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Abstract
This paper presents preliminary results on the design
an Object Coprocessor (OCP) cooperating with a RISC
architecture processor (ARM7, by Advanced RIS
Machines Ltd.). This coprocessor implements in hardwa
some low–level processing and control steps required
the object–oriented model. The processor and the O
constitute a processing architecture whose extend
instruction set features “object” treatment capabilities
Some special coprocessor instruction codes (“Obje
Instructions”) have been introduced. Concepts such 
“Polymorphism” and “Virtual methods” are supported at
the hardware level. Preliminary results using typica
object–oriented sequences show a gain in speed ove
pure software implementation, on the same RIS
machine. The specific design presented here refers t
prototype implementation that is currently unde
development and supported by the European Union Es
Project (7517 SUMIS).

1. Introduction

Object–oriented programming is becoming a maj
tool for the development of applications ranging fro
small to large projects in many fields and under a v
majority of platforms. This is mainly due to the notab
increase in power of very low–cost machines. As 
example, very small consumer appliances such as pho
and entertainment consoles have recently been addre
as a potential target for the Windows CE operati
system. From a methodological point of view, we shou
also account the large number of application areas 
can benefit of the added value of an object–orien
design. Higher–level programming is easier and the u
can concentrate more on the specific application than
details of the programming environment. Re–engineer
of existing applications is also greatly facilitated by a
object–oriented approach. As a result, most of the rece
designed programming and scripting languages (e
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JAVA [1], Object Pascal [2]) and many operating system
(e.g., OS/2 [3]) incorporate concepts from the objec
oriented model. Control applications and embedded sig
processing functions are an interesting area for t
development of object–based solutions (some examp
include industrial process automation, power managem
and control, field bus distributed control, and biomedic
instrumentation). In these contexts, engineers that 
skilled in their specific fields, but not necessarily i
software development, may take advantage of obje
oriented development environments and of the availabil
of dedicated hardware.

High–level software tools have experienced a notab
development as a consequence of the strong advance
performances of conventional-architecture processo
even in the lowest cost range. However, to date
corresponding increase in specific hardware support
these tools is still lacking. This paper presents prelimina
results on the design of an object–oriented processor 
namely, a RISC architecture [5,6,7,8] augmented w
additional circuitry that implements (directly in hardware
some low–level processing and control steps required
the object–oriented model. The design presented here 
subset of a microcontroller chip targeted to automa
control of industrial systems, particularly in the field o
power generation, conversion and management. The 
is to provide control engineers with flexible and powerf
programmable devices, that nevertheless retain a sim
high–level programming interface.

The microcontroller is currently under development 
a part of the Esprit Project (7517 SUMIS) funded by th
European Union (http://www.cordis.lu/esprit/home.html
It will provide signal pre–processing blocks (root-mea
square value, signal phase measurement, frequency 
time counters, multichannel A/D conversion) and vario
kinds of signal output blocks. Due to time and availabili
of resources, our implementation is built around 
commercial RISC microprocessor (ARM7, by Advance
RISC Machines Ltd.) [9] with the additional circuitry
interfaced as a coprocessor.
0 (C) 1998 IEEE
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2. Object–oriented concepts and
techniques

Encapsulation, Inheritance and Polymorphism [10,1
are the basic concepts of Object Oriented Programm
(OOP). An object oriented compiler will translate a
object oriented solution into suitable, low level, softwa
control and data structures, according to the capability
the target processor.

An Object Oriented Machine (OOM) should provid
additional machine–level instructions and hardware su
port for typical OOP operations. To examine how t
basics concepts of OOP could be supported by 
hardware, it is necessary to take a closer look at ob
oriented techniques, at a quite low level [12, 2].

Encapsulation allows combining both data and code
classes. For each instance of a class, memory spac
allocated to store all the data encapsulated with 
Moreover, for each class type declared in the source co
the compiler builds a table, here referred as Virtu
Method Table (VMT), containing function pointers an
class type information (see Fig. 1). In the data space
each instance, a location is reserved to store a referenc
the VMT of its own class. In general, the execution 
object oriented code is based on the use of instances
tables.

Inheritance information is registered in the VMT of th
class. For instance, if a class CHILD inherits all i
characteristics from a class PARENT, in the VMT o
CHILD a pointer to the VMT of PARENT is present. Thi
pointer is part of a linked list that ends with the comm
ancestor of all the instanced classes. The main aim of

Run Time Type
and

Inheritance Informations

Address of Virtual Method 0
Address of Virtual Method 1
Address of Virtual Method 2

“ “ “
“ “ “
“ “ “

“ “ “
Last Virtual Method Address

“Negative” indexes

“Positive” indexes

“VMT Pointer” points to:

Fig. 1. The structure of a Virtual Method Table.

Notes: - Virtual Methods Addresses are stored in the
“positive” side of the table

- In the “negative” part of the table we found
various data, for example: inheritance and run
time type information, instance size and fields
type information.
1060-3425/98 $10.
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VMT is to support the polymorphical behavior of the
classes.

Polymorphism allows sharing the name of a function
up and down the class hierarchy, with each class in th
hierarchy implementing the action in a “customized” way.

A function of this type is usually called a virtual
method. The VMT stores an indexed table of pointers to
the virtual methods. The new class CHILD may redefine
some functions with respect to the ancestor PARENT. Th
VMT's of the classes CHILD and PARENT will therefore
differ accordingly. Some new pointer entries will be
added, some others will be overridden.

3. Efficiency of software–only
implementation

Method calls and returns require a larger number o
operations than normal calls and returns from subroutines
At run-time, when an instance of a class CALLER needs
to call a virtual method of an instance of a class
CALLED, a low level trip around tables and pointers
needs to be made to satisfy the required call. The softwa
implementation of this sequence is quite time–consuming

As shown in Fig. 2, CALLER needs first to obtain the
address of the instance of CALLED. This address is
normally known as “Self” [2, 11] or “This” [10]. Then, by
pointing in memory with this address, it picks up the
pointer to its VMT. At run-time, the source name of the
function corresponds to an index into the VMT, so
another access in memory will be performed this time to
get the address of the function to be actually executed
Finally, the return address will be saved and the function
executed.

The necessity of calling a function of an object from
everywhere does not allow the software implementation to
distinguish among the origins of the calls. If a function is
called from an instance of the class it belongs to, the ca
sequence will be the same, and the code will implement 
trip to get some pointers that, as matter of fact, it alread
has.

Fig. 2 shows that the pointer to the current instance
Self is saved before being overwritten by the one o
CALLED. At the time of return, the Self of CALLER
must be restored. The Self address is important because 
instance is known to itself only because its own address 
accessible by means of its own register. Since the softwa
implementation is not aware of the call type, as outlined
above, it is necessary to access the stack very frequent
for saving and restoring the Self address.
00 (C) 1998 IEEE
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4. Hardware support issues and design
solutions

We decided to optimize the access to the VMT, duri
the method–call sequence, due to the considerations ab
explained. The travel between pointers and tables can
performed by a dedicated hardware, while the ma
processor executes other related tasks. In this way we
also limit the effects of the required wait–states in exter
memory accesses. Allocating a VMT–reserved RAM on
chip would not be a feasible solution: the required size
the RAM would be so large to be impractical, since obje
oriented programs are designed for using a lot of differ
classes.

We optimized the method call sequences 
distinguishing, via hardware, the calls made between t
different instances (a) and the calls made internally by 
same instance (b). In case a) it is necessary to save
current instance address and get the new one; in cas

“New” Self

Memory

Memory access to get the “Self”
of the called method:

“Self” Register

“SavedSelf” Register
VMT Pointer

Save the “Old” Self and
prepare the “New”

Memory access, in the
data area of the called
instance, to get the
class VMT pointer

“VMT” Register

Memory access, using the VMT
pointer added to the method
index, to get the address of the
method to be launched

Method address

Virtual Method
Table of the class:

Save the Return Address
&

Jump to the Method

Fig. 2. Sequence of low–level operations
necessary to call a Virtual Method.
1060-3425/98 $10.
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we can optimize efforts leaving unchanged the curren
instance address. The hardware is able to discrimina
cases a) and b), at the time of the function return.

Designing a completely new object–oriented processo
was not feasible, due to time and resource constraints. W
have decided instead to select a CPU standard cell suitab
to be “object–extended”. However, using an existing
“black–box” CPU, one has to make some compromises
For instance, it is not possible to preview the current stat
of the internal CPU sequencer, modify the existing in-
struction execution sequences, or read the CPU flags.

We found that ARM7 standard cell was suited to the
purpose. ARM7 is a full 32 bit RISC processor, that can
be efficiently connected to a coprocessor to extend it
capabilities. Moreover, among the interesting features o
the ARM architecture, there is an efficient implementation
of the indexed–by–register addressing mode, so it i
reasonably suitable for the implementation of objec
oriented languages.

5. Object Coprocessor architecture and
basic operations

The object–oriented processor is composed of the CP
core and the “Object Coprocessor” (OCP). Its instruction
set is therefore extended to “object” treatment capabilities

An important feature of the coprocessor is its non–
standard connection to the 32 bit RISC core. Usually, 
coprocessor is attached to the unique system bus th
connects core and memory. Under the control of the mai
processor, a normal coprocessor is enabled to work whe
a coprocessor instruction is present in the execute stage
the pipe. The core normally waits for the coprocessor t
finish its duty and then proceeds with next instruction; it
never stops fetching and decoding instructions from
memory, and executing or delegating them to the
coprocessor.

In our system, as shown in Fig. 3, the bus connectin
core with memory and I/O devices is split into an interna
and an external section, separated by a bidirectiona
buffer. The internal bus and the external system bu
feature a line by line correspondence. The coprocessor 
placed in a privileged position, because has access to bo
busses.

It is worth noting that core and coprocessor look a
different scenarios. The CPU core sees the OCP as 
normal coprocessor, but the latter controls the connectio
between internal and external busses. The OCP is able to
take control of the execution flow when needed, by
disconnecting the bus and then controlling at the sam
time both the core and the external memory system
During the normal flow of instruction execution, when no
coprocessor instruction is fetched, the coprocessor sta
idle, while the core remains connected to the external bu
and controls the whole system.

As soon as a coprocessor instruction is fetched, th
OCP starts its activities. A few instructions, like data
00 (C) 1998 IEEE



ARM 7
RISC
CORE

Internal Bus External Bus

Object Coprocessor (OCP)

Control Signals

Separator

Fig. 3. Block diagram of the connection between the ARM7 core and the Object Coprocessor

Notes: - Separator: a bi-directional separator / buffer that enable connection / disjunction of the ARM7 core to / from the
external system.

- Internal Bus: local bus connecting the ARM7 core to the OCP and, trough the separator / buffer, to the external
system.

- External Bus: system bus connecting the whole system to the OCP and, trough the separator / buffer, to the
ARM7 core.
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transfer between registers and between registers a
memory, are executed by the OCP without modifying th
standard bus connection. It is interesting, instead, 
examine what happens when the coprocessor fin
“Object Instructions” (OI), so called because they ar
designed to support the operations characterizing O
languages.

As shown in Fig. 4, OCP contains, as any othe
coprocessor of a RISC CPU, an instruction pipe. At an
given time, core and OCP pipes have the same conte
when the core fetches an instruction, OCP does the sa
in parallel.

When OCP finds an OI in the decode stage, it ge
ready to take over, by preparing the execution of th
corresponding sequence. At the execute stage, up
permission from the core, OCP begins its operations, fir
of all by splitting the bus.

The next phase of the execution process consists in t
synchronized sequences: one on the CPU side, the ot
on the external system side, both under the control of t
OCP sequencer.

The Instruction Sequence Generator (ISG) is a
architectural component that supports the executio
sequence on the CPU side. Controlled by the OC
sequencer, ISG acts in place of memory, generati
instruction streams that are fetched, trough the intern
bus, by the CPU, for the duration of the OI execution.

ISG builds the opcodes at run–time, processing th
information from the operating code fields of OI with the
1060-3425/98 $10.0
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help of an internal table. While the CPU executes the
instructions provided by the OCP, the latter interacts with
memory to read/write pointers and save/restore registers,
according to the needs of the current OI. When needed,
the external and internal activities are linked together: for
instance, in some situation, the CPU core picks up the
address just calculated by the OCP or, in other cases, OCP
grabs a register content from the CPU to use as a memory
address.

An Arithmetic Logic Unit (ALU) processes the
addresses obtained from the transfers mentioned above,
for example to index them.

Two registers are also present, used to store the
addresses of current and previous instances (CRSelf and
CRSavedSelf registers). Note that a CPU register, called
RSelf in our context, is reserved to duplicate the content
of CRSelf, to give the CPU immediate availability of the
current instance. CRSavedSelf register can be seen as a
normal register (used to save the CRSelf content) in its
lower part and as a increment/decrement counter in its
upper part. As it will be shown in the following, this latter
function is used during the call/return sequences to/from
methods belonging to the same class instance.

The CRVmt register stores the VMT address during the
virtual method call operations and two registers control
the overall operation (CRControlA and CRControlB
register). The size of all register is 32 bits.
0 (C) 1998 IEEE



External Bus

Object Coprocessor

Internal Bus

Pipe 0

Pipe 1

Pipe 2

Instruction
Sequence
Generator

Timing &
Control

RTemp

ALU

CRVmt

CRSelf

CRSavedSelf

Inc/Dec
Logic

Fig. 4. Block diagram of the Object Coprocessor architecture

Notes: - Pipe 0,1,2: the instruction pipe registers, ‘paralleled’ with the ones present in the ARM 7 core.
- Timing & control: the sequencer for the whole object coprocessor.
- ALU: a Logical Arithmetic Unit, used to manipulate method addresses.
- RTemp: a temporary register, internally used by the ALU.
- CRVmt: register used to store the VMT address during call sequences of virtual methods.
- CRSelf: register used to store the Self address of the current instance.
- CRSavedSelf: saved Self register, used to save the address of the previous instance and to maintain the count

of the number of method calls within the same instance.
- Inc/Dec Logic: increment / decrement logic used to execute the counting in CRSavedSelf
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6. The Object Instructions

OI’s support a few of the typical operations of O
languages, in particular the management of metho
taking care of calls and returns in static and virtual mod
Six types of method calls and a unified return (see Ta
1) are implemented.

Method calls and returns of OI’s are basically simil
to the plain calls and returns of normal sub–programs
that OI’s take care of the usual save and restore opera
of the return address. However, these are done with
addition of automatic save and restore of the curr
instance pointer (Self). Moreover, in the case of virtu
methods, OI’s perform all the trips necessary to find t
address (polymorphical late binding) of the method call

The OI’s, obviously, do not support directly stac
frame construction and parameters passing.

The same method may be called in a static mode (e
binding), with the METSM, METSR and METS
instructions, or in a virtual mode, with the METVM
METVR and METVI instructions. The choice is made b
1060-3425/98 $10.
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the compiler, on the basis of the definition provided b
the programmer in the source code and in accord with t
semantic context. The compiler is also in charge 
deciding where to get the Self pointer of the metho
called (it normally can be in memory, but also it coul
have been already loaded in the processor, for example

A method can be called: a) from a method belonging 
an instance of any class, different from its own clas
instance, b) from a method belonging to the same cla
instance (also recursively) and c) from a code n
belonging to any class.

In the case a), because the new pointer Self is load
with the address of the instance of the class of the meth
called, the need arises of saving the caller’s Self point
(instructions METVM, METVR, METSM and METSR).

In the case b), because the instance “called” is the sa
as the one “calling”, it is not necessary to get the new S
and, consequently, it is not even necessary to save 
current one (instructions METVI and METSI).

The distinction between cases a) and b) is made 
optimize the operation sequence in case b).
00 (C) 1998 IEEE



Table 1.  The Object Instructions

METVM Virtual Method Call
(Memory)

Virtual method call from a class instance different from the called
one. The pointer to the instance of the called (new “Self”) is taken
from memory. The virtual method is identified by its position
(index) in the Virtual Method Table (VMT).

METVR Virtual Method Call
(Register)

As above, with the difference that the pointer to the instance of the
called (new “Self”) is taken from an ARM register.

METVI Virtual Method Call
(Internal)

Virtual Method call from the same class instance of the called one.
The pointer “Self” is already available, inside the core (register
RSelf), and the coprocessor (register CRSelf). As above, the virtual
method is identified by its position (index) in the Virtual Method
Table (VMT).

METSM Static Method Call
(Memory)

Static Method call from a class instance different from the called
one. The pointer (new “Self”) is taken from memory. The method is
identified by its address, specified in relative mode by respect to the
Program Counter.

METSR Static Method Call
(Register)

As above, with the difference that the pointer (new “Self”) is taken
from an ARM register. The method is identified by its address,
specified in relative mode by respect to the Program Counter.

METSI Static Method Call
(Internal)

Static Method call from the same class instance of the called one.
The pointer “Self” is already available, inside the core (register
RSelf), and the coprocessor (register CRSelf). The method is
identified by its address, specified in relative mode by respect to the
Program Counter.

RETM Return from Method Unified return from method. The instruction recognizes
automatically the mode the method has been called and decides
whether it must recover the caller’s “Self”.
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In case c) the current value of the Self pointer 
meaningless, but it is anyway necessary to get the 
pointer to the instance of the class of the method cal
For the sake of simplicity and homogeneity, the sa
instructions as in case a) are used. Obviously, in this 
case, the Self pointer saved is meaningless.

In the case of the instructions METVM, METVR
METSM and METSR, because the method called belo
to an instance different from the one of the meth
calling, the new Self is loaded in the registers RSelf of 
processor and CRSelf of the coprocessor. The conten
CRSelf, before being substituted by the new value,
copied into CRSavedSelf.

In the case of the call instructions METVI and METS
because the called belongs to the same class of the c
the registers RSelf and CRSelf are not modified. Inste
the upper part of CRSavedSelf, cleared in the other ca
will be used as counter of the number of nested c
and/or consecutive inside the same class instance.

This counting mechanism is made more complica
by the necessity not to limit the number of nested a
consecutive calls possible from within the same class. 
limit imposed by the counter’s field is overcome b
saving the register in the stack every time the coun
overflows, i.e. every 256 nested and consecutive c
within the same instance. For sake of simplicity, t
details of this stack saving are not reported here.
1060-3425/98 $10
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Obviously, all call instructions save their return
addresses, as it is done in the ARM core, copying th
Program Counter (R15), after correcting it, in the registe
R14. Such behavior requires that, if the method called h
internally other calls (in other words, it is not a lea
method), in its entry/exit code the content of R14 an
CRSavedSelf will be saved/recovered from stack.

It is important to notice that all methods end with th
same unified return OI, RETM (see Table 1). RETM
recognizes automatically the modality that has been us
to call the method, and therefore knows whether it mu
recover the caller’s Self.

The decision is made by controlling the counter in th
upper part of register CRSavedSelf. If the count is n
zero, the call has originated within the same clas
instance. RETM in this case must decrement the count 
the calls, without modifying the registers CRSelf of th
coprocessor and RSelf of the core.

If the count is zero, the call came from code belongin
to a different instance, so RETM copies the content of th
register CRSavedSelf in the register CRSelf of th
coprocessor and RSelf of ARM, restoring in this way th
pointer Self to the caller’s instance. Actually the contro
mechanism is more complicated, as outlined above, due
the need to control also the counter’s overflow trace o
the stack, every 256 consecutive returns within the sam
instance.
.00 (C) 1998 IEEE
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7. Efficiency considerations

In this paragraph a few cases of calls and returns 
a method, implemented only by software, will 
compared with the equivalent functions supported by
coprocessor. Beside, a few other considerations on
factors affecting speed performances will be made.

As seen previously, a pure software implementa
cannot distinguish between a call made from inside
same class instance and a call in between diffe
instances. In fact, every method can be called from
other method of any instance, both in static and vir
mode. As a consequence, the method code, being un
must end with a sequence of instructions compatible 
all call types. The return sequence must therefore inc
always the recovery of the caller Self, and the calls wil
of the type between different instances.

Fig. 5 presents an example of “software on
implementation of a virtual method call and return. In 
approach, to enable comparison, we suppose to use
additional ARM registers, in addition to the ‘Rse
register used to storage the current instance pointer
named them ‘RSavedSelf’ (used to save RSelf) 
‘Rvmt’ (used for the VMT pointer). The call sequen
1060-3425/98 $10.0
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proceeds as previously described (see Fig. 2). In the return
sequence, the ADD instruction has been included to
enable a comparison of this sequence with the
coprocessor–assisted one.

In Fig. 6, the virtual method call and the unified return,
for the case of caller and method belonging to different
class instances, are implemented with the coprocessor–
assisted OI. The OI’s employed are METVM call and
RETM return. This sequence, substantially, operates as in
the software–only implementation, but the code is more
compact, and runs faster.

Note that, due to pipe synchronization, and to the
necessity to respect some external timing requirements of
the ARM 7, an ancillary instruction has to be placed after
each OI.

In spite of the fetching order, this ancillary instruction
is actually executed not after, but during the execution of
the OI. The OCP is able to recognize the presence of
illegal ancillary instructions, and to refuse execution of
the OI, forcing the ARM 7 core to execute an “Undefined
Instruction” internal exception, to enable run–time
debugging of OI’s.

For the METVM, METVR, METSM and METSR
instructions, the use of the ancillary instruction is
necessary to transfer the new Self of the method called in
;--------- Virtual Method Call instruction sequence -------------------
;

MOV RSavedSelf, RSelf ;Save RSelf in RSavedSelf
LDR RSelf, [<Register> + Offset] ;Load RSelf from memory
LDR Rvmt, [RSelf] ;Load VMT pointer
MOV R14, PC ;Save the return address
LDR PC, [Rvmt + <Index of Method>] ;Jump to the virtual method
.
.

;--------- Method Code
;
METHOD <entry code> ;Method entry code

SUB SP,SP, #<localsize> ;make room for local variables
.
.

;--------- Method Return instruction sequence -------------------------
;

MOV RSelf, RSavedSelf ;Restore RSelf from RSavedSelf
ADD SP,SP, #<localsize> ;Local variables removal
MOV PC, R14 ;Copy the return address to PC

;(to return to the caller)

Fig. 5. Software only implementation of Virtual Method Call and Method Return

Notes: - We suppose to use two ARM registers, in addition to the register ‘RSelf’ used to store the current instance
pointer. We give them the names of ‘RSavedSelf’ (used to save RSelf) and ‘Rvmt’ (used for the VMT pointer).

- PC is the Program Counter (R15 register of ARM).
- SP is the Stack Pointer (usually the R13 register of ARM).
- R14 is an ARM internal register, used to save the return address.
- <Register> is a register of ARM, containing an address reference to the pointer to the instance of the class of the

method that we are calling.
- <Index of Method> identifies the virtual method to be called.
- For comparison purpose only, the method return code includes here an ADD instruction to remove the local

variables, because in the case of usage of the RETM instruction, we are forced to introduce an ‘ancillary’
instruction after it. Obviously, this instruction could be substituted with any other useful. The SUB instruction is
introduced in the method code only to pair the ADD instruction.

- <localsize> is the overall size of the local variables.
0 (C) 1998 IEEE
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the RSelf and CRSelf registers. METVI, METSI an
RETM don’t need a specific service by the ancilla
instruction, but the latter is executed anyway. T
programmer can use the ancillary instruction to perfo
for instance, a register to register transfer or operation.

Fig. 7 provides an example of METVI virtual metho
call instruction. METVI is used when caller and call
belong to the same instance and the Self does not ne
be saved or transferred. Note that the return instruc
sequence is the same of the previous example.

Comparing the execution times of the sequences ta
here as examples implies taking into account the w
cycles that each implementation adds to the timing
memory accesses and, in general, of external compon
In our implementation, the memory access controller a
by default a wait cycle to the basic ARM timing, and it
possible to set additional wait cycles.

Table 2 and 3 present a comparison among the t
examples, as a function of the wait cycles imposed by
system. Table 2 refers to the efficiency of virtual meth
calls, Table 3 of returns.

As anticipated, the improvement is larger in the case
calls from within the same instance: in the case of 
instruction METVI, for instance, the average gain in ter
of execution time over a pure software implementation
approximately 50%. For the instruction METVM (ca
from different instances) the gain is instead around 40%
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Calls take better advantage from the hardware supp
than returns. Returns, in fact, must be served by hardw
because it is necessary to distinguish if the call is comi
from the same instance or not. As a consequence, we h
no substantial advantages by relieving the core from so
of the operations.

As Table 2 and 3 show, in the case of one wait sta
RETM provides a gain of 30% in the case of a return fro
a method within the same instance, while in the case 
different instances there is a gain only when a larg
number of wait states is present.

It can be noted, in fact, that all OI’s, but RETM in
particular, show a reduced dependence of execution tim
from wait states, in comparison with a pure softwar
approach, because the coprocessor allows to avoid m
external memory accesses.

It may be useful, at this point, to add a few
considerations on the low–level interaction betwee
ARM7 and the object coprocessor.

As described earlier in the paper, the coprocess
remains idle when none of its dedicated instructions 
fetched: therefore no overhead is associated to t
presence of the coprocessing hardware. The interact
between ARM7 and OCP when OI’s are executed h
been optimized by a careful temporal interlacing of th
operation that the two units perform in cooperation. O
course, here and there, constraints inherent with t
;--------- Virtual Method Call instruction sequence -------------------
;

METVM <Index of Method> ;Virtual Method Call
LDR RSelf, [<Register> + Offset] ;Load RSelf from memory

;(jump now to the Method)
.
.

;--------- Method Code
;
METHOD <entry code> ;Method entry code

SUB SP,SP, #<localsize> ;make room for local variables
.
.

;--------- Method Return instruction sequence -------------------------
;

RETM ;Method Return
ADD SP,SP, #<localsize> ;Local variables removal

;(return now to the caller)

Fig. 6. Coprocessor-assisted Virtual Method Call and Method Return, when the class instance of the
caller and the method are different (METVM instruction).

Notes: - <Index of Method> identifies the virtual method to be called.
- <Register> is a register of ARM, containing an address reference to the pointer to the instance of the class of the

method that we are calling.
- The LDR instruction is the “ancillary instruction” of METVM and it is executed before jumping to the method. It is

in charge of get the Self of the called method.
- SP is the Stack Pointer (usually the R13 register of ARM).
- <localsize> is the overall size of the local variables.
- The ADD instruction is the “ancillary instruction” of RETM and it is executed before returning to the caller. Here it

is used to remove the local variables from the Stack. This instruction could be substituted with any other useful.
We use here the same instruction that we applied in the software only implementation, for comparison purpose.
The SUB instruction is introduced in the method code only to pair the ADD instruction.
0 (C) 1998 IEEE



m

h

e

l

o
a

s

ss
nt
re

 of
ys,
er

ake
ion
ng
ges
ns
dard

h
en
e
to

ut,
en
of

ting
ler,
en
the
r is
.
ne
characteristics of ARM7 macrocell are present. Fo
instance, the lack of an interrupt acknowledge signal fro
ARM7 has obliged to add a clock cycle to the OI’s
sequences.

OCP control registers are involved in the system
initialization phase only, normally at reset, and therefor
their load operations do not generate overhead.

In addition to the OI’s previously described, a few
more coprocessor instructions have been added to the 
to allow communication between OCP and ARM7
registers, and between OCP registers and memory, wh
needed. These “service” instructions are used during t
context–switching between processes and the excepti
servicing (when the contents of CRSelf and CRSavedS
registers need to be saved/restored), and in the entry a
exit code of “not leaf” methods (when the CRSavedSe
register has to be saved/restored, because the method c
contains at least one call to a method of another cla
instance). A properly designed compiler can minimize th
usage of these instructions. The couple of push and p
instructions, when inserted by the compiler, generates 
overhead of eight clock cycles (if one wait state is used).

The analysis just carried out shows that OI’s accelera
in particular the operations of call and return from virtua
methods within the same class instance. The advantage
terms of execution times, therefore, will be more relevan
in the applications where the calls within the same cla
instance are more frequent than calls between differe
class instances and where polymorphism and virtuality a
1060-3425/98 $10.0
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widely applied. Examples may be taken from classes
polymorphic collections, queues, variable sized arra
linked lists and trees, commonly used in OOP. Anoth
example is represented by recursive algorithms that t
advantage of the hardware support, when the funct
calling itself is a method (and therefore we are deali
with calls within the same class instance). The advanta
will be, instead, much less relevant in the applicatio
where the computational aspects and the use of stan
(non methods) function dominate.

A real verification of speed performances wit
different kinds of applications could be done later, wh
an high level language compiler will be available. Th
implementation of the compiler had been planned 
proceed in parallel with the development of the chip b
after an unforeseen reduction of funding, it has be
chosen to delay its realization, in favor of the design 
the remaining parts of the chip.

In the current phase of the project, coprocessor tes
has been done using the ARM7 macro assemb
integrated with the new coprocessor instructions (writt
as macros). In our procedure, the memory image of 
machine code program produced by the assemble
therefore converted in a VHDL file describing a ROM
Then all the hardware and software verifications are do
through the VHDL simulator.
;--------- Virtual Method Call instruction sequence -------------------
;

METVI <Index of Method> ;Virtual Method Call
MOV   R0,R0 ;”ancillary” instruction

;(jump now to the Method)
.
.

;--------- Method Code
;
METHOD <entry code> ;Method entry code

SUB SP,SP, #<localsize> ;make room for local variables
.
.

;--------- Method Return instruction sequence -------------------------
;

RETM ;Method Return
ADD SP,SP, #<localsize> ;Local variables removal

;(return now to the caller)

Fig. 7. Coprocessor-assisted Virtual Method Call and Method Return, when the class instance of the
caller and the method are the same (METVI instruction).

Notes: - <Index of Method> identifies the virtual method to be called.
- MOV R0,R0 here is a NOP instruction. It is the “ancillary instruction” of METVI and it is executed before jumping

to the method. The programmer can substitute it with another, useful, instruction.
- SP is the Stack Pointer (usually the R13 register of ARM).
- <localsize> is the overall size of the local variables.
- The ADD instruction is the “ancillary instruction” of RETM and it is executed before returning to the caller. Here it

is used to remove the local variables from the Stack. This instruction could be substituted with any other useful.
We use here the same instruction that we applied in the software only implementation, for comparison purpose.
The SUB instruction is introduced in the method code only to pair the ADD instruction.
0 (C) 1998 IEEE



Table 2.  Virtual Method Call: some comparisons among software only implementation and
METVM and METVI instructions.

Wait States
Software Only
Implementation

METVM
(different instances)

METVI
(same instance)

1 23T 15T 12T
2 33T 20T 16T
3 43T 25T 20T

Notes: - “T” is the clock period.
- The METVM and METVI execution time includes also the “ancillary” instruction.

Table 3. Method Return: some comparisons among software only implementation and RETM
instruction (in two different cases).

Wait States
Software Only
Implementation

RETM
(different instances)

RETM
(same instance)

1 10T 10T 7T
2 15T 12T 9T
3 20T 14T 11T

Notes: - “T” is the clock period.
- The RETM execution time includes also the “ancillary” instruction. The same instruction behaves

differently, distinguishing if the instance of the method and the caller are the same, or not.
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8. Conclusions

We have presented in this paper the design of 
ARM7 coprocessor targeted to support via hardware t
execution of programs written in object–oriented
languages.

Our work represents a first attempt to incorporate th
object–oriented language support in the design of 
microcontroller for industrial applications. The optima
solution would be, of course, to redesign an entirely ne
processor, integrating the object–oriented suppo
However, given the design goals and constraints, 
reasonable compromise between performances a
development efforts has been found with a hybri
architecture where a commercial macrocell (ARM7 3
bits RISC Processor) has been connected in a no
conventional way with a coprocessing unit designed fo
the purpose. The combined architecture behaves as a n
processor with an instructions set extended to obje
treatment.

The results obtained confirm and quantify the
improvement in term of speed that this structure allow
when executing the low–level processing sequences a
control steps typical of the object–oriented model.

At the time of writing, a large portion of the
microcontroller chip peripheral devices are ready. O
course, the coprocessor is completed, and low lev
simulations have been possible thanks to the availabil
of the VHDL model of ARM7.
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