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Ensemble methods for bioinformatics and for
gene expression data analysis

Applied in different bioinformatics domains. e.g.

* Protein secondary structure predictions (Riis and Krogh,
1996, Petersen et al., 2000)

e Genefinding and intron splice site prediction (Brunak et
al., 1991)

But we focus on ensemble methods for gene expression
analysis.
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Relationships between DNA and proteins
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Expression of the genetic information

The expression of the genetic information
stored in the DNA molecule occurs in two

stages:

— (1) transcription, during which DNA is
transcribed into MRNA,;

— (1) trandlation, during which mRNA is

translated to produce a protein.



Differential expression

- Each cell contains a
complete copy of the
organism's genome (that is,
the same genome).

* Cells are of many
different types and states:
blood, nerve, and skin
cells, dividing cells,
cancerous cells, etc.

What makes the cells different?

 Differential gene expression,
I.e., when, where, and how much
each gene is expressed.

* On average, 40% of our genes are
expressed at any given time.



The “central dogma’ of Molecular Biology
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Transcriptome

-mRNA transcript The transcriptome reflects
levelsretlect the » Tissue source; cell type, organ.
functional status of a : A

cell * Tissue activity and state:

e Measuring protein — Stage of development,

th h.
levels (trandlation) i, ded
would be more — Cdll cycle.
direct but more — Disease vs. hedlthy.

difficult.
— Response to therapy, stress.



Functional genomics

- The genome pr oj ects have yielded the complete DNA sequences of many
organisms. human, mouse, yeast, fruitfly, etc.

Human: 3 billion base-pairs, 30-40 thousand genes.
e Challenge: go from sequence to function,

I.e., define the role of each gene, their interactions and understand how the
genome functions as a whole.

e Transcriptomicsinvolves large-scale analysis of messenger RNAsto
follow when, where, and under what conditions genes are expressed.
 Proteomics—the study of protein expression, protein-protein
Interactions and functions
e Structural genomics studies the 3-D structures of one or more proteins
from each protein family, thus offering clues to function and biological
targets for drug design.

« Compar ative genomics—analyzing DNA sequence patterns of
humans and well-studied model organisms side-by-side for identifying
human genes and interpreting their function.



DNA microarray. atechnology for
transcriptome analysis

 DNA hybridization microarrays supply information about
gene expression through measurements of mRNA levels of
large amounts of genesin acell

e They offer asnapshot of the overall functional status of a
cell: virtually all differencesin cell type or state are related
with changes in the mRNA levels of many genes.

 DNA microarrays have been used in mutational analyses,
genetic mapping studies and in genome monitoring of gene
expression



Applications of microarrays

- Molecular diagnosis of polygenic diseases

» Molecular characterization of tumors on a genomic
scale: diagnosis and effective treatment of cancer.

 Prognostic tools for clinical useto predict the
outcome or treatment response

 Pharmacogenomics: Identification of molecular
targets for drugs

* Analysis of gene expression response to external
stimuli (drugs, environment, hormones)

* Analysis of metabolic pathways

 Non-expression uses: assessing presence/absence
of sequences in the genome, SNP and mutations
analysis.



(Gene expression assays

— Serial analysis of gene expression
(SAGE);

— Short oligonucleotide arrays
(Affymetrix);

— Long oligonucleotide arrays
(Agilent Inkjet);

— Fibre optic arrays (11lumina);

— cDNA microarrays



cDNA microarray hybridization experiments
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and cDNA synthesis by
reverse transcription
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A DNA microarray image (E. coli)

* Each spot
corresponds to the
expression level of
a particular gene

* Red spots
correspond to over
expressed genes

» Green spotsto
under expressed
genes

 Yelow spots
correpond to
intermediate levels
of gene expression




Preprocessing of cDNA microarray data

Solution: Comparing the

1. Wedo not know the exact hybridization level in each spot
number of clonesin each with the level of hybridization
DNA spot. under “control conditions’.

2. Length of the cDNA
spotted sequences are not j>

equal
|

T

Both influence the amount of \\_ 200] 10000] 50.00] 5.64] I
s 2 4800] 4800 41.00| 0.00
hybrldlzatlon auEu 300] 0.03[4.91 -

e
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Many other problems related to preprocessing: see e.g.
http://globin.cse.psu.edu/courses/spring2002/3_Norm_miss.pdf
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The cycle of gene expression experiments

[ Biological question

|

{ Experi me_ntal design ]

l

{ Microarray experiment ] Biological
1 verification and
Inter pretation
{ | mage analysis ] P .
{ Preprocessing ]

\

{ Data analysis. machine learning and

statistical methods




Levels of analysis of DNA microarray data

0. Image analysis. Analysis of intensities levels of
the fluorescent dyes

1. Single genes analysis: each gene in isolation
behaves differently in atreatment vs. a control
Situation?

2. Multiple genes: analysis of interactions, common
functionalities, co-regulations

3. Pathway analysis and exploration: analysis of the
relationships between networks of interacting
molecules



Analyzing microarray data by machine learning

methods

The large amount of gene expression data requires machine learning methods
to analyze and extract significant knowledge from DNA microarray data

Unsupervised approach

No or limited a priori
knowledge.
Clustering algorithms are used
to group together similar
expression patterns :
— grouping sets of genes
— grouping different cells or
different functional status of
the cell.
Example: hierarchical clustering,
fuzzy or possibilistic clustering,
self-organizing maps.

Supervised approach

“A priori” biological and medical
knowledge on the problem domain.
L earning algorithms with labeled

examples are used to associate gene
expression data with classes.

separating normal form
cancerous tissues

classifying different classes of
cells on functional basis

Prediction of the functiona
class of unknown genes.

Example: multi-layer perceptrons,
support vector machines, decision
trees.



Unsupervised approaches to gene expression data analysis

Biological problems Unsupervised methods

- Functional class discovery - Hierarchical clustering
(e.g. discovery new (Eisen & Brown, 1999)

diseases on molecular 5

basis) e Self Organizing Maps

(Tamayo et al., 1999)

* Gene expression signature » K-means (Tavazoie et al,

discovery

_ 1999)
1 Gens Sl e ecion » Graph-based algorithms
» Exploratory analysis (Sharan and Shamir, 2000)

e Biclustering (Tanay et al,
2002)




Visualizing
data with
Tree View
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Supervised approaches to gene expression data analysis

Biological problems Supervised methods

» Prediction of the functional » Decision trees

status of tissues » Fisher linear discriminant

» Prediction of the functional :
class of genes « Multi-Layer Perceptrons
« Diagnosis of tumours of * Nearest-Neighbours classifiers

molecular basis e Linear discriminant analysis

 Prognostic tools to predict the e Parzen windows

outcome or treatment response :
=t  Support Vector Machines

e |dentification of molecular
targets for drugs

Proposed by different authors:

Golub et al. (1999), Pavlidis et al. (2001), Khan et al. (2001), Furey et al.
(2000), Ramaswamy et al. (2001), Yeang et al. (2001), Dudoit et al. (2002).



Ensemble methods for gene expression data analysis

Why using ensemble methods for gene

expression data analysis ?
- General motivations

- Domain specific motivations



Why should we use ensembles?

e From empirical studies : ensembles are often much more
accurate than individual learning machines (Freund &
Schapire (1995),Bauer & Kohavi (1999), Dietterich
(2000), ...)

» Different theoretical explanations proposed to justify their
effectiveness (Kittler (1998), Schapire et al. (1998),
Kleinberg(2000), Allwein et a. (2000)).

 Very fast development of computer technology:
availability of very fast computers and networks of
workstations at arelatively low cost.



Reasons for combining multiple learners

Satistical: data are limited

Representational: learning algorithms cannot
always represent all the functions

Algorithmical : optimization techniques are not
always optimal
Theoretical: for instance, bias-variance reduction



Ensembles of learning machines for gene
expression data analysis

Gene expression data are
characterized by low cardinality

).

Gene expression data are
characterized by high
dimensionality:

o

" Ensembles of learni ng machi nes

can reduce bias and/or variance
due to the low cardinality of the

available training data.

e 2

/ Dimensional Ity reduction ensembl e)

methods (e.g. random subspace) or
ensembles combined with feature

Ksel ection -

Different works showed that ensemble methods can be successfully applied
to DNA microarray data analysis (Dudoit et al., 2000; Y eang et al., 2001,
Ramaswamy et al., 2001; Valentini, 2001; Su et a. 2002).



Ensembles of learning machines for gene
expression data analysis. examples

e Output Coding methods (Dietterich and Bakiri, 1995) for
multiple-class cancer diagnosis.

» Resampling methods for gene expression based prediction
of functional classes.

— Bagging (Breiman, 1996)
— Boosting (Freund and Schapire, 1996)

— Cross validated committees (Parmanto et al., 1996)
— Random forests (Breiman, 2001)



Output Coding methods for multiple-class
cancer diagnosis.

1. OVA-WTA and AP ensemble approach
(Yeang et al, 2001; Ramaswamy et al, 2001)

2. ECOC ensemble approach (Valentini, 2002)

Multiclass classification ishard in this context:

e large dimensionality of the datasets

e small number of examples

» small but significant uncertainty in the original labelings
* noise in the experimental and measurement processes

e intrinsic biological variation from specimen to specimen



Multiclass cancer diagnosis of 14 common tumor types
using OVA and AP decomposition methods
(Ramaswamy et al, 2001)

Data set of about 200 tumor specimens spanning 14 different
tumor classes obtained from the NCI, Memoria Sloan-
Kettering Cancer Center (NY), and 3 hospitals in Boston.

All tumors are biopsy specimens from primary sites

Hybridization of targets to oligonucleotide microarrays
(Affymetrix) provides expression datafor 16063 genes.

The largest study about gene expression based prediction of
multiple tumor types



dichotomies

OVA-WTA ensemble approach

codewords
C, |G [C3|Cy |C5
fo[+1|-1]-1]-1]-1
fo |-1|+1]-1]-1]-1
fo |-2]-2|+1]-1]-
fp |-1|-1]-1]+1]-1
fe [-1|-1|-1]-1]+1

e Base classifiers: KNN, SVM

eDichotomies; One class Versus
All (GVA)

*Winner Takes All (WTA)
decoding:

class = argmax f:
i=1..k

 “Simple” dichotomiesto learn

* No error recovering
capabilities



OVA-WTA multiclass prediction

DATASET
(16,063 Genes, 218 Human Tumor Samples)

BRE PR LU COLY BL M. UT LE RE PA OW ME CHE
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Classifier 1 Classifher 7 Classifier 14
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dichotomies

All pairs decomposition

All Pairs approach

codewords

C, |G |C3 [Cy |C5
f,|+1]-1]0]0]|o0
f, |+1] 0|1l 0|0
fs |+1] 0] 0 |-1]0
f, |[+1] 0| 0| 0| -1
fe|O|+1|-1|0]0
fe |[O|+1|0|-1]0

* k(k-1)/2 dichotomies
*Dichotomies: classi versus class: f;,

* VVote decoding:

k
class= arg maxz i
=Lk 4

Limits:
 Binary classifiers trained with fewer
examples

» Added noise: only k classifers are
relevant for a given sample

A better aternative:

Correcting Classifiers (Moreira and
Mayoraz, 1998)



Dataset

Training
Test

Accuracy (%)

&0

70

60 -

30 1

20 1

10 -

Results

Method Samples Accuracy Confidence
High Lo

Fraction Accuracy Fraction Accuracy

CV 144 T8% B0% 20% 20% 28%

Train [/ Test 54 T8% T8% 8.3% 2%, S8%
SVM OVA
k-NN OVA
SVM AP
S Genes selected
WY OVA through the RFE

method (Guyon et
al., 2002)
1 10 100 1000 10000 100¢00

Genes per OVA Classifier



Gene expression based analysis of lymphoma using ECOC
ensemble methods (Valentini, 2002)

Classification
problems

1. Separating cancerous and normal
tissues using the overall
Information available.

2. ldentifying groups of genes
specificaly related to the
expression of two different tumour
phenotypes through expression
signatures.

3. Classifying different types of
lymphoma (a multiclass problem),
using all the available gene
expression data.

M ethods

1. - Support Vector Machines (SVM) :
linear, RBF and polynomial kernels

- Multi Layer Perceptron (MLP)
- Linear Perceptron (LP)

2. Two step method:

— A priori knowledge and
unsupervised methods to select
“candidate’ subgroups

— SVM or MLP identify the most
correlated subgroups

3.- MLP

- ECOC-MLP and OPC-MLP
ensembles

- ECOC-LP and OPC-LP ensembles



The data

* Data of a specialized DNA microarray, named "Lymphochip”, devel oped
at the Stanford University School of Medicine:

4026 different genes

preferentially expressed in

lymphoid cells or with known i High dimensional data
rolesin processes important in

Immunology or cancer

96 tissue samples from normal
and cancerous popul ations of
human lymphocytes

ﬁ Small sample size

. &

A challenging machine learning problem




Types of lymphoma

Three main classes of lymphoma
e Diffuse Large B-Cell Lymphoma (DLBCL),
e Follicular Lymphoma (FL)
» Chronic Lymphocytic Leukemia (CLL)
 Transformed Cell Lines (TCL)

and normal lymphoid tissues

Type of tissue Number of samples
Normal lymphoid cells 24
DLBCL 46
FL 9
CLL 11

TCL 6



Application of OC ensemblesto the
classification of lymphoma.

1. Parallel Linear Dichotomizer ensembles (PLD)

2. One-Per-Class Parallel Non linear Dichotomizers (OPC-
PND) ensembles

3. Error-Correcting-Output-Coding Parallel Non linear
Dichotomizers (ECOC-PND) ensembles

ECOC-PND, OPC-PND and PLD are OPC and ECOC
ensembles of MLPs or LPs, whereeach LP or MLP is
Independently trained to learn a different bit of the codeword
coding the classes.



Classifying different types of lymphoma with ECOC methods

codewords e Base learners: MLPsand LPs

¢, | & | & | ¢ | C
i | a2 | | a1 | a1 | * 15 bit ECOC generated by exhaustive
b | 2| | | | s algorithms
fs +1 +1 +1 -1 -1 ; : ;
gl [+ [ a3 [ » L, norm distance decoding:
é fg =1 +1 =1 +1 =1 15
(=7 I I T S L argminL,(y, D.)=argmin2‘y. - D,
=« | o+ | 1 1 icC ! -G e J .
% fq 1 | 4+ 1 1 +1
ffg +11 i j i +11 « Error recovering capabilities: at least 3
P R B B R R errors admissible in this case
EZ N IR N M » More complex dichotomies (in general)
= I I I T with respect to OPC decomposition
fia =1 -1 =1 +1 +1
fs | +1 | A4 | 1 | 1 [ -1 « ECOC reduces both bias and variance




Results (1)

25 T T T 1 T 1 |
ECOC PND [ |
ok OPCPND L[] N
) MLP 1
PLD I
H 15| |
¥
E 1o | i
&
5 F i
D
4 6 B 1D 15 4 6 8 10 15 4 6 B 1D 15
ECOC PND OPC PND MLP PLD
Number of hidden neurons and classifier type
e ECOC and OPC PND achieve the best e OPC and ECOC PND
results ensembles less sensitive to
: : model parameters with respect
e PLD fail on thistask P L
to MLPs

* MLP performs dlightly worse than PND



Results (2)

Confusion matrix for the classification of different types of lymphoma.

Expected
DLBCL CLL normal FL TCL
DLBCL 44 0 3 O O
Pre- CLL 0 11 0 O O
dicted normal 0 0 20 00
FL 1 0 0 9 O
TCL 1 0 0 O 6
e Errors are due to:  Errors are the samein: e Similar genetic programs
- false positives DLBCL - OPC ensembles Bete e I ol

normal lymphoid cells?
- falsepositivesTCL and FL - ECOC ensembles



OC methods for multiple type cancer
classification: results and perspectives

» OC decomposition methods for multiple type cancer classification using gene
expression data obtained encouraging results:

— Multiclass cancer classification of 14 common tumor types
using OVA-SVM decomposition methods
achieved an estimated accuracy of about 78% (Ramaswamy et al, 2001)

— Multiclass cancer classification of 4 different lymphoma types and
normal cells using ECOC-MLP achieved an estimated accuracy of about
95% (Vaentini, 2002)

* Open problems:
— Using SVMs as base learners we can use WTA or Hamming decoding,

but there are problems in using other more reliable similarity measure that
can exploit the strength of the prediction (especially for ECOC). We need
to experiment with “normalized” SV Ms or with SV Ms whose output
estimates probabilities.

— |sfeature selection useful for multiclass cancer classification, or we may
lose information ?

— Isit useful in this context applying ensembles of ensembles? (e.g. in the
style of Adaboost.OC)



Gene expression-based classification of normal and
heterogeneous malignant tissues using bagged SVMSs:
some preliminary results

Data set of 300 normal and tumor specimens spanning 14
different tumor classes obtained from the Whitehead | nstitute —
Massachusetts I nstitute of Technology Center for Genime
Research.

Hybridization of targets with oligonucleotide microarrays
(Affymetrix) provides expression data for 16063 genes.

Preprocessing of raw data using standard thresholding, filtering
and normalization methods for oligonucleotide microarray data.

Stratified-random splitting of the data in a separated |earning
and test set (1:1).



SVMsfor classification of normal and
heterogeneous malignant tissues

SVMsusing all the genes (16063) achieved alow accuracy
(~30% error on the test set).

Problems due to:
— heterogeneity of the data?
— too high dimension and low cardinality of the data?
— noise?

L

Feature sel ection methods can enhance accuracy ?



Gene selection

« Genomic diagnosis of

: tumors
Sel ecting subsets of

ﬁ e Genomic therapy of

genes mostly related to i

carcinogenic processes _ : :
e Insights into genetic

networks correlated to
carcinogenic processes

From a machine learning standpoint, it is a feature selection
problem




A filter approach to gene selection:;
Gene-specific nelghborhood analysis

It is a method for gene selection applied before and independently of
the induction algorithm (filter method).

It isavariant of the classic nelghborhood analysis proposed by Golub
et al. (1999)

1. For each genethe S2N ratio ¢ is calcul ated: G =
2. A gene-specific random permutation test is performed:

I.  Generate n random permutations of the class labels computing
each time the S2N ratio for each gene.

li. Select ap significance level (e.g. 0<p<0.1)

ii.  If therandomized S2N c¢_rand. is larger than the actual S2N ¢ in
less than p * n random permutations, select the it" gene as
significant for tumor discrimination at p significance level.



Gene-specific nelghborhood analysis

- It isa simple method O(nxd) , N = number of examples, d = number
of features (genes) to assess the correlation of genes with tumors.

e |t estimates the significance of the matching of a given phenotype to a
particular set of marker genes

» The permutation test is distribution independent: no assumptions about
the functional form of the gene distribution.

Limits:;

It assumes that the It failsin detecting the
expression patterns of :> role of coordinately
each gene are expressed genesin

Independent carcinogenic processes



Gene-specific neighborhood analysis
enhances SVM accuracy

1. Gene selection by gene-specific neighborhood analysis.
 Selected 592 genes correlated with tumoral examples (p=0.01) (set A)
 Selected > 3000 genes correlated with normal examples (p=0.01) (set B)

» Data set composed by set A and the 592 genes most correlated (with
higher S2N ratio values) with normal examplesin the set B

» Asaresult, the selected set of genes is composed by 1182 genes.

2. Results: SVMs with the selected subset of genes achieve a significant
reduction of the prediction error with respect to the SVMs trained using all
the available genes: about 12% of relative error reduction with linear
SVMs, 27% with Gaussian SVMs, and even better with polynomial
kernels.



Can bagged ensembles of SV Ms enhances

accuracy ?

Ensembles of learning
Gene expression data are machines can reduce
characterized by low variance due to the low
cardinality: cardinality of the available

training data.

_ SVMs can manage high

Gene expression data are dimensionality data and have
characterized by high “good” theoretical and

dimensionality: practical properties



Bagged ensembles of SVMs enhance accuracy

*The low cardinality of the available data and the large degree
of biological variability in gene expression suggested to apply
variance-reduction methods (bagging) for this task.

*As in other works (Dudoit et al., 2000) we can observe a
slight reduction of the error bagging unstable base |earners.

«Can we enhance the accuracy of the prediction exploiting the
specific learning characteristics of SVMs ?



Bias-variance analysis based
ensemble methods

Bias-variance decompostion of the error (Domingos, 2000)
recently proposed as atool to properly design ensemble
methods well-tuned to the characteristics of a specific base
learner (Valentini, Dietterich 2002).

Bias variance decomposition of the error as atool to:

e

study the properties design ensemble
of learning methods base
algorithms learner specific



An example of the application of bias-variance
analysis of the error to SVMs. bagged ensemble of
selected low-biased SVM (Lobag)

*\We know that bagging lowers
variance, but not bias.

*SVM are “strong” low-biased
learners, but this property depends
on the proper selection of the
kernel and its parameters.

o|f we can identify low-biased base
learners with arelatively high
unbiased variance, bagging can
lower the error.

*Bias-variance analysis can
Identify SVM with low bias.

A basic high-level algorithm for
a general Bagged ensemble

of selected low-hiased SVYM
could be:

1. Estimate bias-variance
decomposition of the error
for different SVM models

2. Select the SVM model with
the lowest bias

3. Perform bagging using as
base learner the SVM with
the estimated lowest bias.




Bias-variance analysis in dot-product SVMs

Linear SVM
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Bias-variance analysis in polynomial SVMs

Polynomial kernel
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Bias-variance analysis in gaussian SVMs

Gaussian kernel, C=20
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L obag can enhance further accuracy

L obag ensembles of SVMs, such as bagged ensembles of SVMswork if the
unbiased variance is relatively high w.r.t. the bias.

For this specific dichotomic classification problem L obag enhances further
accuracy w.r.t. both single SVMs and bagged SVM ensembles (preliminary
results)

Open problems:

- Estimating bias-variance decomposition of the error is computationally
expensive.

- Can we estimate bias-variance decomposition without an “exhaustive’ search ?



Bagging and boosting for the classification of
DNA microarray data (Dudoit et al. 2002)

M ethods:

5 data sets:;

3 classes Lymphoma. Alizadeh et al.
(2000) (cDNA arrays).

L eukemia. Golub et al. (1999)
(oligonucleotide arrays): 72 samples,
3571 genes, 3 classes (Bcell ALL,
Tcell ALL, AML).

NCI 60. Ross et a. (2000) (cDNA
arrays). 64 samples, 5244 genes, 8
classes.

Brain cancer. Pomeroy et a. (2002)
(oligonucleotide arrays): 34 samples,
5893 genes, Classic vs. desmoplastic
medulloblastoma

Breast cancer. West et al. (2001)
(oligonucleotide arrays): 49 samples,
7129 genes, ER + vs. ER —.

Bagging
Parametric bagging
Convex pseudo-data (Breiman,1996)

Adaboost (Freund and Schapire,
1997)

L ogitBoost (Friedman et al., 2000)

(Dettling and Buhlmann, 2002 also

applied an OV A-LogitBoost to gene
expression data).

Main results:;

Aggregation improves performance
of unstable classifiers

Gene salection sometimes
Improves accuracy

Simple classifiers can outperform
more complex ones



Random forests (Breiman, 2001) for gene
expression data analysis

Gene expression data characteristics:

- e

Small and noisy sample size High dimensional data

! !

Random resampling of the Random resampling of the
learning data (e.g. Bagging) features (e.g. “ Random

\ subspace” method, Ho, 1998)

Random forests combine both

Thisgeneral approach can be extended to other baselearners






