
Validation of Dynamic Behavior in UML Using Colored Petri Nets

Robert G. Pettit IV1 and Hassan Gomaa2

1The Aerospace Corporation, 15049 Conference Center Drive,
Chantilly, Virginia, USA 20151
rob.pettit@aero.org

2 George Mason University, Department of Information and Software Engineering,
Fairfax, Virginia, USA 22030-4444

hgomaa@isse.gmu.edu

Abstract. This paper describes an approach for modeling the behavioral characteristics of concurrent object-
oriented designs using the Petri net formalism. Specifically, this paper describes an approach for integrating
colored Petri nets with concurrent object architecture designs created with the COMET method and specified in
the Unified Modeling Language (UML). This work is part of an on-going effort to automate the behavioral
analysis of concurrent and real-time object-oriented software designs.

1 Introduction

This paper presents an approach for using colored Petri nets to model and subsequently validate the behavioral
characteristics of concurrent object architectures represented in the Unified Modeling Language (UML). There are
three general characteristics of Petri nets that make them interesting in capturing concurrent, object-oriented
behavioral specifications. First, Petri nets allow the modeling of concurrency, synchronization, and resource sharing
behavior of a system. Secondly, there are many theoretical results associated with Petri nets for the analysis of such
issues as deadlock detection and performance analysis. Finally, the integration of Petri nets with an object-oriented
software design architecture could provide a means for automating behavioral analysis.
The basic notation for Petri nets is a bipartite graph consisting of places and transitions that alternate on a path and
are connected by directional arcs [1]. In general, circles represent places, whereas bars or boxes represent
transitions. Tokens are used to mark places, and under certain enabling conditions, transitions are allowed to fire,
thus causing a change in the placement of tokens.
A colored Petri net (CPN) is a special case of Petri net in which the tokens have identifying attributes; in this case
the color of the token [2]. At first, colored Petri nets seem less intuitive than the basic Petri net. However, by
allowing the tokens to have an associated attribute, colored Petri nets scale to large problems much better than the
basic Petri net.

2 Modeling UML Dynamic Behavior Using Colored Petri Nets

The approach taken in this paper is to use a CPN model to augment the behavioral specifications of concurrent
object-oriented design architectures created with the COMET method.
COMET is a Concurrent Object Modeling and Architectural Design Method for the development of concurrent
applications, in particular distributed and real-time applications [3]. As the UML is now the standardized notation
for describing object-oriented models [4;5], COMET uses the UML notation throughout.
The COMET Object-Oriented Software Life Cycle is highly iterative. In the Requirements Modeling phase, a use
case model is developed in which the functional requirements of the system are defined in terms of actors and use
cases.
In the Analysis Modeling phase, static and dynamic models of the system are developed. The static model defines
the structural relationships among problem domain classes. Object structuring criteria are used to determine the
objects to be considered for the analysis model. A dynamic model is then developed in which the use cases from the
requirements model are refined to show the objects that participate in each use case and how they interact with each
other.
In the Design Modeling phase, an Architectural Design Model is developed. Subsystem structuring criteria are
provided to design the overall software architecture. Each concurrent subsystem is then designed in terms of active
objects and passive objects. Inter-object communication and synchronization interfaces are also defined at this point.
This architectural design model (captured with UML collaboration diagrams) serves as the focal point for the UML
to CPN mapping. Specifically, for capturing (and subsequently validating) the dynamic behavior of concurrent and
real-time systems we are interested in modeling such architectural design features as the asynchronous or periodic
behavior of concurrent objects, message communication between objects, and mutually exclusive access to shared
data objects. Fig. 1 provides an example UML collaboration diagram illustrating these architectural design features.

In this example, an actor initiates some event on the system. The first active (asynchronous) object performs some
processing on the input event and sends an asynchronous message to the active periodic object and a synchronous
message to the second active asynchronous object. There is also an entity object that encapsulates data and provides
operations to access the data. Since the entity object is being read by and written to by two active objects, it must
also provide mutually exclusive access controls, which must in turn be represented by the corresponding CPN
model. The following sections further discuss the roles of these elements in terms of the COMET method and
discuss the mapping between these UML elements and the corresponding CPN segments.

 2.1 Mapping Active Objects to Colored Petri Nets

Active objects form the basis of concurrency within the UML. Active objects may be found in interfaces or
processing objects and may operate in either asynchronous or periodic modes. For the purposes of this paper,
interface objects and processing objects will be treated the same in terms of creating Petri net templates. The only
difference is that interface objects receive events from external sources, whereas processing objects receive
messages from other objects within the system.
An asynchronous active object is activated by an asynchronous stimulus (e.g. message or interrupt) rather than a
timer event. The CPN representation of an asynchronous active object consists of a series of places and transitions
that use a control token to represent the flow of control within the object. Fig. 2 shows an example of modeling an
asynchronous object with a CPN. In this CPN template, event tokens enter from an external source (external device,
system, or application object, depending on whether we are dealing with an interface or a processing object). When
the CPN segment is ready to process events as indicated by the presence of a control token in the Async Control
place, the transition is fired and the event and control tokens are given to the Event Received place. Notice the “@”
notation on the Process Event transition. This indicates that all timed tokens are incremented by some arbitrary
processing time in order to simulate the real-time nature of execution. In the process described by this paper, all
control tokens are timed.
Next, the internal event and control tokens are passed to the Send Msg transition to be translated (using special
guard or code segments) to the appropriate CPN segment, representing the receiving object in the UML model. This
message may be sent immediately in the case of asynchronous communication or may be blocked until the receiver
is ready in the case of synchronous communication. Communication mechanisms are discussed in more detail in
Section 0. Once the message has been sent, the control token is returned to the Async Control Place and the CPN
segment is ready to process the next event or message.

Fig. 1. Example UML Collaboration Diagram

A periodic active object is activated at regular time intervals rather than on demand. To represent periodic objects
with CPNs, a Wakeup transition is introduced that will delay control tokens from returning to the Periodic Control
place by the desired period of activation. Fig. 3 provides the CPN segment that represents periodic objects.
In this example, the object being modeled starts execution with a control token in the Sleep place. The Wakeup
transition to move from the Sleep place has a duration of <sleep time> associated with it. After the specified
duration has been reached, the object essentially “wakes up” and acts on any waiting events or messages in the same
manner as the asynchronous CPN segment.

2.2 Mapping Passive Objects to Colored Petri Nets

In COMET, entity objects are passive objects that provide mechanisms to encapsulate or store data that needs to be
accessed by other objects within the system. These entity objects must also provide the protection mechanisms to
enforce mutual exclusion rules necessitated by the passive objects being accessed by multiple active objects. The
general CPN segment for entity objects with mutually exclusive access protection is illustrated in Fig. 4.
When this generic segment is instantiated, there will be one ReadOp and WriteOp transition for each read and write
operation for each attribute accessed from the object interface. To use the read and write operations, two places per
read or write operations are needed – one place for the request and one for the response/return. In addition to the

Fig. 2. CPN Segment for Asynchronous Active Objects

Fig. 3. CPN Segment for Periodic Active Objects

read and write places, there is one Free place per unit of protection (e.g. attribute) that is used to enforce the mutual
exclusion rules. This Free place contains one token indicating if the attribute is in use. If the Free token is available
(i.e. the attribute is not in use), the corresponding read or write transitions are allowed to fire, thus allowing the
attribute token to be retrieved or modified.

2.3 Mapping Message Communication to Colored Petri Nets

There are two general forms of message communication that can occur between concurrent active objects:
asynchronous and synchronous. With asynchronous communication, a producer object places a message on a
queue and then continues its processing. A consumer object would then retrieve the first message from the queue, do
some processing based on the message, and then retrieve the next message from the queue (if any).
Modeling FIFO queuing behavior using CPNs can be complex for large buffer sizes. There are currently no CPN
formalisms to enforce ordered placement or retrieval of tokens to and from a given place. In the absence of ordered
token placement and retrieval capabilities to and from a single place, 2n places and n+1 transitions are needed to
model a queue of n elements (one place for storage and one place to indicate whether a place contains a token).
Given that a queue has at least one free space, a producer would first place a token on the end place of the CPN
queue. Through the series of n+1 transitions and n free place indicators, the enqueued token will advance to the
furthest available slot in the queue. To dequeue an element (i.e. retrieve a message from the queue), a consumer
would remove a token from the place representing the head of the queue. Tokens are then shifted to the right as one
is removed.
In the case of synchronous communication, a producer object sends a message to the consumer object but instead of
continuing with its processing, it will wait for the message to be received by the consumer. This form of
communication is handled simply by passing a token to a CPN segment (e.g. the input_event of Fig. 2) and then
having a Control token returned to the sender either after the token has been received (at the first transition of the
CPN segment) or after a return token (message) has been generated.

Fig. 4. CPN Segment for Entity Objects

3 Validating Dynamic Behavior

The first step to validating the dynamic behavior of a UML architecture using CPNs is to translate the concurrent
object architecture model (represented by a UML collaboration diagram) into a corresponding CPN network. This is
accomplished by replacing each object and message communication element by the appropriate CPN segment as
partially illustrated in the previous section. (Several more specific CPN segments were used in the actual research
effort.)
Once the UML architectural model has been translated to a CPN, an occurrence graph [2]is generated to construct a
graph of all reachable markings for the CPN. These graphs can be extremely large and complex, but are capable of
being automated using tools such as DesignCPN[6], which was applied for this research. Based on these graphs,
Petri net theory may be applied to validate the absence of deadlock or starvation conditions as well as providing
statistical analysis of the architectural usage. Furthermore, DesignCPN also provides a timed simulation capability
that allows architectural timing constraints to be evaluated.

4 Conclusions and Future Research

This paper outlines an approach for using CPN segments to model the dynamic behavior of concurrent object
architectures expressed in the UML. Given a concurrent architecture and the CPN segments, an engineer may
proceed with behavioral analysis by first mapping the UML architectural elements into a CPN representation. The
resulting CPN is then used to validate such dynamic properties as the absence of deadlock and starvation conditions
as well as providing a timing analysis of the architecture through simulation. This analysis through CPNs reduces
the overall risk of software implementation by allowing behavioral characteristics to be validated from an
architectural model rather than waiting for the system to be coded.
This paper represents on-going research efforts to integrate colored Petri nets with object-oriented software design
methods for concurrent and real-time systems. Future research will explore the automatic generation of CPNs from
UML. It is the goal of this continuing research to arrive at a set of CPN translation rules that can be effectively
integrated with software design methods to provide increased reliability and analytical capabilities at multiple levels
of abstraction.

5 References

1. David, R. and Alla, H., "Petri Nets for Modeling of Dynamic Systems: A Survey," Automatica, vol. 30, no. 2, pp. 175-
202, 1994.

2. Jensen, K., Coloured Petri Nets: Basic Concepts, Analysis Methods, and Practical Use Berlin, Germany: Springer-
Verlag, 1997.

3. Gomaa, H., Designing Concurrent, Distributed, and Real-Time Applications with UML, , Reading, Mass.: Addison-
Wesley, 2000.

4. Rumbaugh, J., Jacobson, I., and Booch, G., The Unified Modeling Language Reference Manual, Reading, Mass.:
Addison-Wesley, 1999.

5. Booch, G., Rumbaugh, J., and Jacobson, I., The Unified Modeling Language User Guide, Reading, Mass.: Addison-
Wesley, 1999.

6. Jensen, K. DesignCPN, version 4.0. Aarhus, Denmark, University of Aarhus, 1999.

