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Supervised regression methods

« Memoryless: multiple linear regression
analysis, neural networks, polynomial
neural networks, usually these are
global models

« Memory-based: k-nearest neighbours
(KNN), Parzen-window regression,
memory-based reasoning, usually
these are local models




Associative Neural Network (ASNN)
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Pearson’s (Spearman) correlation coefficient r;=R(z,z)>0

<<= ASNN bias correction

The correction of neural network ensemble value is performed using errors
(biases) calculated for the neighbor cases of analyzed case x; detected in space g
models (neural network associations of the given model)
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Interpolation of y=sin(x=x,+x,)

Simple ensemble average ASNN (one hidden neuron)

Gray (black) line corresponds to neural networks with one (two)
hidden neurons. The bias problem (underfitting) is more prominent for
one-hidden neuron networks. ASNN dramatically decrease bias of the
network prediction.




Similarities in input/output space

Y=Gauss(x;+X,)




Similarities of symmetric &
non-symmetric functions

Nearest neighbors of case (x;,X,)=(0,0) are shown as black circles.
Nearest neighbors of case (x;,x,)=(1,0) are shown as gray circles.




Gauss function interpolation with fresh data

Features:

fast, no weights
retraining;
correction is not
limited by the
range of values in
the training set.

N.B! KNN in the output space works better, since it takes into
account invariance xX=x,+x,!




ALOGPS - program to predict lipophilicity (logP)
and aqueous solubility (logS) of chemicals

LogP: 75 input variables corresponding to electronic
and topological properties of atoms (E-state
Indices), 12908 molecules in the database, 64
neural networks in the ensemble. Calculated
results RMSE=0.35, MAE=0.26, n=76 outliers
(>1.5 log units)

LogS: 33 input E-state indices, 1291 molecules in the
database, 64 neural networks in the ensemble.
Calculated results RMSE=0.49, MAE=0.35,
n=18 outliers (>1.5 log units)

Tetko et al, JCICS, 2001, 41, 1488-1493 & 1407-1421




Percentage of molecules within indicated
error range for lipophilicity prediction

109Peq- LOO for the | BASF, 6100 | BASF, 6100
l0gPeypl training set “35 is” LOO?
O--O.3

O--O.5 “
O--l.o ““
O--ZIO “-“

1Tetko, 2002, JCICS, 42, 717-728.




What are the Roots of ASNN?
Efficient Partition Algorithm!

supervised unsupervised
learning learning
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Training Data Set
clusterisation
of the dataset

selection of cases (feedback loop)
Tetko & Villa, ICANN’95, and Neural Networks, 1997




Tetko, I.V.; Villa, A. E. P. Neural Networks 1997, 10, 1361-1374.




ASNN & logP

More theoretical articles:

Tetko, I.V. Neural Network Studies. 4. Introduction to Associative Neural
Networks, J. Chem. Inf. Comput. Sci., 2002, 42, 717-728.

Tetko, 1.V. Associative Neural Network, Neural Processing Letters 2002,
16, 187-199.

Tetko, I.V.; Villa, A. E. P. Efficient Partition of Learning Datasets for
Neural Network Training, Neural Networks 1997, 10, 1361-1374.

More applied one:

Tetko, I.V.; Tanchuk, V. Yu. Application of Associative Neural Networks
for Prediction of Lipophilicity in ALOGPS 2.1 program, J. Chem. Inf.
Comput. Sci., 2002, in press.

 These articles + posters are available at
http://vcclab.org/lab/pdf

e ASNN is available at http://vcclab.org/lab
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