
Verifying Dynamic Properties of UML Models by
Translation to the B Language and Toolkit

Colin Snook and Michael Butler
Department of Electronics and Computer Science

University of Southampton
Highfield, Southampton, SO17 1BJ, United Kingdom.

{cfs98r,M.J.Butler}@ecs.soton.ac.uk

Abstract. Formal languages such as the B language, enable the dynamic
behaviour of a system to be investigated and verified. B is particularly suitable
for this because of its good level of tool support. A model’s behaviour can be
explored using the animation facilities in the B Toolkit. It’s behaviour can be
proven to conform to its specified invariants using the proof tools available in
the B tools. The equivalence of two alternative expressions of a model could be
established using the tool. By expressing invariants and dynamic behaviour
suitably in a UML class diagram the model can be translated into B
automatically in order to obtain these benefits.

1 Introduction

We are developing a program to convert UML [7] class diagrams into specifications
in the B language [1]. The current version is limited in that the only form of inter
class relationship translated is aggregation. The translation relies on suitable
expression of additional behavioural constraints in the specification of class diagram
components. These constraints are described in the B notation. We envisage benefits
to UML users from the provision of a rigorous abstract representation of their models
and from the assistance that B provides in enabling the dynamic behaviour of a
system to be investigated and verified. Conversely, B users will benefit from being
able to create and view models in the UML diagrammatic form.

The B Language and Toolkit

The B language is a formal specification notation that has strong structuring
mechanisms and good tool support. There are 2 commercial tools for B, Atelier B and
the B Toolkit. We have used the B Toolkit for our translation and animation work,
and Atelier B for performing proofs. B is designed to support formally verified
development from specification through to implementation. To do this it provides tool
support for generating and proving proof obligations at each stage of refinement. The
B Toolkit also provides animation facilities so that the validity of the specification can

be investigated prior to development. To make large scale development feasible, B
provides structuring mechanisms to decompose the specification and its subsequent
refinements. These are machines, refinements and implementations. We are mainly
concerned with specification and therefore machines. Machines allow an abstract state
to be partitioned so that parts of the state can be encapsulated and segregated, thus
making them easier to comprehend reason about and manipulate. One machine may
’INCLUDE’ another machine. If machine A includes machine B, the state of B is
visible to A and alterable via B’s operations. A weaker form of interfacing between
machines is provided by ’USES’. The using machine has only read access to the used
machines variables and cannot invoke its operations. A machine may be used by any
number of other machines but may only be included by one other machine.

Benefits of Translating UML to B

A B specification can be animated with the B Toolkit to explore the dynamic
behaviour of the modelled system. In UML terms this means that operations of an
object can be invoked and the B animator will check pre-conditions, and invariants
and display the new state of the system in terms of the object’s attributes and
relationships with other objects.

A class’ dynamic behaviour can be proven to conform to the class’ invariants. In
UML terms this means that the proof tools will provide assistance in proving that no
sequence of invocations of an object’s operations can produce a resultant state in
terms of the class’ attributes and relations with other objects that doesn’t conform to
the invariant. A safety or business critical property of the system could be specified
and verified in this way.

Conversion of other UML forms of dynamic specification may be possible. Meyer
and Souquieres [4] have already proposed ways of translating OMT models to B
including both class diagrams and state charts. This would enable the equivalence of
the different views of dynamic behaviour within UML to be investigated.

UML models prepared for translation to B contain verified invariant and method
descriptions (constraints) in a rigorous, abstract notation. This improvement to UML
specifications is, in itself, a benefit of the translation process. The UML diagram is
given a precise semantics as expressed by its equivalent form in the B notation.

U2B Translator

The U2B translator converts Rational Rose1 UML Class diagrams into the B notation.
U2B is a script file that runs within Rational Rose and converts the currently open
model to B. It is written in the Rational Rose Scripting language which is an extended
version of the Summit BasicScript language. U2B is configured as a menu option
("Export to B") under the File menu of Rose. U2B uses the object oriented libraries of
the Rose Extensibility Interface to extract information about the classes in the logical

11 Rational Rose is a trademark of the Rational Software Corporation

diagram of the currently open model. The object model representation of the UML
diagram means that information is easily retrieved and the program structure can be
based around the logical information in the class rather than a particular textual
format. U2B uses Microsoft Word972 to generate the B Machine files via the OLE
interface. The Rose Script uses the object oriented document model of Word97 in
order to facilitate the creation of the B Machines. Word template files are used to
form the basic layout of the Machines.

Translation of Structure and Static Properties

The translation of Classes, attributes and operations is derived from Meyer and
Souquieres’ [4] proposals for converting OMT to B. A separate machine is created for
each class and this contains a set of all possible instances of the class and a variable
which represents the subset of current instances of the class. Attributes are translated
into variables with their type defined in the invariant clause of the machine as a
relation from the current instances to the UML attribute type. Types can be any of the
predefined types of B (including BOOL which is a B library type) or another class. If
the type is neither of these it will be added as a parameter of the machine. Types can
also be a set of any of these by putting POW(typename) as the type in the UML class
specification. U2B could easily be extended to cover sequences and other B data
structures in a similar manner. A create operation is automatically provided for each
class machine. This picks any instance that isn’t already in use, adds it to the current
instances set, and adds a maplet to each of the attribute relations mapping the new
instance to the appropriate initial value. Currently U2B does not create any other
(parent) machine. This works with the current limitations of U2B only allowing the
aggregation relationship between classes. If generalization and general associations
are allowed this would be insufficient and other structures would be required. Other
authors [3], [4], [5], [6], [8] have suggested ways of dealing with the translation of
these forms of interaction.

Dynamic Behaviour

The dynamic behaviour modelled on a class diagram that is converted to B by U2B is
embodied in the behaviour specification of a classes operations and in invariants
specified for the classes. These details are specified in a textual format as annotation
to the class diagram. In Rational Rose, ’Specifications’ are provided for operations (as
well as many other elements) and these provide text boxes dedicated to writing pre
and post-conditions for the operation. Unfortunately there is no text box for a class
invariant. Warmer and Kleppe [10] suggest putting invariant constraints in a note
attached to the class, but notes appear to be treated as an annotation on a particular
view in Rational Rose and not part of the model. This makes them difficult to access
from the script file and unreliable should we extend the conversion to look at other
views. Therefore we decided to include the invariants in the documentation text box

22 Microsoft Word97 is a trademark of the Microsoft Corporation

of the class’ specification. The invariants are split into 2 kinds. Instance invariants are
properties that hold between the attributes and relationships of a particular instance of
the class. In keeping with the implicit self reference style of UML, we chose to allow
the reference to a particular instance to be omitted. U2B will need to add the universal
quantification over all instances of self. The last invariant is a class wide invariant that
specifies properties that hold between the different instances of the class. Here, the
quantification is an integral part of the property and must be given explicitly. Hence,
U2B will not need to add quantification over instance references. The invariants are
separated from any natural language description by the phrases INSTANCE
INVARIANT: and CLASS INVARIANT: respectively. UML does not impose any
particular notation for these operation and invariant constraint definitions, they could
be described in natural language or using UML’s associated Object Constraint
Language (OCL). However some problems have been raised with OCL [9] and since
we wish to end up with a B specification it makes sense to use bits of B notation to
specify these constraints. The B has to observe a few conventions in order for it to
become valid B within the context of the machine produced by U2B. For example, all
operation outputs are called ’result’.

Example Translation

The example in Fig. 1 shows a class GAME that has typed and initialised attributes,
parameterised operations (some with return values) and an aggregate relationship with
another class, PRIZE. The class also uses another class, TICKET, as a type. Note the
use of POW in some of the attribute types this is equivalent to an attribute with [0..n]
multiplicity. The aggregate has a role name Prizes which will be used in its
translation to B and a multiplicity which will effect its initialisation in the instance
creation operation of GAME. Alongside the class diagram is shown the Rational Rose
specification for the class GAME. Following the natural language description in the
’Documentation’ box some instance and class invariants are given. The Atelier B
proof tools were used to prove that these invariants were preserved by the operations
of the example. In fact, it was found that the example contains an error and the class
invariant, which says that a ticket must not belong to more than one game, is not
upheld by the buy operation. Atelier B generated 24 proof obligations, 20 of which it
automatically proved. The remaining 4 proof obligations required interaction in the
form of direction on what hypotheses to use for the proof.

Each operation of the class also has a Rose Specification window with appropriate
tabs for the definition of the operation. The operation pre-conditions and body are
taken from the precondition and semantics tabs of the specification for the ’buy’
operation in class GAME. The ANY construct is a statement of the B language that
selects a value for a variable (here tt) satisfying some condition. In this case the
condition is ’tt: TICKET - Tickets’, i.e. select an unused ticket.

The precondition Tickets /= TICKET is not sufficient since it only ensures that
there are tickets not used by the current game, whereas it should state that there are
tickets not used by any game. Similarly the ’WHERE’ restriction on tt should ensure
that tt does not belong to any game whereas it only requires that tt is not in use by the

current game. We are currently working on modifications to enable U2B to translate
references to other instances of the class within operation specifications.

TICKETPRIZE

GAME

Tickets : POW(TICKET) = {}
Winners : POW(TICKET) = {}
Claimed : POW(TICKET) = {}
Drawn : BOOL = FALSE
Sold : NAT = 0

setprizes(pp : POW(PRIZE))
buy() : TICKET
draw() : BOOL
check(tt : TICKET) : BOOL
claim(tt : TICKET) : PRIZE

0..n

1

+Prizes
0..n

1

Fig. 1. Example Class Diagram and Class Specification

precondition semantics
Prizes /= {} ANY tt WHERE tt: TICKET - Tickets
Winners = {} THEN
Tickets /= TICKET Tickets := Tickets \/ {tt} ||

Sold := Sold +1 ||
result := tt

END

Below is shown the B Machine produced by U2B for the GAME class. The italicised
text to the right of each line has been added as commentary.

��������� ���
	������
���� ��������������������� ��� ��� �� � !"�$#%�$&�!��'� ��� ����� � !)(+*,� -"�$!.�$� ��*,� ��/'����01��2���*3���'4 ���5*,6�� 4���2����5�����72��$!"89�$� �"0 �:�
; �+� ;
<�=�= >�?"@�(��
A ; � ; (+B�� CD�+6

U2B has detected the use of these other classes as?D� ��E+��?
 types and provided references to them.; ��? ; 	+���7� ; ��?

This set represents all possible instances of the class.F+��B�� � <+G � ;
	�������� �$!H�����'���'!

This variable is the set of current instances of the class.6$?D� �"IH�$� !"6$JK� ������* !"6��� ��� ���$#+65L�*,�1M���6 ;�= #+6�(�*,� -"�$!
A variable is declared for each attribute and for each aggregate.� �"F+��B�� ���"?

Invariants define the type of each variable.	+�N���+� �$!H�����$�"�$!PORQ�	+�N��� ; ��?

S7?D� ��IH�$� !)Q�	�������� �$!H�����'���'!)T,T,UV(+W+JKX ?D� ��E+��?D� �'!Y�����$�"�$!"Z
Attribute types are totalS7JK� ������* !.Q�	��N����� �$!H�����'���'!)T,T,U.(+W�J�X ?D� ��E+��?D� �$!H�����$�"�$!"Z
functions from instancesS[�� ��� ���$#%Q�	��N����� �$!H�����'���'!)T,T,U.(+W�J�X ?D� ��E+��?D� �$!H�����$�"�$!"Z
to the type. The type is.S[L�*3�$M���Q5	+�N���+� �$!H�����$�"�$!.T:T,U < WNW G
derived from the classS ;�= #%Q�	+�N���+� �$!H�����$�"�$!\T,T,U��"�+?

specificationS[(+*,� -"�$!)Q�	�������� �$!H�����'���'!)T3T,UV(+W�J�X,(]B^� C���� �$!H�����'���'!�Z
Aggregate types derived from other

 class and multiplicity of role.S[_ X,�5`�6 �'a�Z,0�X,�5`�6 �$a+Q 	�������� �$!H���5�$�"�$!.S[��` �b �$a b Uc?�� �"IY�'� !"X,��`5Z d ?D� �"IH�$� !�X,�'a+Z b�e3f Z
Class invariant

S[_ X !"�� 4�Z,0 X !"�� 4�Q 	�������� �$!H�����'���'! b Uc�"��* #�X ?�� �"IY�'� !"X !"�� 4�Z,Z b�;�= #+X !"�� 4�Z,Z

Instance invariants areS[_ X !��� 4�Z,0 X !"�� 4�Q 	+�N���+� �$!H�����$�"�$! b UgJK� �����5* !"X !��� 4�ZhORQ$?D� ��IH�$� !"X !"�� 4�Z,Z
 included after adding theS[_ X !��� 4�Z,0 X !"�� 4�Q 	+�N���+� �$!H�����$�"�$! b U��� ��� �7�'#�X !��� 4�ZhORQ$JK� ���5��* !"X !"�� 4iZ,Z

universal quantification !(self).� ��� ?D� � G � ; �+?D� WN�
	�������� �$!H�����'���'!)Q bVe3f

Initially the class has no instancesj j ?D� �"IH�$� !)Q bVe3fkj j JK� ������* !)Q bVe3f
…and therefore, no attributes.j j �� ��� �7�'#[Q bVe3flj j LD*,�$M��7Q b�e:f

j jm;�= #%Q b�e3f j j (�*,� -��'!)Q bVe3f

W�(��+B"�+?�� W�� ;
,�$!"/� �[ORT,T"	������5�",���'�i� b

A create operation is provided for each class.(+B��
	�������� �$!H�����'���'! �b 	������ ; ��?

.?����+�
�N�h@K���1M
JK���+B��
���1MnQ�	+�N��� ; ��?oT"	+�N�7�+� �$!H�����$�"�$!

Pick any unused instance.?D���+�
	������+� �$!H�����$�"�$!)Q b 	+���7�+� �'!Y�����$�"�$! d �e ���'M f

Add it to the current instances.j j ?�� �"IY�'� !.Q b ?D� �"IH�$� !)ORp e ���'M j T,U e:f3f
Add a maplet from instance to thej j J�� �����5* !.Q b JK� ������* !)ORp e ���1M j T,U e3f3f

initialisation value for each attributej j �� ��� ���$#[Q b �� ��� ���$#%ORp e ���1M j T,U e3f3f
function.j j LD*,�$M7��Q b LD*,�$Mq��ORp e ���'M j T,U�rY� G�; � f

j j�;�= #%Q bV;�= #%ORp e ���1M j T,UVs f
j j (+*,� -"�$!.Q b (�*,� -��'!)ORp e ���$M j T,U e3f3f

Similarly for aggregate relationships.j j *3�$!"/� �tQ b ���$M
Return the new instance.���^L

�+��L
u
*,�$!"/� �+ORT,T)��/$&)X !"�� 4iZ b

Self added to parameter list automatically.(+B��
!"�� 4%Q�	������+� �$!H�����$�"�$!

Define type of self and other parametersS[(+*,� -"�$!"X !"�� 4�Z �bVe3f
Additional pre-conditions from operationS7JK� ������* !�X !"�� 4�Z b�e:f

specification (note addition ofS7?D� ��IH�$� !"X !"�� 4�Z �b ?�� ��E+��?D� �$!H�����'���'!
instance reference 'self').?����+�

�N�h@[� ��Jv���+B���� ��Q$?D� ��E+��?D� �$!H�����$�"�$!.TH?�� �"IY�'� !"X !"�� 4�Z
?D���+�

Operation body from operation?�� �"IH�$� !"X !"�� 4�ZhQ b ?D� �"IH�$� !�X !"�� 4�Z d te � � f�j j
 specification;�= #�X !��� 4�ZhQ bV;�= #�X !"�� 4�Zhph` j j

*,�$!"/� �+Q b � �
���^L

�+��L
u other operations have been omitted for this illustration

Conclusions

We have implemented a first version of a practical tool that translates Rational Rose
UML class diagrams to B. The tool is not complete; it requires extension to cope with
other forms of association and generalisation. However such extension is technically
feasible. The tool requires no intervention provided that constraint information is
specified appropriately in the B notation. These constraints are one means of
describing dynamic behaviour of operations in UML. Similarly, the B notation has
been used to specify constraints, in the form of invariants, on the valid states of the
system. We have translated an example UML class diagram and used the B Toolkit
animator to explore its dynamic behaviour. We have attempted to use the Atelier B
proof tools to verify that the dynamic behaviour of the examples operations preserves
the invariants and in the process discovered an error in the example and an area that
needs strengthening in the translator tool

References

1. J.R.Abrial The B Book - Assigning Programs to Meanings. Cambridge University Press,
1996 ISBN 0-521-49619-5

2. M.Buchi & R.Back. Compositional Symmetric Sharing in B. FM99 Vol.1 LNCS1708
pp431-451,1999

3. P.Facon, R.Laleau, & H.Nguyen. Mapping Object Diagrams into B Specifications. In
Methods Integration Workshop, Electronic Workshops in Computing (eWiC), Springer
Verlag. March1996

4. E.Meyer & J.Souquieres. A Systematic approach to Transform OMT Diagrams to a B
specification. FM’99 Vol.1 LNCS 1708, pp875-895. Oct 1999

5. E.Meyer & T.Santen. Behavioural Conformance Verification in an Integrated Approach
Using UML and B. In IFM’2000 : 2nd International Workshop on Integrated Formal
Methods. Nov. 2000

6. N.Nagui-Raiss. A Formal Software Specification Tool Using the Entity-Relationship
Model. In 13th International Conference on the Entity-Relationship Approach, LNCS 881.
Dec.1994.

7. J.Rumbaugh, I.Jacobson & G.Booch. The Unified Modelling Language Reference
Manual. Addison-Wesley, 1998. ISBN 0-201-30998-X

8. R.Shore. An Object-Oriented Approach to B. In Putting into Practice Methods and Tools
for Information System Design - 1st Conference on the B method. Nov.1996

9. M.Vaziri & D.Jackson. Some Shortcomings of OCL, the Object Constraint Language of
UML. Response to Object Management Group’s Request for Information on UML 2.0,
Dec. 1999

10. J.Warmer & A.Kleppe. The Object Constraint Language - Precise Modeling with UML.
Addison-Wesley, 1999 ISBN 0-201-37940-6

