RIGOROUSLY AUTOMATING
TRANSFORMATIONS OF UML BEHAVIOR
MODELS

Jon Whittl €', Jodo Araljjo’, Ambrosio Toval’, and Jose L uis Fernandez Aleman’

1QSS/ NASA Ames Reseach Center, M/S 269-2 , Moffett Field, CA 94035
USA, TEL:+650-604-3589
j onat hw@t ol eny. ar c. nasa. gov
2Departamento de Informética, Faauldade de Ciéncias e Temalogia,
Universidade Nova de Lishboa, 2825 Monte da Caparica, PORTUGAL,
TEL: + 351-1-2948536; FAX : + 351-1-2948541
ja@li.fct.unl.pt
*Software Engineaing Research Group, Department of Informatics,
University of Murcia, SPAIN, TEL: +34-968-364621
al eman@li f . um es, atoval @m es

Abstract. UML is a standard modeling language that enables the spedficaion
of applicaions at many dfferent levels of abstradion wsing a wide range of
notations. However, there is currently only limited reseach investigating the
maintenance of UML models throughout the software lifegycle. In particular,
UML behavior models are typicdly not orthogona but eady model shows
similar behaviors from different perspedives. Hence modificaions to ore
behavior model will have possbly unforeseen ramificaions elsewhere. We
propose aframework in which to express automated transformations on UML
models using a formalization d UML in rewriting logic. These transformations
include abstradions and refinements of behavior models as well as trandations
between models. What they have in common is that they take into acaount the
globa behavior of the system, expreseed over multiple models, rather than
being locdi zed to a particular notation.

1 Introduction

The Unified Modeling Language (UML) [4] provides svera concepts and
respedive notations to be used at different levels of abstradion throughout the
development process For example, in a use cae-driven approach, as propcsed by
Jambson [8], use caes describe functional regquirements of a system at a very high
level of abstradion. Use caes can then be refined by giving collaboration or sequence
diagrams that help to identify the set of user requirements. Collaborations express
global behavior regarding the interadion between oljeds. Hence, for refinement to
the implementation level, the designer must provide locd behavioral models, e.g.,
statecharts, from which code can be developed. In an ided world, ead development
phase is completed before progressng to a lessabstrad layer. In pradice, however,
the development of UML modelsis highly iterative. This poses a problem since UML

models are not independent of ead other, and so any modificaions in a particular
model must be refleded in related models.

Updating UML models is a highly time-consuming and error-prone task if done
manually. Even the dlightest modifications can have far-reading ramificaions on the
rest of the model, which may go unnaticed by designers. We propose automated tool
suppat for transforming UML models, where the transformations may be minor
model updates, abstradions, refinements, or trandations between ndations. The @am
is to equip the designer with a suite of transformations that make some spedfied
change whil st maintaining the mnsistency of the system as a whae. Such consistency
maintenance is only posshle given a formalizaion d the model semantics. We use
rewriting logic, and its implementation in Maude [5], as a vehicle to express
transformations and their properties.

2 Formal Framework

Rewriting logic is avery flexible refledive logic that has very good poperties as a
logicd and semantic framework. It can be interpreted logicdly or computationally,
the latter interpretation gving rise to an exeautable spedficaion language
implemented as the Maude system. It is a logic of concurrent change that can ded
naturally with state and with highly nondeterministic concurrent computations. In
particular, it supports concurrent objed-oriented computation. These properties of
rewriting logic make it an ided framework in which to formalize UML. Moreover,
since Maude is based on condtiona rewrite rules, it is very natural to express
transformations of UML models.

A rewrite theory is a pair (T,R) where T is an equational theory and R is a
colledion d labeled and posshbly conditional rewrite rules involving terms in the
signature of T. Rewrite rules are of the form r: t - t' and can be applied moduo
asciativity, commutativity, identity and idempotency axioms. This leals to a large
number of posgble rewriting paths which can be controlled by strategies implemented
using Maude' s refledive caabiliti es.

Aleman & Tova [1] shows how Maude can be used to formalize UML class
diagrams. A similar approacd can be used for UML behavior models. As an example,
the UML statechart shown in Figure 3 is formally spedfied by a pair (transitions,
hierarchy) where transitions denotes a list of transitions between states, and hierarchy
represents a state hierarchy (e.g. seeformalization in Figure 1). These formal terms
are expressed acording to the existing UML Statechart formal spedficetion [1] at the
UML metamodel layer. Once the statechart is formaly represented, it can be
mathematicaly manipulated and prototyped. Likewise, rigorous transformations can
aso be gplied. So far, class diagrams, statecharts, and a subset of OCL have been
formalized as Maude models.

transitionsl=

transition (initial State, s1, empty) transition (s2, xTrue, m1)
transiti on (initi al State, s5 empty) transition (s3, s5, m2)
transiti on (initi al State, xFal se, empty) transition (s3, s4, m3)
transition (s1, s2, m2) transition (4, s5, m2)

transition (s, s3, m1)

hierarchyl =

OrState (ST, empty)

OrState (xFalse, empty, simpleState (s1, empty) simpleState (2, empty))

OrState(xTrue, empty, simpleState (s3, empty) simpleState (s4, empty) simpleState(s5,empty))

Fig. 1. Maude formali zation of statechart in Figure 3

3 Transformations

As previoudy mentioned, Maude provides a suitable framework for expressng
both the semantics of UML behavior models and all kinds of transformations over
these models. Aleman, Toval & Hoyos [2] and Lano & Bicaregui [7] identify a
number of different pasgble cdegories of transformations. Rather than try to cover all
possble transformations here, we prefer to gve a smal number of ill ustrative
examples. Ultimately, we exped these examples to be asubset of a much larger suite
of transformations that will be made available to the UML designer. Our intention is
to further refine our formalization d UML in Maude and implement transformations
in Maude, such asthose given in this ®dion.

3.1 Exampleone: refinement from requirementsto design

This £dion gves an example of avery large grain transformation. In the use-case
driven approach to UML development, use caes are described using collaborations
which expressa global view of expeded traces of message-passng ketween oljeds.
In the initial design stages, ead class is gedfied locdly using, for example, a
statechart. Thisisalocd view of the behavior of the system. Since @llaborations are
requirements traces of behavior, they should remain true in al refinements of the
statechart models. Currently, however, there is very little aitomated support for
providing this guarantee The situation is complicaed further by the faad that there
may be alditional constraints on the system behavior, usualy expressed using OCL.
We have developed a transformation that can trandate a olledion d collaborations
(in ou case, sequence diagrams) annaated with OCL pre- and post-conditions on
messages into a olledion d statecharts. This sioud be an invaluable trandation
alowing a designer to easily update his/her statechart models as the requirements
change. Note that this tranglation requires reasoning over the semantics of the model,
sincethe OCL constraints express €mantic restrictions on the way that messages can
be ordered. In particular, different sequence diagrams may be merged/interleared

during the trandation, or they may corflict with ead ather, in which case the user is
natified. Whittle & Schumann [9] gives afull description d the trandation, currently
implemented in Java. Our intention is to integrate the transformation into the
framework of rewriting logic.

The key ideain the transformation is to define the mncept of state & the values of
state \ariables, taken from the OCL constraints, along with information abou the
ordering of messages, taken from the sequence diagrams. Using this idea we can
asciate eab nock in each statechart with a state vedor, giving state variable values.
Some nodes may have the same state vedor but are separated by transitions that
diredly correspond to messages passed in a sequence diagram. Figure 2 gives an
overview of the process

==

context ml context m3
pre: ==false pre: x=true and y=false
post: z=true

context m2
pre: y=false

post: y=true J

O
Fig. 2. From sequencediagrams to statecharts

Messages involving an oljed, O, in a sequence diagram contribute to the behavior
of the dassto which O belongs. The statechart shown in the figure is for the dass
containing O1 based on the three sequence diagrams and the given constraints. Note
how we charaderize eah statechart node using the state vedor <a,b> wherea and b
are the values of the state variables x and y, respedively. This leads to a much more
informed merging of sequence diagrams, resulting in fewer nodes and taking into
acourt background knowledge given in OCL. The transformation itself consists of
deriving and propagating sets of state variable values using wificaion (which
sugeests loops in the statechart) and frame aioms.

3.2 Exampletwo: reverse engineering

An example of a transformation preserving behavioral corredness would be one
that made only structural changes on the behavioral model, e.g., one that introduced
hierarchy / orthogonality into a statechart. This kind of transformation would be
important to introduce readability into a model before it was passed to another
designer, or to re-engineer an existing model. Hierarchy can be introduced
automaticdly by using background knowledge available in the form of OCL
constraints. Consider the statechart in Figure 2 again. As before, the OCL constraints
can be used to charaderize the nodes by assgning a state vedor to each. If the
variables in the state vedor correspond to “modes’ of the system, then it is natural to
partition the statechart over the values of these variables. Suppose, for instance, that
variable x spedfies whether or not a macine is svitched on Then partitioning owver
the value of x gives the hierarchicd statechart in Figure 3, which corresponds to the
kind of structure adesigner might introduce

Note that a partitioning algorithm could be applied recursively to introduce
multiple layers into the statechart. In general, there shoud be heuristics built into the
transformation to ensure a “good” structure: e.g., the hierarchy should na be too
deep, minimize the number of inter-level transitions. In addition, only a subset of the
state variables will correspond to modes and so the designer should be given the
ability to expresswhich variables are mode variables.

\ x=false ¥=true
\ }@ mil /
£ f m2
: ml t.f @
m3 m2

Fig. 3. Partitioning over mode variables

3.3 Examplethree: refinement at the same abstraction level

We will also consider refinements smilar to Opdyke's refadorings [6]. For
example, Figure 3 shows the result of applying a transformation to abstradt an
attribute and a method from a dassinto a new superclass and the dfed that this has
on the arresponding statecharts. This example asumes an interpretation in which
ead classhas its own statechart describing (a subset of) the behavior of that class
Class B is refined into an inheritance hierarchy in which class A is the parent of B.
The atribute x and the method a are moved to classA. Note that the statechart for B
will remain the same (as no behavior has been added or removed), but a statechart for

A can beinferred if there are dso OCL constraints on the transitions which all ow state
vedorsto be assgned in the usual way.

B <t,t> <f, >
x: Boolean

v: Boolean e
N b
apb, g, <

(el
n S <f>
O——O

z:Boolean oo S .

B

context a
post: x=false

context b
B post: y=false

v:Boolean context ¢
post: x=true and y=true

b,a...

Fig. 4. Introducing classinheritance

4 Reated Work and Conclusions

The idea of coming up with UML behavior model transformations is not new.
Indeed, Lano & Bicaeggu [7] describes a number of examples of such
transformations. However, the particular kinds of transformations that we ae
considering are novel. First, they are not necessarily correanesspreserving. Seoond,
they include large grain transformations which do much more than make minor
modifications. It is mostly only small grain transformations that have been studied
previously. Small grain transformations alone ae not sufficient. To make any useful
change would require along sequence of such transformations. Coming up with the
right sequenceis adifficult task and can be automated by ou large grain trandations.
Moreover, most previous transformations work only on static UML models (e.g. class
diagrams).

The other novelty in our approach is the use of Maude and rewriting logic. Lano &
Bicareggu uses a red-time adion logic (RAL) and proves smple properties of the
transformations presented there. However, there ae no automated proof tools for
RAL and so all proofs had to be done manually. The use of Maude all ows proofsto be
developed automaticdly at design time, which gives much greaer flexibility than if
al proofs had to be done by hand off-line. We have developed a way of formalizing
collaborations using Objed-Z [3], but once again, there is only limited proof support
for Objed-Z.

References

1. Alemén, JL.F., Tovd, A.: Formaly Modeling and Exeauting the UML Class Diagram. In
Rodriguez, M.J., Paderewski, P. (eds)): Proc. of the V Workshop MENHIR (Models,
Environments, and Tools for Requirements Engineaing), Universidad de Granada, Spain
(March 2000).

2. Alemén, JL.F.,, Toval, A., Hoyos, JR.: Rigoroudly Transforming UML ClassDiagrams. In
Rodriguez, M.J., Paderewski, P. (eds): Proc. of the V. Workshop MENHIR (Moddls,
Environments, and Tools for Requirements Engineaing), Universidad de Granada, Spain
(March 2000).

3. Araljo, J., Moreira, A.: Spedfyingthe Behaviour of UML Coll aborations Using Objed-Z. In
Proc. of the Americas Conference on Information Systems, Long Beach, California (August
2000).

4. Booch, G., Rumbaugh, J., Jamhson, I.: The Unified Modeling Language User Guide,
Addison-Wedey, Reading, Massachusetts (1998).

5. Clavel, M., Eker, S, Lincoln, P., Meseguer, J.: Principles of Maude. In Proc. of the 1°
International Workshop on Rewriting Logic and its Applications (1996).

6. Fowler, M.: Refadoring: improving the design of existing code. Addison Wesley, Realing,
Massachusetts (1999).

7. Lano, K.C., Bicaregui, J.C.: UML Refinement and Abstradion Transformations. In ROOM
2 Workshop, Bradford University (1998).

8. Jambson, I.: Objed-Oriented Software Engineaing - a Use Case Driven Approach,
Addison-Wesley, Reading Massachusetts (1992).

9. Whittle, J., Schumann, J.: Generating Statechart Designs from Scenarios. In Proc. of
International Conference on Software Engineeaing (ICSE2000). Limerick, Ireland (2000).

