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Abstract. UML is a standard modeling language that enables the specification
of applications at many different levels of abstraction using a wide range of
notations. However, there is currently only limited research investigating the
maintenance of UML models throughout the software li fecycle. In particular,
UML behavior models are typically not orthogonal but each model shows
similar behaviors from different perspectives. Hence, modifications to one
behavior model will have possibly unforeseen ramifications elsewhere. We
propose a framework in which to express automated transformations on UML
models using a formalization of UML in rewriting logic. These transformations
include abstractions and refinements of behavior models as well as translations
between models. What they have in common is that they take into account the
global behavior of the system, expressed over multiple models, rather than
being localized to a particular notation.

1 Introduction

The Unified Modeling Language (UML) [4] provides several concepts and
respective notations to be used at different levels of abstraction throughout the
development process. For example, in a use case-driven approach, as proposed by
Jacobson [8], use cases describe functional requirements of a system at a very high
level of abstraction. Use cases can then be refined by giving collaboration or sequence
diagrams that help to identify the set of user requirements. Collaborations express
global behavior regarding the interaction between objects. Hence, for refinement to
the implementation level, the designer must provide local behavioral models, e.g.,
statecharts, from which code can be developed. In an ideal world, each development
phase is completed before progressing to a less abstract layer. In practice, however,
the development of UML models is highly iterative. This poses a problem since UML



models are not independent of each other, and so any modifications in a particular
model must be reflected in related models.

Updating UML models is a highly time-consuming and error-prone task if done
manually. Even the slightest modifications can have far-reaching ramifications on the
rest of the model, which may go unnoticed by designers. We propose automated tool
support for transforming UML models, where the transformations may be minor
model updates, abstractions, refinements, or translations between notations. The aim
is to equip the designer with a suite of transformations that make some specified
change whilst maintaining the consistency of the system as a whole. Such consistency
maintenance is only possible given a formalization of the model semantics. We use
rewriting logic, and its implementation in Maude [5], as a vehicle to express
transformations and their properties.

2 Formal Framework

Rewriting logic is a very flexible reflective logic that has very good properties as a
logical and semantic framework. It can be interpreted logically or computationally,
the latter interpretation giving rise to an executable specification language
implemented as the Maude system. It is a logic of concurrent change that can deal
naturally with state and with highly nondeterministic concurrent computations. In
particular, it supports concurrent object-oriented computation. These properties of
rewriting logic make it an ideal framework in which to formalize UML. Moreover,
since Maude is based on conditional rewrite rules, it is very natural to express
transformations of UML models.

A rewrite theory is a pair (T,R) where T is an equational theory and R is a
collection of labeled and possibly conditional rewrite rules involving terms in the
signature of T. Rewrite rules are of the form r: t → t’ and can be applied modulo
associativity, commutativity, identity and idempotency axioms. This leads to a large
number of possible rewriting paths which can be controlled by strategies implemented
using Maude’s reflective capabiliti es.

Alemán & Toval [1] shows how Maude can be used to formalize UML class
diagrams. A similar approach can be used for UML behavior models. As an example,
the UML statechart shown in Figure 3 is formally specified by a pair  (transitions,
hierarchy) where transitions denotes a list of transitions between states, and hierarchy
represents a state hierarchy (e.g. see formalization in Figure 1). These formal terms
are expressed according to the existing UML Statechart formal specification [1] at the
UML metamodel layer. Once the statechart is formally represented, it can be
mathematically manipulated and prototyped. Likewise, rigorous transformations can
also be applied. So far, class diagrams, statecharts, and a subset of OCL have been
formalized as Maude models.



Fig. 1. Maude formalization of  statechart in Figure 3

3 Transformations

As previously mentioned, Maude provides a suitable framework for expressing
both the semantics of UML behavior models and all kinds of transformations over
these models. Aleman, Toval & Hoyos [2] and Lano & Bicarregui [7] identify a
number of different possible categories of transformations. Rather than try to cover all
possible transformations here, we prefer to give a small number of ill ustrative
examples. Ultimately, we expect these examples to be a subset of a much larger suite
of transformations that will be made available to the UML designer. Our intention is
to further refine our formalization of UML in Maude and implement transformations
in Maude, such as those given in this section.

3.1 Example one: refinement from requirements to design

This section gives an example of a very large grain transformation. In the use-case
driven approach to UML development, use cases are described using collaborations
which express a global view of expected traces of message-passing between objects.
In the initial design stages, each class is specified locally using, for example, a
statechart. This is a local view of the behavior of the system. Since collaborations are
requirements traces of behavior, they should remain true in all refinements of the
statechart models. Currently, however, there is very littl e automated support for
providing this guarantee. The situation is complicated further by the fact that there
may be additional constraints on the system behavior, usually expressed using OCL.
We have developed a transformation that can translate a collection of collaborations
(in our case, sequence diagrams) annotated with OCL pre- and post-conditions on
messages into a collection of statecharts. This should be an invaluable translation
allowing a designer to easily update his/her statechart models as the requirements
change. Note that this translation requires reasoning over the semantics of the model,
since the OCL constraints express semantic restrictions on the way that messages can
be ordered. In particular, different sequence diagrams may be merged/interleaved

transitions1=
transition (initialState, s1, empty)                     transition (s2, xTrue, m1)
transition (initialState, s5 empty)                      transition (s3, s5, m2)
transition (initialState, xFalse, empty)              transition (s3, s4, m3)
transition (s1, s2, m2)                                       transition (s4, s5, m2)
transition (s1, s3, m1)

hierarchy1 =
OrState (ST, empty)
OrState (xFalse, empty, simpleState (s1, empty) simpleState (s2, empty))
OrState(xTrue, empty, simpleState (s3, empty) simpleState (s4, empty) simpleState(s5,empty))



during the translation, or they may conflict with each other, in which case the user is
notified. Whittle & Schumann [9] gives a full description of the translation, currently
implemented in Java. Our intention is to integrate the transformation into the
framework of rewriting logic.

The key idea in the transformation is to define the concept of state as the values of
state variables, taken from the OCL constraints, along with information about the
ordering of messages, taken from the sequence diagrams. Using this idea, we can
associate each node in each statechart with a state vector, giving state variable values.
Some nodes may have the same state vector but are separated by transitions that
directly correspond to messages passed in a sequence diagram. Figure 2 gives an
overview of the process.

Fig. 2. From sequence diagrams to statecharts

Messages involving an object, O, in a sequence diagram contribute to the behavior
of the class to which O belongs. The statechart shown in the figure is for the class
containing O1 based on the three sequence diagrams and the given constraints. Note
how we characterize each statechart node using the state vector <a,b>  where a and b
are the values of the state variables x and y, respectively. This leads to a much more
informed merging of sequence diagrams, resulting in fewer nodes and taking into
account background knowledge given in OCL. The transformation itself consists of
deriving and propagating sets of state variable values using unification (which
suggests loops in the statechart) and frame axioms.



3.2 Example two: reverse engineering

An example of a transformation preserving behavioral correctness would be one
that made only structural changes on the behavioral model, e.g., one that introduced
hierarchy / orthogonality into a statechart. This kind of transformation would be
important to introduce readabilit y into a model before it was passed to another
designer, or to re-engineer an existing model. Hierarchy can be introduced
automatically by using background knowledge available in the form of OCL
constraints. Consider the statechart in Figure 2 again. As before, the OCL constraints
can be used to characterize the nodes by assigning a state vector to each. If the
variables in the state vector correspond to “modes” of the system, then it is natural to
partition the statechart over the values of these variables. Suppose, for instance, that
variable x specifies whether or not a machine is switched on. Then partitioning over
the value of x gives the hierarchical statechart in Figure 3, which corresponds to the
kind of structure a designer might introduce.

Note that a partitioning algorithm could be applied recursively to introduce
multiple layers into the statechart. In general, there should be heuristics built i nto the
transformation to ensure a “good” structure: e.g., the hierarchy should not be too
deep, minimize the number of inter-level transitions. In addition, only a subset of the
state variables will correspond to modes and so the designer should be given the
abilit y to express which variables are mode variables.

Fig. 3. Partitioning over mode variables

3.3   Example three: refinement at the same abstraction level

We will also consider refinements similar to Opdyke’s refactorings [6]. For
example, Figure 3 shows the result of applying a transformation to abstract an
attribute and a method from a class into a new superclass, and the effect that this has
on the corresponding statecharts. This example assumes an interpretation in which
each class has its own statechart describing (a subset of) the behavior of that class.
Class B is refined into an inheritance hierarchy in which class A is the parent of B.
The attribute x and the method a are moved to class A. Note that the statechart for B
will remain the same (as no behavior has been added or removed), but a statechart for



A can be inferred if there are also OCL constraints on the transitions which allow state
vectors to be assigned in the usual way.

Fig. 4. Introducing class inheritance.

4 Related Work and Conclusions

The idea of coming up with UML behavior model transformations is not new.
Indeed, Lano & Bicareggui [7] describes a number of examples of such
transformations. However, the particular kinds of transformations that we are
considering are novel. First, they are not necessarily correctness-preserving. Second,
they include large grain transformations which do much more than make minor
modifications. It is mostly only small grain transformations that have been studied
previously. Small grain transformations alone are not suff icient. To make any useful
change would require a long sequence of such transformations. Coming up with the
right sequence is a diff icult task and can be automated by our large grain translations.
Moreover, most previous transformations work only on static UML models (e.g. class
diagrams).

The other novelty in our approach is the use of Maude and rewriting logic. Lano &
Bicareggui uses a real-time action logic (RAL) and proves simple properties of the
transformations presented there. However, there are no automated proof tools for
RAL and so all proofs had to be done manually. The use of Maude allows proofs to be
developed automatically at design time, which gives much greater flexibilit y than if
all proofs had to be done by hand off-line. We have developed a way of formalizing
collaborations using Object-Z [3], but once again, there is only limited proof support
for Object-Z.
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