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Abstract

Complex clinical problems involving huge experimental evidence require
a preliminary validation of observed data. This may avoid biasing due to
incorrect sampling and clarify the sample distribution by showing data-
inherent regularities. The paper describes the application of unsupervised
models of neural networks to the analysis of a very large set of clinical re-
cords for the study of Osteoporosis. The main result obtained lies in
showing the overall uniformity of the data distribution, which indicates a
correct, unbiased sampling of the considered population.

1. Introduction

The Ist. Bruzzone Rheumatological Center (Department of Internal Medicine, USL 3)
has recorded a large database of epidemiological observations related to Osteoporosis.
This work reports on some studies conducted on this database as a preliminary step, prior
to the effective extraction of significant informations.

In the last years, data-analysis methods have become very sophisticated. However, the
attention tends to be biased towards the developments of increasingly powerful algo-
rithms. This involves that sound validation methods for the data should be improved ac-
cordingly. There seems to be a gap between the two requirements: the development of
methods such as pattern recognition techniques (in the 60s-70s), knowledge-based sys-
tems, nonlinear and nonparametric statistical procedures, neural networks (80s-90s) has
not caused a proportional attention to the goodness of the data properties. This work deals
with the application of a non-standard validation method, using a neural network ap-
proach, to a critical and significant clinical problem.

2. Clinical context and problem statement

Osteoporosis is currently a major problem in medicine, for a variety of reasons. It is a
cause of fractures and invalidity in elder people, with a notable socia cost. Only global
criteria can be applied. A pathological diminution in the bone mass can be assessed only
with specific instrumental observations (Single photon absorptiometry, Dual energy X
rays absorptiometry, Quantitative ultrasound [1]) and both value and trend in time should
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be analyzed. The diagnosis of Osteoporosis is a fuzzy prablem, in that it is not described
by a definite threshold or yes/no value. The range of normal values is assumed to be +2
standard deviations from the average value, and is parametrized by sex, age and time of
occurrence of menopause. This soft threshold is used to assess the probability of fractures,
in conjunction with life habits and other factors.

A natural consequence of both the complexity and the relevance of the clinical problem
is the huge amount of experimental observations usually collected. In other words, a great
quantity of observed patients, with many parameters for each person, is required to ap-
proach the diagnosis [2]. This raises another crucial issue, concerning the significance of
experimental evidence from a statistical perspective. More precisely, the prevalence of the
clinical phenomenon requires that the distribution of available data (which help tuning di-
agnostic performance) be thoroughly validated.

From this viewpoint, this paper addresses advanced connectionist techniques for an ex-
tensive analysis of data distribution. Thus the overall research goal is not a simple im-
provement in classification accuracy, but rather to inspect data to reveal regularities and
distribution features. The described research adopts unsupervised representation methods,
which group experimental observations according to similarity criteria. The involved
clustering process does not take into account a patient’s actual clinical diagnosis, but tends
to find out descriptions of “natural” patient groups reflecting data-intrinsic structures.

This determines a two-fold research objective: on one hand, analyzing the distribution
of samples may help validate the data collection process by removing sampling peculiari-
ties; for example, the presence of a huge group of patients belonging to an oversampled
category might distort the environment representation and bias further data-analysis proc-
esses. On the other hand, a consistent grouping of observed data may lower the clinical
problem's complexity by reducing its dimensionality. In this case, the underlying assump-
tion is that a good clustering may satisfactorily represent the entire data collection by
means of a much smaller set of prototypes (vocabulary). This representation process is
very common in pattern-recognition applications, and is called Vector Quantization (VQ)
[3].

A preliminary research step exploits classical neural models, such as Kohonen's Self-
Organizing Feature Maps (SOMs) [4], which position a (fixed) number of reference vec-
tors at significant locations in the data space. An important feature of this model is that
the final network configuration is topologically consistent with the actual data distribu-
tion.

The use of SOMs, however, does not help one solve another important issue, namely,
determining the proper number of prototypes to be used in the quantization process. A
small prototype set might be ineffective for detailing all data-intrinsic structures, whereas
too large a vocabulary might prove excessively detailed and computationally impractical.
Therefore, we developed a novel technique to tackle the vocabulary-dimensioning prob-
lem. The “plastic” method adaptively adjusts the cardinality of the prototype set, and fol-
lows a statistical cross-validation approach to determine a network's generalization ability.

3. Clinical data

The database gathers about 12 years of observations, relating to 16 000 people coming
from the area of Genoa, in the region of Liguria (Northwestern Italy). Since the observa-
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tions cover an area which can be estimated to count about 800,000 people, we can assume
that descriptions of 2% of the whole population has been recorded in the database (note,
however, that only people aged over about 40 are subject to osteoporosis, so the percent-
age should be higher). Bone density is higher in males than in females, and decreases with
age. Hence the typical observed person is a woman aged over 40; nevertheless, men are
also present. 190 observed parameters report on many aspects of life, such asjob, alimen-
tary habits and intolerances, physical activity, all known or suspected to be related to os-
teoporosis. These recordings are unique for each patient; in addition, the SPA parameters
are recorded more than once, to monitor their evolution in time.

The data base, recorded with the aid of a commercial software, has been pre-processed
to help applying user-developed methods to data analysis. The conversion to numerical
values of all continuous valued, yes/no and multiple-choices variables has yielded a rec-
ord size of 274 numerical fields, excluding the SPA values. Each numerical record can be
viewed as a vector in a 274-dimensional space. In principle, one would expect that the
distribution of these vectors in this space be as uniform as possible for the data base to
represent a statistically valid sample. Since the patient-sampling strategy depends on envi-
ronmental conditions and is therefore most difficult to control, the validity condition for
the database must be verified a posteriori. After this verification, if the distribution ex-
hibits some natural groups, a link between cluster compositions and diagnostic outcomes
can be searched for.

4. Neural methods
4.1. Self-Organizing Maps

In a preliminary research step, we used Kohonen’s Self Organizing Maps to inspect the
data distribution. This model positions a set of representative vectors (prototypes) in the
data space by an iterative procedure. The training process aims at placing prototypes at
positions in the data space such that their configuration spans a "good" representation of
the whole data set. The quality of a vector configuration is measured by a cost function,

typically Mean Square Error:
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where: Ny is the total number of samples; d is the data-space dimensionality; wg, is the

prototype that is closest to the p-th sample (i.e., it is the prototype lying at the smallest
Euclidean distance from the sample).

In Kohonen§ SOMs, vectors are arranged in a fixed topological structure determining
each neuron’s “neighborhood.” In the research presented here, a two-dimensional neigh-
borhood lattice including 8x8 neurons has been used as a default. The method implements
a Winner-Take-All (WTA) strategy, in which, for each training sample, the best-matching
neuron is searched for and updated accordingly. A couple of time-varying quantities
drives the training algorithm: 1) a learning rate, n(t), determines how much a sample af-
fects vector positions; this quantity progressively decreases (typically in a linear function)
when time increases. 2) A neighborhood function, g(p,t) rewards the winner unit and its
neighbours along the grid. The reward for the neighbouring units, too, decreases when
time increases, hence the training strategy shifts from a spreading-activation pattern to a
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true winner-take-all schema. Figure 1 presents sample curves for the time-dependent
quantities. The weight-update algorithm for SOM training can be outlined as follows:

Kohonen’s Algorithm for Self-Organizing Maps
1. For each p-th input sample, x ,; p =1,...,N

la Locate the closest prototype (winner), w gk, such that:
On=1,...,N

1b Update the weights of the winner and those of its neighbours according to:

Aw, :/7(t) [g(,o,t) E(Xp —WB(D))
where w,, denotes anode laying at distance p in the neuron lattice.

1.c Incrementtime
1.d Update learning rate and neighborhood gain.
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The principle of operation of Kohonen’s model is that the number of prototypes is
smaller than that of training samples; thus Vector Quantization involves a "compression”
process. After training, each vector is assigned a specific portion of the sample set, and
the overall vocabulary spans a tessellation of the data space.

At the same time, the final vector configuration is topologically consistent with the ac-
tual data distribution and facilitates a visual inspection of data coverage. In this sense, one
can observe how training samples scatter among available prototypes (for example, by
counting how many samples are covered by each vector).

4.2. Plastic Vector Quantization

The application of SOMs somehow implies that one estimates in advance the number of
prototypes that best renders data distribution, let alone the problem of determining the
suitable topology (the lattice of unit connections). In a huge, unexplored database, how-
ever, this may prove difficult to assess. Different and possibly more sophisticated tech-
niques are required to investigate the intrinsic data dimensionality; the goal isto achieve a
data representation that is both detailed enough to yield satisfactory accuracy and suffi-
ciently smple to preserve some generalization ability. From a pattern-recognition per-
spective, the problem of selecting the best representation model reflects the so-called
bias-variance dilemma.
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Fig. 1 — Variation in time for learning rate (a) and neighborhood width in the origi-
nal Kohonen model (b) and in the usual version (c).
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In unsupervised Vector Quantization, such a crucial issue is often tackled by plastic
mechanisms [5, 6], enabling a network both to increase the number of neurons for improv-
ing data coverage (decreasing bias), and to remove neurons to enhance representation ef-
ficiency (decreasing variance). For the problem considered, we used a novel plastic model
of VQ[7]. Theagorithmiscalled "Plastic Neural Gas' because it exploits the Neural Gas
algorithm [8] for vector positioning. Neural Gas follows a positioning strategy very close
to Kohonen's algorithm, except that: 1) neurons are not topologically constrained, and 2)
neighborhood is defined in the data space rather than in a fixed lattice. The neuron grow-
ing/pruning mechanism is driven by a local assessment of a neuron’s placement. In prac-
tice, if aneuron’s M SE exceeds a given threshold, a new unit is generated to improve cov-
erage; conversely, if aunit fails to cover a data-space region (dead vector), it is pruned.

An important (and often disregarded) issue of plastic models concerns their generaliza-
tion ability. In other words, uncontrolled plastic methods may tend to favor an accurate
representation of training data to the detriment of generalization: the decrease of a cost (1)
on training data does not necessarily involves a proportional improvement in the represen-
tation of the whole (unknown) sample domain. This basic problem is known as
“overfitting”, and, in the presented research, has been tackled by means of a cross-
validation statistical technique. In each experiment, the data collection is split into a
training set and a test set: the former is used to adjust a network'’s representation accuracy,
whereas the latter provides an experimental assessment about a vocabulary's generaliza-
tion effectiveness.

The dynamic Neural Gas model starts from a minimal network configuration (one neu-
ron) and lets the network grow according to the plastic algorithm. Evaluating representa-
tion cost (1) on both training and test sets allows one to determine when a network has
grown a sufficient number of prototypes: the algorithm stops when an improvement in
training cost does not produce an enhancement of the test cost.

Although this stopping technique relies on empirical measurements, a number of thor-
ough statistical theories provide analytical models for the generalization phenomenon.
These models predict a network’s test performance on the basis of training outcomes and
sampling conditions; thus we checked the fitness of our experimental evidence to some
well-known estimates in the literature, including Akaike’s Information Criterion (AIC)
[9], Rissanen’s Minimum Description Length (MDL) criterion [10], and Vapnik’s worst-
case generalization theory for regression [11].

From a general perspective, the overall result of a Plastic Neural Gas training is
equivalent to that of a SOM, as it yields a partitioning schema of represented data; the
basic advantage lies in the method's adaptivity. On the other hand, plastic models may
prove very expensive from a computational point of view, especially when applied to very
complex databases.

5. Experimental results

The initial database validation included a subset of 2,000 samples out of the total num-
ber of 16,000 patients covered. The sample set was randomly chosen from the entire data-
base; its limited size is mainly motivated by the preliminary stage of the research and by
the huge computational cost involved by the validation process. From a general point of
view, the main result is that there is no special cluster in the data. This is equivalent to as-
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sess that the sample is statistically well chosen.

5.1. Resultsfrom SOM-based analysis

As said previoudly, the samples have been tested by means of 64 adaptive reference
vectors. The average approximation error (average distance with respect to the range of
the input values) is about 1.17%, that means a fairly good approximation even if we rep-
resented 2000 input patterns with a set of 64 reference vectors (number reduced to
64/2000 = 3.2 %). As no generalization performance was being evaluated in these pre-
liminary tests, the entire sample set of 2,000 patients were used for the network training.
Several test runs were performed to avoid bias from the algorithm’s initial conditions; all
runs, anyway, led to equivalent result.

Figure 2 shows graphically a typical result data density (i.e., the number of patients cov-
ered by each reference vector), and the proportion of data for each reference vector
(right). The graph is a direct representation of the lattice square topology; neurons are ar-
ranged along the coordinate axis in the same order they appeared on the lattice grid.
“Thick” areas indicate possible clusters, marked by neurons covering a relatively large
number of samples as compared to other units.

The figures show a quasi-uniform distribution of samples among prototypes. In fact,
further analysis will demonstrate in the next section that the number of prototypes (64) is
smaller than the true data dimensionality; forcing the network to perform a coarser data
compression may help evidence possible and well-marked natural groups. The absence of
peaks in data coverage is a direct proof of the uniform patient distribution, and witnesses
the correctness of the population sampling.

5.2. Reaultsfrom Plastic Neural Gas

The training and test set for the experiments involving the plastic VQ model included
1,000 (randomly chosen) samples each. In all runs, the network was initialized with one
unit and let grow as described in Section 4.2. A total number of 200 iterations of the Plas-
tic Neural Gas algorithm were performed to assess the actual domain dimensionality. Fig-
ure 3 displays the progress of the training and test cost functions for two different experi-
ments involving two different training/test set compositions. The arrow marks incipient

(b)

Fig. 2 - Sample coverage results by a square 64-units Self-Organizing Map: (a)
density representation; (b) Percent coverage.
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Fig. 3 - Sample curves for training and test cost versus number of units in plastic-
model experiments.

overfitting indicated by a flattening test cost.

Experimental evidence from adaptive VQ indicates that the actual dimensionality of the
considered data lies in the range [140,160]. Incidentally, this confirms that the previous
test using SOMs have been performed in a data-compression situation.

The second research step with Plastic Neural Gas involved the characterization of the
model’s generalization performance according to statistical theories. Figure 4 presents a
typical example of the ratio training cost/test cost, as experimentally observed (thick line)
and as predicted by Akaike’s AIC, Rissanen’s MDL, and Vapnik’s formula. Vapnik’s
model follows a worst-case approach and, as expected, predicts a much worse perform-
ance than experimentally measured. Rissanen8 model still yields some underestimate,
which is possibly due to the general conditions (although not universal, as in Vapnik’s
model) underlying their statistical analysis. Both graphs indicate a very good fit by
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Fig. 4 — Fitness comparison of theoretical predictions: actual and predicted train-
ing/test ratios versus number of units.
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Akaike’s model. Remarkably, this is a confirmation of the sampling correctness, as
Akakike’s theory appears somehow more restrictive than the others, and implicitly assume
a more accurate sampling of the domain under consideration.
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