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Abstract. State Machines is one of the artifacts used in the UML in
order to represent dynamic behaviour. The need for a precise definition
of the several artifacts of the UML (in particular State Machines) is
widely accepted. With regard to this, in the paper we point out the
need of establishing a clear distinction between a user-oriented precise
definition and a machine-oriented precise definition. We claim also that,
previous to the definition of any ‘precise State Machines’ (for instance,
previous to the definition of any semantics), it is necessary a precise
specification of what behaviour means within State Machines. In the
paper we present our approach to dealing with behaviour, based on a
two-layer architecture, and we explain how this architecture can be used
to get a better specification of State Machines (in particular, we show
how it would help to get a more precise meta-model of State Machines).

1 Introduction

State Machines is one of the artifacts used in the UML in order to represent
behaviour. More specifically, in the UML Semantics Document [12], the State
Machine Package is a SubPackage of the Top-Level Package Behavioral Elements,
that is the superstructure for behavioral modeling in UML. The natural language
explanation for the concept State Machine in the Abstract Syntax section of
the UML Semantics Document is that “a State Machine is a specification that
describes all possible behaviours of some dynamic model element” ([12], p. 2-
136). An interpretation of this definition appears in the UML Reference Manual,
where it is said that “a State Machine is a specification of states that an object
or an interaction goes through in response to events during its life, together with
its responsive actions” ([14], p. 439).

When dealing with the semantics of a language (in particular UML, or more
specifically UML State Machines) we share the ideas of the UML Semantics
? This work has been partially supported by DGES, project PB98-1621-C02-01



FAQ’s authors [8], as they state that “a semantics is needed if a syntax (no-
tation) is given [...] and its meaning needs to be defined”. In addition to this,
we think it is necessary to establish a clear distinction between a user-oriented
semantics and a machine-oriented semantics. Both must be precise (in the sense
of avoiding ambiguity and misunderstanding) but the way of expressing one or
the other will be probably quite different: a human user expects clear explana-
tions, many of them in natural language, but a machine needs a highly detailed
symbolic definition of semantics. The need of this separation is also pointed out
in [8], where it is said that “there may be different semantics definitions to suit
different purposes: the definition for explaining semantics to users of the notation
may be different to that required to perform sophisticated automatic processing
tasks”. In the recent ECOOP’2000 Workshop in Defining Precise Semantics for
UML this problem was discussed in the metamodeling work group, where one
of the conclusions was that “machine readable and human understandable are
properties which should be taken into account in the definition of a UML meta-
model”. The current UML metamodel [12] focus mainly on syntactic issues, and
the semantics given in this document is closer to the user-oriented view, since
most of the UML semantics is written in natural language (English prose). The
need of a precise, formal semantics for the UML (that we prefer to denominate
symbolic semantics, since it is related, mainly, to the machine-oriented view of
the semantics) has been addressed by several authors (see, for instance, [8, 1,
15]).

The problem of dealing with semantics is particularly relevant when we talk
about the behavioural features, because a lot of confusion arises from the usage
of terms like dynamic behaviour, dynamic semantics, execution semantics... For
instance, sometimes developers use the word semantics when they talk about the
behaviour of a system, as it is pointed out in the UML Semantics FAQ [8]. We
agree again with the authors of this FAQ, as they state that “semantics is not
behaviour” and that the need for semantics when a meaning is given to a notation
“is regardless of whether this notation deals with structure or behaviour”.

As stated before, the official UML Semantics Document is closer to the user-
oriented semantics, and this is also applicable to the concrete case of UML
State Machines. Several efforts has been made in order to define in a symbolic
way the semantics of UML State Machines (see the work of Lilius/Paltor [9] or
Mann/Klar [10]). However, we think that a key point for the precise specifica-
tion of State Machines is that, previous to the definition of any semantics, it
is necessary a precise specification of what behaviour means within State Ma-
chines. Harel and Gery [6] point out this idea as they state that in “many [OO]
methodologies (...) precise model behaviour over time is not well defined”. As
another example, in [11] it is said that “the UML standard gives semantics to
state machine in an approach rather oriented towards the state machine compo-
nents than towards dynamic semantics specification. The execution semantics of
state machine should extend the already existing state machine description with
clear specification of run-time behaviour”. In the next section we briefly present
our approach to dealing with behaviour, based on a two-layer architecture. This



approach is not linked directly to UML State Machines, but it has been used
with other “behavioural languages”, like for instance Petri Nets. In the last sec-
tion of the paper we explain how our architecture can be used to get a better
specification of State Machines.

2 A Way of Dealing with Behaviour

In [2] we have suggested the use of an architecture that helps to express the
behavioural features and that can be used to carry out this task at both the
model and the metamodel levels. The architecture consists of two layers, namely
the status-independent layer and the status layer and two transformations, de-
noted T0 and T (see Fig. 1). We will explain now the meaning of both layers and
transformations.

status-independent
layer

status
 layer

T0
T

Fig. 1. A representation of the architecture.

On the one side, and at the model level, the status-independent layer is re-
lated to the elements that appear as independent from any particular given
situation of the system, while the status layer is related to the facts that de-
pend on which is this situation. To clarify the meaning of these aspects, in [2]
we revise a fragment of the sample dynamic model shown in [13], which models
a programmable thermostat. In this example, the comparison between the ac-
tual room temperature and the programmed (desired) temperature is perceived
permanently and independently of which of these temperatures is higher: the
comparison is a status-independent feature. At any given moment, one of the
temperatures will be higher, but it is clear that this situation will vary as the
system develops: the status of the comparison is a purely dynamic feature. At the
metamodel level, the differences between the status-independent layer and the
status layer remain, but these differences are now revealed in the elements that
each concrete method uses to represent one or the other feature. For example, in
[13], the Statecharts formalism is used to create a model of the thermostat. Un-
der our perspective, Statecharts concepts such as state, transition, condition and
variable belong to the status-independent layer, and so the ‘standard’ statechart



(1) in Fig. 2 would become an instance belonging to this aspect (in particular,
a condition is used to model the comparison between the temperatures). On the
other side, concepts such as active state, enabled transition, true condition, etc.
belong to the status layer. Therefore, diagrams (2), (3) and (4) of Fig. 2, which
represent several consecutive statuses of the thermostat by means of a widened
notion of statechart, would become instances belonging to the status layer (and
so, the value of the condition models the status of the comparison). We have de-
veloped graphical notations for concepts such as enabled transition (continuous
line) or not enabled transition (discontinuous line) since the existing Statecharts
do not offer specifics. However, a shaded box symbol is indeed used in [7] to
represent an active state.
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Fig. 2. Statecharts diagrams for the thermostat furnace relay.

On the other side, at the model level, the transformation T0 of the architec-
ture determines, starting from the status-independent layer, one status that is
fixed as the initial status of the system, and the transformation T determines,
starting from a current status, the next status which the system will reach. With
regard to the thermostat example we have mentioned, the transformation T0 will
specify the passage from the diagram (1) to the diagram (2) of Fig. 2, taking
the diagram (2) as an initial status. As for the transformation T , it will specify
the passage from diagram (2) to diagram (3) and from diagram (3) to diagram
(4). At the metamodel level, the transformations T0 and T specify, respectively,
the processes of ‘fixing the initial status’ and ‘moving from the current status to
another one’ given by each method, processes that are common to the models at
the model level. In the concrete case of Statecharts, the transformation T will
specify, for instance, the mechanism of firing a transition.

3 Using the Architecture for Defining Precise UML State
Machines

We think that the adoption of our architecture into the current UML metamodel
can help to establish the execution semantics of State Machines, regardless of
this is expressed in natural language or in a more symbolic way. In particular,
concepts like active state, enabled transition and so on, that appear only in the
natural language explanation of the dynamic semantics of State Machines in [12],
should be made explicit in the UML metamodel. Our approach would consider



the current UML metamodel of State Machines as mainly related to the status-
independent layer of the architecture. We think that the UML metamodel should
include other class diagrams to express the concepts related to the status layer.
Then we would face the problem of how we can represent, in the UML meta-
model, the notion of transformation between models, that, in our opinion, would
be necessary to get a clear specification of behaviour. In our opinion, this notion
of transformation should be provided by the Meta Object Facility (MOF), since
“the MOF meta-metamodel is the meta-metamodel for the UML metamodel”
([12], p. 2-6). In [2] we have used the Noesis meta-modeling technique (first pre-
sented in [3]) and our proposed architecture, to describe a metamodel of classical
Harel’s Statecharts [5, 7] (the UML State Machines are a variant of Statecharts,
adapted to the context of object-orientation [6, 4]). The Noesis technique pro-
vides a set of artifacts to describe metamodels, and in particular it is endowed
with a notion of transformation between models. Our ongoing work deals with
adapting this metamodel to describe a more precise metamodel of UML State
Machines.
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