Analysing Atomic Dynamic UML Notions by
Surfing through the UML Metamodel

Martin Gogolla, Oliver Radfelder, Ralf Kollmann, Mark Richters

University of Bremen, Computer Science Department

Abstract. This paper analyses atomic notions in UML which are fun-
damental for the understanding of dynamic aspects. The notions consid-
ered are: Action, Event, Exception, Message, Method, Signal, Stimulus,
Operation, and Reception. We surf through the UML metamodel by
combining the different metamodel class diagrams, where these notions
are defined, into a single class diagram. Thereby we point out the intent,
similarities and differences between these notions. Thus before doing a
formalization, we try to make the concepts a bit clearer than they appear

in the UML Semantics [OMG99].

1 Motivation

The class diagram in Fig. 1 combines aspects of six different UML meta-
model class diagrams and concentrates on the following notions: Action, Event,
Exception, Message, Method, Signal, Stimulus, Operation, and Reception. In
the UML Semantics these notions are distributed over Figs. 2-5 (Operation,
Method), 2-14 (Signal, Exception, Reception), 2-15 (Action), 2-16 (Stimulus), 2-
17 (Message), and 2-22 (Event). These notions constitute atomic building blocks
in the UML behavior diagrams, in particular statechart, activity, sequence, and
collaboration diagrams. The chosen notions are closely related because they all
refer to atomic entities which are involved in fundamental system state changes.
Other more involved entities use these notions to build more complex system
changes, for example, a transition may use an event and an action. In order to
explain the class diagram, we now shortly repeat the explanations given in the
UML Semantics for the metaclasses under consideration.

Action: An action is a specification of an executable statement that forms an
abstraction of a computational procedure that results in a change in the
state of the model, and can be realized by sending a message to an object
or modifying a link or a value of an attribute.

Event: An event is a specification of a type of observable occurrence. The oc-
currence that generates an event instance is assumed to take place at an
instant in time with no duration.

Exception: An exception is a signal raised by behavioral features typically in
case of execution faults.

Message: A message defines a particular communication between instances
that is specified in an interaction.

uoneoyoads
JENCREIR S H_H _H *_ I T M
_m_om_mz_mmm_o; 7 [eubis ; ?o:aoomw; 7:0_580; 7 poyIsiN
19puas Tt "
*(92U81IN220
99U31IN220 | * X M oseq
EDGEE]
Ew>m___mo; Tcw>m__mcm_w; Tocw:cmm:o_ai 7co_~o<=mo; Tozogcmw; To:o,qmam_o; «'T| 19HIsse|D X3U0D| |ej0neydg
T°0 ¥ 1T
uomenuelsul
JEVELEY]
x| |* * 13 " soedsaweN
7 Y| ; 7 abessa| uonoy ; 7 sninwins ; 7 aoueisu| _ *E
* JUEMETE]
[SRRE T s|qezieIaUaD
uonoyyoredsip Japuas

luswa|3|1spoN

Fig. 1. UML Metamodel for Atomic Dynamic Notions

Method: A method is the implementation of an operation. It specifies the algo-
rithm or procedure that effects the results of an operation.

Operation: An operation is a service that can be requested from an object to
effect behavior. An operation has a signature, which describes the actual
parameters that are possible (including possible return values).

Reception: A reception is a declaration stating that a classifier is prepared to
react to the receipt of a signal. The reception designates a signal and specifies
the expected behavioral response. A reception is a summary of expected
behavior. The details of handling a signal are specified by a state machine.

Signal: A signal is a specification of an asynchronous stimulus communicated
between instances. The receiving instance handles the signal by a state ma-
chine. Signal is a generalizable element and is defined independently of the
classes handling the signal. A reception is a declaration that a class handles
a signal, but the actual handling is specified by a state machine.

Stimulus: A stimulus reifies a communication between two instances.

2 Discussion

We now show the intent of these metaclasses by giving two examples in Fig. 2
and 3. In the upper left part of Fig. 2 four classes and a signal are declared,
whereas in the upper right part an excerpt from a statechart diagram for one of
the classes is shown. The lower part displays how aspects of this are represented
in the UML metamodel as an object diagram. Thus we have example instanti-
ations for the metaclasses Operation, Signal, Reception, and Event. Note that
some few associations unimportant in this context are not shown, and we do not
neccessarily display the ‘lowest’ class of the objects nor underline object names.

In the upper part of Fig. 3 we have an excerpt from a collaboration diagram
with one operation call. This situation is represented in the UML metamodel as
indicated in the lower part of the figure. There we have instantiations for the
metaclasses Operation, Method, Message, Action, and Stimulus. On the right
side of the dashed line the Stimuli with sender and receiver instances are shown,
1.e. instances of concepts on the left side.

After giving these examples let us now comment on the similarities and dif-
ferences between the chosen metaclasses.

Overview on Diagrams and Purpose: The table in Fig. 4 points out the
main diagrams for the chosen metaclasses and tries to shortly characterize
the main purpose of the respective notion.

Action-Event Pattern: The destilled metaclass diagram in Fig. 1 reveals a
pattern for Action and Event. Signal production is done by SendAction and
signal consumption by SignalEvent. Operation call production is done by
CallAction and operation call comsumption by CallEvent. From the Action
classes there are many-to-one associations to Signal resp. Operation, and
from Signal resp. Operation there are one-to-many associations to the Event
classes.

TrafficLight
switchLight()
<<receptions>> Controller <<signal>>
powerProblem powerProblem
testPower()

ItalianTrafficLight

GermanTrafficLight

switchLight()

switchLight()

: StateMachine

¢ co ntext

TrafficLight : Classifier

— wner -
Controller : Classifier kL{ testPower : Operation }%

raisedSignal

Fig. 2. Example Explaining Signal, Reception, Event

powerProblem : Signal

TrafficLight
powerProblem
[NormaIMode] [BlinkMode]
1. Transition
| S
source target
‘NormaIMode : State‘ ‘ BlinkMode : State
trigger
: SignalEvent
occurrence

‘ MainController : Controller North : TrafficLight
—>

switchLight()

sender
‘ MainController : ClassifierRole ’—4@

base

North : ClassifierRole Tecelver

base

dispatchAction

: CallAction
— 1

112:00 : Stimulus
@2 : Stimulus

dispatchAction

TrafficLight : Classifier owner switchLight : Operation

specification

specification

receiver
receiver

‘TRALI-248 : Instance

‘ germanSwitchLight : Method ‘

‘ italianSwitchLight : Method ‘

owner

GermanTrafficLight :
Classifier

owner
ItalianTrafficLight :
Classifier

sender sender

CONTRO-123 : Instance

Controller : Cl

Fig. 3. Example Explaining Stimulus,

Action, Message, Operation, Method

Metaclass |Main diagram |Ma.in purpose

Action Statech./Seq./Collab.|Abstraction of a computation

Event Statech. Specification of an observable occurrence
Exception |Class Signal raised for execution faults

Message |Seq./Collab. Specification of communication between instances
Method |Statech./Activ. Implementation of an operation

Operation|Class Declaration of an operation

Reception [Class Declaration of signal receipt

Signal Class Asynchronous global communication

Stimulus [Seq./Collab. Reification of a communication between instances

Fig. 4. Overview on Diagrams and Purpose of Chosen Metaclasses

Existential Dependencies from Operation, Signal, and Action:

(1) Method, CallAction, and CallEvent instances existentially depend on
Operation, (2) Reception, SignalEvent, and CallEvent instances on Signal,
(3) Stimulus and Message instances on Action. Thus Operation, Signal, and
Action play a dominant role.

Class Diagram versus Behavior Diagram Concepts:

The five grey-shaded metaclasses on the left of Fig. 1 constitute the class
diagram concepts whereas the four grey-shaded metaclasses on the right the
behavior diagram concepts.

Message versus Stimulus: Stimulus and Message are closely related: They
both are connected to one action and possess sender and receiver entities.
Sender and receiver of Stimuli are however Instances whereas sender and
receiver of Messages are ClassifierRoles which again are Classifiers. Thus
Stimuli and Message both represent communication, but Stimuli on an in-
stance level and Messages on a classifier level. As an observation we also state
that the concept of Stimulus (which was called MessagelInstance in UML 1.1)
is not mentioned in the UML Reference Manual [RIJB9S].

Missing Rule for Reception, Signal, and SignalEvent:

The destilled metaclass diagram in Fig. 1 also reveals that a well-formedness
rule for Reception, Signal, and SignalEvent is missing in the UML Seman-
tics: The corresponding Signal of a SignalEvent appearing, for example, in
a StateMachine owned by a Classifier must be declared as a Reception for
that Classifier.

3 Conclusion

We have concentrated on nine notions important for aspects of dynamic be-
havior in UML and have pointed out relationships and connections between
these notions. Our description destilles from the original UML description in
the UML Semantics the relevant parts and can serve as a starting point for fur-
ther in-depth discussion, for example, on the basis of a graph transformation

approach [GPP98, Gog00].

References

[Gog00] M. Gogolla. Graph Transformations on the UML Metamodel. In J.D.P.
Rolim, A.Z. Broder, A. Corradini, R. Gorrieri, R. Heckel, J. Hromkovic,
U. Vaccaro, and J.B. Wells, editors, Proc. ICALP Workshop Graph Trans-
formations and Visual Modeling Techniques (GVMT’2000), pages 359-371.
Carleton Scientific, Waterloo, Ontario, Canada, 2000.

[GPP98] M. Gogolla and F. Parisi-Presicce. State Diagrams in UML - A Formal Se-
mantics using Graph Transformation. In M. Broy, D. Coleman, T. Maibaum,
and B. Rumpe, editors, Proc. ICSE’98 Workshop on Precise Semantics of
Modeling Techniques (PSMT’98), pages 55-72. Technical University of Mu-
nich, Technical Report TUM-19803, 1998.

[OMG99] OMG. Unified Modeling Language Specification (Version 1.3). OMG, 1999.

[RJB98] J. Rumbaugh, 1. Jacobson, and G. Booch. The Unified Modeling Language
Reference Guide. Addison-Wesley, 1998.

