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Introduction

A randomly initialized ensemble of artifi-
cial neural networks is trained by letting
each network take small random steps in
weight space. Each time all the networks
have taken one random step, several iden-
tical replicas are created of well-adapted
networks and poorly adapted networks
vanish. The replication follows a Boltz-
mann distribution, with a fictitious tem-
perature controlling the increasing level of
competition between the networks. The
result is a diverse ensemble. Numerical
explorations show that our method yields
comparable results to Bayesian learning
for ANNs, and outperforms a simple ANN
ensemble.

The Individual Networks

MLPs with one hidden layer

Energy E given by mean-square or en-
tropy error, plus regularisation term

The Population Method is in principle
applicable to any type of model with
tunable parameters and well-defined
energy!

The Population Method

Iteratively repeat items 1-3:

0) Start with N networks initialized
by random weight vectors ~ωi (i =
1, . . . , N).

1) Random move: Update each ~ωi by
making a random move: ~ωi → ~ωi +
ε~αi, where ~αi is a vector of length 1
with a random direction and ε is a
small number.

2) Calculate population factors: In-
troduce a fictitious temperature T
which determines the amount of
competition between different net-
works. Compute the energies Ei,
Boltzmann factors Bi and popula-
tion (fitness) factors ri:

Bi = e−Ei/T

ri =
Bi

〈B〉 = N
e−Ei/T

∑
j e−Ej/T

3) Create a new population: For each
network i, write ri as

ri = Li + δi

where Li ≥ 0 is the integer part
of ri and δi is the remainder, 0 ≤
δi < 1. Place Li replicas of net-
work i into the new population. Add
one more replica with probability δi;
this stochastic element among other
things gives poorly fitted networks
(with ri < 1) a chance of surviving.
The population size is kept approxi-
mately constant throughout.

Temperature T and stepsize ε are annealed
(lowered gradually). Large steps and low
competition in beginning of training allows
for long-range exploration of state space.
Small steps and high competition in the
end implies a detailed exploration of in-
teresting regions. After the annealing, the
population continues to evolve before the
actual network ensemble is sampled.

Properties of the method

Correlation measures

A stopping criterion, expressed in terms
of the correlation length of some network
quantity, would be desireable.

We studied average absolute value of
hidden unit activation, 〈|H|〉, averaged
over all of population.
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Integrated correlation length of 〈|H|〉
is of same order of magnitude as the
number of iterations; no such stopping
criterion is available.

We compare our method with the
Bayesian software of Neal,1 and also for
that algorithm the correlation length
was found unreliable as a stopping cri-
terion.
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Histograms showing the number of repli-
cas produced by each network. (a) Start
of training, and the competition is low.
(b) End of annealing; the energy is still
decreasing, and some networks are very
much better than the others. (c) End of
training; all networks are spread out over
some of the best regions, and no network
is greatly favoured.

Experiments

The Population method is compared
against the Bayesian software of Neal, and
against a simple ANN ensemble created by
training 20 networks with randomly ini-
tialized weights.

Data set Robot
Arm

Pima Scinti-
gram

Problem type Regression Class. Class.
N inputs 2 7 30
N targets 2 1 1
Train. set size 200 200 153
Test set size 200 332 76

Mean Sq.
Error

ROC area
(%)

ROC area
(%)

Population 0.00309±
0.00007

86.51±
0.04

80.8± 1.0

Bayesian 0.00279±
0.00002

86.30±
0.13

80.6± 0.7

Simple ensemble 0.00362±
0.00008

86.10±
0.06

75.5± 0.1

CPU
minutes

CPU
minutes

CPU
minutes

Population 435 19 93
Bayesian 58 79 386
Simple ensemble 0.8 0.6 0.6

The Population method is faster and
has the same predictive performance as
the Bayesian method on the classification
tasks, but performs slightly worse on the
Robot Arm task. Both methods outper-
form the simple ensemble, which is how-
ever the fastest.
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