
SQL*Loader Concepts 6-1

6
SQL*Loader Concepts

This chapter explains the basic concepts of loading data into an Oracle database
with SQL*Loader. This chapter covers the following topics:

■ SQL*Loader Features

■ SQL*Loader Parameters

■ SQL*Loader Control File

■ Input Data and Datafiles

■ LOBFILEs and Secondary Datafiles (SDFs)

■ Data Conversion and Datatype Specification

■ Discarded and Rejected Records

■ Log File and Logging Information

■ Conventional Path Loads, Direct Path Loads, and External Table Loads

■ Loading Objects, Collections, and LOBs

■ Partitioned Object Support

■ Application Development: Direct Path Load API

SQL*Loader Features
SQL*Loader loads data from external files into tables of an Oracle database. It has a
powerful data parsing engine that puts little limitation on the format of the data in
the datafile. You can use SQL*Loader to do the following:

■ Load data across a network. This means that you can run the SQL*Loader client
on a different system from the one that is running the SQL*Loader server.

SQL*Loader Features

6-2 Oracle Database Utilities

■ Load data from multiple datafiles during the same load session.

■ Load data into multiple tables during the same load session.

■ Specify the character set of the data.

■ Selectively load data (you can load records based on the records' values).

■ Manipulate the data before loading it, using SQL functions.

■ Generate unique sequential key values in specified columns.

■ Use the operating system's file system to access the datafiles.

■ Load data from disk, tape, or named pipe.

■ Generate sophisticated error reports, which greatly aid troubleshooting.

■ Load arbitrarily complex object-relational data.

■ Use secondary datafiles for loading LOBs and collections.

■ Use either conventional or direct path loading. While conventional path loading
is very flexible, direct path loading provides superior loading performance. See
Chapter 11.

A typical SQL*Loader session takes as input a control file, which controls the
behavior of SQL*Loader, and one or more datafiles. The output of SQL*Loader is an
Oracle database (where the data is loaded), a log file, a bad file, and potentially, a
discard file. An example of the flow of a SQL*Loader session is shown in Figure 6–1.

SQL*Loader Parameters

SQL*Loader Concepts 6-3

Figure 6–1 SQL*Loader Overview

SQL*Loader Parameters
SQL*Loader is invoked when you specify the sqlldr command and, optionally,
parameters that establish session characteristics.

In situations where you always use the same parameters for which the values
seldom change, it can be more efficient to specify parameters using the following
methods, rather than on the command line:

■ Parameters can be grouped together in a parameter file. You could then specify
the name of the parameter file on the command line using the PARFILE
parameter.

■ Certain parameters can also be specified within the SQL*Loader control file by
using the OPTIONS clause.

Parameters specified on the command line override any parameter values specified
in a parameter file or OPTIONS clause.

Discard
Files

Bad
Files

Database

SQL*Loader

Loader
Control

File

Bad
Files

Log
File

Discard
Files

Bad
FilesInput

Datafiles

TableTableIndexes
TableTableTables

SQL*Loader Control File

6-4 Oracle Database Utilities

SQL*Loader Control File
The control file is a text file written in a language that SQL*Loader understands.
The control file tells SQL*Loader where to find the data, how to parse and interpret
the data, where to insert the data, and more.

Although not precisely defined, a control file can be said to have three sections.

The first section contains sessionwide information, for example:

■ Global options such as bindsize, rows, records to skip, and so on

■ INFILE clauses to specify where the input data is located

■ Data to be loaded

The second section consists of one or more INTO TABLE blocks. Each of these
blocks contains information about the table into which the data is to be loaded, such
as the table name and the columns of the table.

The third section is optional and, if present, contains input data.

Some control file syntax considerations to keep in mind are:

■ The syntax is free-format (statements can extend over multiple lines).

■ It is case insensitive; however, strings enclosed in single or double quotation
marks are taken literally, including case.

■ In control file syntax, comments extend from the two hyphens (--) that mark the
beginning of the comment to the end of the line. The optional third section of
the control file is interpreted as data rather than as control file syntax;
consequently, comments in this section are not supported.

■ The keywords CONSTANT and ZONE have special meaning to SQL*Loader and
are therefore reserved. To avoid potential conflicts, Oracle recommends that you
do not use either CONSTANT or ZONE as a name for any tables or columns.

See Also:

■ Chapter 7 for descriptions of the SQL*Loader parameters

■ PARFILE (parameter file) on page 7-10

■ OPTIONS Clause on page 8-4

See Also: Chapter 8 for details about control file syntax and
semantics

Input Data and Datafiles

SQL*Loader Concepts 6-5

Input Data and Datafiles
SQL*Loader reads data from one or more files (or operating system equivalents of
files) specified in the control file. From SQL*Loader's perspective, the data in the
datafile is organized as records. A particular datafile can be in fixed record format,
variable record format, or stream record format. The record format can be specified
in the control file with the INFILE parameter. If no record format is specified, the
default is stream record format.

Fixed Record Format
A file is in fixed record format when all records in a datafile are the same byte
length. Although this format is the least flexible, it results in better performance
than variable or stream format. Fixed format is also simple to specify. For example:

INFILE datafile_name "fix n"

This example specifies that SQL*Loader should interpret the particular datafile as
being in fixed record format where every record is n bytes long.

Example 6–1 shows a control file that specifies a datafile that should be interpreted
in the fixed record format. The datafile in the example contains five physical
records. Assuming that a period (.) indicates a space, the first physical record is
[001,...cd,.] which is exactly eleven bytes (assuming a single-byte character set). The
second record is [0002,fghi,\n] followed by the newline character (which is the
eleventh byte), and so on. Note that newline characters are not required with the
fixed record format.

Note that the length is always interpreted in bytes, even if character-length
semantics are in effect for the file. This is necessary because the file could contain a
mix of fields, some of which are processed with character-length semantics and
others which are processed with byte-length semantics. See Character-Length
Semantics on page 8-23.

Example 6–1 Loading Data in Fixed Record Format

load data
infile 'example.dat' "fix 11"
into table example

Note: If data is specified inside the control file (that is, INFILE *
was specified in the control file), then the data is interpreted in the
stream record format with the default record terminator.

Input Data and Datafiles

6-6 Oracle Database Utilities

fields terminated by ',' optionally enclosed by '"'
(col1, col2)

example.dat:
001, cd, 0002,fghi,
00003,lmn,
1, "pqrs",
0005,uvwx,

Variable Record Format
A file is in variable record format when the length of each record in a character field
is included at the beginning of each record in the datafile. This format provides
some added flexibility over the fixed record format and a performance advantage
over the stream record format. For example, you can specify a datafile that is to be
interpreted as being in variable record format as follows:

INFILE "datafile_name" "var n"

In this example, n specifies the number of bytes in the record length field. If n is not
specified, SQL*Loader assumes a length of 5 bytes. Specifying n larger than 40 will
result in an error.

Example 6–2 shows a control file specification that tells SQL*Loader to look for data
in the datafile example.dat and to expect variable record format where the record
length fields are 3 bytes long. The example.dat datafile consists of three physical
records. The first is specified to be 009 (that is, 9) bytes long, the second is 010 bytes
long (that is, 10, including a 1-byte newline), and the third is 012 bytes long (also
including a 1-byte newline). Note that newline characters are not required with the
variable record format. This example also assumes a single-byte character set for the
datafile.

The lengths are always interpreted in bytes, even if character-length semantics are
in effect for the file. This is necessary because the file could contain a mix of fields,
some processed with character-length semantics and others processed with
byte-length semantics. See Character-Length Semantics on page 8-23.

Example 6–2 Loading Data in Variable Record Format

load data
infile 'example.dat' "var 3"
into table example
fields terminated by ',' optionally enclosed by '"'
(col1 char(5),

Input Data and Datafiles

SQL*Loader Concepts 6-7

 col2 char(7))

example.dat:
009hello,cd,010world,im,
012my,name is,

Stream Record Format
A file is in stream record format when the records are not specified by size; instead
SQL*Loader forms records by scanning for the record terminator. Stream record
format is the most flexible format, but there can be a negative effect on performance.
The specification of a datafile to be interpreted as being in stream record format
looks similar to the following:

INFILE datafile_name ["str terminator_string"]

The terminator_string is specified as either 'char_string' or X'hex_
string' where:

■ 'char_string' is a string of characters enclosed in single or double quotation
marks

■ X'hex_string' is a byte string in hexadecimal format

When the terminator_string contains special (nonprintable) characters, it
should be specified as a X'hex_string'. However, some nonprintable characters
can be specified as ('char_string') by using a backslash. For example:

■ \n indicates a line feed

■ \t indicates a horizontal tab

■ \f indicates a form feed

■ \v indicates a vertical tab

■ \r indicates a carriage return

If the character set specified with the NLS_LANG parameter for your session is
different from the character set of the datafile, character strings are converted to the
character set of the datafile. This is done before SQL*Loader checks for the default
record terminator.

Hexadecimal strings are assumed to be in the character set of the datafile, so no
conversion is performed.

On UNIX-based platforms, if no terminator_string is specified, SQL*Loader
defaults to the line feed character, \n.

Input Data and Datafiles

6-8 Oracle Database Utilities

On Windows NT, if no terminator_string is specified, then SQL*Loader uses
either \n or \r\n as the record terminator, depending on which one it finds first in
the datafile. This means that if you know that one or more records in your datafile
has \n embedded in a field, but you want \r\n to be used as the record terminator,
you must specify it.

Example 6–3 illustrates loading data in stream record format where the terminator
string is specified using a character string, '|\n'. The use of the backslash
character allows the character string to specify the nonprintable line feed character.

Example 6–3 Loading Data in Stream Record Format

load data
infile 'example.dat' "str '|\n'"
into table example
fields terminated by ',' optionally enclosed by '"'
(col1 char(5),
 col2 char(7))

example.dat:
hello,world,|
james,bond,|

Logical Records
SQL*Loader organizes the input data into physical records, according to the
specified record format. By default a physical record is a logical record, but for
added flexibility, SQL*Loader can be instructed to combine a number of physical
records into a logical record.

SQL*Loader can be instructed to follow one of the following logical record-forming
strategies:

■ Combine a fixed number of physical records to form each logical record.

■ Combine physical records into logical records while a certain condition is true.

See Also:

■ Assembling Logical Records from Physical Records on
page 8-27

■ Case Study 4: Loading Combined Physical Records on
page 12-14 for an example of how to use continuation fields to
form one logical record from multiple physical records

LOBFILEs and Secondary Datafiles (SDFs)

SQL*Loader Concepts 6-9

Data Fields
Once a logical record is formed, field setting on the logical record is done. Field
setting is a process in which SQL*Loader uses control-file field specifications to
determine which parts of logical record data correspond to which control-file fields.
It is possible for two or more field specifications to claim the same data. Also, it is
possible for a logical record to contain data that is not claimed by any control-file
field specification.

Most control-file field specifications claim a particular part of the logical record.
This mapping takes the following forms:

■ The byte position of the data field's beginning, end, or both, can be specified.
This specification form is not the most flexible, but it provides high field-setting
performance.

■ The strings delimiting (enclosing and/or terminating) a particular data field can
be specified. A delimited data field is assumed to start where the last data field
ended, unless the byte position of the start of the data field is specified.

■ The byte offset and/or the length of the data field can be specified. This way
each field starts a specified number of bytes from where the last one ended and
continues for a specified length.

■ Length-value datatypes can be used. In this case, the first n number of bytes of
the data field contain information about how long the rest of the data field is.

LOBFILEs and Secondary Datafiles (SDFs)
LOB data can be lengthy enough that it makes sense to load it from a LOBFILE. In
LOBFILEs, LOB data instances are still considered to be in fields (predetermined
size, delimited, length-value), but these fields are not organized into records (the
concept of a record does not exist within LOBFILEs). Therefore, the processing
overhead of dealing with records is avoided. This type of organization of data is
ideal for LOB loading.

For example, you might use LOBFILEs to load employee names, employee IDs, and
employee resumes. You could read the employee names and IDs from the main
datafiles and you could read the resumes, which can be quite lengthy, from
LOBFILEs.

See Also:

■ Specifying the Position of a Data Field on page 9-3

■ Specifying Delimiters on page 9-25

Data Conversion and Datatype Specification

6-10 Oracle Database Utilities

You might also use LOBFILEs to facilitate the loading of XML data. You can use XML
columns to hold data that models structured and semistructured data. Such data
can be quite lengthy.

Secondary datafiles (SDFs) are similar in concept to primary datafiles. Like primary
datafiles, SDFs are a collection of records, and each record is made up of fields. The
SDFs are specified on a per control-file-field basis. Only a collection_fld_spec
can name an SDF as its data source.

SDFs are specified using the SDF parameter. The SDF parameter can be followed by
either the file specification string, or a FILLER field that is mapped to a data field
containing one or more file specification strings.

Data Conversion and Datatype Specification
During a conventional path load, data fields in the datafile are converted into
columns in the database (direct path loads are conceptually similar, but the
implementation is different). There are two conversion steps:

1. SQL*Loader uses the field specifications in the control file to interpret the
format of the datafile, parse the input data, and populate the bind arrays that
correspond to a SQL INSERT statement using that data.

2. The Oracle database accepts the data and executes the INSERT statement to
store the data in the database.

The Oracle database uses the datatype of the column to convert the data into its
final, stored form. Keep in mind the distinction between a field in a datafile and a
column in the database. Remember also that the field datatypes defined in a
SQL*Loader control file are not the same as the column datatypes.

Discarded and Rejected Records
Records read from the input file might not be inserted into the database. Such
records are placed in either a bad file or a discard file.

See Also:

■ Loading LOB Data from LOBFILEs on page 10-22

■ Secondary Datafiles (SDFs) on page 10-32

Discarded and Rejected Records

SQL*Loader Concepts 6-11

The Bad File
The bad file contains records that were rejected, either by SQL*Loader or by the
Oracle database. Some of the possible reasons for rejection are discussed in the next
sections.

SQL*Loader Rejects
Datafile records are rejected by SQL*Loader when the input format is invalid. For
example, if the second enclosure delimiter is missing, or if a delimited field exceeds
its maximum length, SQL*Loader rejects the record. Rejected records are placed in
the bad file.

Oracle Database Rejects
After a datafile record is accepted for processing by SQL*Loader, it is sent to the
Oracle database for insertion into a table as a row. If the Oracle database determines
that the row is valid, then the row is inserted into the table. If the row is determined
to be invalid, then the record is rejected and SQL*Loader puts it in the bad file. The
row may be invalid, for example, because a key is not unique, because a required
field is null, or because the field contains invalid data for the Oracle datatype.

The Discard File
As SQL*Loader executes, it may create a file called the discard file. This file is
created only when it is needed, and only if you have specified that a discard file
should be enabled. The discard file contains records that were filtered out of the
load because they did not match any record-selection criteria specified in the control
file.

The discard file therefore contains records that were not inserted into any table in
the database. You can specify the maximum number of such records that the discard
file can accept. Data written to any database table is not written to the discard file.

See Also:

■ Specifying the Bad File on page 8-12

■ Case Study 4: Loading Combined Physical Records on
page 12-14 for an example use of a bad file

Log File and Logging Information

6-12 Oracle Database Utilities

Log File and Logging Information
When SQL*Loader begins execution, it creates a log file. If it cannot create a log file,
execution terminates. The log file contains a detailed summary of the load,
including a description of any errors that occurred during the load.

Conventional Path Loads, Direct Path Loads, and External Table Loads
SQL*Loader provides the following methods to load data:

■ Conventional Path Loads

■ Direct Path Loads

■ External Table Loads

Conventional Path Loads
During conventional path loads, the input records are parsed according to the field
specifications, and each data field is copied to its corresponding bind array. When
the bind array is full (or no more data is left to read), an array insert is executed.

SQL*Loader stores LOB fields after a bind array insert is done. Thus, if there are any
errors in processing the LOB field (for example, the LOBFILE could not be found),
the LOB field is left empty. Note also that because LOB data is loaded after the array
insert has been performed, BEFORE and AFTER row triggers may not work as
expected for LOB columns. This is because the triggers fire before SQL*Loader has a
chance to load the LOB contents into the column. For instance, suppose you are

See Also:

■ Case Study 4: Loading Combined Physical Records on
page 12-14

■ Specifying the Discard File on page 8-14

See Also: Chapter 12, "SQL*Loader Case Studies" for sample log
files

See Also:

■ Data Loading Methods on page 11-1

■ Bind Arrays and Conventional Path Loads on page 8-45

Conventional Path Loads, Direct Path Loads, and External Table Loads

SQL*Loader Concepts 6-13

loading a LOB column, C1, with data and that you want a BEFORE row trigger to
examine the contents of this LOB column and derive a value to be loaded for some
other column, C2, based on its examination. This is not possible because the LOB
contents will not have been loaded at the time the trigger fires.

Direct Path Loads
A direct path load parses the input records according to the field specifications,
converts the input field data to the column datatype, and builds a column array.
The column array is passed to a block formatter, which creates data blocks in Oracle
database block format. The newly formatted database blocks are written directly to
the database, bypassing much of the data processing that normally takes place.
Direct path load is much faster than conventional path load, but entails several
restrictions.

Parallel Direct Path
A parallel direct path load allows multiple direct path load sessions to concurrently
load the same data segments (allows intrasegment parallelism). Parallel direct path
is more restrictive than direct path.

External Table Loads
An external table load creates an external table for data in a datafile and executes
INSERT statements to insert the data from the datafile into the target table.

The advantages of using external table loads over conventional path and direct path
loads are as follows:

■ An external table load attempts to load datafiles in parallel. If a datafile is big
enough, it will attempt to load that file in parallel.

■ An external table load allows modification of the data being loaded by using
SQL functions and PL/SQL functions as part of the INSERT statement that is
used to create the external table.

See Also: Direct Path Load on page 11-5

See Also: Parallel Data Loading Models on page 11-31

See Also:

■ Chapter 13, "External Tables Concepts"

■ Chapter 14, "The ORACLE_LOADER Access Driver"

Loading Objects, Collections, and LOBs

6-14 Oracle Database Utilities

Choosing External Tables Versus SQL*Loader
The record parsing of external tables and SQL*Loader is very similar, so normally
there is not a major performance difference for the same record format. However,
due to the different architecture of external tables and SQL*Loader, there are
situations in which one method is more appropriate than the other.

In the following situations, use external tables for the best load performance:

■ You want to transform the data as it is being loaded into the database.

■ You want to use transparent parallel processing without having to split the
external data first.

However, in the following situations, use SQL*Loader for the best load
performance:

■ You want to load data remotely.

■ Transformations are not required on the data, and the data does not need to be
loaded in parallel.

Loading Objects, Collections, and LOBs
You can use SQL*Loader to bulk load objects, collections, and LOBs. It is assumed
that you are familiar with the concept of objects and with Oracle's implementation
of object support as described in Oracle Database Concepts and in the Oracle Database
Administrator's Guide.

Supported Object Types
SQL*Loader supports loading of the following two object types:

column objects
When a column of a table is of some object type, the objects in that column are
referred to as column objects. Conceptually such objects are stored in their entirety
in a single column position in a row. These objects do not have object identifiers and
cannot be referenced.

If the object type of the column object is declared to be nonfinal, then SQL*Loader
allows a derived type (or subtype) to be loaded into the column object.

Loading Objects, Collections, and LOBs

SQL*Loader Concepts 6-15

row objects
These objects are stored in tables, known as object tables, that have columns
corresponding to the attributes of the object. The object tables have an additional
system-generated column, called SYS_NC_OID$, that stores system-generated
unique identifiers (OIDs) for each of the objects in the table. Columns in other tables
can refer to these objects by using the OIDs.

If the object type of the object table is declared to be nonfinal, then SQL*Loader
allows a derived type (or subtype) to be loaded into the row object.

Supported Collection Types
SQL*Loader supports loading of the following two collection types:

Nested Tables
A nested table is a table that appears as a column in another table. All operations
that can be performed on other tables can also be performed on nested tables.

VARRAYs
VARRAYs are variable sized arrays. An array is an ordered set of built-in types or
objects, called elements. Each array element is of the same type and has an index,
which is a number corresponding to the element's position in the VARRAY.

When creating a VARRAY type, you must specify the maximum size. Once you have
declared a VARRAY type, it can be used as the datatype of a column of a relational
table, as an object type attribute, or as a PL/SQL variable.

Supported LOB Types
A LOB is a large object type. This release of SQL*Loader supports loading of four
LOB types:

■ BLOB: a LOB containing unstructured binary data

See Also:

■ Loading Column Objects on page 10-1

■ Loading Object Tables on page 10-12

See Also: Loading Collections (Nested Tables and VARRAYs) on
page 10-29 for details on using SQL*Loader control file data
definition language to load these collection types

Partitioned Object Support

6-16 Oracle Database Utilities

■ CLOB: a LOB containing character data

■ NCLOB: a LOB containing characters in a database national character set

■ BFILE: a BLOB stored outside of the database tablespaces in a server-side
operating system file

LOBs can be column datatypes, and with the exception of the NCLOB, they can be
an object's attribute datatypes. LOBs can have an actual value, they can be null,or
they can be "empty."

Partitioned Object Support
SQL*Loader supports loading partitioned objects in the database. A partitioned
object in an Oracle database is a table or index consisting of partitions (pieces) that
have been grouped, typically by common logical attributes. For example, sales data
for the year 2000 might be partitioned by month. The data for each month is stored
in a separate partition of the sales table. Each partition is stored in a separate
segment of the database and can have different physical attributes.

SQL*Loader partitioned object support enables SQL*Loader to load the following:

■ A single partition of a partitioned table

■ All partitions of a partitioned table

■ A nonpartitioned table

Application Development: Direct Path Load API
Oracle provides a direct path load API for application developers. See the Oracle
Call Interface Programmer's Guide for more information.

See Also: Loading LOBs on page 10-18 for details on using
SQL*Loader control file data definition language to load these LOB
types

	Contents
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	What's New in Database Utilities?
	New Features in Oracle Database 10g

	Part I� Oracle Data Pump
	1 Overview of Oracle Data Pump
	Data Pump Components
	What New Features Do Data Pump Export and Import Provide?
	How Does Data Pump Access Data?
	Direct Path Loads and Unloads
	External Tables

	Accessing Data Over a Network
	What Happens During Execution of a Data Pump Job?
	Coordination of a Job
	Tracking Progress Within a Job
	Filtering Data During a Job
	Transforming Metadata During a Job
	Maximizing Job Performance
	Loading and Unloading of Data

	Monitoring Job Status
	The DBA_DATAPUMP_JOBS and USER_DATAPUMP_JOBS Views
	The DBA_DATAPUMP_SESSIONS View
	Monitoring the Progress of Executing Jobs

	File Allocation
	Specifying Files and Adding Additional Dump Files
	Default Locations for Dump, Log, and SQL Files
	Using Directory Objects When Automatic Storage Management Is Enabled

	Setting Parallelism
	Using Substitution Variables

	Original Export and Import Versus Data Pump Export and Import

	2 Data Pump Export
	What Is Data Pump Export?
	Invoking Data Pump Export
	Data Pump Export Interfaces
	Data Pump Export Modes
	Full Export Mode
	Schema Mode
	Table Mode
	Tablespace Mode
	Transportable Tablespace Mode

	Network Considerations

	Filtering During Export Operations
	Data Filters
	Metadata Filters

	Parameters Available in Export's Command-Line Mode
	ATTACH
	CONTENT
	DIRECTORY
	DUMPFILE
	ESTIMATE
	ESTIMATE_ONLY
	EXCLUDE
	FILESIZE
	FLASHBACK_SCN
	FLASHBACK_TIME
	FULL
	HELP
	INCLUDE
	JOB_NAME
	LOGFILE
	NETWORK_LINK
	NOLOGFILE
	PARALLEL
	PARFILE
	QUERY
	SCHEMAS
	STATUS
	TABLES
	TABLESPACES
	TRANSPORT_FULL_CHECK
	TRANSPORT_TABLESPACES
	VERSION

	How Data Pump Export Parameters Map to Those of the Original Export Utility
	Commands Available in Export's Interactive-Command Mode
	ADD_FILE
	CONTINUE_CLIENT
	EXIT_CLIENT
	HELP
	KILL_JOB
	PARALLEL
	START_JOB
	STATUS
	STOP_JOB

	Examples of Using Data Pump Export
	Performing a Table-Mode Export
	Data-Only Unload of Selected Tables and Rows
	Estimating Disk Space Needed in a Table-Mode Export
	Performing a Schema-Mode Export
	Performing a Parallel Full Database Export
	Using Interactive Mode to Stop and Reattach to a Job

	Syntax Diagrams for Data Pump Export

	3 Data Pump Import
	What Is Data Pump Import?
	Invoking Data Pump Import
	Data Pump Import Interfaces
	Data Pump Import Modes
	Full Import Mode
	Schema Mode
	Table Mode
	Tablespace Mode
	Transportable Tablespace Mode

	Network Considerations

	Filtering During Import Operations
	Data Filters
	Metadata Filters

	Parameters Available in Import's Command-Line Mode
	ATTACH
	CONTENT
	DIRECTORY
	DUMPFILE
	ESTIMATE
	EXCLUDE
	FLASHBACK_SCN
	FLASHBACK_TIME
	FULL
	HELP
	INCLUDE
	JOB_NAME
	LOGFILE
	NETWORK_LINK
	NOLOGFILE
	PARALLEL
	PARFILE
	QUERY
	REMAP_DATAFILE
	REMAP_SCHEMA
	REMAP_TABLESPACE
	REUSE_DATAFILES
	SCHEMAS
	SKIP_UNUSABLE_INDEXES
	SQLFILE
	STATUS
	STREAMS_CONFIGURATION
	TABLE_EXISTS_ACTION
	TABLES
	TABLESPACES
	TRANSFORM
	TRANSPORT_DATAFILES
	TRANSPORT_FULL_CHECK
	TRANSPORT_TABLESPACES
	VERSION

	How Data Pump Import Parameters Map to Those of the Original Import Utility
	Commands Available in Import's Interactive-Command Mode
	CONTINUE_CLIENT
	EXIT_CLIENT
	HELP
	KILL_JOB
	PARALLEL
	START_JOB
	STATUS
	STOP_JOB

	Examples of Using Data Pump Import
	Performing a Data-Only Table-Mode Import
	Performing a Schema-Mode Import
	Performing a Network-Mode Import

	Syntax Diagrams for Data Pump Import

	4 Data Pump Performance
	Data Performance Improvements for Data Pump Export and Import
	Tuning Performance
	Controlling Resource Consumption

	Initialization Parameters That Affect Data Pump Performance

	5 The Data Pump API
	How Does the Client Interface to the Data Pump API Work?
	Job States

	What Are the Basic Steps in Using the Data Pump API?
	Examples of Using the Data Pump API

	Part II� SQL*Loader
	6 SQL*Loader Concepts
	SQL*Loader Features
	SQL*Loader Parameters
	SQL*Loader Control File
	Input Data and Datafiles
	Fixed Record Format
	Variable Record Format
	Stream Record Format
	Logical Records
	Data Fields

	LOBFILEs and Secondary Datafiles (SDFs)
	Data Conversion and Datatype Specification
	Discarded and Rejected Records
	The Bad File
	SQL*Loader Rejects
	Oracle Database Rejects

	The Discard File

	Log File and Logging Information
	Conventional Path Loads, Direct Path Loads, and External Table Loads
	Conventional Path Loads
	Direct Path Loads
	Parallel Direct Path

	External Table Loads
	Choosing External Tables Versus SQL*Loader

	Loading Objects, Collections, and LOBs
	Supported Object Types
	column objects
	row objects

	Supported Collection Types
	Nested Tables
	VARRAYs

	Supported LOB Types

	Partitioned Object Support
	Application Development: Direct Path Load API

	7 SQL*Loader Command-Line Reference
	Invoking SQL*Loader
	Alternative Ways to Specify Parameters

	Command-Line Parameters
	BAD (bad file)
	BINDSIZE (maximum size)
	COLUMNARRAYROWS
	CONTROL (control file)
	DATA (datafile)
	DATE_CACHE
	DIRECT (data path)
	DISCARD (filename)
	DISCARDMAX (integer)
	ERRORS (errors to allow)
	EXTERNAL_TABLE
	Restrictions When Using EXTERNAL_TABLE

	FILE (file to load into)
	LOAD (records to load)
	LOG (log file)
	MULTITHREADING
	PARALLEL (parallel load)
	PARFILE (parameter file)
	READSIZE (read buffer size)
	RESUMABLE
	RESUMABLE_NAME
	RESUMABLE_TIMEOUT
	ROWS (rows per commit)
	SILENT (feedback mode)
	SKIP (records to skip)
	SKIP_INDEX_MAINTENANCE
	SKIP_UNUSABLE_INDEXES
	STREAMSIZE
	USERID (username/password)

	Exit Codes for Inspection and Display

	8 SQL*Loader Control File Reference
	Control File Contents
	Comments in the Control File

	Specifying Command-Line Parameters in the Control File
	OPTIONS Clause

	Specifying Filenames and Object Names
	Filenames That Conflict with SQL and SQL*Loader Reserved Words
	Specifying SQL Strings
	Operating System Considerations
	Specifying a Complete Path
	Backslash Escape Character
	Nonportable Strings
	Using the Backslash as an Escape Character
	Escape Character Is Sometimes Disallowed

	Identifying XML Type Tables
	Specifying Datafiles
	Examples of INFILE Syntax
	Specifying Multiple Datafiles

	Identifying Data in the Control File with BEGINDATA
	Specifying Datafile Format and Buffering
	Specifying the Bad File
	Examples of Specifying a Bad File Name
	How Bad Files Are Handled with LOBFILEs and SDFs
	Criteria for Rejected Records

	Specifying the Discard File
	Specifying the Discard File in the Control File
	Specifying the Discard File from the Command Line
	Examples of Specifying a Discard File Name
	Criteria for Discarded Records
	How Discard Files Are Handled with LOBFILEs and SDFs
	Limiting the Number of Discarded Records

	Handling Different Character Encoding Schemes
	Multibyte (Asian) Character Sets
	Unicode Character Sets
	Database Character Sets
	Datafile Character Sets
	Input Character Conversion
	Considerations When Loading Data into VARRAYs or Primary-Key-Based REFs
	CHARACTERSET Parameter
	Control File Character Set
	Character-Length Semantics

	Interrupted Loads
	Discontinued Conventional Path Loads
	Discontinued Direct Path Loads
	Load Discontinued Because of Space Errors
	Load Discontinued Because Maximum Number of Errors Exceeded
	Load Discontinued Because of Fatal Errors
	Load Discontinued Because a Ctrl+C Was Issued

	Status of Tables and Indexes After an Interrupted Load
	Using the Log File to Determine Load Status
	Continuing Single-Table Loads

	Assembling Logical Records from Physical Records
	Using CONCATENATE to Assemble Logical Records
	Using CONTINUEIF to Assemble Logical Records

	Loading Logical Records into Tables
	Specifying Table Names
	INTO TABLE Clause

	Table-Specific Loading Method
	Loading Data into Empty Tables
	Loading Data into Nonempty Tables

	Table-Specific OPTIONS Parameter
	Loading Records Based on a Condition
	Using the WHEN Clause with LOBFILEs and SDFs

	Specifying Default Data Delimiters
	fields_spec
	termination_spec
	enclosure_spec

	Handling Short Records with Missing Data
	TRAILING NULLCOLS Clause

	Index Options
	SORTED INDEXES Clause
	SINGLEROW Option

	Benefits of Using Multiple INTO TABLE Clauses
	Extracting Multiple Logical Records
	Relative Positioning Based on Delimiters

	Distinguishing Different Input Record Formats
	Relative Positioning Based on the POSITION Parameter

	Distinguishing Different Input Row Object Subtypes
	Loading Data into Multiple Tables
	Summary

	Bind Arrays and Conventional Path Loads
	Size Requirements for Bind Arrays
	Performance Implications of Bind Arrays
	Specifying Number of Rows Versus Size of Bind Array
	Calculations to Determine Bind Array Size
	Determining the Size of the Length Indicator
	Calculating the Size of Field Buffers

	Minimizing Memory Requirements for Bind Arrays
	Calculating Bind Array Size for Multiple INTO TABLE Clauses

	9 Field List Reference
	Field List Contents
	Specifying the Position of a Data Field
	Using POSITION with Data Containing Tabs
	Using POSITION with Multiple Table Loads
	Examples of Using POSITION

	Specifying Columns and Fields
	Specifying Filler Fields
	Specifying the Datatype of a Data Field

	SQL*Loader Datatypes
	Nonportable Datatypes
	INTEGER(n)
	SMALLINT
	FLOAT
	DOUBLE
	BYTEINT
	ZONED
	DECIMAL
	VARGRAPHIC
	VARCHAR
	VARRAW
	LONG VARRAW

	Portable Datatypes
	CHAR
	Datetime and Interval Datatypes
	GRAPHIC
	GRAPHIC EXTERNAL
	Numeric EXTERNAL
	RAW
	VARCHARC
	VARRAWC
	Conflicting Native Datatype Field Lengths
	Field Lengths for Length-Value Datatypes

	Datatype Conversions
	Datatype Conversions for Datetime and Interval Datatypes
	Specifying Delimiters
	TERMINATED Fields
	ENCLOSED Fields
	Syntax for Termination and Enclosure Specification
	Delimiter Marks in the Data
	Maximum Length of Delimited Data
	Loading Trailing Blanks with Delimiters

	Conflicting Field Lengths for Character Datatypes
	Predetermined Size Fields
	Delimited Fields
	Date Field Masks

	Specifying Field Conditions
	Comparing Fields to BLANKS
	Comparing Fields to Literals

	Using the WHEN, NULLIF, and DEFAULTIF Clauses
	Examples of Using the WHEN, NULLIF, and DEFAULTIF Clauses

	Loading Data Across Different Platforms
	Byte Ordering
	Specifying Byte Order
	Using Byte Order Marks (BOMs)
	Suppressing Checks for BOMs

	Loading All-Blank Fields
	Trimming Whitespace
	Datatypes for Which Whitespace Can Be Trimmed
	Specifying Field Length for Datatypes for Which Whitespace Can Be Trimmed
	Predetermined Size Fields
	Delimited Fields

	Relative Positioning of Fields
	No Start Position Specified for a Field
	Previous Field Terminated by a Delimiter
	Previous Field Has Both Enclosure and Termination Delimiters

	Leading Whitespace
	Previous Field Terminated by Whitespace�
	Optional Enclosure Delimiters

	Trimming Trailing Whitespace
	Trimming Enclosed Fields

	How the PRESERVE BLANKS Option Affects Whitespace Trimming
	How [NO] PRESERVE BLANKS Works with Delimiter Clauses

	Applying SQL Operators to Fields
	Referencing Fields
	Common Uses of SQL Operators in Field Specifications
	Combinations of SQL Operators
	Using SQL Strings with a Date Mask
	Interpreting Formatted Fields
	Using SQL Strings to Load the ANYDATA Database Type

	Using SQL*Loader to Generate Data for Input
	Loading Data Without Files
	Setting a Column to a Constant Value
	CONSTANT Parameter

	Setting a Column to an Expression Value
	EXPRESSION Parameter

	Setting a Column to the Datafile Record Number
	RECNUM Parameter

	Setting a Column to the Current Date
	SYSDATE Parameter

	Setting a Column to a Unique Sequence Number
	SEQUENCE Parameter

	Generating Sequence Numbers for Multiple Tables
	Example: Generating Different Sequence Numbers for Each Insert

	10 Loading Objects, LOBs, and Collections
	Loading Column Objects
	Loading Column Objects in Stream Record Format
	Loading Column Objects in Variable Record Format
	Loading Nested Column Objects
	Loading Column Objects with a Derived Subtype
	Specifying Null Values for Objects
	Specifying Attribute Nulls
	Specifying Atomic Nulls

	Loading Column Objects with User-Defined Constructors

	Loading Object Tables
	Loading Object Tables with a Subtype

	Loading REF Columns
	System-Generated OID REF Columns
	Primary Key REF Columns
	Unscoped REF Columns That Allow Primary Keys

	Loading LOBs
	Loading LOB Data from a Primary Datafile
	LOB Data in Predetermined Size Fields
	LOB Data in Delimited Fields
	LOB Data in Length-Value Pair Fields

	Loading LOB Data from LOBFILEs
	Dynamic Versus Static LOBFILE Specifications
	Examples of Loading LOB Data from LOBFILEs
	Considerations When Loading LOBs from LOBFILEs

	Loading BFILE Columns
	Loading Collections (Nested Tables and VARRAYs)
	Restrictions in Nested Tables and VARRAYs
	Secondary Datafiles (SDFs)

	Dynamic Versus Static SDF Specifications
	Loading a Parent Table Separately from Its Child Table
	Memory Issues When Loading VARRAY Columns

	11 Conventional and Direct Path Loads
	Data Loading Methods
	Loading ROWID Columns

	Conventional Path Load
	Conventional Path Load of a Single Partition
	When to Use a Conventional Path Load

	Direct Path Load
	Data Conversion During Direct Path Loads
	Direct Path Load of a Partitioned or Subpartitioned Table
	Direct Path Load of a Single Partition or Subpartition
	Advantages of a Direct Path Load
	Restrictions on Using Direct Path Loads
	Restrictions on a Direct Path Load of a Single Partition
	When to Use a Direct Path Load
	Integrity Constraints
	Field Defaults on the Direct Path
	Loading into Synonyms

	Using Direct Path Load
	Setting Up for Direct Path Loads
	Specifying a Direct Path Load
	Building Indexes
	Improving Performance
	Temporary Segment Storage Requirements

	Indexes Left in an Unusable State
	Using Data Saves to Protect Against Data Loss
	Using the ROWS Parameter
	Data Save Versus Commit

	Data Recovery During Direct Path Loads
	Media Recovery and Direct Path Loads
	Instance Recovery and Direct Path Loads

	Loading Long Data Fields
	Loading Data As PIECED

	Optimizing Performance of Direct Path Loads
	Preallocating Storage for Faster Loading
	Presorting Data for Faster Indexing
	SORTED INDEXES Clause
	Unsorted Data
	Multiple-Column Indexes
	Choosing the Best Sort Order

	Infrequent Data Saves
	Minimizing Use of the Redo Log
	Disabling Archiving
	Specifying the SQL*Loader UNRECOVERABLE Clause
	Setting the SQL NOLOGGING Parameter

	Specifying the Number of Column Array Rows and Size of Stream Buffers
	Specifying a Value for the Date Cache

	Optimizing Direct Path Loads on Multiple-CPU Systems
	Avoiding Index Maintenance
	Direct Loads, Integrity Constraints, and Triggers
	Integrity Constraints
	Enabled Constraints
	Disabled Constraints
	Reenable Constraints

	Database Insert Triggers
	Replacing Insert Triggers with Integrity Constraints
	When Automatic Constraints Cannot Be Used
	Preparation
	Using an Update Trigger
	Duplicating the Effects of Exception Conditions
	Using a Stored Procedure

	Permanently Disabled Triggers and Constraints
	Increasing Performance with Concurrent Conventional Path Loads

	Parallel Data Loading Models
	Concurrent Conventional Path Loads
	Intersegment Concurrency with Direct Path
	Intrasegment Concurrency with Direct Path
	Restrictions on Parallel Direct Path Loads
	Initiating Multiple SQL*Loader Sessions
	Parameters for Parallel Direct Path Loads
	Using the FILE Parameter to Specify Temporary Segments

	Enabling Constraints After a Parallel Direct Path Load
	PRIMARY KEY and UNIQUE KEY Constraints

	General Performance Improvement Hints

	12 SQL*Loader Case Studies
	The Case Studies
	Case Study Files
	Tables Used in the Case Studies
	Contents of Table emp
	Contents of Table dept

	Checking the Results of a Load
	References and Notes
	Case Study 1: Loading Variable-Length Data
	Control File for Case Study 1
	Running Case Study 1
	Log File for Case Study 1

	Case Study 2: Loading Fixed-Format Fields
	Control File for Case Study 2
	Datafile for Case Study 2
	Running Case Study 2
	Log File for Case Study 2

	Case Study 3: Loading a Delimited, Free-Format File
	Control File for Case Study 3
	Running Case Study 3
	Log File for Case Study 3

	Case Study 4: Loading Combined Physical Records
	Control File for Case Study 4
	Datafile for Case Study 4
	Rejected Records

	Running Case Study 4
	Log File for Case Study 4
	Bad File for Case Study 4

	Case Study 5: Loading Data into Multiple Tables
	Control File for Case Study 5
	Datafile for Case Study 5
	Running Case Study 5
	Log File for Case Study 5
	Loaded Tables for Case Study 5

	Case Study 6: Loading Data Using the Direct Path Load Method
	Control File for Case Study 6
	Datafile for Case Study 6
	Running Case Study 6
	Log File for Case Study 6

	Case Study 7: Extracting Data from a Formatted Report
	Creating a BEFORE INSERT Trigger
	Control File for Case Study 7
	Datafile for Case Study 7
	Running Case Study 7
	Log File for Case Study 7

	Case Study 8: Loading Partitioned Tables
	Control File for Case Study 8
	Table Creation
	Datafile for Case Study 8
	Running Case Study 8
	Log File for Case Study 8

	Case Study 9: Loading LOBFILEs (CLOBs)
	Control File for Case Study 9
	Datafiles for Case Study 9
	Running Case Study 9
	Log File for Case Study 9

	Case Study 10: Loading REF Fields and VARRAYs
	Control File for Case Study 10
	Running Case Study 10
	Log File for Case Study 10

	Case Study 11: Loading Data in the Unicode Character Set
	Control File for Case Study 11
	Datafile for Case Study 11
	Running Case Study 11
	Log File for Case Study 11
	Loaded Tables for Case Study 11

	Part III� External Tables
	13 External Tables Concepts
	How Are External Tables Created?
	Access Parameters
	Location of Datafiles and Output Files
	Example: Creating and Loading an External Table Using ORACLE_LOADER

	Using External Tables to Load and Unload Data
	Loading Data
	Unloading Data Using the ORACLE_DATAPUMP Access Driver
	Dealing with Column Objects

	Datatype Conversion During External Table Use
	Parallel Access to External Tables
	Parallel Access with ORACLE_LOADER
	Parallel Access with ORACLE_DATAPUMP

	Performance Hints When Using External Tables
	Performance Hints Specific to the ORACLE_LOADER Access Driver

	External Table Restrictions
	Restrictions Specific to the ORACLE_DATAPUMP Access Driver

	Behavior Differences Between SQL*Loader and External Tables
	Multiple Primary Input Datafiles
	Syntax and Datatypes
	Byte-Order Marks
	Default Character Sets and Date Masks
	Use of the Backslash Escape Character

	14 The ORACLE_LOADER Access Driver
	access_parameters Clause
	record_format_info Clause
	FIXED length
	VARIABLE size
	DELIMITED BY
	CHARACTERSET
	DATA IS...ENDIAN
	BYTEORDERMARK (CHECK | NOCHECK)
	STRING SIZES ARE IN
	LOAD WHEN
	BADFILE | NOBADFILE
	DISCARDFILE | NODISCARDFILE
	LOG FILE | NOLOGFILE
	SKIP
	READSIZE
	DATE_CACHE
	string
	condition_spec
	[directory object name:] filename
	condition
	range start : range end

	field_definitions Clause
	delim_spec
	Example: External Table with Terminating Delimiters
	Example: External Table with Enclosure and Terminator Delimiters
	Example: External Table with Optional Enclosure Delimiters

	trim_spec
	MISSING FIELD VALUES ARE NULL
	field_list
	pos_spec Clause
	start
	*
	increment
	end
	length

	datatype_spec Clause
	[UNSIGNED] INTEGER [EXTERNAL] [(len)]
	DECIMAL [EXTERNAL] and ZONED [EXTERNAL]
	ORACLE_DATE
	ORACLE_NUMBER
	Floating-Point Numbers
	DOUBLE
	FLOAT [EXTERNAL]
	BINARY_DOUBLE
	BINARY_FLOAT
	RAW
	CHAR
	date_format_spec
	VARCHAR and VARRAW
	VARCHARC and VARRAWC

	init_spec Clause

	column_transforms Clause
	transform
	column_name
	NULL
	CONSTANT
	CONCAT
	LOBFILE
	lobfile_attr_list

	Reserved Words for the ORACLE_LOADER Access Driver

	15 The ORACLE_DATAPUMP Access Driver
	access_parameters Clause
	comments
	LOGFILE | NOLOGFILE
	Filenames for LOGFILE
	Example of LOGFILE Usage for ORACLE_DATAPUMP

	VERSION Clause

	Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver
	Parallel Loading and Unloading
	Combining Dump Files

	Supported Datatypes
	Unsupported Datatypes
	Unloading and Loading BFILE Datatypes
	Unloading LONG and LONG RAW Datatypes
	Unloading and Loading Columns Containing Final Object Types
	Tables of Final Object Types

	Reserved Words for the ORACLE_DATAPUMP Access Driver

	Part IV� Other Utilities
	16 DBVERIFY: Offline Database Verification Utility
	Using DBVERIFY to Validate Disk Blocks of a Single Datafile
	Syntax
	Parameters
	Command-Line Interface
	Sample DBVERIFY Output

	Using DBVERIFY to Validate a Segment
	Syntax
	Parameters
	Command-Line Interface

	17 DBNEWID Utility
	What Is the DBNEWID Utility?
	Ramifications of Changing the DBID and DBNAME
	Considerations for Global Database Names

	Changing the DBID and DBNAME of a Database
	Changing the DBID and Database Name
	Changing Only the Database ID
	Changing Only the Database Name
	Troubleshooting DBNEWID

	DBNEWID Syntax
	Parameters
	Restrictions and Usage Notes
	Additional Restrictions for Releases Prior to Oracle Database 10g

	18 Using the Metadata API
	Why Use the Metadata API?
	Overview of the Metadata API
	Using the Metadata API to Retrieve an Object's Metadata
	Typical Steps Used for Basic Metadata Retrieval
	Retrieving Multiple Objects
	Placing Conditions on Transforms
	Accessing Specific Metadata Attributes

	Using the Metadata API to Re-Create a Retrieved Object
	Retrieving Collections of Different Object Types
	Filtering the Return of Heterogeneous Object Types

	Performance Tips for the Programmatic Interface of the Metadata API
	Example Usage of the Metadata API
	What Does the Metadata API Example Do?
	Output Generated from the GET_PAYROLL_TABLES Procedure

	Summary of DBMS_METADATA Procedures

	19 Using LogMiner to Analyze Redo Log Files
	LogMiner Benefits
	Introduction to LogMiner
	LogMiner Configuration
	Sample Configuration
	Requirements

	Directing LogMiner Operations and Retrieving Data of Interest

	LogMiner Dictionary Files and Redo Log Files
	LogMiner Dictionary Options
	Using the Online Catalog
	Extracting a LogMiner Dictionary to the Redo Log Files
	Extracting the LogMiner Dictionary to a Flat File

	Redo Log File Options

	Starting LogMiner
	Querying V$LOGMNR_CONTENTS for Redo Data of Interest
	How the V$LOGMNR_CONTENTS View Is Populated
	Querying V$LOGMNR_CONTENTS Based on Column Values
	The Meaning of NULL Values Returned by the MINE_VALUE Function
	Usage Rules for the MINE_VALUE and COLUMN_PRESENT Functions

	Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS
	Showing Only Committed Transactions
	Skipping Redo Corruptions
	Filtering Data by Time
	Filtering Data by SCN
	Formatting Reconstructed SQL Statements for Reexecution
	Formatting the Appearance of Returned Data for Readability

	Reapplying DDL Statements Returned to V$LOGMNR_CONTENTS
	Calling DBMS_LOGMNR.START_LOGMNR Multiple Times
	Supplemental Logging
	Database-Level Supplemental Logging
	Minimal Supplemental Logging
	Database-Level Identification Key Logging

	Disabling Database-Level Supplemental Logging
	Table-Level Supplemental Logging
	Table-Level Identification Key Logging
	Table-Level User-Defined Supplemental Log Groups
	Usage Notes for User-Defined Supplemental Log Groups

	Tracking DDL Statements in the LogMiner Dictionary
	DDL_DICT_TRACKING and Supplemental Logging Settings
	DDL_DICT_TRACKING and Specified Time or SCN Ranges

	Accessing LogMiner Operational Information in Views
	Querying V$LOGMNR_LOGS
	Querying Views for Supplemental Logging Settings

	Steps in a Typical LogMiner Session
	Enable Supplemental Logging
	Extract a LogMiner Dictionary
	Specify Redo Log Files for Analysis
	Start LogMiner
	Query V$LOGMNR_CONTENTS
	End the LogMiner Session

	Examples Using LogMiner
	Examples of Mining by Explicitly Specifying the Redo Log Files of Interest
	Example 1: Finding All Modifications in the Last Archived Redo Log File
	Example 2: Grouping DML Statements into Committed Transactions
	Example 3: Formatting the Reconstructed SQL
	Example 4: Using the LogMiner Dictionary in the Redo Log Files
	Example 5: Tracking DDL Statements in the Internal Dictionary
	Example 6: Filtering Output by Time Range

	Examples of Mining Without Specifying the List of Redo Log Files Explicitly
	Example 1: Mining Redo Log Files in a Given Time Range
	Example 2: Mining the Redo Log Files in a Given SCN Range
	Example 3: Using Continuous Mining to Include Future Values in a Query

	Example Scenarios
	Scenario 1: Using LogMiner to Track Changes Made by a Specific User
	Scenario 2: Using LogMiner to Calculate Table Access Statistics

	Supported Datatypes, Storage Attributes, and Database and Redo Log File Versions
	Supported Datatypes and Table Storage Attributes
	Unsupported Datatypes and Table Storage Attributes
	Supported Databases and Redo Log File Versions

	20 Original Export and Import
	What Are the Export and Import Utilities?
	Before Using Export and Import
	Running catexp.sql or catalog.sql
	Ensuring Sufficient Disk Space for Export Operations
	Verifying Access Privileges for Export and Import Operations

	Invoking Export and Import
	Invoking Export and Import As SYSDBA
	Command-Line Entries
	Parameter Files
	Interactive Mode
	Restrictions When Using Export's Interactive Method

	Getting Online Help

	Importing Objects into Your Own Schema
	Importing Grants
	Importing Objects into Other Schemas
	Importing System Objects
	Processing Restrictions

	Table Objects: Order of Import
	Importing into Existing Tables
	Manually Creating Tables Before Importing Data
	Disabling Referential Constraints
	Manually Ordering the Import

	Effect of Schema and Database Triggers on Import Operations
	Export and Import Modes
	Table-Level and Partition-Level Export
	Table-Level Export
	Partition-Level Export

	Table-Level and Partition-Level Import
	Guidelines for Using Table-Level Import
	Guidelines for Using Partition-Level Import
	Migrating Data Across Partitions and Tables

	Export Parameters
	BUFFER
	Example: Calculating Buffer Size

	COMPRESS
	CONSISTENT
	CONSTRAINTS
	DIRECT
	FEEDBACK
	FILE
	FILESIZE
	FLASHBACK_SCN
	FLASHBACK_TIME
	FULL
	Points to Consider for Full Database Exports and Imports

	GRANTS
	HELP
	INDEXES
	LOG
	OBJECT_CONSISTENT
	OWNER
	PARFILE
	QUERY
	Restrictions When Using the QUERY Parameter

	RECORDLENGTH
	RESUMABLE
	RESUMABLE_NAME
	RESUMABLE_TIMEOUT
	ROWS
	STATISTICS
	TABLES
	Table Name Restrictions

	TABLESPACES
	TRANSPORT_TABLESPACE
	TRIGGERS
	TTS_FULL_CHECK
	USERID (username/password)
	VOLSIZE

	Import Parameters
	BUFFER
	COMMIT
	COMPILE
	CONSTRAINTS
	DATAFILES
	DESTROY
	FEEDBACK
	FILE
	FILESIZE
	FROMUSER
	FULL
	GRANTS
	HELP
	IGNORE
	INDEXES
	INDEXFILE
	LOG
	PARFILE
	RECORDLENGTH
	RESUMABLE
	RESUMABLE_NAME
	RESUMABLE_TIMEOUT
	ROWS
	SHOW
	SKIP_UNUSABLE_INDEXES
	STATISTICS
	STREAMS_CONFIGURATION
	STREAMS_INSTANTIATION
	TABLES
	Table Name Restrictions

	TABLESPACES
	TOID_NOVALIDATE
	TOUSER
	TRANSPORT_TABLESPACE
	TTS_OWNERS
	USERID (username/password)
	VOLSIZE

	Example Export Sessions
	Example Export Session in Full Database Mode
	Example Export Session in User Mode
	Example Export Sessions in Table Mode
	Example 1: DBA Exporting Tables for Two Users
	Example 2: User Exports Tables That He Owns
	Example 3: Using Pattern Matching to Export Various Tables

	Example Export Session Using Partition-Level Export
	Example 1: Exporting a Table Without Specifying a Partition
	Example 2: Exporting a Table with a Specified Partition
	Example 3: Exporting a Composite Partition

	Example Import Sessions
	Example Import of Selected Tables for a Specific User
	Example Import of Tables Exported by Another User
	Example Import of Tables from One User to Another
	Example Import Session Using Partition-Level Import
	Example 1: A Partition-Level Import
	Example 2: A Partition-Level Import of a Composite Partitioned Table
	Example 3: Repartitioning a Table on a Different Column

	Example Import Using Pattern Matching to Import Various Tables

	Using Export and Import to Move a Database Between Platforms
	Warning, Error, and Completion Messages
	Log File
	Warning Messages
	Nonrecoverable Error Messages
	Completion Messages

	Exit Codes for Inspection and Display
	Network Considerations
	Transporting Export Files Across a Network
	Exporting and Importing with Oracle Net

	Character Set and Globalization Support Considerations
	User Data
	Effect of Character Set Sorting Order on Conversions

	Data Definition Language (DDL)
	Single-Byte Character Sets and Export and Import
	Multibyte Character Sets and Export and Import

	Materialized Views and Snapshots
	Snapshot Log
	Snapshots
	Importing a Snapshot
	Importing a Snapshot into a Different Schema

	Transportable Tablespaces
	Read-Only Tablespaces
	Dropping a Tablespace
	Reorganizing Tablespaces
	Support for Fine-Grained Access Control
	Using Instance Affinity with Export and Import
	Reducing Database Fragmentation
	Using Storage Parameters with Export and Import
	The OPTIMAL Parameter
	Storage Parameters for OID Indexes and LOB Columns
	Overriding Storage Parameters
	The Export COMPRESS Parameter

	Information Specific to Export
	Conventional Path Export Versus Direct Path Export
	Invoking a Direct Path Export
	Security Considerations for Direct Path Exports
	Performance Considerations for Direct Path Exports
	Restrictions for Direct Path Exports

	Exporting from a Read-Only Database
	Considerations When Exporting Database Objects
	Exporting Sequences
	Exporting LONG and LOB Datatypes
	Exporting Foreign Function Libraries
	Exporting Offline Locally Managed Tablespaces
	Exporting Directory Aliases
	Exporting BFILE Columns and Attributes
	Exporting External Tables
	Exporting Object Type Definitions
	Exporting Nested Tables
	Exporting Advanced Queue (AQ) Tables
	Exporting Synonyms
	Possible Export Errors Related to Java Synonyms

	Information Specific to Import
	Error Handling During an Import Operation
	Row Errors
	Errors Importing Database Objects

	Controlling Index Creation and Maintenance
	Delaying Index Creation
	Index Creation and Maintenance Controls

	Importing Statistics
	Tuning Considerations for Import Operations
	Changing System-Level Options
	Changing Initialization Parameters
	Changing Import Options
	Dealing with Large Amounts of LOB Data
	Dealing with Large Amounts of LONG Data

	Considerations When Importing Database Objects
	Importing Object Identifiers
	Importing Existing Object Tables and Tables That Contain Object Types
	Importing Nested Tables
	Importing REF Data
	Importing BFILE Columns and Directory Aliases
	Importing Foreign Function Libraries
	Importing Stored Procedures, Functions, and Packages
	Importing Java Objects
	Importing External Tables
	Importing Advanced Queue (AQ) Tables
	Importing LONG Columns
	Importing LOB Columns When Triggers Are Present
	Importing Views
	Importing Partitioned Tables

	Using Export and Import to Partition a Database Migration
	Advantages of Partitioning a Migration
	Disadvantages of Partitioning a Migration
	How to Use Export and Import to Partition a Database Migration

	Using Different Releases and Versions of Export
	Restrictions When Using Different Releases and Versions of Export and Import
	Examples of Using Different Releases of Export and Import
	Creating Oracle Release 8.0 Export Files from an Oracle9i Database

	Part V� Appendixes
	A SQL*Loader Syntax Diagrams
	B Backus-Naur Form Syntax

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

