
UML-Extensions for Quantitative Analysis?

Konstantinos Kosmidis1 and Huszerl G�abor2

1 University of Erlangen{Nuremberg, Dept. of Computer Science III
Martensstrasse 3, D{91058 Erlangen, Germany

kk@cs.fau.de

2 Budapest University of Technology and Economics,
Dept. of Measurement and Information Systems

H-1521 Budapest, P�azm�any P�eter s�et�any 1/d., Hungary
huszerl@mit.bme.hu

1 Introduction and Motivation

The Uni�ed Modeling Language (UML) �nds more and more applications. It
is not only used for software development but also for modeling systems with
dynamic behavior (e.g. Flexible Manufacturing Systems (FMS), or Business Pro-
cess Modeling). While the static diagrams of UML were changed marginal in the
latest versions of UML, the dynamic diagrams need still to be improved. For
modeling truly the dynamic behavior by these diagrams a concept of time is
needed. Therefore, we introduce in this paper an approach to extend UML with
time as stochastically variable. To evaluate the enhanced models and to drive a
numerical analysis we use the Petri-Net analysis tool PANDA1. This tool works
also on some stochastic extensions of the Petri-Nets (GSPN's), widely used for
performance evaluation and numerical analysis. The evaluation of these models
is based on exploring and solving the underlying Markov-chains.

2 An Approach to Extend UML with Time

In this section we give extended semantics on UML-Statecharts suited to stochas-
tic modeling (preserving the choice of possible interpretations given in the UML
standard), and present the transformation of the (extended) UML-Statecharts
to Stochastic Reward Nets (SRN's).

To be able to use the classical analytical methods and tools for the numerical
analysis of UML-Statecharts, we only allow negative exponential distributions
for transition times (or approximations with phase type distributions). Because
of the limitations of the actually applicable solving tools the size of the total
state space of the underlying Markov-chain of the model may not exceed c.a.
one million states. Otherwise it is impossible (at the moment) to compute results.

? This work was partially supported by the \Hungarian-German Researchers Exchange
Program" (DAAD-M�OB) Project{No. 8, by the \Hungarian Scienti�c Research
Fund" No. OTKA-F030553 and OTKA-T030804 and by the \Hungarian Ministry of
Education" Project{No. FKFP-0193/1999

1 Petri net ANalysis and Design Assistant



To analyze a system it can be modelled by UML-Statecharts with additional
labels on the transitions which contains the timing or probabilistic information.
In the current implementation the description of this information has an own
language, but later it will be made OCL-conform. In several test implementations
the transformation of the extended statecharts was executed by add-on scripts
of the applied UML CASE-tool, or the UML model was exported to a database
and some CASE-tool independent scripts of the database have done the work.
After implementing a new graph transformation method [1] a new, more general
way of model transformation can be applied.

Based on the Petri-Net implementation of the UML-Model we can compute
measures like:

{ the expected probability of state con�gurations of the UML model,
{ throughput of transitions of the UML model,
{ the expected probability that a transition of the UML model is enabled,
{ the expected probability that a transition of the UML model �res,
{ (and later) the expected value of some user de�ned reward functions.

These measures can be de�ned in the UML model (in the users' world), they
can be computed on the transformed model, but because of the systematic way
of the transformation, the results can be backannotated and interpreted on the
UML model.

Because of the compactness of UML the description of a system with some
millions of states results as well in a very large Petri-Net as in a small and clear
set of UML-Statecharts. This compactness leads the modeler to make detailed
models with large state space. However the modeler has to take into account to
build models with amenable state space for today's solving tools.

Another problem caused by introducing explicit time in UML-Statecharts
is the step semantic. As long as step semantics (zero-time) in modeling are
considered it is possible to say that a step of a UML-Statechart begins with
the event dispatching, continues with choosing an appropriate set of triggered
transitions, executing actions and state changing, and ends with sending new
events. But if all of these "meta-actions" are considered timeless, except of the
state change itself, one step begins with waiting for state change, and ends with
choosing an appropriate set of triggered transitions. When the stochastically
chosen transition times of the �re-able transitions elapsed, all of the other \meta-
actions" happen in zero time. Otherwise these model elements of the UML-
Statechart would a�ect the results of the analysis considerably.

In stochastic modeling infrequently �ring transitions are customarily modeled
by transitions with small transition rates (of negative exponential distribution).
Because of the blocking property of the step semantic of the UML, low �ring
parameters cause long blocking (waiting) times, and the frequency of transition
�ring is not only determined by its own parameter but also by the parameters
of the actually enabled transitions triggered by the same event. The duration
of a step is only determined by the longest transition time drawn in the given
step. A possible exception represent racing transitions, triggered by the same
event, which can be used to model two possible outcomes of a transition (e.g. a



correct one and an erroneous one). In order to avoid that kind of blocking, and
to enrich the modeling power of the extended statechart semantic, we allow the
use of timer events to trigger transitions. These timers are set (drawn according
to the given distribution and parameter) when the explicit source states of the
transitions are entered, and they generate events, which trigger the transitions
with the given timer.

This way infrequently occurring events can be modeled, and the same con-
struction can be used to model actions with long duration time (for example
when modeling hardware components, mechanical processes can have long du-
ration compared to actions of the control software). In this case the action is
started by a transition (timeless or with short duration) leading to a state, where
another transition with a timer originates. Firing of the second transition models
the end of the action.

Furthermore, it is possible to split every timed transition into two separate
timeless transitions and a timer. This partition can be done either explicit in
the statechart model by additional states representing \waiting for the timer to

expire", or during the analysis of the model (e.g. when transforming the model
to another platform, such as Petri-Nets or Markov-chains). In the second case,
the conformity with the step semantic of the UML (event dispatching and all
triggered changes in one single unit) is contradictory.

3 An Example

Our example is a simpli�ed version of the \Trajectory Planner" example of a
spacecraft described in [2]. We modeled only the �ve main objects: Planner,
Movement Coordinator, Controller, Sensor and Rocket. The statecharts contain
only call- and time-events and no data modeling. A time parameter is associated
with each transition, being the parameter of a negative exponential distribution
describing the stochastic duration of the transition. For the timers in addition
to the transition parameter the timer parameter is given. At the moment the
parameters of the transitions are given in the parentheses beside the triggering
event.

Planner: After calculating a new trajectory, the trajectory can be implemented
by the system (moving the spacecraft to the trajectory). When reaching the
new trajectory, the Planner continues planning.

Movement Controller: Getting the new trajectory from the Planner the Move-
ment Coordinator triggers the other components with actual data. When the
correction of the position of the spacecraft is �nished, the Movement Coor-
dinator triggers the Planner.

Controller: Started by the Movement Coordinator, the Controller collects ac-
tual data from the Sensor, and triggers the rocket accordingly. It decides,
whether additional corrections are necessary to reach the new trajectory.

Sensor: Started by the Movement Coordinator the Sensor sends the actual
position to the Movement Controller when asked for.



Rocket: Started by the Movement Coordinator the Rocket (for the sake of
simplicity, a single one with controllable nozzles) corrects the trajectory of
the spacecraft when asked for.

Planner@

PLANNER

WORKINGIDLE
DONE(300)/ -

T1(0,001/100)
/ TRAJECTORY

Movement Coordinator@

COORDINATINGIDLE

MOVEMENT COORDINATOR

ABORT(100)/ -

SHUTDOWN(300)/ DONE

TRAJECTORY(500)/ ADJUST

Controller@

CONTROLLER

CONTROLLING

EVALUATING CORRECTION

CALCULATING

PREPARING
SHUTTING DOWN

IDLE

ABORT(100)/ -

DATA(1000)
/ FLAMEON

DATA(1000)
/ SHUTDOWN

ROCKETDONE(50)/ SENSE

BEGIN(100)
/ FLAMEON

STARTUP(100)
/ BEGIN

SHUTDOWN(300)/ -

ADJUST(500)/ -

- / STARTUP

Sensor@

SENSEWAITING

ACTIVE
PREPARING

INACTIVE

SENSOR

T2(10/300)/ DATA

SHUTDOWN(300)/ -

SENSE(500)/ -

ABORT(100)/ -

BEGIN(100)/ -

STARTUP(100)/ -

Rocket@

FLAMINGIDLE

ACTIVE

INACTIVE

PREPARING

ROCKET

T3(0.5/80)/ ROCKETDONE

FLAMEON(50)/ -

SHUTDOWN(300)/ -

ABORT(100)/ -

STARTUP(100)
/ -

BEGIN(100)/ -

By the transformation described in [3], [4], [5], and [6] the UML-Statecharts
are transformed to a Petri-Net with special consideration of event processing,
state-hierarchy and the step semantic of the UML-Statecharts. Due to the sim-
plicity of the example a nondeterministic event dispatcher was chosen. The un-
derlying Markov-chain has 42 tangible states.

Many numerical results of the model can be derived from the the analysis of
the underlying Markov-chain. One possible question of the analysis (among the



classical questions of performance evaluation and numerical analysis generally)
of this example is: \What is the expected possibility that the spacecraft completes

the correction of the trajectory in a given time?". The possibility grows with the
time (as expected), passes 90% after 9.81 time units, passes 95% after 12.69 time
units.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

P
ro

ba
bi

lit
y 

of
 d

on
e 

[%
]

Time [time unit]

Fig. 1. Numerical results of the example

4 Conclusions

In our paper we presented an approach to combine traditional numerical analysis
methods, based on Markov-chains, and the UML. To this end it is necessary to
extend the UML-Statecharts with the concept of time as a stochastic variable
and to transform them to Petri-Nets. We described some possible time semantics
and the e�ects of them on the step semantics of the UML-statecharts. In order
to prevent the problem of the state space explosion, the modeler should take into
account to build models with amenable state space. In case that the state space
can't be handled by the actual solving tools a simulation can be performed, or
scenarios that represent parts of the systems behavior can be evaluated.



References

1. D. Varr�o, G. Varr�o and A. Pataricza: Designing the automatic transformation of

visual languages { In H. Ehring and G. Taentzer, editors, GRATRA 2000 Joint
APPLIGRAPH and GETGRATS Workshop on Garph Transformation Systems,
pp. 14-21., Technical University of Berlin, Germany, March 2000

2. Bruce Powel Douglass: Doing Hard Time, Addison{Wesley, 1999, pp. 427-434
3. M. Dal Cin, Huszerl G., K. Kosmidis: Transformation of Guarded Statecharts for

Quantitative Evaluation of Dependable Embedded Systems { EWDC-10, Vienna,
Austria, 6{7 May 1999, pp. 143-187

4. M. Dal Cin, Huszerl G., K. Kosmidis: Quantitative Evaluation of Dependability

critical Systems Based on Guarded Statechart Models { In Proc. HASE'99, Wash-
ington DC, USA, November 1999, pp. 37-45

5. Huszerl G�abor: Design Pattern Based Transformation of Dynamic UML-Models

for Quantitative Analysis { EWDC-11, Budapest, Hungary, 11-13 May 1999
6. Huszerl G., Majzik I.: Quantitative Analysis of Dependability Critical Systems

Based on UML-Statecharts-Models { In Proc. HASE'00, Albuquerque, New Mex-
ico, USA, 15-17 November 2000


