Object Oriented ARM7 Coprocessor

Giuliano Donzellini, Stefano Nervi, Domenico Ponta, Sergio Rossi, and Stefano Rovetta
Department of Biophysical and Electronic Engineering, University of Genoa, Italy
E-mail: {donzie, nervi, ponta, rossi, rovetta}@dibe.unige.it

Abstract JAVA [1], Object Pascal [2]) and many operating systems
(e.g., OS/2 [3]) incorporate concepts from the object—
an Object Coprocessor (OCP) cooperating with a RISC— oriented model. Control applications and embedded signal

processing functions are an interesting area for the

architecture processor (ARM7, by Advanced RISCd velopment of obiect—based solution me examol
Machines Ltd.). This coprocessor implements in hardwareineledOping tﬁ IO rJeC ~ aset msotiu no S vf/sc: me r? a rr? i?
some low—level processing and control steps required by clude industria’ process automation, power manageme

the object—oriented model. The processor and the ocpand control, field bus distributed control, and biomedical
constitute a processing architecture whose extended'nStrumentat'on)' In these contexts, engineers that are

instruction set features “object” treatment capabilities. Sk'fltlvevdrm dth\?'rl anecr']ft'c r:eldi’ kbUt dn\(/)tmnecess? r"{). mt
Some special coprocessor instruction codes (“Objectso are development, may lake advantage of object=

Instructions”) have been introduced. Concepts such asorlented development environments and of the availability

“Polymorphism” and “Virtual methods” are supported at of i'eid;]ca:t(?/d Ihart:ltvvxcarre.t Is have experienced a notabl
the hardware level. Preliminary results using typical gh—ievel soltware 1ools have experienced a notable

object—oriented sequences show a gain in speed over gevelopment as a consequence of the strong advances in
pure software implementation, on the same RISCperformances of conventional-architecture processors,

machine. The specific design presented here refers to gven in the lowest cost range. However, to date a

prototype implementation that is currently under correspondi.ng i.ncreag,e in specific hardware suppqrt to
development and supported by the European Union Espritthese tools is still Igcklng. This paper presents preliminary
Project (7517 SUMIS), results on the design qf an object—oriented processor .[4],
namely, a RISC architecture [5,6,7,8] augmented with
additional circuitry that implements (directly in hardware)
some low—level processing and control steps required by
the object—oriented model. The design presented here is a
subset of a microcontroller chip targeted to automatic

control of industrial systems, particularly in the field of

This paper presents preliminary results on the design of

1. Introduction

Object—oriented programming is becoming a major
tool for the development of applications ranging from \ k ,
small to large projects in many fields and under a vastPOWer generation, conversion and management. The aim
majority of platforms. This is mainly due to the notable IS to provide contro_l engineers with flexible and. powe.rful
increase in power of very low—cost machines. As an programmable devices, that nevertheless retain a simple

example, very small consumer appliances such as phone&igh-level programming interface.

and entertainment consoles have recently been addressed '€ microcontroller is currently under development as
as a potential target for the Windows CE operating & part of the Esprit Project (7517 SUMIS) funded by the

system. From a methodological point of view, we should Eurc_)pean _Unior_1 (http://www.cord_is.Iu/esprit/home.html).
also account the large number of application areas thaft Will provide signal pre—processing blocks (root-mean-
can benefit of the added value of an object—orientedSduare value, signal phase measurement, frequency and
design. Higher—level programming is easier and the usefiMe counters, multichannel A/D conversion) and various
can concentrate more on the specific application than orkinds of signal output blocks. Due to time and availability

details of the programming environment. Re—engineering®f résources, our implementation is built around a
of existing applications is also greatly facilitated by an commercial RISC microprocessor (ARM7, by Advanced

object—oriented approach. As a result, most of the recentlyRISC Machines Ltd.) [9] with the additional circuitry

designed programming and scripting languages (e.g..nterfaced as a coprocessor.

1060-3425/98 $10.00 (C) 1998 IEEE



Run Time Type VMT is to support the polymorphical behavior of the
d

an classes.
“Negative” indexe: Inheritance Informations Polymorphism allows sharing the name of a function
_ ] i up and down the class hierarchy, with each class in the
“VMT Pointer” points to: ——» | Address of Virtual Method Q hierarchy implementing the action in a “customized” way.
“Positive” indexes ﬁgg:gzz g;x:::z:: mg:gg; A function of this type is usually called a virtual
- . - method. The VMT stores an indexed table of pointers to

the virtual methods. The new class CHILD may redefine
some functions with respect to the ancestor PARENT. The
VMT's of the classes CHILD and PARENT will therefore
differ accordingly. Some new pointer entries will be
added, some others will be overridden.

Last Virtual Method Address 3. Efficiency of software—only

Fig. 1. The structure of a Virtual Method Table. implementation
Notes: - Virtual Methods Addresses are stored in the Method calls and returns require a larger number of
“positive” side of the table operations than normal calls and returns from subroutines.
- In the “negative” part of the table we found At run-time, when an instance of a class CALLER needs
various data, for example: inheritance and run to call a virtual method of an instance of a class
time type information, instance size and fields CALLED, a low level trip around tables and pointers
type information. needs to be made to satisfy the required call. The software

implementation of this sequence is quite time—consuming.

. . As shown in Fig. 2, CALLER needs first to obtain the

2. Object-oriented concepts and address of the instance of CALLED. This address is
techniques normally known as “Self” [2, 11] or “This” [10]. Then, by

pointing in memory with this address, it picks up the

Encapsulation, Inheritance and Polymorphism [10,11] pointer to its VMT. At run-time, the source name of the
are the basic concepts of Object Oriented Programmingfunction corresponds to an index into the VMT, so
(OOP). An object oriented compiler will translate an another access in memory will be performed this time to
object oriented solution into suitable, low level, software get the address of the function to be actually executed.
control and data structures, according to the capability ofFinally, the return address will be saved and the function
the target processor. executed.

An Object Oriented Machine (OOM) should provide The necessity of calling a function of an object from
additional machine—level instructions and hardware sup-everywhere does not allow the software implementation to
port for typical OOP operations. To examine how the distinguish among the origins of the calls. If a function is
basics concepts of OOP could be supported by thecalled from an instance of the class it belongs to, the call
hardware, it is necessary to take a closer look at objecsequence will be the same, and the code will implement a
oriented techniques, at a quite low level [12, 2]. trip to get some pointers that, as matter of fact, it already

Encapsulation allows combining both data and code inhas.
classes. For each instance of a class, memory space is Fig. 2 shows that the pointer to the current instance
allocated to store all the data encapsulated with it.Self is saved before being overwritten by the one of
Moreover, for each class type declared in the source codeCALLED. At the time of return, the Self of CALLER
the compiler builds a table, here referred as Virtual must be restored. The Self address is important because an
Method Table (VMT), containing function pointers and instance is known to itself only because its own address is
class type information (see Fig. 1). In the data space ofaccessible by means of its own register. Since the software
each instance, a location is reserved to store a reference implementation is not aware of the call type, as outlined
the VMT of its own class. In general, the execution of above, it is necessary to access the stack very frequently
object oriented code is based on the use of instances anfibr saving and restoring the Self address.
tables.

Inheritance information is registered in the VMT of the
class. For instance, if a class CHILD inherits all its
characteristics from a class PARENT, in the VMT of
CHILD a pointer to the VMT of PARENT is present. This
pointer is part of a linked list that ends with the common
ancestor of all the instanced classes. The main aim of the

1060-3425/98 $10.00 (C) 1998 IEEE



class VMT pointer

Memory ANANAA we can optimize efforts leaving unchanged the current
Memory access to get the “Self”’ instance address. The hardware is able to discriminate
of the called method: s e sar cases a) and b), at the time of the function return.
Designing a completely new object—oriented processor
Save the “Old” Self and was not fgasiple, due to time and resource constraints_. We
prepare the “New” have deC|d_ed instead to select a CPU sta_ndard cell §U|_table
to be “object—extended”. However, using an existing
| : “black—box” CPU, one has to make some compromises.
[_"Self’ Register | /\/\N\/ For instance, it is not possible to preview the current state
l of the internal CPU sequencer, modify the existing in-
| “SavedSelf’ Registe} T Pore struction execution sequences, or read the CPU flags.
Memory access, in th We found that ARM7 standard cell was suited to the
data area of the called purpose. ARM7 is a full 32 bit RISC processor, that can
instance, to get the ,\/+\/\ be efficiently connected to a coprocessor to extend its

capabilities. Moreover, among the interesting features of
l the ARM architecture, there is an efficient implementation

of the indexed—by-register addressing mode, so it is
reasonably suitable for the implementation of object
oriented languages.

| “VMT" Register | Virtual Method
Table of the class:

Memory access, using the VMT 5. Object Coprocessor architecture and
pointer added to the method . .
index, to get the address of the basic operations

method to be launched » Viethod addres

o7

The object—oriented processor is composed of the CPU
core and the “Object Coprocessor” (OCP). Its instruction
set is therefore extended to “object” treatment capabilities.

An important feature of the coprocessor is its non—

NN standard connection to the 32 bit RISC core. Usually, a
l coprocessor is attached to the unique system bus that
Save the Return Addres connects core and memory. Under the control of the main
& processor, a normal coprocessor is enabled to work when
Jump to the Method a coprocessor instruction is present in the execute stage of
the pipe. The core normally waits for the coprocessor to
Fig. 2. Sequence of low—level operations finish its duty and then proceeds with next instruction; it
necessary to call a Virtual Method. never stops fetching and decoding instructions from
memory, and executing or delegating them to the
coprocessor.
4. Hardware support issues and design In our system, as shown in Fig. 3, the bus connecting

core with memory and 1/O devices is split into an internal
and an external section, separated by a bidirectional
buffer. The internal bus and the external system bus

We decided to optimize the access to the VMT, during teatyre a line by line correspondence. The coprocessor is
the m.ethod—call sequence, due to _the considerations abov§sced in a privileged position, because has access to both
explained. The travel between pointers and tables can bg sses

performed by a dedicated hardware, while the main i is worth noting that core and coprocessor look at

processor executes other related tasks. In this way we Cagifterent scenarios. The CPU core sees the OCP as a

also limit the effects of the required wait-states in external oy coprocessor, but the latter controls the connection
memory accesses. Allocating a VMT-reserved RAM on @peqyeen internal and external bussise OCP is able to

chip would not be a feasible solution: the required size of ;e control of the execution flow when needed by
the RAM would be so large to be impractical, since object gisconnecting the bus and then controlling at the same
oriented programs are designed for using a lot of different;ne both the core and the external memory system.
classes. . During the normal flow of instruction execution, when no
_We optimized the method call sequences by cqnrocessor instruction is fetched, the coprocessor stays
distinguishing, via hardware, the calls made between twojgje while the core remains connected to the external bus
different instances (a) and the calls made internally by thegnq controls the whole system.
same instance (b). In case a) it is necessary to save theé ag soon as a coprocessor instruction is fetched, the

current instance address and get the new one; in case Rycp starts its activities. A few instructions, like data

solutions

1060-3425/98 $10.00 (C) 1998 IEEE



Separator

Internal Bus External Bus

Object Coprocessor (OCP)

Control Signals

Fig. 3. Block diagram of the connection between the ARM7 core and the Object Coprocessor

Notes: - Separator: a bi-directional separator / buffer that enable connection / disjunction of the ARM7 core to / from the
external system.
- Internal Bus: local bus connecting the ARM7 core to the OCP and, trough the separator / buffer, to the external
system.
- External Bus: system bus connecting the whole system to the OCP and, trough the separator / buffer, to the
ARMY core.

transfer between registers and between registers antielp of an internal table. While the CPU executes the
memory, are executed by the OCP without modifying the instructions provided by the OCP, the latter interacts with
standard bus connection. It is interesting, instead, tomemory to read/write pointers and save/restore registers,
examine what happens when the coprocessor findsaccording to the needs of the current Ol. When needed,
“Object Instructions” (Ol), so called because they are the external and internal activities are linked together: for
designed to support the operations characterizing OOinstance, in some situation, the CPU core picks up the
languages. address just calculated by the OCP or, in other cases, OCP

As shown in Fig. 4, OCP contains, as any other grabs a register content from the CPU to use as a memory
coprocessor of a RISC CPU, an instruction pipe. At anyaddress.
given time, core and OCP pipes have the same content: An Arithmetic Logic Unit (ALU) processes the
when the core fetches an instruction, OCP does the samaddresses obtained from the transfers mentioned above,
in parallel. for example to index them.

When OCP finds an Ol in the decode stage, it gets Two registers are also present, used to store the
ready to take over, by preparing the execution of theaddresses of current and previous instances (CRSelf and
corresponding sequence. At the execute stage, uporfCRSavedSelf registers). Note that a CPU register, called
permission from the core, OCP begins its operations, firstRSelf in our context, is reserved to duplicate the content
of all by splitting the bus. of CRSelf, to give the CPU immediate availability of the

The next phase of the execution process consists in twa@urrent instance. CRSavedSelf register can be seen as a
synchronized sequences: one on the CPU side, the otherormal register (used to save the CRSelf content) in its
on the external system side, both under the control of thdower part and as a increment/decrement counter in its
OCP sequencer. upper part. As it will be shown in the following, this latter

The Instruction Sequence Generator (ISG) is anfunction is used during the call/return sequences to/from
architectural component that supports the executionmethods belonging to the same class instance.
sequence on the CPU side. Controlled by the OCP The CRVmt register stores the VMT address during the
sequencer, ISG acts in place of memory, generatingvirtual method call operations and two registers control
instruction streams that are fetched, trough the internalthe overall operation (CRControlA and CRControlB
bus, by the CPU, for the duration of the Ol execution. register). The size of all register is 32 bits.

ISG builds the opcodes at run—time, processing the
information from the operating code fields of Ol with the

1060-3425/98 $10.00 (C) 1998 IEEE



Internal Bus External Bus

Instruction {}

CRSelf

Sequence _ U J ;

Generator Pipe 1 U
{} ALU a

Pipe 2 CRSavedSelf

t t 1 iy
Timing & | T Dec _>

Control |, Logic
| |

Object Coprocessor

Fig. 4. Block diagram of the Object Coprocessor architecture

Notes: - Pipe 0,1,2: the instruction pipe registers, ‘paralleled’ with the ones present in the ARM 7 core.
- Timing & control: the sequencer for the whole object coprocessor.
- ALU: a Logical Arithmetic Unit, used to manipulate method addresses.
- RTemp: a temporary register, internally used by the ALU.
- CRVmt: register used to store the VMT address during call sequences of virtual methods.
- CRSelf: register used to store the Self address of the current instance.
- CRSavedSelf: saved Self register, used to save the address of the previous instance and to maintain the count
of the number of method calls within the same instance.
- Inc/Dec Logic: increment / decrement logic used to execute the counting in CRSavedSelf

6. The Object Instructions the compiler, on the basis of the definition provided by
the programmer in the source code and in accord with the

Ol's support a few of the typical operations of OO sema_ntic context. The compiler is_ also in charge of
languages, in particular the management of methodsdeciding where to get the Self pointer of the method
taking care of calls and returns in static and virtual modescalled (it normally can be in memory, but also it could
Six types of method calls and a unified return (see Tablehave been already loaded in the processor, for example).
1) are implemented. A method can be called: a) from a method belonging to

Method calls and returns of OI's are basically similar @n instance of any class, different from its own class
to the plain calls and returns of normal sub—programs, ininstance, b) from a method belonging to the same class
that OI's take care of the usual save and restore operation#'stance (also recursively) and c) from a code not
of the return address. However, these are done with thd€longing to any class. _ _
addition of automatic save and restore of the current In the case a), because the new pointer Self is loaded
instance pointer (Self). Moreover, in the case of virtual with the address of.the instance of the class of the mgthod
methods, OI's perform all the trips necessary to find the called, the need arises of saving the caller’s Self pointer.
address (polymorphical late binding) of the method called. (instructions METVM, METVR, METSM and METSR).

The Ol's, obviously, do not support directly stack In the case b), bet_:apse the instance “called” is the same
frame construction and parameters passing. as the one “calling”, it is not necessary to get the new Self

The same method may be called in a static mode (early@"d, consequently, it is not even necessary to save the
binding), with the METSM, METSR and METS| currentone (instructions METVI and METSI).
instructions, or in a virtual mode, with the METVM,  The distinction between cases a) and b) is made to
METVR and METVI instructions. The choice is made by OPtimize the operation sequence in case b).

1060-3425/98 $10.00 (C) 1998 IEEE



Table 1. The Object Instructions

METVM Virtual Method Call Virtual method call from a class instance different from the call¢d
(Memory) one. The pointer to the instance of the called (new “Self”) is taken
from memory. The virtual method is identified by its position
(index) in the Virtual Method Table (VMT).
METVR Virtual Method Call As above, with the difference that the pointer to the instance of|the
(Register) called (new “Self”) is taken from an ARM register.
METVI Virtual Method Call Virtual Method call from the same class instance of the called gne.
(Internal) The pointer “Self” is already available, inside the core (register
RSelf), and the coprocessor (register CRSelf). As above, the viftual
method is identified by its position (index) in the Virtual Method
Table (VMT).
METSM Static Method Call Static Method call from a class instance different from the callefl
(Memory) one. The pointer (new “Self”) is taken from memory. The methqd is
identified by its address, specified in relative mode by respect fo the
Program Counter.
METSR Static Method Call As above, with the difference that the pointer (new “Self”) is taden
(Register) from an ARM register. The method is identified by its address,
specified in relative mode by respect to the Program Counter.
METSI Static Method Call Static Method call from the same class instance of the called ope.
(Internal) The pointer “Self” is already available, inside the core (register
RSelf), and the coprocessor (register CRSelf). The method is
identified by its address, specified in relative mode by respect fo the
Program Counter.
RETM Return from Method Unified return from method. The instruction recognizes
automatically the mode the method has been called and decidgs
whether it must recover the caller’s “Self".

In case c) the current value of the Self pointer is Obviously, all call instructions save their return
meaningless, but it is anyway necessary to get the Selfiddresses, as it is done in the ARM core, copying the
pointer to the instance of the class of the method calledProgram Counter (R15), after correcting it, in the register
For the sake of simplicity and homogeneity, the sameR14. Such behavior requires that, if the method called has
instructions as in case a) are used. Obviously, in this lasinternally other calls (in other words, it is not a leaf
case, the Self pointer saved is meaningless. method), in its entry/exit code the content of R14 and

In the case of the instructions METVM, METVR, CRSavedSelf will be saved/recovered from stack.

METSM and METSR, because the method called belongs It is important to notice that all methods end with the
to an instance different from the one of the method same unified return Ol, RETM (see Table 1). RETM
calling, the new Self is loaded in the registers RSelf of therecognizes automatically the modality that has been used
processor and CRSelf of the coprocessor. The content ofo call the method, and therefore knows whether it must
CRSelf, before being substituted by the new value, isrecover the caller's Self.

copied into CRSavedSelf. The decision is made by controlling the counter in the

In the case of the call instructions METVI and METSI, upper part of register CRSavedSelf. If the count is not
because the called belongs to the same class of the callezero, the call has originated within the same class
the registers RSelf and CRSelf are not modified. Insteadjnstance. RETM in this case must decrement the count of
the upper part of CRSavedSelf, cleared in the other caseghe calls, without modifying the registers CRSelf of the
will be used as counter of the number of nested callscoprocessor and RSelf of the core.
and/or consecutive inside the same class instance. If the count is zero, the call came from code belonging

This counting mechanism is made more complicatedto a different instance, so RETM copies the content of the
by the necessity not to limit the number of nested andregister CRSavedSelf in the register CRSelf of the
consecutive calls possible from within the same class. Thecoprocessor and RSelf of ARM, restoring in this way the
limit imposed by the counter’s field is overcome by pointer Self to the caller's instance. Actually the control
saving the register in the stack every time the countermechanism is more complicated, as outlined above, due to
overflows, i.e. every 256 nested and consecutive callsthe need to control also the counter’'s overflow trace on
within the same instance. For sake of simplicity, the the stack, every 256 consecutive returns within the same
details of this stack saving are not reported here. instance.

1060-3425/98 $10.00 (C) 1998 IEEE



7. Efficiency considerations proceeds as previously described (see Fig. 2). In the return
sequence, the ADD instruction has been included to
In this paragraph a few cases of calls and returns fronehable a comparison of this sequence with the
a method, implemented only by software, will be COprocessor—assisted one. N
Compared W|th the equiva'ent functions Supported by the In F|g 6, the Vll’tual method Ca” a.nd the-un|f|ed return,
coprocessor. Beside, a few other considerations on thdor the case of caller and method belonging to different
factors affecting speed performances will be made. clas:s instances, are implemented with the coprocessor—
As seen previously, a pure software implementationassisted Ol. The OI's employed are METVM call and
cannot distinguish between a call made from inside theRETM return. This sequence, substantially, operates as in
same class instance and a call in between differenthe software—only implementation, but the code is more
instances. In fact, every method can be called from anycompact, and runs faster. o
other method of any instance, both in static and virtual Note that, due to pipe synchronization, and to the
mode. As a consequence, the method code, being uniqudecessity to respect some external timing requirements of
must end with a sequence of instructions compatible withthe ARM 7, an ancillary instruction has to be placed after
all call types. The return sequence must therefore includegach Ol.

always the recovery of the caller Self, and the calls will be I spite of the fetching order, this ancillary instruction
of the type between different instances. is actually executed not after, but during the execution of

F|g 5 presents an examp|e of “software 0n|y" the Ol. The OCP is able to I’eCOgnize the presence of

implementation of a virtual method call and return. In this illegal ancillary instructions, and to refuse execution of
approach, to enable Comparison, we suppose to use twg']e OI, fOI’CIng the ARM 7 C0r.e to execute an “Undeﬂ.ned
additional ARM registers, in addition to the ‘Rself Instruction” internal exception, to enable run-time
register used to storage the current instance pointer. wélebugging of Ol's.

named them ‘RSavedSelf (used to save RSelf) and For the METVM, METVR, METSM and METSR

‘Rvmt’ (used for the VMT pointer). The call sequence instructions, the use of the ancillary instruction is
necessary to transfer the new Self of the method called in

MoV RSavedSelf, RSelf ;Save RSelf in RSavedSelf
LDR RSelf, [<Register> + Offset] ;Load RSelf from memory

LDR Rvmt, [RSelf] ;Load VMT pointer

MoV R14, PC ;Save the return address

LDR PC, [Rvmt + <Index of Method>] ;Jump to the virtual method

p— Method Code

METHOD <entry code> ;Method entry code
SuUB SP,SP, #<localsize> ;make room for local variables

MOV RSelf, RSavedSelf :Restore RSelf from RSavedSelf
ADD SP,SP, #<localsize> ;Local variables removal
MoV PC, R14 ;Copy the return address to PC

;(to return to the caller)

Fig. 5. Software only implementation of Virtual Method Call and Method Return

Notes: - We suppose to use two ARM registers, in addition to the register ‘RSelf’ used to store the current instance
pointer. We give them the names of ‘RSavedSelf' (used to save RSelf) and ‘Rvmt’ (used for the VMT pointer).
PC is the Program Counter (R15 register of ARM).

SP is the Stack Pointer (usually the R13 register of ARM).

R14 is an ARM internal register, used to save the return address.

<Register> is a register of ARM, containing an address reference to the pointer to the instance of the class of the
method that we are calling.

<Index of Method> identifies the virtual method to be called.

For comparison purpose only, the method return code includes here an ADD instruction to remove the local
variables, because in the case of usage of the RETM instruction, we are forced to introduce an ‘ancillary’
instruction after it. Obviously, this instruction could be substituted with any other useful. The SUB instruction is
introduced in the method code only to pair the ADD instruction.

<localsize> is the overall size of the local variables.

1060-3425/98 $10.00 (C) 1998 IEEE



the RSelf and CRSelf registers. METVI, METSI and Calls take better advantage from the hardware support
RETM don't need a specific service by the ancillary than returns. Returns, in fact, must be served by hardware
instruction, but the latter is executed anyway. The because it is necessary to distinguish if the call is coming
programmer can use the ancillary instruction to perform, from the same instance or not. As a consequence, we have
for instance, a register to register transfer or operation.  no substantial advantages by relieving the core from some
Fig. 7 provides an example of METVI virtual method of the operations.
call instruction. METVI is used when caller and called As Table 2 and 3 show, in the case of one wait state,
belong to the same instance and the Self does not need ®ETM provides a gain of 30% in the case of a return from
be saved or transferred. Note that the return instructiona method within the same instance, while in the case of
sequence is the same of the previous example. different instances there is a gain only when a larger
Comparing the execution times of the sequences takemumber of wait states is present.
here as examples implies taking into account the wait It can be noted, in fact, that all OlI's, but RETM in
cycles that each implementation adds to the timing ofparticular, show a reduced dependence of execution times
memory accesses and, in general, of external componentfrom wait states, in comparison with a pure software
In our implementation, the memory access controller addsapproach, because the coprocessor allows to avoid many
by default a wait cycle to the basic ARM timing, and it is external memory accesses.
possible to set additional wait cycles. It may be useful, at this point, to add a few
Table 2 and 3 present a comparison among the threeonsiderations on the low—level interaction between
examples, as a function of the wait cycles imposed by theARM7 and the object coprocessor.
system. Table 2 refers to the efficiency of virtual method As described earlier in the paper, the coprocessor
calls, Table 3 of returns. remains idle when none of its dedicated instructions is
As anticipated, the improvement is larger in the case offetched: therefore no overhead is associated to the
calls from within the same instance: in the case of thepresence of the coprocessing hardware. The interaction
instruction METVI, for instance, the average gain in terms between ARM7 and OCP when Ol's are executed has
of execution time over a pure software implementation is been optimized by a careful temporal interlacing of the
approximately 50%. For the instruction METVM (call operation that the two units perform in cooperation. Of
from different instances) the gain is instead around 40%. course, here and there, constraints inherent with the

METVM <Index of Method> ;Virtual Method Call
LDR RSelf, [<Register> + Offset] ;Load RSelf from memory
;(jump now to the Method)

—— Method Code

i\/IETHOD <entry code> ;Method entry code
SUB SP,SP, #<localsize> ;make room for local variables

RETM ;Method Return
ADD SP,SP, #<localsize> ;Local variables removal
;(return now to the caller)

Fig. 6. Coprocessor-assisted Virtual Method Call and Method Return, when the class instance of the
caller and the method are different (METVM instruction).

Notes: - <Index of Method> identifies the virtual method to be called.

<Reqgister> is a register of ARM, containing an address reference to the pointer to the instance of the class of the
method that we are calling.

- The LDR instruction is the “ancillary instruction” of METVM and it is executed before jumping to the method. It is
in charge of get the Self of the called method.

SP is the Stack Pointer (usually the R13 register of ARM).

<localsize> is the overall size of the local variables.

The ADD instruction is the “ancillary instruction” of RETM and it is executed before returning to the caller. Here it
is used to remove the local variables from the Stack. This instruction could be substituted with any other useful.
We use here the same instruction that we applied in the software only implementation, for comparison purpose.
The SUB instruction is introduced in the method code only to pair the ADD instruction.

1060-3425/98 $10.00 (C) 1998 IEEE



characteristics of ARM7 macrocell are present. For widely applied. Examples may be taken from classes of
instance, the lack of an interrupt acknowledge signal frompolymorphic collections, queues, variable sized arrays,
ARM7 has obliged to add a clock cycle to the Ol's linked lists and trees, commonly used in OOP. Another
sequences. example is represented by recursive algorithms that take
OCP control registers are involved in the system advantage of the hardware support, when the function
initialization phase only, normally at reset, and therefore calling itself is a method (and therefore we are dealing
their load operations do not generate overhead. with calls within the same class instance). The advantages
In addition to the Ol's previously described, a few will be, instead, much less relevant in the applications
more coprocessor instructions have been added to the sethere the computational aspects and the use of standard
to allow communication between OCP and ARM7 (non methods) function dominate.
registers, and between OCP registers and memory, when A real verification of speed performances with
needed. These “service” instructions are used during thalifferent kinds of applications could be done later, when
context—switching between processes and the exceptiomn high level language compiler will be available. The
servicing (when the contents of CRSelf and CRSavedSelimplementation of the compiler had been planned to
registers need to be saved/restored), and in the entry angroceed in parallel with the development of the chip but,
exit code of “not leaf” methods (when the CRSavedSelf after an unforeseen reduction of funding, it has been
register has to be saved/restored, because the method codbosen to delay its realization, in favor of the design of
contains at least one call to a method of another classhe remaining parts of the chip.
instance). A properly designed compiler can minimize the In the current phase of the project, coprocessor testing
usage of these instructions. The couple of push and pofpmas been done using the ARM7 macro assembler,
instructions, when inserted by the compiler, generates arintegrated with the new coprocessor instructions (written
overhead of eight clock cycles (if one wait state is used). as macros). In our procedure, the memory image of the
The analysis just carried out shows that OlI's acceleratemachine code program produced by the assembler is
in particular the operations of call and return from virtual therefore converted in a VHDL file describing a ROM.
methods within the same class instance. The advantages ifhen all the hardware and software verifications are done
terms of execution times, therefore, will be more relevantthrough the VHDL simulator.
in the applications where the calls within the same class
instance are more frequent than calls between different
class instances and where polymorphism and virtuality are

METVI <Index of Method> ;Virtual Method Call
MOV RO,RO ;"ancillary” instruction
;(jump now to the Method)

fmmmmmeeen Method Code

i\/IETHOD <entry code> :Method entry code
SUB SP,SP, #<localsize> ;make room for local variables

RETM ;Method Return
ADD SP,SP, #<localsize> :Local variables removal

;(return now to the caller)

Fig. 7. Coprocessor-assisted Virtual Method Call and Method Return, when the class instance of the
caller and the method are the same (METVI instruction).

<Index of Method> identifies the virtual method to be called.

MOV RO,RO0 here is a NOP instruction. It is the “ancillary instruction” of METVI and it is executed before jumping
to the method. The programmer can substitute it with another, useful, instruction.

SP is the Stack Pointer (usually the R13 register of ARM).

<localsize> is the overall size of the local variables.

- The ADD instruction is the “ancillary instruction” of RETM and it is executed before returning to the caller. Here it
is used to remove the local variables from the Stack. This instruction could be substituted with any other useful.
We use here the same instruction that we applied in the software only implementation, for comparison purpose.
The SUB instruction is introduced in the method code only to pair the ADD instruction.

Notes:

1060-3425/98 $10.00 (C) 1998 IEEE



Table 2. Virtual Method Call: some comparisons among software only implementation and
METVM and METVI instructions.

Software Only METVM METVI
Wait States Implementation (different instances) (same instance)
1 23T 15T 12T
2 33T 20T 16T
3 43T 25T 20T
Notes: - “T"is the clock period.

- The METVM and METVI execution time includes also the “ancillary” instruction.

Table 3. Method Return: some comparisons among software only implementation and RETM
instruction (in two different cases).

Software Only RETM RETM
Wait States Implementation (different instances) (same instance)
1 10T 10T T
2 15T 12T oT
3 20T 14T 11T
Notes: - “T”is the clock period.

- The RETM execution time includes also the “ancillary” instruction. The same instruction behaves
differently, distinguishing if the instance of the method and the caller are the same, or not.

8. Conclusions

We have presented in this paper the design of ani]
ARM?7 coprocessor targeted to support via hardware the
execution of programs written in object-oriented
languages. [2]

Our work represents a first attempt to incorporate the
object-oriented language support in the design of a[3]
microcontroller for industrial applications. The optimal [4]
solution would be, of course, to redesign an entirely new
processor, integrating the object—oriented support.
However, given the design goals and constraints, a
reasonable compromise between performances and
development efforts has been found with a hybrid [5)
architecture where a commercial macrocell (ARM7 32
bits RISC Processor) has been connected in a non
conventional way with a coprocessing unit designed for
the purpose. The combined architecture behaves as a new
processor with an instructions set extended to object7)
treatment.

The results obtained confirm and quantify the [g]
improvement in term of speed that this structure allows
when executing the low—level processing sequences and
control steps typical of the object—oriented model. 9]

At the time of writing, a large portion of the
microcontroller chip peripheral devices are ready. Of [10]
course, the coprocessor is completed, and low level
simulations have been possible thanks to the availability[11]
of the VHDL model of ARM7.

(12]

9. References

M. Campione, and K. WalrathThe Java Tutorial
Addison-Wesley, to be published. Draft available on-line
(http://lwww.javasoft.com).

Borland Delphi for Windows: Object Pascal Language
Guide Borland International, Inc., 1995.

G.Letwin, Inside OS/2Microsoft Press, 1988.

G. Donzellini, S. Nervi, D. Ponta, S. Rossi, and S.
Rovetta, “An Object—Oriented Machine for Control
Applications”, Proceedings of 3rd IEEE Int. Conf. on
Electronics, Circuits and Systems, ICECS$'9%odos,
Greece, October 13-16, 1996.

D.A. Patterson, “Reduced Instruction Set Computers”,
Commun. ACM28:1, Jan 1985, pp.821.

C.E. Gimarc, and V.M. Milutinovic, "A Survey of RISC
Processors and Coputers of the Mid—198@3mputey
Sept 1987, pp. 59-69.

W.Stalling, "Reduced Instruction Set Computer
Architecture",Proc. of the IEEEJan 1988, pp.38-55.

D.A. Patterson, and J.L. Hennessg€omputer archi-
tecture: A quantitative approachMorgan Kaufmann,
1990.

ARM7DMI Data SheetAdvanced RISC Machines Ltd,
1994,

B. Stroustrup,The C++ programming language (2nd
edition), Addison—-Wesley, 1991.

Turbo Pascal for Windows User's GujdeBorland
International, Inc., 1991.

Open Architecture HandbopBorland International, Inc.,
1991.

1060-3425/98 $10.00 (C) 1998 IEEE



