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Introduction

This work was motivated by the desire to integrate Evaluation Logic ELT (see [Mog93]) and
Synthetic Domain Theory SDT (see [Hyl91]). A first step in this direction was to consider several
computational monads over the category Cpo of predomains, and check whether they preserve
regular monos – in Cpo regular monos correspond to inductive subsets. The dominion of regular
monos (in a left exact category) is the simplest candidate for a LCF-like logic, where assertions are
Horn sequents with equalities among the atomic formulas. Although, most computational monads
over Cpo are unproblematic, there are two important exceptions:

• continuations Σ(ΣX), where Σ is the cpo classifying open subsets

• Plotkin’s powerdomain Pp(X⊥), where Pp(X) is the free binary semi-lattice over X

(similar problems arise with the other powerdomains).

Proposition 0.1 In Cpo exists a regular mono m s.t. Tm is not monic, when T is the monad
of continuations or a powerdomain.

Proof Let L ∼= (1 + L)⊥ be the domain of lazy natural numbers, whose elements are: sn(0), sn(⊥)
and ∞. The order on L is generated by sn(⊥) < sn+1(⊥), sn(0),∞ for every n ∈ N . m is the
inductive subset of maximal elements, i.e. the equaliser of s, s′: L → L, where s(sn(⊥)) = sn+1(⊥),
s(sn(0)) = s′(sn(0)) = sn+1(0) and are the identity otherwise.

To overcome these problems, we have decided to replace Cpo with the category Rep of replete
objects in some model (E , Σ) of SDT (see [Tay91]). This note establishes some basic facts about
replete objects in the category Fil of filter spaces (see [Hyl79]), namely:

• SFP ⊂ Rep, where ⊂ means full subcategory (see Theorem 2.4)

• a characterisation of the regular subobjects (in Rep) of an SFP (see Theorem 2.7)

• the following axiom is valid in Fil: m: X
¯
→ Y

¯
regular mono implies Σ(m) regular epi, provided

Y
¯

is a topological space (see Theorem 2.9).

1 Filter spaces: basic definitions facts

Basic definitions (see [Hyl79]):

• F is a filter over X iff is a non empty collections of nonempty subsets of X s.t.
U ⊆ V ⊆ X, U ∈ F ⊃ V ∈ F and U, V ∈ F ⊃ (U ∩ V ) ∈ F

• F is a filter base over X iff is a non empty collections of nonempty subsets of X s.t.
U, V ∈ F ⊃ ∃W ∈ F.W ⊆ (U ∩ V )

if F is a filter base, then [F ]
∆
= {U ⊆ X |∃V ∈ G.V ⊆ U}
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• F(X) is the collection of filters over X

• X
¯

= (X, FX) is a filter space iff FX : X → F(X),
F ⊆ G ∈ F(X), F ∈ FX(x) ⊃ G ∈ FX(x) and
[{x}] ∈ FX (x)

we write F ↓X x for [F ] ∈ FX (x)

• f : X
¯
→ Y

¯
is continuous iff f : X → Y and

F ↓X x ⊃ f(F )
∆
= {f(U)|U ∈ F} ↓Y fx

• Fil is the category of filter spaces and continuous functions.

Basic properties (see [Hyl79]):

• Fil is a quasi-topos (see [Wyl76])

• Top is a full reflective subcategory of Fil

the embedding ∆:Top ↪→ Fil maps a topological space (X, τX ) to the filter space over X s.t.

F ∈ FX(x)
∆

⇐⇒ {U ∈ τX |x ∈ U} ⊆ F

the left adjoint T to ∆ maps a filter space X
¯

to X with the induced topology O ∈ τX
∆

⇐⇒ ∀x ∈
O.∀F ∈ FX (x).O ∈ F

∆ preserves coproducts and exponentials, but it does not preserve coequalisers.

Remark 1.1 Several categories can be viewed as full subcategories of Top, e.g.: Set, PoSet,
PreOrd, Cpo (both ω-cpos and D-cpos). By abuse of notation, ∆ will denote also the embedding
into Fil of these full subcategories of Top.

Set ⊂ > PoSet ⊂ PreOrd
∩ ∩

∨ ∨
Cpo ⊂ > Top ⊂ > Fil

We say that a filter space X
¯

is a set/poset/. . . iff it is the image via ∆ of a set/poset/. . . .

Further properties:

• The forgetful functor U :Top → Set, which maps (X, τX ) to the underlying set X , is faithful
and has left and right adjoints ∆ a U a Γ that are full and faithful:

– ∆:Set ↪→ Top maps X to X with the discrete topology P(X)

– Γ:Set ↪→ Top maps X to X with the chaotic topology {∅, X}

moreover ∆ is left exact, but it does not preserve infinite products

The forgetful functor U :Fil → Set enjoys similar properties

• In Set the only non trivial dominance is 2

• in PoSet and Cpo there are two dominances: 2 classifies decidable subobjects and Σ classifies
open/closed subobjects

• in PreOrd, Top and Fil there are three dominances: 2 classifies decidable subobjects, Σ clas-
sifies open/closed subobjects and Ω classifies regular subobjects.

in Fil there are six non isomorphic filter structures over 2: 2, Σ, Σ′, Ω, Ω′ and Ω′′.
I expect that only three of them are dominances.

Proposition 1.2 For any of the embeddings ∆: C1 → C2, if Σ ∈ C1 is a dominance and X
¯
∈ C1,

then the set of Σ-subobjects of X
¯

in C1 is isomorphic (via ∆) to the set of Σ-subobjects of X
¯

in C2.
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2 Replete objects in filter spaces

In [Tay91] a model of SDT is a pair (E , Σ), where E is a topos and Σ is a dominance satisfying
certain axioms. Here we work in the setting of a quasi-topos, and we write Ω for the strong
subobjects classifier. We investigate the model (Fil, Σ), where Ω is the filter space over 2 s.t. every
filter converges to every point, while Σ is the filter space over 2 s.t. F ↓ 0 iff F is a filter over X
and F ↓ 1 iff F = [{1}].

• there is a bijection between Fil(X
¯
, Σ) and the set τX of open subsets of X

¯
, where O open in X

¯∆
⇐⇒ ∀x ∈ O.∀F ∈ FX (x).O ∈ F , given by f 7→ Of

∆
= {x ∈ X |f(x) = 1}.

F ↓ f in ΣX
¯

∆
⇐⇒

∀x.∀G ∈ FX(x).∃W ∈ F.∃U ∈ G.W (U) ⊆↑ (fx) ⇐⇒ by definition of Σ
∀x ∈ Of .∀G ∈ FX (x).∃W ∈ F.∃U ∈ G.W (U) = {1} ⇐⇒ by definition of W (U)
∀x ∈ Of .∀G ∈ FX (x).∃W ∈ F.∃U ∈ G.U ⊆ ∩{Og |g ∈ W} ⇐⇒ by G filter
∀x ∈ Of .∀G ∈ FX (x).∃W ∈ F.(∩{Og |g ∈ W}) ∈ G

• The bijection f 7→ Of is an isomorphism from ΣX
¯ to the filter space Σ(X

¯
) over τX s.t.

F ↓ O
∆

⇐⇒ ∀x ∈ O.∀G ∈ FX (x).∃W ∈ F.(∩W ) ∈ G.

• The lifting induced by Σ maps X
¯

to the filter space X
¯⊥ over X⊥ s.t. F ↓ ⊥ always and F ↓ x in

X
¯⊥

∆
⇐⇒ (F ∩ F(X)) ↓ x in X

¯
.

Proposition 2.1 If X
¯

is a preorder, i.e. F ↓ x in X
¯

iff ↑ {x} ∈ F , then F ↓ U in Σ(X
¯
) iff

∀D ⊆fin U.{V ∈ τX |D ⊆ V } ∈ F and Σ(X
¯
) is the set τX of upward closed subsets of X with

the Scott topology, whose base is given by the collection of all ↑ {↑ D}
∆
= {U ∈ τX |D ⊆ U}. with

D ⊆fin X.

Corollary 2.2 If X
¯

is a finite preorder, then Σ(X
¯
) is the finite poset (τX ,⊆), where τX is the set

of upward closed subsets of X. If X
¯

is a set, then Σ(X
¯
) is P(X) with the Scott topology, whose

base is given by the collection of all ↑ {↑ D}
∆
= {U ⊆ X |D ⊆ U} with D ⊆fin X.

From the above results, one can easily prove the following principles (see [Tay91]):

• Phoa’s principle: ΣΣ is isomorphic to {(x, y) ∈ Σ2|x ⊃ y}, moreover ΣΣ ∼= Σ⊥

• Markov’s principle: every φ ∈ Σ is ¬¬-closed, indeed ¬¬(φ) = φ for every φ ∈ Ω

• Scott’s principle: if Φ ∈ Σ(Σ(N
¯
)) and N ∈ Φ, then exists m ∈ N s.t. [0, m) ∈ Φ

the natural number object N
¯

in Fil is ∆(N)

• Σ is closed w.r.t. finite meets

• Σ is closed w.r.t. countable joints, i.e. ∃: Σ(N
¯
) → Σ is continuous, where ∃(D) = 1 iff D 6= ∅.

In [Tay91] the following facts about the category Rep of replete objects are stated:

I assume that they hold also in the setting of a quasi-topos

• Rep is a full reflective subcategory of Fil, therefore Rep has all limits and they are computed
like in Fil,

• the reflection preserves finite products, therefore Y
¯
X
¯ is replete when Y

¯
is,

• Y
¯⊥ is replete when Y

¯
is.

Proposition 2.3 Every finite poset is replete.
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Proof It is enough to prove that X
¯

is the equaliser of two continuous maps between powers of Σ.
Let f, g: Σ(∆X) → Σ(Σ(∆X))×Σ(∆X) be the monotonic maps (between finite posets) s.t.

• f(U) = 〈{V ⊆ X |∃x ∈ U.(↑ {x}) ⊆ V }, ↓ U〉

• g(U) = 〈{V ⊆ X |∀x.U ⊆ (↓ {x}) ⊃ (↑ {x}) ⊆ V }, U〉

We claim that m: X
¯

↪→ Σ(∆X) s.t. m(x) =↓ {x}
∆
= {y ∈ X |y ≤ x} is the equaliser of f and g. In

fact, m preserves and reflect the order. Moreover, U = (↓ {x}) implies f(U) = g(U) = 〈{V ⊆ X |(↑
{x}) ⊆ V }, (↓ {x})〉, and conversely f(U) = g(U) implies U = (↓ U) and U must have a maximum
element, otherwise X/U is in the first component of g(U) but not of f(U).

I don’t think a similar argument is applicable to other cpos, because the first
component of g is not continuous in general.

Theorem 2.4 (SFP are replete) Every SFP is replete.

Proof If X
¯

is SFP, then it is the limit of an ωop-chain of projections between finite posets. Since
this limits are preserved by the embedding of Cpo into Top and the embedding of Top into Fil
preserves all limits, then SFP are replete because replete objects are closed w.r.t. limits.

I guess that all constructions on SFP that are induced by constructions on finite
posets (e.g. finite products and coproducts, exponentials) are preserved by the
embedding of SFP into Fil, in particular this is true for the construction of the
Plotkin’s powerdomain (because of the results in [Tay91, TP90]).

Lemma 2.5 (Regular monos in Rep) Given Y
¯

and m:X
¯

→ Y
¯

in Rep, then m is a regular
mono in Rep iff it is the equaliser of two maps from Y

¯
to Σ(∆Z) for some set Z.

Proof Obviously, the equaliser of two maps from Y
¯

to Σ(∆Z) is regular in Rep, because Σ(∆Z)
is replete. The other direction is a consequence of the following chain of implications:

• m is the equaliser of two parallel maps into some replete object Z
¯

• m is the equaliser of two parallel maps into some power Σ(Z
¯
), because Z

¯
replete implies εZ : Z

¯
→

Σ(Σ(Z
¯
)) monic (see [Tay91]), where εZ(x) = (λf : ΣZ

¯ .fx)

• m is the equaliser of two parallel maps into some power Σ(∆Z), because Σ(iZ): Σ(Z
¯
) → Σ(∆Z)

is monic, where iZ : ∆Z → Z
¯

is the identity on the underlying set.

Remark 2.6 A similar result holds also in the category Cpo of cpos/D-cpos, namely: m: X
¯
→ Y

¯
is a regular mono in Cpo iff it is the equaliser of two maps from Y

¯
to Σ(∆Z) for some set Z. In

fact, εZ : Z
¯
→ Σ(Σ(Z

¯
)) and Σ(iZ): Σ(Z

¯
) → Σ(∆Z) are always monic. One can give even a concrete

characterisation of the regular subobjects of Y
¯

in Cpo: they are the inductive subsets of Y
¯

with
the induced order.

Theorem 2.7 (Characterisation regular subobjects of SFP) In Rep the regular subobjects
of an SFP Y

¯
are the inductive subsets on Y

¯
with the topology induced by the Scott topology on Y

¯
.

this characterisation applies to any cpo X
¯

which is in Rep

Proof Given m: X
¯
→ Y

¯
, the claim is a consequence of the following chain of equivalences:

• m is a regular mono in Rep

• m is the equaliser in Rep/Fil of two parallel maps f, g: Y
¯

→ Σ(∆Z) for some set Z, by the
previous theorem
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• m is the equaliser in Top of two parallel maps f, g: Y
¯
→ Σ(∆Z) for some set Z, because Y

¯
and

Σ(∆Z) are in Top and the embedding of Top into Fil preserves limits.

Finally, one has to prove (by analogy with the concrete characterisation of the regular subobjects
in Cpo) that given a D-cpo Y

¯
and m: X

¯
↪→ Y

¯
in Top, m is the equaliser of two maps from Y

¯
to

Σ(∆Z) for some set Z iff X
¯

is an inductive subset of Y
¯

with the topology induced by τY . In fact,
Σ(∆Z) is a D-cpo (by Corollary 2.2).

Probably Rep is not a full (reflective) subcategory of Top, although both Top
and Rep are reflective subcategories of Fil containing Σ (and closed under iso-
morphisms). In fact, Rep is the smallest one among internal full reflective subcat-
egories of Fil. In the context of cartesian closed categories, internal full reflective
subcategory means (externally speaking) that the reflection preserves products, or
equivalently that the subcategory is an exponential ideal. However, the reflection
of Fil into Top does not preserve products (see [Hyl79]).

Lemma 2.8 (Main Lemma) If m:X
¯

↪→ Y
¯

is a regular mono in Fil and Y
¯

is a topological space,
then e = Σ(m) is a regular epi in Fil.

Proof If X
¯

is a topological space, we write τX (x) for the set {U ∈ τX |x ∈ U} of neighbours of x.
We have that F ↓ x in Y

¯
⇐⇒ ∀U ∈ τY (x).U ∈ F , because Y

¯
is a topological space.

Since in Fil the regular subobjects of a topological space Y
¯

are exactly its subspaces, we can
assume that m is the inclusion X ⊆ Y , and F ↓ x in X

¯
⇐⇒ ∀U ∈ τY (x).U ∩ X ∈ F . In what

follows we use the adjunction ( )L a ( )R between τY and τX , where UL = U ∩ X , i.e. Σ(m)(U),
and VR is the biggest open set in τY s.t. (VR)L = V .
We know already that e = Σ(m) is epic, since e: τY → τX is surjective. Therefore, to prove that e
is a regular epi in Fil, it is enough to show that G ↓ V in Σ(X

¯
) implies V = e(V ′) and G = e(G′)

for some G′ ↓ V ′ in Σ(Y
¯
). More precisely, we show that for some suitable V ′, which depends on V

and G, one can take G′ = GR
∆
= [{WR|W ∈ G}], where WR

∆
= {VR|V ∈ W} ⊆ τY .

• G ↓ V in Σ(X
¯
)

∆
⇐⇒

• ∀x ∈ V.∀F ↓ x.∃W ∈ G.(∩W ) ∈ F ⇐⇒ since X
¯

is a subspace of Y
¯

• ∀x ∈ V.∃U ∈ τY (x).∃W ∈ G.UL ⊆ (∩W )

Let U : V → τY and W : V → G be choice functions s.t. ∀x ∈ V.x ∈ (Ux)L ⊆ ∩(Wx). One can

assume w.l.o.g. that Ux ⊆ VR, otherwise U may be replaced by U ′x
∆
= (Ux) ∩ VR. We now show

that V ′ ∆
= ∪{Ux|x ∈ V } ∈ τY is s.t. GR ↓ V ′ in Σ(Y

¯
) (it is immediate to show that V ′

L = V ):

• GR ↓ V ′ in Σ(Y
¯
) ⇐⇒ since Y

¯
is a topological space

• ∀y ∈ V ′.∃U ∈ τY (y).∃W ∈ GR.U ⊆ (∩W ) ⇐⇒ by definition of V ′ and GR

• ∀x ∈ V.∀y ∈ Ux.∃U ∈ τY (y).∃W ∈ G.U ⊆ (∩WR)

given x ∈ V and y ∈ Ux, U ⊆ (∩WR) is satisfied by taking U = Ux and W = Wx, because

(Ux)L ⊆ ∩Wx by definition of U : V → τY and W : V → G
Ux ⊆ ∩(Wx)R by the universal property of the adjunction ( )L a ( )R.

Theorem 2.9 (Main Theorem) if Y
¯

is a topological space and m:X
¯
→ Y

¯
is a regular mono in

Fil, then Σ(m) is a regular epi in Fil and Σ2(m) is a regular mono in Rep.

Proof Σ(m) is a regular epi in Fil (by Lemma 2.8). Since any contravariant functor of the form
FX = AX maps colimits to limits and Σ( ) maps filter spaces to replete objects, then Σ( ) maps
coequalisers in Fil to equalises in Rep.

Topological spaces are not closed under Σ2( ), but SFP are.

Corollary 2.10 Σ2( ) preserves regular subobjects (in Rep) of SFPs.
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