Modeling Concurrent Behavior through
Consistent Statechart Views

Gregor Engels!, Luuk Groenewegen?, and Jochen M. Kiister!

! University of Paderborn, Dept. of Computer Science, D-33095 Paderborn, Germany
email: {engels, jkuester}Qupb.de, phone: +49 — 5251 — 603357
% Leiden University, LIACS, P.O. Box 9512, NL-2300 RA Leiden, The Netherlands
email: luuk@liacs.nl, phone: +31— 71 — 5277139

1 Introduction

Concurrent systems typically consist of multiple self-contained components that
communicate with each other by exchanging messages over connectors. Mod-
eling the behavior of such systems is difficult due to the concurrent execution
of components and has been dominated by formal approaches such as CSP [3],
CCS [5] and Petri nets. Describing communication in terms of discrete math-
ematical structures these approaches allow the proving of desired properties.
However, they focus on the communication aspect neglecting the modeling of
object structures and are still not widely applied by software engineers due to
their formality.

Object-oriented modeling [7] combines structural and behavioral modeling of
the system using structural, dynamic and functional models. Structural models
allow the modeling of static aspects of the system. Dynamic models focus on
behavioral aspects of the system. Functional models describe the effect of op-
erations. Nowadays, the Unified Modeling Language (UML) [6] is the accepted
industrial standard for object-oriented modeling.

Modeling concurrent systems with UML raises the issue of how concurrent
behavior can be properly modeled using existing techniques of UML. Since the
advent of the UML, several extensions have been proposed in order to enable
the modeling of problems of a specific domain. The UML-RT [8] is an extension
of the UML for modeling complex real-time systems and it is in the process of
becoming a UML profile. It incorporates the special notions of an active object
called capsule and connectors connecting capsules. As a consequence, UML-
RT seems to be the candidate for modeling concurrent systems consisting of
components (or capsules) intertwined by connectors as a real-time system can
be considered to be a special form of a concurrent systems.

In addition to the concepts of capsules and connectors, UML-RT introduces
the concepts of ports, protocol roles and protocols. A port is a connection point
between a capsule and a connector. A port is associated with a protocol role
defining the signals received and sent via the port to the port of a capsule at
the other end of the connector. Several protocol roles together form a protocol
which is in terms of the UML a specialization of a collaboration.

Statecharts [2] are used in UML-RT for specifying the behavior of capsules.
A capsule statechart describes how the capsule reacts to signals received via one
of its ports by calling operations of the capsule. Optionally, a protocol can also
be associated with a statechart specifying the allowed interaction, i. e. the or-
dering of messages exchanged by the protocol participants. However, the actual
performing of an interaction is incorporated in the statecharts of the capsules
that take part in the protocol. This results into two descriptions of the interac-
tion, one given by the protocol statechart and the other one modeled implicitly
in the capsule statecharts. As a consequence, the consistency between these two
descriptions must be ensured.

Consistency within the model is important for the development process and
a clear consistency concept is still missing [1]. A consistency concept must define
what consistency means and how to establish consistency within a model. We
can distinguish between consistency on a syntactical and semantical level. In our
particular case, statecharts of two capsules taking part in a common protocol
must be syntactically consistent in so far that messages issued by one capsule
must be understandable by the capsule it is connected to. From a semantic point
of view, the order of messages resulting from the execution of capsule statecharts
must conform to the order specified in the protocol statechart.

In our opinion there is a need for describing interactions between capsules
such that each interaction is modeled explicitly as well as consistently. Currently,
elements of concurrent behavior are distributed to different capsule statecharts,
leaving the interaction only implicitly modeled. This results into the difficulty
of checking the consistency with the explicit description of the interaction given
by a protocol statechart. As there is also no concept of consistency for these two
descriptions we deduce that neither UML nor its extension UML-RT support
the modeling of concurrent behavior adequately. We are therefore interested in
answering the question how consistency can be achieved in this particular case.
Thereby, we aim at overcoming the lack of verification properties compared to
formal approaches.

In the remainder of our position statement we first elaborate on the applica-
tions of statecharts in UML-RT for modeling concurrent behavior by presenting
a small example. Then we indicate our approach towards overcoming the con-
sistency problem of statecharts in UML-RT.

2 Problem Description

In order to illustrate the consistency problem we introduce a small example
consisting of two capsules connected to each other by a connector. Figure 1
shows the so-called capsule collaboration diagram view of the example, enriched
with the statecharts used by UML-RT.

The two capsules (named CapsuleA and CapsuleB) both have one port
(named P1 and P2 respectively) by which they are connected to the other one
via a connector. The ports are associated to protocol roles (named RoleA and
RoleB) specifying the signals sent and received via the port (not mentioned in

? SPI’OTOCO| ?
@ @
Capsu|eA | P1:Protocol::RoleA P2:ProtocolRoleB | CapsuleB
<<connector>>

Fig. 1. Example in UML-RT

this diagram). Two or more protocol roles form a protocol, in our case RoleA
and RoleB form the protocol Protocol.

From the point of view of behavior modeling each capsule is associated to
a statechart specifying states and state transitions of the capsule. In our ex-
ample, statecharts S4 and Sp specify the behavior of CapsuleA and CapsuleB,
respectively. Capsule statecharts describe how capsules react to signals received
via its ports and when signals are sent via its ports. State transitions of capsule
statecharts may also include the calling of capsule operations. Note that capsule
operations cannot be called from outside capsules but only from the capsule it-
self. A protocol statechart may optionally be associated to a protocol describing
the valid order of messages exchanged within the protocol. In our case, Sprotocor
is the statechart for the protocol.

For our example, we can formulate the above mentioned questions of consis-
tency more precisely. From a syntactical point of view, each statechart must be
compatible with the protocol roles associated to the ports of the capsule. For
example, a signal sent over port P1 by S4 must occur in the signal compartment
of RoleA. Furthermore, roles of a protocol must be compatible with each other
meaning that signals specified as outgoing signals in one role must be specified
as incoming signals in the other role and vice versa.

With respect to semantic consistency, statecharts S4 and Sp must be com-
patible with each other, meaning that a signal sent over the connector from
CapsuleA to CapsuleB must be understood by Sg. This means that there must
be a suitable transition in Sp which is triggered by the signal. Additionally, the
order of messages exchanged via the connector resulting from the execution of
CapsuleA and CapsuleB must be consistent to the order specified in the protocol
statechart Sprotocor-

Consistency between S4 and Sp is important for a correct execution of the
system. Consistency of the order of messages with the specification in the proto-
col statechart Sprotocor iS necessary for the following reasons. Given a protocol

statechart, independent developers might be forced to ensure that their cap-
sule conforms to the given protocol statechart. Conversely, having developed a
system one might want to extract the protocol statechart for being able to ex-
change one capsule. A smooth integration of a new capsule can only be ensured
if it conforms to the protocol statechart.

This gives rise to the question how the different statecharts are related. An
answer to this question has to define a notion of consistency between the various
statecharts such that their mutual influencing can be formulated, indicated and
analysed.

3 Our approach

Based on the above observations our approach is as follows. We are going to
introduce two different notions of a protocol. A protocol template describes all
possible orders of messages exchanged between objects and is of a descriptive
nature being possibly non-deterministic. A protocol template is specified using
a protocol statechart. State transitions between protocol template states are
labelled with a signal name and an (abstract) capsule name sending that signal.

A protocol instance can be viewed as one particular implementation of a
protocol template. A protocol instance is the result of the interaction of two or
more capsules participating in the protocol. In our approach, capsule behavior
is specified by capsule statecharts. The protocol instance therefore arises from
the statecharts of the capsules participating in the protocol. But there is more:
in principle, connector behavior can be rather different, e. g. the connector can
be order-preserving or it can have a limited or unlimited capacity. As the actual
connector behavior is relevant for the protocol instance, the statechart of the
protocol instance must additionally take into account the behavior of the con-
nector. In our opinion, connector behavior can be specified using an additional
statechart for modeling the dynamic behavior of a connector.

In Figure 2 our approach is illustrated. In order to construct the statechart
of the protocol instance from the statecharts of the capsules the notion of a
statechart view will be introduced which specifies the part of the statechart
of the capsule relevant to some particular interaction. The statechart of the
capsule specifies how signals are sent over various connectors. For the consistency
with the protocol template statechart, one is only interested in the signals sent
over the connector the protocol is associated to. As a consequence, suitable
reduction algorithms for statecharts are needed which enable the construction
of a statechart view from a capsule statechart. Intuitively, a statechart view can
be computed by taking into account only transitions involving the sending or
receiving of signals over the port in focus. In our example, SaviewpPortp1 and
SBviewPortp2 are the statechart views computed from both capsule statecharts.

For the actual interaction between the two capsules it is not sufficient to
concentrate on the statechart views alone because, as we already pointed out,
the behavior of the underlying connector is also important. We therefore intro-
duce a connector statechart specifying the dynamic behavior of a connector. A

Stempiate

ﬁ consistency

oS

Shviewpore1 Sovieworr
00 00

SCcnnadav
0
P1:Protocol::RoleA P2:Protocol::RoleB
CapsuleA CapsuleB

Fig. 2. Statecharts in our approach

connector statechart consists of two substatecharts, each specifying the behavior
of the connector in one communication direction.

On the basis of the connector statechart and all statechart views the protocol
instance can be constructed by computing the product of the statechart views
taking into account restrictions imposed by the connector.

Having established the concept of protocol instance and template we are go-
ing to define the consistency of a protocol instance with a protocol template.
The protocol instance statechart must conform to the protocol template stat-
echart. With respect to theory of statecharts, this problem raises the question
of statechart equivalence [4]. In practice, there remains the question of defining
suitable algorithms and develop tool support.

Summarizing our position is as follows: We think that modeling of concur-
rent behavior is important for the development of concurrent systems and for
the modeling of concurrency within object-oriented systems. Modeling concur-
rent behavior should be explicit and needs a clear concept of consistency which
is currently lacking in UML. Our approach distinguishes between a protocol
template describing all possible interactions and a protocol instance describing
a particular implementation of a protocol template. A clear consistency concept
between the protocol template and the protocol instance should be defined. By
computing statechart views from each capsule taking part in a protocol and
the introduction of an additional connector statechart we aim at computing the
protocol instance statechart and thereby establishing consistency in concurrent
behavior.

References

1. G. Engels and L. Groenewegen. Object-oriented modeling: A roadmap. In Anthony
Finkelstein, editor, Future Of Software Engineering 2000, pages 105-116. ACM,

June 2000.

. D. Harel. Statecharts: A visual formulation for complex systems. Science of Com-
puter Programming, 8(3):231-274, June 1987.

. C. A. R. Hoare. Communcating Sequential Processes. Prentice Hall, 1985.

. A. Maggiolo-Schettini, A. Peron, and S. Tini. Equivalences of statecharts. In Ugo
Montanari and Vladimiro Sassone, editors, CONCUR ’96: Concurrency Theory, Tth
International Conference, volume 1119 of Lecture Notes in Computer Science, pages
687-702, Pisa, Italy, 26-29 August 1996. Springer-Verlag.

. R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989. SU Fisher Research 511/24.

. Object Modeling Group. Unified Modelling Language Specification, version 1.3,
June 1999. URL: uml.shl.com:80/docs/UML1.3/99-06-08.pdf.

. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented
Modeling and Design. Prentice Hall, Englewood Cliffs, New Jersey, USA, 1991.

. B. Selic. Using UML for modeling complex real-time systems. Lecture Notes in
Computer Science, 1474:250-262, 1998.

