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Ensemble methods for bioinformatics and for 
gene expression data analysis 

Applied in different bioinformatics domains: e.g.

• Protein secondary structure predictions (Riis and Krogh, 
1996, Petersen et al., 2000)

• Gene finding and intron splice site prediction (Brunak et 
al., 1991)

But we focus on ensemble methods for gene expression 
analysis.



Outline

• Gene expression

• cDNA microarray technology

• Ensemble methods for gene expression 

data analysis



Relationships between DNA and proteins



The expression of the genetic information 

stored in the DNA molecule occurs in two 

stages:

– (i) transcription, during which DNA is 

transcribed into mRNA;

– (ii) translation, during which mRNA is 

translated to produce a protein.

Expression of the genetic information



Differential expression

• Each cell contains a 
complete copy of the 
organism's genome (that is, 
the same genome).

• Cells are of many 
different types and states: 
blood, nerve, and skin 
cells, dividing cells, 
cancerous cells, etc.

What makes the cells different?

• Differential gene expression, 

i.e., when, where, and how much
each gene is expressed.

• On average, 40% of our genes are 

expressed at any given time.



The “central dogma” of Molecular Biology

DNA

mRNA

protein

transcription

translation



• mRNA transcript 
levels reflect the 
functional status of a 
cell.

• Measuring protein 
levels (translation) 
would be more 
direct but more 
difficult.

The transcriptome reflects

• Tissue source: cell type, organ.

• Tissue activity and state:

– Stage of development, 
growth, death.

– Cell cycle.

– Disease vs. healthy.

– Response to therapy, stress.

Transcriptome



Functional genomics

• Transcriptomics involves large-scale analysis of messenger RNAs to 
follow when, where, and under what conditions genes are expressed.
• Proteomics—the study of protein expression, protein-protein 
interactions and functions
• Structural genomics studies the 3-D structures of one or more proteins 
from each protein family, thus offering clues to function and biological 
targets for drug design.
• Comparative genomics—analyzing DNA sequence patterns of 

humans and well-studied model organisms side-by-side for identifying 
human genes and interpreting their function.

• The genome projects have yielded the complete DNA sequences of many 
organisms: human, mouse, yeast, fruitfly, etc.

Human: 3 billion base-pairs, 30-40 thousand genes.

• Challenge: go from sequence to function,

i.e., define the role of each gene, their interactions and understand how the 
genome functions as a whole.



DNA microarray: a technology for 
transcriptome analysis

• DNA hybridization microarrays  supply information about 
gene expression through measurements of mRNA levels of 
large amounts of genes in a cell

• They offer a snapshot of the overall functional status of a 
cell: virtually all differences in cell type or state are related 
with changes in the mRNA levels of many genes.

• DNA microarrays have been used in mutational analyses, 
genetic mapping studies and in genome monitoring of gene 
expression 



• Molecular diagnosis of polygenic diseases

• Molecular characterization of tumors on a genomic 
scale: diagnosis and effective treatment of cancer.

• Prognostic tools for clinical use to predict the 
outcome or treatment response

• Pharmacogenomics: Identification of molecular 
targets for drugs

• Analysis of gene expression response to external 
stimuli (drugs, environment, hormones)

• Analysis of metabolic pathways 

• Non-expression uses: assessing presence/absence 
of sequences in the genome, SNP and mutations 
analysis.

Applications of microarrays



– Serial analysis of gene expression 
(SAGE);

– Short oligonucleotide arrays

(Affymetrix);

– Long oligonucleotide arrays 
(Agilent Inkjet);

– Fibre optic arrays (Illumina);

– cDNA microarrays

Gene expression assays



Cy3: ~550 nmCy3: ~550 nmCy5: ~650 nmCy5: ~650 nm

cDNA microarray hybridization experiments

Selection of DNA 

probes (cDNA clones 

from cDNA libraries)

Printing by an 
arrayer robot

Preparation of mRNA
and cDNA synthesis by 
reverse transcription

Hybridization of the cDNA
sequences with the DNA 
samples of the microarray

Scanning 
the slide to 
produce a 
raster image 
of the array

Fluorescent 
intensities 
mRNA levels

Data 
preprocessing 
and data 
analysis



A DNA microarray image (E. coli)

• Each spot 
corresponds to the 
expression level of 
a particular gene

• Red spots 
correspond to over 
expressed genes

• Green spots to 
under expressed 
genes

• Yellow spots 
correpond to 
intermediate levels 
of gene expression



Preprocessing of cDNA microarray data

1. We do not know the exact 
number of clones in each 
DNA spot.

Both influence the amount of 
hybridization

Solution: Comparing the 
hybridization level in each spot 
with the level of hybridization 
under “control conditions”.

2. Length of the cDNA
spotted sequences are not 
equal

Many other problems related to preprocessing: see e.g. 
http://globin.cse.psu.edu/courses/spring2002/3_Norm_miss.pdf



Data ready for numerical processing

1      1:0.28    2:-0.01   3:0.06    4:0.47    5:-0.66   6:0.16    7:0.04    8:0.24    9:0.35    10:0.16  ...  

1      1:0       2:0.16    3:0.52    4:0       5:0       6:0    7:0       8:-0.21   9:-0.45   10:1.25  ... 

1      1:-0.28   2:0       3:0       4:0       5:0       6:-0.09   7:0       8:0.01    9:-0.13   10:-0.01 ...  

-1     1:0.3     2:-0.17   3:-0.06   4:0.05    5:0.33    6:0.22    7:0.34    8:0.5     9:0.06 10:0.75  ...  

1      1:0.34    2:0       3:0.36    4:0.11    5:0.15    6:0.19 7:-0.11   8:0.27    9:0.59    10:0.55  ...  

1      1:0.34    2:-0.31   3:0.04    4:0.56    5:-0.45   6:0.32    7:0.32    8:0.79    9:-0.35   10:0.15  ... 

-1     1:0.76    2:0.56    3:0.44    4:0.88    5:0       6:-0.67   7:0.12    8:-0.23   9:-0.97   10:1.25  ...  

1      1:0.67    2:0.61    3:0       4:0.51    5:0.77    6:-0.21   7:-0.11   8:0.03    9:-0.15   10:-0.08 ...  

-1     1:0.7     2:-0.67   3:-0.89   4:0.08    5:0.02    6:0.29    7:0.64    8:0.4     9:0.09 10:0.01  ...  

1      1:0.23    2:0.77    3:0.87    4:0.32    5:0.15    6:0.32 7:-0.29   8:0.99    9:0.72    10:0.34  ... 

-1     1:0.5     2:-0.13   3:-0.09   4:0.07    5:0.34    6:0.21    7:0.33    8:0.4     9:0.09 10:0.99  ...  

1 1:0.34    2:-0.56   3:0.04    4:0.34    5:-0.35   6:0.55    7:0.21    8:0.56    9:-0.21   10:0.08  ...

1      1:-0.34   2:0       3:0       4:0.12    5:0       6:-0.09   7:0.09    8:0.02    9:-0.13   10:-0.04 ...  

-1     1:0.5     2:-0.18   3:-0.09   4:0.09    5:0.99    6:0.76    7:0.34    8:0.3     9:0.06 10:0.85  ...  

1      1:0.45    2:0       3:0.09    4:0.17    5:0.23    6:0.12 7:-0.21   8:0.45    9:0.69    10:0.75  ...  

-1     1:0.99    2:0.88    3:0.03    4:0.88    5:-0.51   6:0.32    7:0.60    8:0.65    9:-0.31   10:0.15  ... 

-1     1:0.30    2:0.56    3:0.44    4:0.85    5:-0.91   6:-0.67   7:1.12    8:-0.45   9:-0.97   10:1.32  ...  

1      1:0.21    2:0.62    3:0       4:0.51    5:0.72    6:-0.65   7:-0.50   8:0.81    9:-0.34   10:-60  ...

...



The cycle of gene expression experiments

Biological question

Experimental design

Microarray experiment

Image analysis

Preprocessing

Data analysis: machine learning and 
statistical methods

Biological 
verification and 
interpretation



Levels of analysis of DNA microarray data

0. Image analysis: Analysis of intensities levels of 
the fluorescent dyes

1. Single genes analysis: each gene in isolation 
behaves differently in a treatment vs. a control 
situation?

2. Multiple genes: analysis of interactions, common 
functionalities, co-regulations

3. Pathway analysis and exploration: analysis of the 
relationships between networks of interacting 
molecules



Analyzing microarray data by machine learning 
methods 

Unsupervised approach
• No or limited a priori 

knowledge.
• Clustering algorithms are used 

to group together similar 
expression patterns :
– grouping sets of genes 
– grouping different cells or 

different functional status of 
the cell.

• Example: hierarchical clustering, 
fuzzy or possibilistic clustering, 
self-organizing maps.

Supervised approach
• “A priori” biological and medical 

knowledge on the problem domain.
• Learning algorithms with labeled 

examples are used to associate gene 
expression data with classes:
– separating normal form 

cancerous tissues
– classifying different classes of 

cells on functional basis
– Prediction of the functional 

class of unknown genes.
• Example: multi-layer perceptrons, 

support vector machines, decision 
trees.

The large amount of gene expression data requires machine learning methods 
to analyze and extract significant knowledge from DNA microarray data



Unsupervised approaches to gene expression data analysis

Biological problems

• Functional class discovery 
(e.g. discovery new 
diseases on molecular 
basis)

• Gene expression signature 
discovery

• Gene subset selection

• Exploratory analysis

Unsupervised methods

• Hierarchical clustering 
(Eisen & Brown, 1999)

• Self Organizing Maps 
(Tamayo et al., 1999)

• K-means (Tavazoie et al, 
1999)

• Graph-based algorithms 
(Sharan and Shamir, 2000)

• Biclustering (Tanay et al, 
2002)

• ...



Visualizing 
data with 

Tree View



Supervised approaches to gene expression data analysis

Supervised methods

• Decision trees

• Fisher linear discriminant

• Multi-Layer Perceptrons 

• Nearest-Neighbours classifiers

• Linear discriminant analysis 

• Parzen windows

• Support Vector Machines

Proposed by different authors:

Golub et al. (1999), Pavlidis et al. (2001), Khan et al. (2001), Furey et al. 
(2000), Ramaswamy et al. (2001), Yeang et al. (2001), Dudoit et al. (2002).

Biological problems

• Prediction of the functional 
status of tissues

• Prediction of the functional 
class of genes

• Diagnosis of tumours of 
molecular basis

• Prognostic tools to predict the 
outcome or treatment response

• Identification of molecular 
targets for drugs



Ensemble methods for gene expression data analysis

Why using ensemble methods for gene 

expression data analysis ?

- General motivations

- Domain specific motivations



Why should we use  ensembles?

• From empirical studies : ensembles are often much more 

accurate than individual learning machines (Freund & 

Schapire (1995),Bauer & Kohavi (1999), Dietterich 

(2000), … )

• Different theoretical explanations proposed to justify their

effectiveness (Kittler (1998), Schapire et al. (1998), 

Kleinberg(2000), Allwein et al. (2000)). 

• Very fast development of computer technology: 

availability of very fast computers and networks of 

workstations at a relatively low cost.



Reasons for combining multiple learners

• Statistical: data are limited

• Representational: learning algorithms cannot 
always represent all the functions

• Algorithmical: optimization techniques are not 
always optimal

• Theoretical: for instance, bias-variance reduction 



Ensembles of learning machines for gene 
expression data analysis

Different works showed that ensemble methods can be successfully applied 
to DNA microarray data analysis (Dudoit et al., 2000; Yeang et al., 2001; 
Ramaswamy et al., 2001; Valentini, 2001; Su et al. 2002).

Gene expression data are 
characterized by low cardinality:

Ensembles of learning machines 
can reduce bias and/or variance 
due to the low cardinality of the 
available training data.

Gene expression data are 
characterized by high 
dimensionality:

Dimensionality reduction ensemble 
methods (e.g. random subspace) or 
ensembles combined with feature 
selection 



Ensembles of learning machines for gene 
expression data analysis: examples

• Output Coding methods (Dietterich and Bakiri, 1995) for 
multiple-class cancer diagnosis.

• Resampling methods for gene expression based prediction 
of functional classes: 

– Bagging (Breiman, 1996)

– Boosting (Freund and Schapire, 1996)

– Cross validated committees (Parmanto et al., 1996)

– Random forests (Breiman, 2001)



Output Coding methods for multiple-class 
cancer diagnosis.

1. OVA-WTA and AP ensemble approach 
(Yeang et al, 2001; Ramaswamy et al, 2001)

2. ECOC ensemble approach (Valentini, 2002)

Multiclass classification is hard in this context:

• large dimensionality of the datasets

• small number of examples

• small but significant uncertainty in the original labelings

• noise in the experimental and measurement processes

• intrinsic biological variation from specimen to specimen



Multiclass cancer diagnosis of 14 common tumor types
using OVA and AP decomposition methods

(Ramaswamy et al, 2001)

• Data set of about 200 tumor specimens spanning 14 different 
tumor classes obtained from the NCI, Memorial Sloan-
Kettering Cancer Center (NY), and 3 hospitals in Boston.

• All tumors are biopsy specimens from primary sites

• Hybridization of targets to oligonucleotide microarrays 
(Affymetrix) provides expression data for 16063 genes.

• The largest study about gene expression based prediction of 
multiple tumor types



OVA-WTA ensemble approach
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• Base classifiers: kNN, SVM

•Dichotomies: One class Versus 
All (OVA)

•Winner Takes All (WTA) 
decoding:

i
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fclass ˆmaxarg
..1=

=

• “Simple” dichotomies to learn

• No error recovering 
capabilities



OVA-WTA multiclass prediction



All Pairs approach
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• k(k-1)/2 dichotomies

•Dichotomies: class i versus class j: fij

• Vote decoding:
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Limits:

• Binary classifiers trained with fewer 
examples

• Added noise: only k classifers are 
relevant for a given sample

A better alternative:

Correcting Classifiers (Moreira and 
Mayoraz, 1998)

.    .    .    .    .

All pairs decomposition



Results

Genes selected 
through the RFE 

method (Guyon et 
al., 2002)



Gene expression based analysis of lymphoma using ECOC 
ensemble methods (Valentini, 2002)

1. Separating cancerous and normal 
tissues using the overall 
information available.

2. Two step method:
– A priori knowledge and 
unsupervised methods to select 
“candidate” subgroups
– SVM or MLP identify the most 
correlated subgroups

3. Classifying different types of 
lymphoma (a multiclass problem), 
using all the available gene 
expression data.

2. Identifying groups of genes 
specifically related to the 
expression of two different tumour 
phenotypes through expression 
signatures.

Classification 
problems

1. - Support Vector Machines (SVM) : 
linear, RBF and polynomial kernels
- Multi Layer Perceptron (MLP)
- Linear Perceptron (LP)

3. - MLP
- ECOC-MLP and OPC-MLP 
ensembles
- ECOC-LP and OPC-LP ensembles

Methods



The data

• Data of a specialized DNA microarray, named "Lymphochip", developed 
at the Stanford University School of Medicine:

96 tissue samples from normal 
and cancerous populations of 
human lymphocytes

4026 different genes 
preferentially expressed in 
lymphoid cells or with known 
roles in processes important in 
immunology or cancer

High dimensional data

Small sample size

A challenging machine learning problem



Types of lymphoma
Three main classes of lymphoma: 

• Diffuse Large B-Cell Lymphoma (DLBCL), 

• Follicular Lymphoma (FL) 

• Chronic Lymphocytic Leukemia (CLL) 

• Transformed Cell Lines (TCL) 

and normal lymphoid tissues

Type of tissue Number of samples

Normal lymphoid cells 24

DLBCL 46

FL 9

CLL 11

TCL 6



Application of OC ensembles to the 
classification of lymphoma.

1. Parallel Linear Dichotomizer ensembles (PLD) 

2. One-Per-Class Parallel Non linear Dichotomizers (OPC-
PND) ensembles

3. Error-Correcting-Output-Coding Parallel Non linear 
Dichotomizers (ECOC-PND) ensembles

ECOC-PND, OPC-PND and PLD are OPC and ECOC 
ensembles of MLPs or LPs, where each LP or MLP is 
independently trained to learn a different bit of the codeword 
coding the classes. 



Classifying different types of lymphoma with ECOC methods
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• Base learners: MLPs and LPs

• 15 bit ECOC generated by exhaustive 
algorithms

• L1 norm distance decoding:

• Error recovering capabilities: at least 3 
errors admissible in this case

• More complex dichotomies (in general) 
with respect to OPC decomposition

• ECOC reduces both bias and variance
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Results (1)

• ECOC and OPC PND achieve the best 
results

• PLD fail on this task

• MLP performs slightly worse than PND

• OPC and ECOC PND 
ensembles less sensitive to 
model parameters with respect 
to MLPs



Results (2)

Confusion matrix for the classification of different types of lymphoma.

Expected 

DLBCL CLL normal FL TCL

DLBCL 44 0 3 0 0

Pre- CLL 0 11 0 0 0

dicted normal 0 0 21 0 0

FL 1 0 0 9 0

TCL 1 0 0 0 6

• Errors are due to:

- false positives DLBCL 

- false positives TCL and FL

• Errors are the same in:

- OPC ensembles

- ECOC ensembles  

• Similar genetic programs 
between GCB-like and 
normal lymphoid cells?  



OC methods for multiple type cancer 
classification: results and perspectives

• OC decomposition methods for multiple type cancer classification using gene 
expression data obtained encouraging results:
– Multiclass cancer classification of 14 common tumor types

using OVA-SVM decomposition methods
achieved an estimated accuracy of about 78% (Ramaswamy et al, 2001)

– Multiclass cancer classification of 4 different lymphoma types and 
normal cells using ECOC-MLP achieved an estimated accuracy of about 
95% (Valentini, 2002)

• Open problems:
– Using SVMs as base learners we can use WTA or Hamming decoding,

but there are problems in using other more reliable similarity measure that 
can exploit the strength of the prediction (especially for ECOC). We need 
to experiment with “normalized” SVMs or with SVMs whose output 
estimates probabilities.

– Is feature selection useful for multiclass cancer classification, or we may 
lose information ?

– Is it useful in this context applying ensembles of ensembles? (e.g. in the 
style of Adaboost.OC )



Gene expression-based classification of normal and 
heterogeneous malignant tissues using bagged SVMs:

some preliminary results

• Data set of 300 normal and tumor specimens spanning 14 
different tumor classes obtained from the Whitehead Institute –
Massachusetts Institute of Technology Center for Genime 
Research.

• Hybridization of targets with oligonucleotide microarrays 
(Affymetrix) provides expression data for 16063 genes.

• Preprocessing of raw data using standard thresholding, filtering 
and normalization methods for oligonucleotide microarray data.

• Stratified-random splitting of the data in a separated learning 
and test set  (1:1).



SVMs for classification of normal and 
heterogeneous malignant tissues

SVMs using all the genes (16063) achieved a low accuracy 
(~30% error on the test set). 

Problems due to: 

– heterogeneity of the data?

– too high dimension and low cardinality of the data?

– noise?

Feature selection methods can enhance accuracy ?



Gene selection

From a machine learning standpoint, it is a feature selection
problem

Selecting subsets of 

genes mostly related to 

carcinogenic processes

• Genomic diagnosis of 
tumors

• Genomic therapy of 
tumors

• Insights into genetic 
networks correlated to 
carcinogenic processes 



A filter approach to gene selection:
Gene-specific neighborhood analysis

It is a method for gene selection applied before and independently of 
the induction algorithm (filter method).

It is a variant of the classic neighborhood analysis proposed by Golub
et al. (1999)

1. For each gene the S2N ratio ci is calculated:

2. A gene-specific random permutation test is performed:

i. Generate n random permutations of the class labels computing 
each time the S2N ratio for each gene.

ii. Select a p significance level (e.g. 0<p<0.1)

iii. If the randomized S2N c_randi is larger than the actual S2N ci in 
less than p * n random permutations, select the ith gene as 
significant for tumor discrimination at p significance level.
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Gene-specific neighborhood analysis

• It is a simple method                  , n = number of examples, d = number 
of features (genes) to assess the correlation of genes with tumors.

• It estimates the significance of the matching of a given phenotype to a 
particular set of marker genes

• The permutation test is distribution independent: no assumptions about 
the functional form of the gene distribution.

Limits:

It assumes that the 
expression patterns of 
each gene are 
independent

It fails in detecting the 
role of coordinately 
expressed genes in 
carcinogenic processes

( )dn×Ο



Gene-specific neighborhood analysis 
enhances SVM accuracy

1. Gene selection by gene-specific neighborhood analysis.

• Selected 592 genes correlated with tumoral examples (p=0.01) (set A)

• Selected > 3000 genes correlated with normal examples (p=0.01) (set B)

• Data set composed by set A and the 592 genes most correlated (with 
higher S2N ratio values) with normal examples in the set B
• As a result, the selected set of genes is composed by 1182 genes.

2. Results: SVMs with the selected subset of genes achieve a significant 
reduction of the prediction error with respect to the SVMs trained using all 
the available genes: about 12% of relative error reduction with linear
SVMs, 27% with Gaussian SVMs, and even better with polynomial 
kernels.



Can bagged ensembles of SVMs enhances 
accuracy ?

Gene expression data are 
characterized by low 
cardinality:

Ensembles of learning 
machines can reduce 
variance due to the low 
cardinality of the available 
training data.

Gene expression data are 
characterized by high 
dimensionality:

SVMs can manage high 
dimensionality data and have 
“good” theoretical and 
practical properties



Bagged ensembles of SVMs enhance accuracy

•As in other works (Dudoit et al., 2000) we can observe a 
slight reduction of the error bagging unstable base learners.

•Can we enhance the accuracy of the prediction exploiting the 
specific learning characteristics of SVMs ? 

•The low cardinality of the available data and the large degree 
of biological variability in gene expression suggested to apply 
variance-reduction methods (bagging) for this task. 



Bias-variance analysis based 
ensemble methods

Bias-variance decompostion of the error (Domingos, 2000) 
recently proposed as a tool to properly design ensemble 
methods well-tuned to the characteristics of a specific base 
learner (Valentini, Dietterich 2002).

Bias variance decomposition of the error as a tool to:

study the properties 
of learning 
algorithms

design ensemble 
methods base 

learner specific



An example of the application of bias-variance 
analysis of the error to SVMs: bagged ensemble of 

selected low-biased SVM (Lobag)

•We know that bagging lowers 
variance, but not bias. 

•SVM are “strong” low-biased 
learners, but this property depends 
on the proper selection of the 
kernel and its parameters. 

•If we can identify low-biased base 
learners with a relatively high 
unbiased variance, bagging can 
lower the error. 

•Bias-variance analysis can 
identify SVM with low bias. 

A basic high-level algorithm for 
a general Bagged ensemble 
of selected low-biased SVM
could be: 

1. Estimate bias-variance 
decomposition of the error 
for different SVM models

2. Select the SVM model with 
the lowest bias 

3. Perform bagging using as 
base learner the SVM with 
the estimated lowest bias. 



Bias-variance analysis in dot-product SVMs



Bias-variance analysis in polynomial SVMs



Bias-variance analysis in gaussian SVMs



Lobag can enhance further accuracy

Lobag ensembles of SVMs, such as bagged ensembles of SVMs work if the 
unbiased variance is relatively high w.r.t. the bias. 

For this specific dichotomic classification problem Lobag enhances further 
accuracy w.r.t. both single SVMs and bagged SVM ensembles (preliminary 
results) 

Open problems:

- Estimating bias-variance decomposition of the error is computationally 
expensive. 

- Can we estimate bias-variance decomposition without an “exhaustive” search ?



Bagging and boosting for the classification of 
DNA microarray data (Dudoit et al. 2002)

5 data sets:
• 3 classes Lymphoma. Alizadeh et al. 

(2000) (cDNA arrays).
• Leukemia. Golub et al. (1999) 

(oligonucleotide arrays): 72 samples, 
3571 genes, 3 classes (Bcell ALL, 
Tcell ALL, AML).

• NCI 60. Ross et al. (2000) (cDNA
arrays): 64 samples, 5244 genes, 8 
classes.

• Brain cancer. Pomeroy et al. (2002) 
(oligonucleotide arrays): 34 samples, 
5893 genes, Classic vs. desmoplastic
medulloblastoma

• Breast cancer. West et al. (2001) 
(oligonucleotide arrays): 49 samples, 
7129 genes, ER + vs. ER –.

Methods:
• Bagging
• Parametric bagging
• Convex pseudo-data (Breiman,1996)
• Adaboost (Freund and Schapire, 

1997)
• LogitBoost (Friedman et al., 2000)
(Dettling and Buhlmann, 2002 also 

applied an OVA-LogitBoost to gene 
expression data).

Main results:
• Aggregation improves performance 

of unstable classifiers
• Gene selection sometimes 

improves accuracy
• Simple classifiers can outperform 

more complex ones



Random forests (Breiman, 2001) for gene 
expression data analysis

Random resampling of the 
learning data (e.g. Bagging)

Random resampling of the 
features (e.g. “Random 
subspace” method, Ho, 1998)

High dimensional data

Gene expression data characteristics:

Small and noisy sample size

Random forests combine both 

This general approach can be extended to other base learners



Thank you


