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6
SQL*Loader Concepts

This chapter explains the basic concepts of loading data into an Oracle database
with SQL*Loader. This chapter covers the following topics:

■ SQL*Loader Features

■ SQL*Loader Parameters

■ SQL*Loader Control File

■ Input Data and Datafiles

■ LOBFILEs and Secondary Datafiles (SDFs)

■ Data Conversion and Datatype Specification

■ Discarded and Rejected Records

■ Log File and Logging Information

■ Conventional Path Loads, Direct Path Loads, and External Table Loads

■ Loading Objects, Collections, and LOBs

■ Partitioned Object Support

■ Application Development: Direct Path Load API

SQL*Loader Features
SQL*Loader loads data from external files into tables of an Oracle database. It has a
powerful data parsing engine that puts little limitation on the format of the data in
the datafile. You can use SQL*Loader to do the following:

■ Load data across a network. This means that you can run the SQL*Loader client
on a different system from the one that is running the SQL*Loader server.
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■ Load data from multiple datafiles during the same load session.

■ Load data into multiple tables during the same load session.

■ Specify the character set of the data.

■ Selectively load data (you can load records based on the records' values).

■ Manipulate the data before loading it, using SQL functions.

■ Generate unique sequential key values in specified columns.

■ Use the operating system's file system to access the datafiles.

■ Load data from disk, tape, or named pipe.

■ Generate sophisticated error reports, which greatly aid troubleshooting.

■ Load arbitrarily complex object-relational data.

■ Use secondary datafiles for loading LOBs and collections.

■ Use either conventional or direct path loading. While conventional path loading
is very flexible, direct path loading provides superior loading performance. See
Chapter 11.

A typical SQL*Loader session takes as input a control file, which controls the
behavior of SQL*Loader, and one or more datafiles. The output of SQL*Loader is an
Oracle database (where the data is loaded), a log file, a bad file, and potentially, a
discard file. An example of the flow of a SQL*Loader session is shown in Figure 6–1.
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Figure 6–1 SQL*Loader Overview

SQL*Loader Parameters
SQL*Loader is invoked when you specify the sqlldr command and, optionally,
parameters that establish session characteristics.

In situations where you always use the same parameters for which the values
seldom change, it can be more efficient to specify parameters using the following
methods, rather than on the command line:

■ Parameters can be grouped together in a parameter file. You could then specify
the name of the parameter file on the command line using the PARFILE
parameter.

■ Certain parameters can also be specified within the SQL*Loader control file by
using the OPTIONS clause.

Parameters specified on the command line override any parameter values specified
in a parameter file or OPTIONS clause.
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SQL*Loader Control File
The control file is a text file written in a language that SQL*Loader understands.
The control file tells SQL*Loader where to find the data, how to parse and interpret
the data, where to insert the data, and more.

Although not precisely defined, a control file can be said to have three sections.

The first section contains sessionwide information, for example:

■ Global options such as bindsize, rows, records to skip, and so on

■ INFILE clauses to specify where the input data is located

■ Data to be loaded

The second section consists of one or more INTO TABLE blocks. Each of these
blocks contains information about the table into which the data is to be loaded, such
as the table name and the columns of the table.

The third section is optional and, if present, contains input data.

Some control file syntax considerations to keep in mind are:

■ The syntax is free-format (statements can extend over multiple lines).

■ It is case insensitive; however, strings enclosed in single or double quotation
marks are taken literally, including case.

■ In control file syntax, comments extend from the two hyphens (--) that mark the
beginning of the comment to the end of the line. The optional third section of
the control file is interpreted as data rather than as control file syntax;
consequently, comments in this section are not supported.

■ The keywords CONSTANT and ZONE have special meaning to SQL*Loader and
are therefore reserved. To avoid potential conflicts, Oracle recommends that you
do not use either CONSTANT or ZONE as a name for any tables or columns.

See Also:

■ Chapter 7 for descriptions of the SQL*Loader parameters

■ PARFILE (parameter file) on page 7-10

■ OPTIONS Clause on page 8-4

See Also: Chapter 8 for details about control file syntax and
semantics
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Input Data and Datafiles
SQL*Loader reads data from one or more files (or operating system equivalents of
files) specified in the control file. From SQL*Loader's perspective, the data in the
datafile is organized as records. A particular datafile can be in fixed record format,
variable record format, or stream record format. The record format can be specified
in the control file with the INFILE parameter. If no record format is specified, the
default is stream record format.

Fixed Record Format
A file is in fixed record format when all records in a datafile are the same byte
length. Although this format is the least flexible, it results in better performance
than variable or stream format. Fixed format is also simple to specify. For example:

INFILE datafile_name "fix n"

This example specifies that SQL*Loader should interpret the particular datafile as
being in fixed record format where every record is n bytes long.

Example 6–1 shows a control file that specifies a datafile that should be interpreted
in the fixed record format. The datafile in the example contains five physical
records. Assuming that a period (.) indicates a space, the first physical record is
[001,...cd,.] which is exactly eleven bytes (assuming a single-byte character set). The
second record is [0002,fghi,\n] followed by the newline character (which is the
eleventh byte), and so on. Note that newline characters are not required with the
fixed record format.

Note that the length is always interpreted in bytes, even if character-length
semantics are in effect for the file. This is necessary because the file could contain a
mix of fields, some of which are processed with character-length semantics and
others which are processed with byte-length semantics. See Character-Length
Semantics on page 8-23.

Example 6–1 Loading Data in Fixed Record Format

load data
infile 'example.dat'  "fix 11"
into table example

Note: If data is specified inside the control file (that is, INFILE *
was specified in the control file), then the data is interpreted in the
stream record format with the default record terminator.
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fields terminated by ',' optionally enclosed by '"'
(col1, col2)

example.dat:
001,   cd, 0002,fghi,
00003,lmn,
1, "pqrs",
0005,uvwx,

Variable Record Format
A file is in variable record format when the length of each record in a character field
is included at the beginning of each record in the datafile. This format provides
some added flexibility over the fixed record format and a performance advantage
over the stream record format. For example, you can specify a datafile that is to be
interpreted as being in variable record format as follows:

INFILE "datafile_name" "var n"

In this example, n specifies the number of bytes in the record length field. If n is not
specified, SQL*Loader assumes a length of 5 bytes. Specifying n larger than 40 will
result in an error.

Example 6–2 shows a control file specification that tells SQL*Loader to look for data
in the datafile example.dat and to expect variable record format where the record
length fields are 3 bytes long. The example.dat datafile consists of three physical
records. The first is specified to be 009 (that is, 9) bytes long, the second is 010 bytes
long (that is, 10, including a 1-byte newline), and the third is 012 bytes long (also
including a 1-byte newline). Note that newline characters are not required with the
variable record format. This example also assumes a single-byte character set for the
datafile.

The lengths are always interpreted in bytes, even if character-length semantics are
in effect for the file. This is necessary because the file could contain a mix of fields,
some processed with character-length semantics and others processed with
byte-length semantics. See Character-Length Semantics on page 8-23.

Example 6–2 Loading Data in Variable Record Format

load data
infile 'example.dat'  "var 3"
into table example
fields terminated by ',' optionally enclosed by '"'
(col1 char(5),
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 col2 char(7))

example.dat:
009hello,cd,010world,im,
012my,name is,

Stream Record Format
A file is in stream record format when the records are not specified by size; instead
SQL*Loader forms records by scanning for the record terminator. Stream record
format is the most flexible format, but there can be a negative effect on performance.
The specification of a datafile to be interpreted as being in stream record format
looks similar to the following:

INFILE datafile_name ["str terminator_string"]

The terminator_string is specified as either 'char_string' or X'hex_
string' where:

■ 'char_string' is a string of characters enclosed in single or double quotation
marks

■ X'hex_string' is a byte string in hexadecimal format

When the terminator_string contains special (nonprintable) characters, it
should be specified as a X'hex_string'. However, some nonprintable characters
can be specified as ('char_string') by using a backslash. For example:

■ \n indicates a line feed

■ \t indicates a horizontal tab

■ \f indicates a form feed

■ \v indicates a vertical tab

■ \r indicates a carriage return

If the character set specified with the NLS_LANG parameter for your session is
different from the character set of the datafile, character strings are converted to the
character set of the datafile. This is done before SQL*Loader checks for the default
record terminator.

Hexadecimal strings are assumed to be in the character set of the datafile, so no
conversion is performed.

On UNIX-based platforms, if no terminator_string is specified, SQL*Loader
defaults to the line feed character, \n.
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On Windows NT, if no terminator_string is specified, then SQL*Loader uses
either \n or \r\n as the record terminator, depending on which one it finds first in
the datafile. This means that if you know that one or more records in your datafile
has \n embedded in a field, but you want \r\n to be used as the record terminator,
you must specify it.

Example 6–3 illustrates loading data in stream record format where the terminator
string is specified using a character string, '|\n'. The use of the backslash
character allows the character string to specify the nonprintable line feed character.

Example 6–3 Loading Data in Stream Record Format

load data
infile 'example.dat'  "str '|\n'"
into table example
fields terminated by ',' optionally enclosed by '"'
(col1 char(5),
 col2 char(7))

example.dat:
hello,world,|
james,bond,|

Logical Records
SQL*Loader organizes the input data into physical records, according to the
specified record format. By default a physical record is a logical record, but for
added flexibility, SQL*Loader can be instructed to combine a number of physical
records into a logical record.

SQL*Loader can be instructed to follow one of the following logical record-forming
strategies:

■ Combine a fixed number of physical records to form each logical record.

■ Combine physical records into logical records while a certain condition is true.

See Also:

■ Assembling Logical Records from Physical Records on
page 8-27

■ Case Study 4: Loading Combined Physical Records on
page 12-14 for an example of how to use continuation fields to
form one logical record from multiple physical records
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Data Fields
Once a logical record is formed, field setting on the logical record is done. Field
setting is a process in which SQL*Loader uses control-file field specifications to
determine which parts of logical record data correspond to which control-file fields.
It is possible for two or more field specifications to claim the same data. Also, it is
possible for a logical record to contain data that is not claimed by any control-file
field specification.

Most control-file field specifications claim a particular part of the logical record.
This mapping takes the following forms:

■ The byte position of the data field's beginning, end, or both, can be specified.
This specification form is not the most flexible, but it provides high field-setting
performance.

■ The strings delimiting (enclosing and/or terminating) a particular data field can
be specified. A delimited data field is assumed to start where the last data field
ended, unless the byte position of the start of the data field is specified.

■ The byte offset and/or the length of the data field can be specified. This way
each field starts a specified number of bytes from where the last one ended and
continues for a specified length.

■ Length-value datatypes can be used. In this case, the first n number of bytes of
the data field contain information about how long the rest of the data field is.

LOBFILEs and Secondary Datafiles (SDFs)
LOB data can be lengthy enough that it makes sense to load it from a LOBFILE. In
LOBFILEs, LOB data instances are still considered to be in fields (predetermined
size, delimited, length-value), but these fields are not organized into records (the
concept of a record does not exist within LOBFILEs). Therefore, the processing
overhead of dealing with records is avoided. This type of organization of data is
ideal for LOB loading.

For example, you might use LOBFILEs to load employee names, employee IDs, and
employee resumes. You could read the employee names and IDs from the main
datafiles and you could read the resumes, which can be quite lengthy, from
LOBFILEs.

See Also:

■ Specifying the Position of a Data Field on page 9-3

■ Specifying Delimiters on page 9-25
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You might also use LOBFILEs to facilitate the loading of XML data. You can use XML
columns to hold data that models structured and semistructured data. Such data
can be quite lengthy.

Secondary datafiles (SDFs) are similar in concept to primary datafiles. Like primary
datafiles, SDFs are a collection of records, and each record is made up of fields. The
SDFs are specified on a per control-file-field basis. Only a collection_fld_spec
can name an SDF as its data source.

SDFs are specified using the SDF parameter. The SDF parameter can be followed by
either the file specification string, or a FILLER field that is mapped to a data field
containing one or more file specification strings.

Data Conversion and Datatype Specification
During a conventional path load, data fields in the datafile are converted into
columns in the database (direct path loads are conceptually similar, but the
implementation is different). There are two conversion steps:

1. SQL*Loader uses the field specifications in the control file to interpret the
format of the datafile, parse the input data, and populate the bind arrays that
correspond to a SQL INSERT statement using that data.

2. The Oracle database accepts the data and executes the INSERT statement to
store the data in the database.

The Oracle database uses the datatype of the column to convert the data into its
final, stored form. Keep in mind the distinction between a field in a datafile and a
column in the database. Remember also that the field datatypes defined in a
SQL*Loader control file are not the same as the column datatypes.

Discarded and Rejected Records
Records read from the input file might not be inserted into the database. Such
records are placed in either a bad file or a discard file.

See Also:

■ Loading LOB Data from LOBFILEs on page 10-22

■ Secondary Datafiles (SDFs) on page 10-32
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The Bad File
The bad file contains records that were rejected, either by SQL*Loader or by the
Oracle database. Some of the possible reasons for rejection are discussed in the next
sections.

SQL*Loader Rejects
Datafile records are rejected by SQL*Loader when the input format is invalid. For
example, if the second enclosure delimiter is missing, or if a delimited field exceeds
its maximum length, SQL*Loader rejects the record. Rejected records are placed in
the bad file.

Oracle Database Rejects
After a datafile record is accepted for processing by SQL*Loader, it is sent to the
Oracle database for insertion into a table as a row. If the Oracle database determines
that the row is valid, then the row is inserted into the table. If the row is determined
to be invalid, then the record is rejected and SQL*Loader puts it in the bad file. The
row may be invalid, for example, because a key is not unique, because a required
field is null, or because the field contains invalid data for the Oracle datatype.

The Discard File
As SQL*Loader executes, it may create a file called the discard file. This file is
created only when it is needed, and only if you have specified that a discard file
should be enabled. The discard file contains records that were filtered out of the
load because they did not match any record-selection criteria specified in the control
file.

The discard file therefore contains records that were not inserted into any table in
the database. You can specify the maximum number of such records that the discard
file can accept. Data written to any database table is not written to the discard file.

See Also:

■ Specifying the Bad File on page 8-12

■ Case Study 4: Loading Combined Physical Records on
page 12-14 for an example use of a bad file
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Log File and Logging Information
When SQL*Loader begins execution, it creates a log file. If it cannot create a log file,
execution terminates. The log file contains a detailed summary of the load,
including a description of any errors that occurred during the load.

Conventional Path Loads, Direct Path Loads, and External Table Loads
SQL*Loader provides the following methods to load data:

■ Conventional Path Loads

■ Direct Path Loads

■ External Table Loads

Conventional Path Loads
During conventional path loads, the input records are parsed according to the field
specifications, and each data field is copied to its corresponding bind array. When
the bind array is full (or no more data is left to read), an array insert is executed.

SQL*Loader stores LOB fields after a bind array insert is done. Thus, if there are any
errors in processing the LOB field (for example, the LOBFILE could not be found),
the LOB field is left empty. Note also that because LOB data is loaded after the array
insert has been performed, BEFORE and AFTER row triggers may not work as
expected for LOB columns. This is because the triggers fire before SQL*Loader has a
chance to load the LOB contents into the column. For instance, suppose you are

See Also:

■ Case Study 4: Loading Combined Physical Records on
page 12-14

■ Specifying the Discard File on page 8-14

See Also: Chapter 12, "SQL*Loader Case Studies" for sample log
files

See Also:

■ Data Loading Methods on page 11-1

■ Bind Arrays and Conventional Path Loads on page 8-45
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loading a LOB column, C1, with data and that you want a BEFORE row trigger to
examine the contents of this LOB column and derive a value to be loaded for some
other column, C2, based on its examination. This is not possible because the LOB
contents will not have been loaded at the time the trigger fires.

Direct Path Loads
A direct path load parses the input records according to the field specifications,
converts the input field data to the column datatype, and builds a column array.
The column array is passed to a block formatter, which creates data blocks in Oracle
database block format. The newly formatted database blocks are written directly to
the database, bypassing much of the data processing that normally takes place.
Direct path load is much faster than conventional path load, but entails several
restrictions.

Parallel Direct Path
A parallel direct path load allows multiple direct path load sessions to concurrently
load the same data segments (allows intrasegment parallelism). Parallel direct path
is more restrictive than direct path.

External Table Loads
An external table load creates an external table for data in a datafile and executes
INSERT statements to insert the data from the datafile into the target table.

The advantages of using external table loads over conventional path and direct path
loads are as follows:

■ An external table load attempts to load datafiles in parallel. If a datafile is big
enough, it will attempt to load that file in parallel.

■ An external table load allows modification of the data being loaded by using
SQL functions and PL/SQL functions as part of the INSERT statement that is
used to create the external table.

See Also: Direct Path Load on page 11-5

See Also: Parallel Data Loading Models on page 11-31

See Also:

■ Chapter 13, "External Tables Concepts"

■ Chapter 14, "The ORACLE_LOADER Access Driver"
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Choosing External Tables Versus SQL*Loader
The record parsing of external tables and SQL*Loader is very similar, so normally
there is not a major performance difference for the same record format. However,
due to the different architecture of external tables and SQL*Loader, there are
situations in which one method is more appropriate than the other.

In the following situations, use external tables for the best load performance:

■ You want to transform the data as it is being loaded into the database.

■ You want to use transparent parallel processing without having to split the
external data first.

However, in the following situations, use SQL*Loader for the best load
performance:

■ You want to load data remotely.

■ Transformations are not required on the data, and the data does not need to be
loaded in parallel.

Loading Objects, Collections, and LOBs
You can use SQL*Loader to bulk load objects, collections, and LOBs. It is assumed
that you are familiar with the concept of objects and with Oracle's implementation
of object support as described in Oracle Database Concepts and in the Oracle Database
Administrator's Guide.

Supported Object Types
SQL*Loader supports loading of the following two object types:

column objects
When a column of a table is of some object type, the objects in that column are
referred to as column objects. Conceptually such objects are stored in their entirety
in a single column position in a row. These objects do not have object identifiers and
cannot be referenced.

If the object type of the column object is declared to be nonfinal, then SQL*Loader
allows a derived type (or subtype) to be loaded into the column object.
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row objects
These objects are stored in tables, known as object tables, that have columns
corresponding to the attributes of the object. The object tables have an additional
system-generated column, called SYS_NC_OID$, that stores system-generated
unique identifiers (OIDs) for each of the objects in the table. Columns in other tables
can refer to these objects by using the OIDs.

If the object type of the object table is declared to be nonfinal, then SQL*Loader
allows a derived type (or subtype) to be loaded into the row object.

Supported Collection Types
SQL*Loader supports loading of the following two collection types:

Nested Tables
A nested table is a table that appears as a column in another table. All operations
that can be performed on other tables can also be performed on nested tables.

VARRAYs
VARRAYs are variable sized arrays. An array is an ordered set of built-in types or
objects, called elements. Each array element is of the same type and has an index,
which is a number corresponding to the element's position in the VARRAY.

When creating a VARRAY type, you must specify the maximum size. Once you have
declared a VARRAY type, it can be used as the datatype of a column of a relational
table, as an object type attribute, or as a PL/SQL variable.

Supported LOB Types
A LOB is a large object type. This release of SQL*Loader supports loading of four
LOB types:

■ BLOB: a LOB containing unstructured binary data

See Also:

■ Loading Column Objects on page 10-1

■ Loading Object Tables on page 10-12

See Also: Loading Collections (Nested Tables and VARRAYs) on
page 10-29 for details on using SQL*Loader control file data
definition language to load these collection types
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■ CLOB: a LOB containing character data

■ NCLOB: a LOB containing characters in a database national character set

■ BFILE: a BLOB stored outside of the database tablespaces in a server-side
operating system file

LOBs can be column datatypes, and with the exception of the NCLOB, they can be
an object's attribute datatypes. LOBs can have an actual value, they can be null,or
they can be "empty."

Partitioned Object Support
SQL*Loader supports loading partitioned objects in the database. A partitioned
object in an Oracle database is a table or index consisting of partitions (pieces) that
have been grouped, typically by common logical attributes. For example, sales data
for the year 2000 might be partitioned by month. The data for each month is stored
in a separate partition of the sales table. Each partition is stored in a separate
segment of the database and can have different physical attributes.

SQL*Loader partitioned object support enables SQL*Loader to load the following:

■ A single partition of a partitioned table

■ All partitions of a partitioned table

■ A nonpartitioned table

Application Development: Direct Path Load API
Oracle provides a direct path load API for application developers. See the Oracle
Call Interface Programmer's Guide for more information.

See Also: Loading LOBs on page 10-18 for details on using
SQL*Loader control file data definition language to load these LOB
types
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