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Abstract

In this paper, the application of neural network algorithms to the study of
Lyme borreliosis is addressed. Three different methods are studied: Self
Organizing Maps, Neural Gas Networks and a new approach currently un-
der development, called Circular Back Propagation. The aim of the work is
to compare the three methods in view of their use as analysis tools, to ex-
plore the inherent structure of the input data. The same procedure has been
previously applied to feedforward neural models; the present work focuses
on a particular form of knowledge representation, based on  a set of proto-
typal examples rather than if-then rules. The Lyme data has been chosen as
a case study and represents a common ground to allow the comparison of
the different methods.

1. Introduction

In this paper, the application of advanced processing methods to the study of Lyme bor-
reliosis is addressed. The Inst. Bruzzone Rheumatological Center of the University of
Genova (Italy) has recorded a number of samples into a database, which has been pre-
processed for use with numerical classification algorithms. We focused on neural network
algorithms, a widespread technology but also a smart combination of statistical and clus-
tering techniques, pattern recognition capabilities, and self-adaptation for autonomous pro-
gramming (that we will call learning).

The aim of the studies here reported is not immediately applicative, but rather methodo-
logical. Our goal is not the realization of programs, but the development and the experi-
mentation of new techniques. The general setting of the problem is familiar: we are given a
set of samples from some phenomenon (e.g., Lyme disease patients), and we wish to iden-
tify the rule underlying their classification (e.g., as ill or non-ill). The samples are ex-
pressed as patterns of numerical values, and will be treated as vectors. This accounts for
such concepts as distance among samples and distribution of inputs.

A previous study had been conducted on the Lyme database [1, 2], using feedforward
neural networks as the main tool. The task we address is not simply to synthesize a classi-
fier, in order to implement the diagnostic step, but rather to extract from the available data
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the implicit knowledge necessary to both implement the diagnosis and obtain useful rules
or a characterization, in order to confirm or to complement the medical knowledge about
the disease. To accomplish this task, we have previously used network models, with differ-
ent layouts and training criteria, that belong to the family of Multi Layer Perceptrons. The
present work reports on the application to the same problem of another class of networks,
in which the knowledge representation is different. In this class, the internal representation
may be interpreted as a collection of significant samples from the input space, that may or
may not be present among the training examples, but are homogeneous with them. Thus we
have prototypes as the representative elements for learning, rather than rules defined on the
input space. The operation step can be a classification or simply the identification of the
activation values (e.g. for clustering purposes), but in either case the decisions are made on
the basis of the least-distance prototypes.

This representation paradigm is especially well-suited when dealing with unlabeled
samples (for which the diagnosis is unknown or not taken into account). In this case, we
seek for a structure in the distribution of patterns. We hope that the distribution, although
independent from the actual classification, will reveal a structure correlated with the diag-
nosis.

2. Prototyping neural models

We studied three models: an improved version of Kohonen’s Self Organizing Maps
(SOM) [3], an improved version of Martinetz’ Neural Gas Network (NGAS) [4] and a new
approach called Circular Back Propagation (CBP) [5].

2.1.  Self Organizing Maps

The network model developed by T. Kohonen is based on the paradigm of self-
organization: it does not require a labeling of the input data, but acts only based on their
statistical distribution. The network is composed of a set of processing units (what in the
biological metaphor would be the neurons), structured into a lattice topology, often taking
the form of a squared grid. Hence for each unit there are four immediate neighbors. This
topology is a property of the network, and it cannot be modified by self-adaptation.

This description identifies the network as a map of units, hence the name. The learning
process creates a correspondence between the input space (the set of all possible inputs)
and the distribution of active units; this transformation preserves the topologic relations of
the input space, in that two similar patterns will activate two units that are close to each
other along the grid. The mapping reveals clusters in the input data by attributing more
prototypes to regions in the input space where points are more frequent, and representing
them typically in a two-dimensional space, which is easily visualized.

The learning procedure is based on a competition among the units. Each unit encodes a
prototype, as described in the introduction. On presentation of a pattern, the distance be-
tween the pattern and each unit is computed. The unit with lowest distance wins the com-
petition, and it is moved a bit in the direction of the received pattern. Around the winner,
also a variable number of neighbors are modified in the same way, although the modifica-
tion is smaller for the more peripheral neighbors. Iteration of this process yields the desired
mapping by a progressive reduction of both the adaptation coefficient (modifications get
smaller) and the neighborhood width (less units around the winner are modified).
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2.2.  Neural Gas Network

The second model, by T. M. Martinetz, is a derivation of the first one. It differs essen-
tially in the definition of the neighborhood in the set of units, to propagate the effect of the
activation. In a NGAS network the neighboring unit is not one directly connected along the
lattice, but the one with the next lowest distance from the pattern. In other words, there is
no fixed lattice, and the neighborhood is not defined statically, in terms of the topology, but
rather dynamically, in terms of the distance ranking with respect to the incoming samples.
During the adaptation, the units move in a way that is similar to the dynamics of the mole-
cules of a gas, hence the name.

This mechanism helps avoiding some problems arising from a wrong initialization of the
units. In fact, in some situations (not so unlikely when the input patterns have a high num-
ber of components) the fixed topologic structure may not allow the map to produce the re-
quired transformation, for instance because of  “knots” that arise in the lattice during the
evolution. The NGAS network trades the absence of topological consistence with the im-
munity from these problems.

2.3.  Circular Back-Propagation Network

The third model is a simple but interesting modification of the standard back-propagation
network, that we are currently developing. The structure is that of a layered feedforward
network. The output layer is also standard, but the hidden layer is modified. Its processing
elements feature an activation rule with an additive term involving the square of the input
vector. Depending on the self-adapted parameters, we can interpret the obtained represen-
tation as either rule-based or prototype-based, because the presence of the quadratic term
enables the activation function to implement also a distance-based activation. The result of
the training is a global internal representation, as for the multi-layer perceptron family, but
can be expressed either as a combination of prototypes, so that peculiar points in the input
space can be identified, or as a set of surface-oriented rules.

The name is justified by the fact that a single unit can respond to vectors that are within a
circular (or in general hyperspherical) region around its prototype.

2.4.  Comparison of the three neural network structures

The differences and similarities among the three networks just described can be more
thoroughly understood with the aid of the illustrations.
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Fig. 1 – Structure of the three network models: (a) SOM - (b) NGAS - (c) CBP.
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Fig. 1 shows the structure of the networks. The black dots represent the input vector
components. Each one of them is fed into each unit, but for simplicity this is not completely
shown. An exception to this schema is the CBP network, where there are two layers, the
first of which is connected to the input and implements an internal representation, while
the second yields the diagnosis.

Fig. 2 illustrates in more detail the different philosophy underlying the three models. The
case (a) relates to SOM and NGAS. The units compute the distance between a stored pro-
totype and the input vector; then a lateral inhibition process activates only one of the units;
its label is used for classification. The case (b) is that of CBP. Here the units compute a
weighted sum of the input vector components, with a bias term and a sum of squares term.
The activation is a saturated function of this sum (the “membrane potential”). All units
contribute to the output, as shown by the links between the representation layer (also called
hidden layer) and the output layer, here composed only of one processing unit.

3. Data and methods

After a pre-processing phase, the data base on Lyme disease collects 684 patterns of 54
fields each (54-dimensional vectors), plus a classification target. Each pattern represents
the description of a patient with suspect Lyme borreliosis. A learning methods needs such a
set of samples as a training set; in accordance with it, they learn how to behave to imple-
ment some task (in our instance, diagnosing Lyme borreliosis). This is called learning from
examples.

The learning process can be either supervised or unsupervised. Supervised means driven
by the diagnosis. Unsupervised means driven only by the statistics of the data, without
taking into account any knowledge about the diagnosis. The neural models applied were
both of the supervised and of the unsupervised type. When an unsupervised method is ap-
plied to labeled data, it is possible to validate the significance of the obtained clusters by
attaching to each prototype the labels that are more represented among the patterns it re-
sponds to (i.e., the patterns for which it wins the above described competition, those that
are closest to it).

The aim of the unsupervised experiments (SOM and NGAS) is to obtain a clustering of
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Fig. 2 – How SOM and NGAS (a) and CBP (b) produce their output when given an
input pattern.
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the data set based on the structural properties of data, without regard to their classification.
Then, by associating the diagnosis labels to patterns, it is possible to inspect whether the
obtained clustering has a meaning in terms of classification. This gives a hint on how the
basic classes Ill and Non-ill are structured in the space of patterns.

When the supervised method (CBP) is used, the goal is similar, but the perspective is dif-
ferent. What we obtain is a set of clusters that do not reflect mainly the properties of data,
but rather their (hopefully) optimal grouping for classification. Moreover, the adaptive rep-
resentation may be used to inspect whether the optimal representation is by means of proto-
types or by means of rules.

The procedure adopted for this task involves essentially the analysis of the coefficient of
the sum-of-squares term. Those units that have this coefficient equal to zero represent a
hyperplane, which has a first-order equation. These are clearly rules based on the surface
paradigm. If this coefficient is significantly high, the stimulus equation turns into a dis-
tance-based one, like for the other models. The rule is then of the circular type, with a pro-
totype localized in the center of the circular activation area. With a few calculations one
can find the coordinates of this points from the coefficients.

Fig. 3 shows two examples of concepts. They are represented in the pattern space. The
first concept is the diagnosis of osteoporosis based on subject age and bone density. The
two regions can be separated by an open line (the two-dimensional version of a surface). In
the second, the ECG is described by some of its component waves. The normal situation is
a prototype (in the center of the closed region), and the patterns that fall too far from the
prototype are classified as pathological. Of course, the situation is further complicated by
the fact that the dotted lines are in practice “fuzzy” regions, and should be thought of as
slowly fading from “yes” to “no,” rather than switching from one decision to the opposite
one as illustrated.

4. Experimental results

All the clustering procedures discover very similar structures in the distribution of data.
This refers to both the precision with which the three methods learn the training set, meas-
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Fig. 3 – A surface-based concept (a) and a prototype-based concept (b).
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ured by the error rates, and the clustering synthesized by the training. The visualization of
the obtained results is not easy, because of the high dimensionality of the input vectors.

4.1.  Effective dimension of the data

The first question of interest is: How many parameters are needed to describe the concept
inherent in the database? In other words, how many rules are sufficient to reasonably de-
scribe the Lyme disease?

An answer is given by the comparison of the results of the three methods. To reach an
average approximation error of 10%, SOM and NGAS require about 6 prototypes, and
CBP requires 4 hidden units. Although the effective number of parameters is not assessed
with certainty, and the experiments always include a certain degree of randomness, it is
possible to observe that the 54 describing inputs are clearly not independent of each other.
Some correlations among these variables are present (maybe non-linear correlations, i.e.,
dependency laws different from proportionality), and the data have an effective dimension
that is much lower than the apparent one (approximately by an order of magnitude).

4.2.  Spatial distribution of the data

Another question is: Do the data have any significant clustering in the pattern space? Is
there any correlation between the position and the class of the data vectors?

By inspection of the parameter values obtained with training, we can make the hypothesis
that the data set is not strongly clustered. It is possible to describe the data by a central
cluster, mainly of the Non-ill class, and several sparse clusters, mainly Ill, that gather a low
number of patterns each, often only an outlier pattern. The odd distribution of ill patients
indirectly confirms the difficulties of the diagnostic process.

4.3.  Characterization of the data

The last question we try to answer is: Are the data best characterized by means of a pro-
totype-based or a surface-based representation?

The best method to answer this question is CBP, because of its switching capabilities
between the two paradigms. Two tests can be made. We can compare the error rates of
CBP with the results of standard BP, and we can examine the nature of the prototypes
synthesized by the CBP training.

The first test yields as a result a small difference between the two methods. With stopped
training, BP yields a training error percentage of 4.0% and a corresponding test error per-
centage of 9.8%; CBP yields a training error percentage of 4.2% and a corresponding test
error percentage of 8.7%. The training error can be further reduced, but a worsening in the
test performance (overtraining) is obtained. (A good introductory discussion of this phe-
nomenon can be found in [6].)

The second test requires essentially to examine the weight associated to the quadratic
term. If that coefficient is high, we can conclude that the rule has a prototype-based ex-
pression, otherwise it can be interpreted as rule-based. In the experiments, we found
weights only of the same order of magnitude of the other weights. The radius of the circu-
lar activation region can be computed from the weights, and it is always in the range 12 -
100. The input values always lie in the range [–1, +1], so that a circle with a radius of 100
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is, with good approximation, a straight line. The better performance of CBP over BP in the
previous test can now be tentatively explained not with a representation based on the proto-
typing paradigm, but with a slight bending in the shape of the surfaces, which allows a
better representation for some borderline patterns.

We can conclude that the optimal representation is by means of surface-based rules, in
agreement with the fact that CBP yields better results than SOM and NGAS, and with the
previous results obtained with feedforward networks of the surface-based type (see [2] and
[7] for a report on the previous experiments).

5. Concluding remarks

In this paper we have presented an example of the application of neural networks tech-
niques to medical problems. Software implementations and shells for the use of various
neural network models are commonly available. However, too often they are used as a
substitute for “expert systems.” While an expert system can be built by means of neural
networks, these two forms of knowledge-based systems should not be compared directly.
This is not always clear to those neural network users who are expert in the specific appli-
cative domain, but not in the “neural” technology.

The application we have just described is an example of how a neural methodology can
be used as a tool, much like statistics in the traditional research framework. Unfortunately,
most of these tools require a lot of trial-and-error procedures and empirical parameter
choices, so that a help from “neural network wizards” is often required. The neurosoftware
products do not help in this respect, because their ease of utilization often leads one to
think that the self-adaptive properties will “self-adapt” the network to every need of the
user and to every problem, which of course is not true! The current directions of research
in the neural networks field aim to produce theoretical results that, either directly or indi-
rectly, will ultimately enable researchers to use these neural tools without requiring a spe-
cific experience in that field.
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