
Sematics of UML Sequence Diagrams in PVS

Demissie B. Aredo

Department of Informatics, University of Oslo
Institute for Energy Technology

P.O.Box 173, N-1751 Halden, Norway
demissie@hrp.no

Abstract. In this paper, we present formal semantics of UML (Unified
Modeling Language) sequence diagrams using the PVS (Prototype Ver-
ification System) [8] as an underlying semantic foundation. We give a
formal definition of a trace-based semantics [5] of UML sequence dia-
grams; i.e. a sequence diagram is interpreted as a set of traces of events
that may occur in the realization of the interaction specified by the se-
quence diagram. This work is a part of a long-term vision to explore how
the PVS tool set could be used to underpin practical tools for analysis
of models in UML. It also contributes to the ongoing effort to provide
formal semantics of UML, with the aim of clarifying and disambiguat-
ing the language as well as supporting the development of semantically
based tools.

Keywords : formal semantics, UML, PVS, sequence diagram

1 Introduction

The Unified Modeling Language (UML) [12] is a collection of object-oriented
modeling notations that has been standardized by the OMG (Object Manage-
ment Group) [7]. It is a notation for specifying, visualizing and documenting
artifacts of software-intensive systems, and has rapidly become an important
industrial standard. The lack of formal semantics of UML notations renders its
limitations in the context of rigorous formal reasoning about UML models.

There are numerous attempts at giving a formal semantics to fragments of
the UML [3, 4, 14]. A distinguishing feature of our work is the goal of wishing
to utilize existing, powerful tools to analyze UML models and instances of those
models. Specifically, we have chosen to focus on the PVS environment [8] for
two main reasons: Firstly, it supports semantics notions that are important for
specifying reactive systems. For instance, the PVS specification language (PVS-
SL) supports notions of sequences, lists, records, etc. that are useful in defining
a trace-based semantics of UML sequence diagrams. Secondly, the PVS envi-
ronment has a powerful tool set, including a type-checker, theorem-prover, and
model-checker, and exploits the synergy between the highly expressive specifi-
cation language and a theorem-prover that is based on powerful decision proce-
dures.



The rest of this paper is structured as follows: In Section ??, we give a brief
overview over a subset of the PVS environment, the specification language (PVS-
SL) and the theorem prover, and demonstrate how they can be used in combi-
nation. In Section 3, we discuss main concepts of UML sequence diagrams and
define their semantics. In Section 4, we define a formal semantics of UML se-
quence diagram. Finally, in Section 5, we conclude and discuss future research
issues.

2 The Prototype Verification System

The Prototype Verification System (PVS) consists of a specification language
(PVS-SL)[9], a type checker and a theorem-prover [10] based on a classical,
simply typed higher-order logic. It exploits the synergy between a highly expres-
sive specification language and an interactive theorem-prover based on powerful
decision procedures. It has a rich type system which has been augmented by
predicate subtype and dependent types: features that render type-checking unde-
cidable; the type-checker may require users to show that their specifications are
consistent by generating proof obligations known as type correctness condition
(TCC’s). Specifications in PVS-SL are organized into a set of, possibly parame-
terized, theories. A theory may specify types, variables and constants, definitions,
axioms, theorems and assumptions on its parameters. The PVS environment in-
cludes an extensive set of built-in theories, called preludes, that provide several
useful types, definitions, lemmas etc. A theory may import or ’instantiate’ other
built-in or user-defined theories.

The records, functions, and sets type constructors are used extensively in the
sequel. A record type is a finite list of fields of a general form R : TYPE = [#
a1 : T1, . . . , an : Tn #] where ai’s are accessor functions and the Ti’s are types.
Given a record r:R, function application-like terms ai(r) or r‘ai, rather than the
conventional ’dot’ notation, is used to access the ith field of a record r. Record
types are similar to tuple types, except that the order of the fields is unimportant.
Function types are declared as F : TYPE = [T1, . . . , Tn → T] where Ti’s and
T are type expressions. There are two forms of specifying a set: pred[T] and
setof[T]. Both of them are shorthand for [T → bool], and are provided in the
prelude. Semantically, they are the same since sets are represented as predicates
in PVS.

3 Basic Concepts of UML Sequence Diagrams

The UML notation is comprised of two main categories of modeling elements:
static structural elements such as classes, interfaces, and relationships; and dy-
namic behavioral elements such as objects, messages, finite state machines, and
message sequence charts (or sequence diagrams as they are called in the UML).
In the sequel, we exclusively investigate semantics UML sequence diagrams. A
sequence diagram describes a specific interaction in terms of the set of partic-
ipating objects and a sequence of messages they exchange as they unfold over



time to effect the desired operation or result. It is useful especially for specifying
systems with time-dependent functions such as real-time applications, and for
modeling complex scenarios where time dependency plays an important role.

A sequence diagram specifies only a fragment of system behaviour. To specify
the complete behaviour of a system, a set of sequence diagrams should be used
to specify all possible interactions during its life cycle [1].

Before we formally define semantics of sequence diagrams, we specify some
basic notions of sequence diagram, namely, action, event, message, object, and
operation.

3.1 Events

An event is a specification of a significant occurrence that has a location in
time and space. In a description of communications among system components,
basically we identify three types of events: a local operation call, a message send,
and receive event. The send and receive events are instances of remote operation
call on the target object.

An event is represented as a record type whose fields consist of: the event
identifier which is normally identical to the identifier of the associated message,
the identifiers of the sender and the set of receiver of the associated message, a tag
that specifies the type of event, the action that will take place, and arguments.
Symbolically, event is specified as follows:

Events : THEORY
BEGIN

Action : TYPE
EventType : TYPE = {send, receive, local}
EventID, ObjectID, Parameter : TYPE
Event : TYPE = [# eventID : EventID,

sender : ObjectID,
receiver : setof[ObjectID],
eventType : EventType,
action : Action #]

SendEvent : TYPE = {e:Event | eventType(e) = send}
ReceiveEvent : TYPE = {e:Event | eventType(e) = receive}
LocalEvent : TYPE = {e:Event | eventType(e) = local}
causal(es:SendEvent, er:ReceiveEvent) : bool =

(es = er WITH [‘eventType := eventType(es)])
END Events

The WITH construct is similar to function overriding in Z [15]. The causal()
operation checks whether a given pair of SendEvent and ReceiveEvent events
constitutes a valid message.

3.2 Messages

A message is a specification of a communication among objects, or an object and
the system and its environment, that conveys information with the expectation



that activity will ensue. It specifies the roles of the sender and receiver objects,
as well as the associated action which specifies the statement that causes the
communication to take place.

A message can be either a signal (asynchronous) or an operation call (syn-
chronous). Since sending a signal and calling an operation are similar at logical
level, we consider synchronous communications. In our framework, sending and
receiving of a message are considered as two distinct instances of events. An event
involves exactly two (not necessarily distinct) objects. In case of iterative mes-
sage passing and message broadcast, each communication is modeled separately.
Hence, we model a message as a pair of message sending event and message re-
ceiving event. The correspondence between the send and receive events has to be
established uniquely. The operation to invoked (the action), and its parameters
are extracted from the events.

An important constraint on message communication is the causality require-
ment which is formalized as a relation between message send events and the
corresponding message receive events - a requirement that must hold for every
trace satisfying the causality predicate defined in Objects theory

The UML notation supports modeling of the real-time concept. To specify
behaviors that involve the notion of time, we need to adorn the event record
with a field to store the time of event occurrence (these corresponds to the
sendTime and receiveTime in UML meta-model UML v1.3 pp. 3-98). In the
sequel, however, we consider only the time sequence of event occurrences, and
there is no notion of global clock.

3.3 Objects

An object participating in a given interaction exhibits observable properties of its
class(es). In a sequence diagram, existence of an Object is depicted by an object
box and its ’life-line’. A life-line is a vertical line that shows the existence of
an object over a given period of time, object creation and/or destruction during
the interaction specified by the sequence diagram, and the ordering of events
that may occur on the object. But, it does not specify the exact time elapsed
between occurrences of two events. To model the time notion of communication,
we stamp every event by the time of its occurrence. For a message m, time
information like m.sendTime, and m.receiveTime is modeled by the time of
occurrences of the related message send and message receive events respectively.
This time information is used to express timing constraint on traces of events,
e.g. minimum time between occurrences events.

An object specifies an entity on which an operation can be invoked and which
has a state that stores the effects of operations. An object may have a set of
attribute values, and is connected to a set of links, where both sets conform with
the specifications of its classes, and implement the current state of the object.
We define the semantics of an object as a trace of events (operation invocations)
satisfying the causality condition, and represent an object as a record type whose
fields include: a unique object identifier, a non-empty set of classes, a set of



attribute links, a set of operations, and a set of traces of events that may occur
on the object.

Objects : THEORY
BEGIN

IMPORTING Events, Classes

ObjectID, Operation, AttributeLink : TYPE
Trace : TYPE = list[Event]

Object Status : TYPE = {new, destroyed, transient}
ObjectRec : TYPE = [# objectID : ObjectID,

classes : finite set[Class],

slots : finite set[AttributeLink],

operations : finite set[Operation],

trace : set[Trace] #]

class exist?(obj:ObjectRec) : bool =

FORALL obj: NOT empty?(classes(obj))

status : [Object → Status]

all operations(obj:Object) : setof[Operation] =

{opr : Operation | ∃ (c:Class): obj(classes)(c) }
causal?(t:Trace): bool = FORALL (er:ReceiveEvent): member(er, t)

⇒ (EXISTS (es:sendEvent) : member(es, upto(er, t)) &

match(es,er))

Object: TYPE = {obj : ObjectRec | causal?(obj(trace)) &

class exist?(obj) &

all operations(obj) }
one class : AXIOM (∀(obj : Object) : classes(obj) 6= ∅)

End Objects

In a paradigm where multiple and dynamic classification is allowed, an object
may gain or lose a class during execution. However, an object must be connected
to at least one ’direct’ class which declares its structure and behaviour. The ax-
iom one class states that for every object, at any point in time, there must exist
at least one class of which the object is a direct instance. Other properties such
as the conformance of the set of link ends of an object to the set of association
ends of its class(es) can similarly be stated and proved correct. A status of an
object at the end of the interaction (new, destroyed or transient), and the
set of operations that can be invoked on the object, cab be extracted from the
object record type.

3.4 Traces of Events

A trace is a sequence of events that satisfies some predicates on events and state
variables such as the causality predicate. In the sequel, we consider prefix-closed
finite traces. Theoretically, traces can be of finite or infinite lengths. In practice,
however, finite trace semantics suffice to model behaviour of a system over a
finite time interval (assuming that iterations in sequence diagrams are finite).

In PVS-SL, a predefined parameterized theory specifies the list abstract
data type which is synthesized into PVS type theory that models the standard



list type along with its operations. In the Traces theory, we specify a trace
as a prefix-closed list of events. We also define some auxiliary operations on
lists, and state basic properties of traces, and sequence diagrams they model as
predicates. The prefix() and prefix upto n() functions, for example, specify
the correspondence between send and receive events that comprise a message.
Moreover, if a trace is projected on a given set of events that occur on an object,
the causality condition will be maintained.

Traces : THEORY
BEGIN
IMPORTING Events

tr, tr1, tr2 : VAR list[Event]

x, ev, e1, e2 : VAR Event

prefix(tr1, tr2) : bool = ∃ tr : (tr2 = append(tr1,tr))

prefix upto n(n:nat, tr:Trace) : RECURSIVE list[T] =

CASES tr OF

null : null,

cons (x, tr1) :

IF n = 0 THEN null

ELSE cons(x, prefix upto n(n-1, tr1))

ENDIF

ENDCASES

MEASURE length(tr)

causal?(tr:Trace): bool =

∀ (er:ReceiveEvent): member(er,tr) ⇒
(∃ (es:sendEvent) :

member(es, prefix upto n(rank(er), tr)) &

match(es,er))

precedes(e1, e2, tr) : bool =

prefix(prefix upto n(rank(e1),tr), prefix upto n(rank(e2),tr))

projection : [list[T], setof[T] → list[T]] = filter

Trace : TYPE = {tr : list[Event] | causal?(tr)}
END Traces

4 Semantics of Sequence Diagrams

Once the basic concepts of sequence diagrams are formally specified, semantics
of the sequence diagram is modeled by a PVS theory that composes the the
constituents. Properties of the system specified by the sequence diagram should
(not) exhibit, e.g. system invariant and constraint, as predicates, axioms and
conjectures. This approach is in line with the specification style of PVS, where
an entity should be defined before it can be used, as there is no forward reference
in PVS. A sequence diagram is represented by a record type whose fields are
consisting of

- the identifier of a sequence diagram
- a set of objects participating in the interaction specified by the sequence

diagram and conforming to the ClassifierRoles specified by its context



- a set of traces of events that models the interaction

A sequence diagram is modeled as a predicate subtype of the record type.

SeqDiagrams : THEORY
BEGIN

IMPORTING Objects, Traces

SeqDiagramID: TYPE
SeqDiagRecord : TYPE = [# seqDiagID : SeqDiagID,

objects : setof[Object],

traces : setof[Trace] #]

sqr : VAR SeqDiagRecord

ev : VAR Event

tr : VAR Trace

obj : VAR Object

objset : VAR setof[Object]

proj?(sqr,obj,tr): bool = traces(sqr)(tr) & objects(sqr)(obj) ⇒
projection(tr,list2set(trace(obj))) = trace(obj))

comp?(sqr, tr, ev): bool = (traces(sqr)(tr) & member(ev, tr)) ⇒
(EXISTS obj: (objects(sqr)(obj) &

member(operation(action(ev)), all operations(obj))))

prefix closed?(trset : setof[Trace]) : bool =

member(null, trset) &

(member(cons(ev,tr),trset) ⇒ member(tr, trset)

SeqDiagram : TYPE = {sqr : SeqDiagRecord |
prefix closed?(traces(sqr)) &

every(causal?)(traces(sqr))&

every(proj?)(sqr, objects(sqr), traces(sqr)) }

thm: THEOREM (member(tr,traces(sqr)) & subset?(objset,objects(sqr))

⇒ every(proj?)(sqr,tr,objset) & every(comp?)(sqr,tr,ev))}
END SeqDiagrams

The list2set is a predefined function that converts a list into a set. A set
of traces of events is possible instances of runs of the system specified by the
sequence diagram if and only if it is a prefix-closed and satisfies the causality
requirement causal?. Moreover, for every allowed trace and every object par-
ticipating in the interaction specified by the sequence diagram, the projection
of the trace to the set of events of the object must be a allowable trace of the
object, proj?. The composition predicate comp? specifies that for every event in
a trace, there must exist an object on which the operation associated with the
event is invoked. Other constraints that specify, well formedness rules and the
relationships between elements of sequence diagram are stated similarly.



5 Conclusion and Future Work

In this paper, we present a work done on formalization of UML sequence di-
agrams by using the higher-order logic of PVS-SL. The choice of PVS is dic-
tated by its suitability to handling fundamental OO modeling concepts such as
polymorphism, and inheritance. This work contributes to the ongoing effort to
provide formal semantics of UML notations with the aim of clarifying and dis-
ambiguating the language as well as supporting the development of semantically
based tools. It is also a part of a long-term vision to explore how the PVS tool
set could be used to underpin practical tools for analysis of UML models.

A purpose of formalization of a modeling language is not only to make spec-
ifications precise, but also to provide automated support for rigorous model
analysis. To provide an automated support, a prototype of a multi-formalism
platform, called the Integrator [16] is developed. The platform integrates the
UML tool - Rational Rose [13], and the PVS toolkit to support the functionality
necessary to cover the whole development cycle of open distributed systems from
requirement capture to final code production. PVS-SL is used in the platform
as semantics foundation and not as specification language, and hence the user
need not have an in-depth knowledge about the PVS formal notation and proof
system.

There are several research works on the formalization of UML notations [3],
[4], [14], using formalism such as Z [15] as the underlying semantic notation.
But Z has limitations to deal with the dynamic aspects of systems, and the tool
support for Z is weak. A similar work was done by Duterrte [2] on encoding
of CSP [5] in PVS. A distinguishing feature of our work is the integration of
existing tools, the PVS and UML tools, in order to support developers to design
and analyze UML models.

In the future, we will introduce refinement proof rules, and validation rules
necessary for rigorous model analysis in the context of distributed systems, and
extend our work to other dynamic constructs of the UML such as statecharts.

Acknowledgements
I am grateful to Stuart Kent, Olaf Owe, Ketil Stølen, and Wenhui Zhang for

reading earlier drafts of this paper and for their invaluable comments. This work
is financed by the Research Council of Norway in the framework of the ADAPT-
FT project.

References

1. R. Breu, R. Grosu, C. Hofmann, F. Huber, I. Kruger, B. Rumpe, M. Schmidt,
W. Schwerin, Exemplary and Complete Object Interaction Descriptions, in Pro-
ceedings of OOPSLA’97 Workshop on Object-oriented Behavioral Semantics,
Atlanta, Georgia, October 1997.

2. B. Dutertre, S. Schneider, Embedding CSP in PVS: An Application to Authen-
tication Protocols, Technical Rep. 736, Deprtment of Computer Science, Queen
Mary and Wesfield College, University of London, May 7, 1997.



3. A. Evans, Reasoning with UML class diagrams, In WIFT’98, IEEE Press 1998.
4. R. B. France, A. Evans, K. Lano, and B. Rumpe The UML as a Formal Modeling

Notation, Computer Standards & Interfaces, 19 (1998), p. 325-334.
5. C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.
6. O. Owe, I. Ryl, The Oslo University Notation: A Formalism for Open, Object-

Oriented, Distributed Systems, Reserach Report No. 270, Department of Infor-
matics, University of Oslo, Norway, August 1999.

7. Object Management Group Inc. OMG Unified Modeling Language Specification,
version 1.3, June 1999, available at http://uml.shl.com/artifacts.htm.

8. S. Owre, N. Shankar, J. Rushby, D. W. Stringer-CalvertPVS Language Refer-
ence, http://pvs.csl.sri.com/manuals.html, Version 2.3, September 1999.

9. S. Owre, N. shankar, J. M. Rushby, The PVS Specification Language, Computer
Science Lab., SRI International, April 1993.

10. N. shankar, S. Owre, J. M. Rushby, The PVS Proof-checker: A reference Manual,
Computer Science Lab., SRI International, April 1993.

11. J. Crow, S. Owre, J. Rushby, N. Shankar, M. Srivas,A Tutorial Introduction
to PVS, WIFT’95: Workshop on Industrial-Strength Formal Specification Tech-
niques, Boca Raton, Florida, April 1995.

12. The UML Group, The Umified Modeling Language, Version 1.1, Rational Soft-
ware Corporation, Santa Clara, CA-95051, USA, July 1997.

13. http://www.rational.com/products/rose/
14. M. Shroff, and R. B. France, Towards a formalization of UML Class Structures

in Z, in the Proceedings of the COMPSAC’97, 1997.
15. J.M. Spivey, The Z Notation: A Reference Manual, Prentice-Hall International,

1989.
16. I. Traoré, The UML Specification of the Integrator, Technical Report RS-275-IFI,

Department of Computer Science, University of Oslo, August 1999.


