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Abstract. Software is increasingly embedded in a variety of physical
contexts. This imposes new requirements on tools that support the design
and analysis of systems. For instance, modeling embedded and cyber-
physical systems needs to blend discrete mathematics, which is suitable
for modeling digital components, with continuous mathematics, used for
modeling physical components. This blending of continuous and discrete
creates challenges that are absent when the discrete or the continuous
setting are considered in isolation. We consider robustness, that is, the
ability of an analysis of a model to cope with small amounts of impreci-
sion in the model. Formally, we identify analyses with monotonic maps
between complete lattices (a mathematical framework used for abstract
interpretation and static analysis) and define robustness for monotonic
maps between complete lattices of closed subsets of a metric space.
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1 Introduction

The following considerations are taken from the paper “Continuous modeling of
real-time and hybrid systems: from concepts to tools” [12] by Berhard Steffen et
al., which was published in a special section on timed and hybrid systems. They
provide the context and motivations for the issues addressed in this short paper.

1. Having served as a successful paradigm in physics and engineering for more
than 300 years, starting with the discovery of the differential calculus by
Leibniz and Newton at the end of the seventeenth century, the continuous
interpretation of time was overwhelmed by the digital revolution.

2. The key point of formal description techniques is their mathematical exact-
ness: it is unambiguous how the specified system is going to behave. Exact-
ness should, however, not be confused with precision: “the system
must respond within at least 1 and up to 20 seconds” is exact, although
one might argue that it is not precise. Exact specifications make the
amount of imprecision explicit.

3. Typically the behavior of the controlled system is given a priori, while the
controlling system still needs to be designed in a way guaranteeing a correct
overall behavior. . . . , for most embedded systems the open system approach
is insufficient as the correctness of the controlling system depends on
properties of the environment. Capturing these situations requires
modeling the environment as well.



Imprecision. In a discrete setting one can achieve absolute precision4, in a con-
tinuous setting there are two pervasive and unavoidable sources of imprecision:

1. imprecision in measurements, namely predictions based on a mathematical
model and observations on a real system can be compared only up to the
precision of instruments used for measurements on the real system, and

2. imprecision in representing continuous quantities in computer-assisted tools
for modeling and analyzing hybrid/continuous systems.

Thus, a real number x:R in mathematics, becomes x± ε in physics, with ε > 0
measurement error, in theory of computation becomes an interval [x, x] with x
and x belonging to a subset of R with exact finite representations (e.g., floating-
point or rational numbers) [14]5. However, any x:R can be approximated by
proper rational intervals [x, x] with arbitrarily small imprecision, i.e., for any
δ > 0 there are rational numbers x and x such that x < x < x and 0 < x−x < δ.

Approximability extends to continuous maps on R. First, a continuous map

f on R has a Scott continuous natural extension f(I)
M
= {f(x)|x: I} on the cpo

IR of intervals ordered by reverse inclusion. Scott continuity implies that the
imprecision of f(I) goes to 0 when the imprecision of I goes to 0. Second, f
can be replaced by a Scott continuous F mapping proper rational intervals to
proper rational intervals such that F ([x]) = [f(x)] = f([x]), thus f(I) ⊆ F (I).
When f is not continuous, one must give up something. Namely, one can find a
monotonic F on IR such that:

1. ∀x:R.F ([x]) = [f(x)], but F fails to be Scott continuous, or

2. F is Scott continuous, ∀I: IR.f(I) ⊆ F (I), but ∀x:R.F ([x]) = [f(x)] fails.

In both cases the property “F (I) converges to f(x) when I converges to x” fails.

Robustness. In [13], we introduced robustness, a property of monotonic maps
between complete lattices of (closed) subsets in metric spaces. Intuitively, ro-
bustness requires that small changes to the input I of a map F cause small
changes to its output, where the definition of small relies on the metrics. Often,
analyses can be identified with monotonic maps between complete lattices. For
instance, reachability analysis can be cast as a monotonic map F on the complete
lattice P(S) of subsets of the state space S, that takes a set I of initial states
and outputs the set R(I) of states reachable from I, thus I ⊆ R(I) = R2(I).

If S is a metric space, then one has the mathematical framework to measure
imprecision. The picture below shows the initial state s of three systems (red,
green and blue) consisting of a ball that can move (in a one-dimensional space)
under the effect of gravity. We assume that initially the speed is 0, thus from s
only s is reachable, i.e., Rr({s}) = Rg({s}) = Rb({s}) = {s}, but:

4 This does not exclude the possibility of using imprecise (aka loose) specifications.
5 Representing a real with a float, as done in traditional numerical methods, means

that the imprecision in computations is either ignored or is tracked manually.



– the red ball (top) is unstable, i.e., a small change s′ to s
means that Rr({s′}) includes some states far from s;

– the green ball (middle) is stable, i.e., a small change s′ to s
implies that all states in Rg({s′}) are close to s;

– the blue ball (bottom) is stable, if a small change s′ affects
only the position (while the speed remains 0); it is unstable,
if the speed can change (and there is no friction).

These claims on s can be recast as follows: Rg is robust at {s}, Rr is not.

Background. We assume familiarity with metric/topological spaces, the notions
of open/closed/compact subset of a space [4,10], and make limited use of Cate-
gory Theory [2,3] and Domain Theory [8]. We may write x:X for x ∈ X.

– Every metric space is a topological space whose open subsets are given by

unions of open balls B(x, δ)
M
= {y|d(x, y) < δ}.

– O(S) is the set of open subsets of a metric/topological space S, C(S) is the
set of closed subsets, and P(S) is the set of all subsets.

– P(S) is the complete lattice of all subsets of S ordered by reverse inclusion,
which is the natural information order on over-approximations (thus, sups
are given by intersections and infs by unions). Similarly, C(S) is the complete
lattice of closed subsets of S ordered by reverse inclusion (sups are given by
intersections, but only finite infs are given by unions).

Contributions. The contributions of this short paper are:

1. A definition of imprecision in the context of metric spaces (Sec 2), related to
the noise model in [7] and δ-safety in [11]. The main point is that imprecision
makes a subset S of a metric space S indistinguishable from its closure S.

2. A notion of robustness [13] (Sec 3) for monotonic maps A:C(S1) → C(S2),
the restriction to closed subsets is due to indistinguishability of S and S.

3. Results about existence of best robust approximations [13] (Sec 4).

2 Imprecision in Metric Spaces

Definition 1. Given a metric space S, with distance function d, we define:

1. B(S, δ)
M
= {y|∃x:S.d(x, y) < δ}, where S:P(S) and δ > 0. Intuitively, B(S, δ)

is the set of points in S with imprecision < δ. B(S, δ) is open, because it is the
union of open balls B(s, δ) with s:S, moreover B(B(S, δ), δ′) ⊆ B(S, δ+ δ′).

2. S:C(S) is the closure of S:P(S), i.e., the smallest C:C(S) such that S ⊆ C.
For S:P(S) and δ > 0 the following holds: S ⊆ S ⊆ B(S, δ) = B(S, δ). Thus,
in the presence of imprecision, S and S are indistinguishable.

3. Sδ
M
= B(S, δ) is the δ-fattening of S:P(S). Intuitively, Sδ is the set of points

in S with imprecision ≤ δ. In fact, B(S, δ) ⊆ Sδ ⊆ B(S, δ′) when 0 < δ < δ′.
For S:P(S) the following holds: S =

⋂
δ>0B(S, δ) =

⋂
δ>0 Sδ. Thus, the

closure S is the set of points that are in S with arbitrarily small imprecision.



We consider some examples of metric spaces motivated by applications.

Example 1 (Discrete). A set S can be viewed as a discrete metric space, i.e.,
d(s, s′) = 1 when s 6= s′. Any subset S of S is closed and open. Thus, C(S) = P(S),
and Sδ = S for δ ≤ 1. More generally, if ∀s, s′:S.s 6= s′ =⇒ δ ≤ d(s, s′), then
∀S:P(S).Sδ = S, i.e., an imprecision ≤ δ amounts to absolute precision.

Example 2 (Euclidean). Euclidean spaces Rn (and Banach spaces) are used for
modeling continuous and hybrid systems [9]. For C:C(Rn), δ-fattening has a
simpler alternative definition, namely Cδ = {y|∃x:C.d(x, y) ≤ δ}.

Example 3 (Products, sub-spaces, sums). The product S0 × S1 of two metric

spaces is the product of the underlying sets with metric d(x, y)
M
= max

i:2
di(xi, yi).

A subset S′ of S inherits the metric, thus can be considered a metric space S′.
If S′ is also closed, then C(S′) ⊆ C(S) and the δ-fattening of S:P(S′) is Sδ ∩ S′.

The sum
∐
i:I Si of an I-indexed family of metric spaces is {(i, x)|i: I ∧x:Si}

with metric d((i, x), (j, y))
M
= if i = j then di(x, y) else 1. The following hold:

P(
∐
i:I Si) ∼=

∏
i:I P(Si), i.e., a subset in the sum is a sum

∐
i:I Si of subsets.

Similarly, C(
∐
i:I Si) ∼=

∏
i:I C(Si). Moreover, (

∐
i:I Si)δ =

∐
i:I(Si)δ for δ ≤ 1.

Remark 1. Usually the state space of a hybrid automaton [1] is a (finite) sum of
closed sub-spaces of Euclidean spaces. A hybrid system on a Euclidean space S
is a pair H = (F,G) of relations on S. Equivalently, H is a subset F +G of the
metric space S2 +S2. Therefore, closure and δ-fattening are applicable to hybrid
systems on S as well as to subsets of S.

3 Analyses and Robustness

We identify analyses with arrows A: Po(X,Y ) in the category Po of complete
lattices and monotonic maps between them. The partial order ≤ allows to define
over-approximations and compare them. We consider ≤ as an information order,
thus: x0 ≤ x means that x0 is an over-approximation of x, x1 ≤ x0 means that
x1 is a bigger over-approximation than x0 (hence, less informative).

The complete lattice ⊥ < > of truth values, usually denoted Σ, is isomorphic
to P(1) with 1 being the singleton set {fail}, namely > (true) corresponds to ∅
(cannot fail), while ⊥ (false) corresponds to {fail} (may fail). Safety analyses are
arrows A: Po(X,Σ), and over-approximations may give false negatives.

Example 4. Safety analysis for transition systems on S corresponds to the arrow

Sf : Po(P(S2) × P(S) × P(S), Σ) such that Sf (R, I,B) = > M⇐⇒ R∗(I) and B
are disjoint, i.e., the set R∗(I) of states reachable from the set I of initial states
by (finitely many) R-transitions is disjoint from the set B of bad states.

Complete lattices do not have the structure to quantify imprecision. Thus, we
restrict to complete lattices of the form C(S), with S a metric space, and use
δ-fattening (Sec 2) to bound imprecision. Namely, given an over-approximation



C ′ of C:C(S), i.e., C ⊆ C ′ (or equivalently C ′ ≤ C), we say that the imprecision

of C ′ in over-approximating C is ≤ δ M⇐⇒ C ⊆ C ′ ⊆ Cδ.
For a metric space S, there is an adjunction in Po (Galois connection) be-

tween P(S) and C(S). In particular, every S:P(S) has a best over-approximation
S:C(S). In other words, C(S) is an abstract interpretation of P(S) [5].

Definition 2 (Robustness [13]). Given A: Po(C(S1),C(S2)) with S1 and S2
metric spaces, we say that:

– A is robust at C
M⇐⇒ ∀ε > 0.∃δ > 0.A(Cδ) ⊆ A(C)ε.

– A is robust
M⇐⇒ A is robust at every C.

Robustness is a trivial property of analyses in a discrete setting (Ex 1).

Proposition 1. If S1 is discrete, then every A: Po(C(S1),C(S2)) is robust.

Most analyses are not cast in the right form to ask whether they are robust, but
usually one can show that they have the right form up to isomorphisms in Po.

Example 5. We consider analyses for (topological) transition systems [6].

1. Reachability RfR: Po(P(S),P(S)) for a transition system R on S is not a map
on closed subsets, but can be replaced by the arrow C 7→ RfR(C) on C(S).
This is the canonical way to turn arrows on P(S) into arrows on C(S), but it
may fail to be idempotent. A better choice is the best idempotent arrow on
C(S) over-approximating RfR, denoted RsR and called safe reachability in

[13], i.e., RsR(C)
M
= the smallest C ′:C(S) such that C ⊆ C ′ and R(C ′) ⊆ C ′.

2. Reachability Rf : Po(P(S2) × P(S),P(S)) for transition systems on S. First,
we replace P(S2) × P(S) with the isomorphic P(S2 + S) (see Ex 3). Second,
we proceed as done for RfR. In particular, we can replace Rf with safe reach-
ability Rs: Po(C(S2)× C(S),C(S)) for closed transition systems on S.

3. Safety Sf : Po(P(S2)×P(S)×P(S), Σ) is definable in terms of reachability Rf ,

namely Sf (R, I,B)
M⇐⇒ Rf (R, I)#B, where # is the disjointness predicate.

Any replacement for Rf induces a corresponding notion of safety, e.g., safe

safety Ss: Po(C(S2)× C(S)× C(S), Σ) is Ss(R, I,B)
M⇐⇒ Rs(R, I)#B.

Remark 2. An analysis A: Po(C(S1),C(S2)) is often robust at some C:C(S1),
but it is rarely robust at every C. For instance, let RC be the diagonal relation
on C:C(R), which is a closed transition system on R, then

– RsRC
is robust, since RsRC

(I) = I for every I:C(R);
– Rs is robust at (RN, I) for every I:C(R), but
– Rs is not robust at (RR, I) when ∅ ⊂ I ⊂ R, because Rs((RR)δ, I) = R.

Time automata are a special case of hybrid automata (e.g., see [12]), and
the latter are subsumed by hybrid systems [9]. Timed transition systems are
an abstraction for all these systems. In particular, there is an abstraction map
α: Po(P(S2 + S2),P(T× S2)) from hybrid systems on (the Euclidean space) S to
timed transition systems on (the topological space) S, where T is the continuous
time line, i.e., the space of non negative reals [0,+∞).



Example 6. Reachability is not appropriate when time matters. For a timed
transition system R on S, a better analysis is evolution EfR: Po(P(S),P(T×S)),

which gives the time at which a state is reached, namely EfR(I)
M
= the smallest

E:P(T × S) such that {0} × I ⊆ E and {(t + d, s′)|(t, s):E ∧ (d, s, s′):R} ⊆ E.
By analogy with reachability, one can define Ef : Po(P(T× S2)× P(S),P(T× S))
and safe variants Es: Po(C(T×S2)×C(S),C(T×S)), and cast them in the form
required by robustness. Safe evolution can be extended to include asymptotically
reachable states Es: Po(C(T× S2)× C(S),C(T× S)), where T is [0,+∞].

4 Best Robust Approximations

Intuitively, when an analysis A: Po(C(S1),C(S2)) is robust at C, A(C) is useful
also in the presence of small amounts of imprecision. This is obvious for analyses
A: Po(C(S1), Σ), where robustness at C means A(Cδ) = A(C) when δ is small.

Definition 3. Given A: Po(C(S1),C(S2)), we say that:

– A′: Po(C(S1),C(S2)) is a robust approximation of A
M⇐⇒

A′ is robust and ∀C.A′(C) ≤ A(C).

– A�: Po(C(S1),C(S2)) is a best robust approximation of A
M⇐⇒

A� is a robust approximation of A such that A′(C) ≤ A�(C) for every robust
approximation A′ of A and C.

Every arrow has a worst robust approximation, namely the map C 7→ ⊥, where⊥
is the least element in C(S2). There are A: Po(C([0, 1]),C(R)) that do not have a
best robust approximation (see [13, Ex 4.6]). When S1 and S2 are discrete metric
spaces, every A: Po(C(S1),C(S2)) is robust, thus A� = A. We give conditions on
metric spaces implying existence of best robust approximations. The first result
applies to safety analyses and is related to the notion of robustness in [7, Def 2].

Theorem 1. If S2 is a finite metric space, then A: Po(C(S1),C(S2)) has a best

robust approximation A� given by A�(C) =
⋂
{A(Cδ)|δ > 0}.

Proof. C(S2) = P(S2) ∼= Σn is a finite complete lattice, when S2 is a finite (and
necessarily discrete) metric space with n points. Therefore, A′: Po(C(S1),C(S2))
robust at C means that there exists δ > 0 such that A′(C) = A′(Cδ).

Since {A(Cδ)|δ > 0} is a chain in a finite lattice, there exists δ > 0 such that
A(Cδ′) = A(Cδ) when δ′ < δ. Let δ(C) be the biggest element in (0,+∞] such

that A(Cδ′) = A(Cδ) when δ′ < δ < δ(C). Define A�(C)
M
= A(Cδ) for δ < δ(C),

then A� is monotonic, since A�(C) = A(Cδ) ≤ A(C ′δ) ≤ A�(C ′) when C ≤ C ′

and δ < δ(C), and A� is a robust approximation of A, since

– A�(C) = A(Cδ) ≤ A(C) when δ < δ(C), and
– A�(C) = A(Cδ) = A�(Cδ′)[= A(Cδ′)] when δ′ < δ < δ(C).

Finally, A� is the best robust approximation of A, because A′(C) = A′(Cδ) ≤
A(Cδ) = A�(C) when A′ is a robust approximation of A and δ is small. ut



H S0 s Sf Ss Sr SR

HE [0, 1]
0 [0] Sf S0 S0

0 < s ≤ 1 [s, 1] Sf Sf Sf

HD [0, 1]
0 S0 S0 S0 S0

0 < s ≤ 1 (0, s] S0 S0 S0

HT {(x, y)|0 ≤ x ≤ y ≤ 1}
(0, 1) S∗(0) Sf Sf Sf b = 0
(0, 1) S∗(b) Sf ] S(0) Ss Ss 0 < b < 1
(0, 1) S(1) Sf Sf S0 b = 1

For HE and HD we take H0 = (F0, G0) with F0 = [0, 1]× [−1, 1] and G0 = [0, 1]2.
For HT = (F,G) we take H0 = (F ,G0) with G0 = {(y, y)|y: [0, 1]} × {(0, y)|y: [0, 1]},
and we use the notation S(b)

M
= [0, b]× [b] and S∗(b)

M
= ∪nS(bn) for subsets of S0.

The differences in the approximations of the reachable states are highlighted in bold.
Table 1. Safe and robust over-approximations of the set of reachable states.

Theorem 2. If S1 and S2 are compact metric spaces, then A: Po(C(S1),C(S2))

has a best robust approximation A� given by A�(C) =
⋂
{A(Cδ)|δ > 0}.

Proof. We refer to [13] for details of the proof. The key points are:

– if S is a compact metric space, then C(S) is a continuous lattice;
– if S1 and S2 are compact metric spaces, then a map A′: Po(C(S1),C(S2)) is

robust exactly when it is Scott continuous. ut

5 Examples

We conclude by comparing different reachability analyses for three deterministic
hybrid systems H [9]:

HE a quantity x grows according to ODE ẋ = x when 0 ≤ x < 1, and stays
constant when it reaches the threshold 1, i.e., ẋ = 0 when x = 1.

HD a quantity x decreases according to ODE ẋ = −x when 0 < x ≤ 1, and it is
instantaneously reset to 1 when it is 0, i.e., x+ = 1 when x = 0.

HT a timer x grows while the timeout y stays constant, i.e., ẋ = 1&ẏ = 0 when
0 ≤ x < y ≤ 1, when x reaches y it is reset and the timeout updated, i.e.,
x+ = 0&y+ = by when 0 < x = y ≤ 1 (with b constant in the interval [0, 1]),
moreover x+ = 0&y+ = 1 when 0 = x = y ≤ 1, i.e., y is reset to 1.

Table 1 gives for each H above (and initial state s) the following sets:

– Sf
M
= RfH(s) set of states reachable (from s) in finitely many transitions, Sf

is always a subset of the set S of the states reachable in finite time;

– Ss
M
= RsH(s) superset of S computed by safe reachability;

– Sr
M
= Rs�H(s) superset of Ss robust w.r.t. over-approximations of s;

– SR
M
= Rs�(H, s) superset of Ss robust w.r.t. over-approximations of H & s.



Note that Sr depends on a compact subset S0 (over-approximating s and the
support of H), and SR depends also on a compact hybrid system H0 (with
support S0 and over-approximating H). In particular, H0 constrains the over-
approximations of H. The inclusions [s ∈]Sf [⊆ S] ⊆ Ss ⊆ Sr ⊆ SR[⊆ S0] hold
always. We explain why some of these inclusions are strict.

– H = HE & s = 0: Sf = S = Ss ⊂ Sr, because any small positive change to
s causes the quantity to grow and eventually reach the threshold.

– H = HD & s > 0: Sf = S ⊂ Ss, because safe reachability includes 0, which
is reachable only asymptotically (not in finite time), and any state in RfH(0).

– H = HT & s = (0, 1) & 0 < b < 1: Sf ⊂ S = Ss, because the system has a
Zeno behaviour, namely the state x = y = 0 is reachable from x = y = 1 in
time b/(1−b), but it requires infinitely many updates to the timeout y. Thus
Sf computes an under-approximation of what is reachable in finite time.

– H = HT & s = (0, 1) & b = 1: Sf = S = Sr ⊂ SR, because the imprecision
in Hδ means that y can be updated with any value y+ in [max(0, y − δ), y]
when 0 < x = y ≤ 1. Therefore, x = y = 0 is reachable in O(δ−1) transitions.
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