched in the body
of the paper; here we add some observations.

A. Choice of the scale

The number of Voronoi sites is an important parameter,
since it is related to the scale of the tessellation (size of cells).
Large cells will tend to contain segments of the separating
surface which are difficult to linearize, while small cells will
lead to excessively small data subset cardinality, and therefore
to low generalization ability.

The selection of the number of sites can be based on
estimates of the problem complexity such as those proposed
in [18], which are based on geometrical characterization of
the data rather than the more usual statistical or information-
theoretical consideration. However these must be combined
with estimates of generalization to account for the trade-off
outlined above.

B. Enhancements to the clustering step

To make the analysis more robust with respect to variations
in the actual saliency values (t), it is possible to analyze the
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saliency rank valuess instead. Clustering can therefore be
made on the space of vectorss.

A given cluster can be analyzed by computing Kendall’s
rank concordance indexW. [19]. Kendall’s coefficient forNc

saliency rank vectorss(1), . . . ,s(Nc) is computed as:

W =
12∑Nc

c=1

(

∑d
i=1s(c)

i

)2

Nc(d3−d)
−

3(d+1)

d−1
(5)

and is compared to significance tables forW itself or for the
relatedχ2 statistics.

Clustering can also be modified to incorporate W in its cost
function (W within clusters and(1−W) between clusters)
[20].

The experimental results indicate that a cluster validation
criterion should be added to the clustering phase.

C. Enhancements to the algorithm

There is room for several kinds of optimizations. The
technique is especially well suited to parallel implementation
at many levels, since the various steps can be pipelined, the
subsamples can be processed in parallel, and the Voronoi
resampling and clustering phases themselves can be imple-
mented in parallel. All these steps involve very reduced
communication. For instance, parallel resampling can be im-
plemented by completely independent random partitions, and
communication of subsamples for parallel analysis can be
obtained by passing the index of selected patterns. Therefore
a Beowulf-type workstation cluster may be proficiently used
with limited adaptation effort.

The technique to generate the random perturbations
themselves can be optimized, to reduce the number of
empty/homogeneous regions, since the data sets are expected
to be extremely sparse in the data space. Perturbations can
therefore be limited to a subspace, for instance by constraining
them to the directions spanned by the versors of the data pat-
terns (e.g., referring to the leukemia data, this is a basis which
spans a 38-dimensional subspace of the 6817-dimensional data
space).

VI. CONCLUSION

We have described a flexible method for analyzing the
relevance of input variables in high dimensional problems.
The method, which is in an early phase of development, has
nevertheless shown the ability to tackle dichotomic problems
even in the presence on non-linear separating surfaces. Its
behavior has also been validated by comparing the results
obtained on a real microarray data set with those published
by the original authors.

We have also proposed several open design options and
theoretical developments, which are the subject of currentand
future research.
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