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Methods for generating classifier ensembles
• The effectiveness of ensemble methods relies on 

combining diverse/complementary classifiers
• Several approaches have been proposed to construct 

ensembles made up of complementary classifiers. Among 
the others:
– Injecting randomness
– Varying the classifier architecture, parameters, or type
– Manipulating the training data / input features / output features

• Examples:
• Data Splitting
• Bootstrap
• Random Subspace Method
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Methods for fusing multiple classifiers

Abstract-level

Measurements-level
(Stacked-generalization approach)

Rank-level

Trained
rules

Fixed 
rules
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State of the Art

• Despite observed successes in may experiments and real 
applications,  there is no guarantee that a given method 
will work well for the task at hand

• For each method, we have evidences that it does not 
always work

• For a given task, the choice of the most appropriate 
combination method lies on the usual paradigm of model 
evaluation and selection

• Many key concepts (e.g., diversity) need to be formally 
defined

• Few theoretical explanations of observed successes and 
failures
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State of the Art

• In particular, we have few theoretical studies that 
compared different combination rules (e.g., Kittler et al., 
PAMI 1998; L.I.Kuncheva, PAMI 2002)

• Surely, a general and unifying framework is very far to 
appear. 

• However, “….we have to start somewhere…” 
(L.I.Kuncheva, PAMI 2002)

• Theoretical works aimed to compare a limited set of rules, 
even if under strict assumptions, are mandatory steps 
towards a general framework

• In addition, practical applications demands for some 
quantitative guidelines, under realistic assumptions (there 
is nothing more useful than a good theory)
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A class of Fusers: Linear Combiners
• Linear combiners: Simple and Weighted averaging of 

classifiers’ outputs
• Many observed successes of these simple combiners 

(Bagging, Random Subspace Method, Mixtures, etc.)
• However, many important aspects had for a long time (and 

still have) just qualitative explanations:
– Effects of classifiers correlations on linear combiners 

performances
– Effects of errors and correlations imbalance
– Quantitative comparison between simple and weighed 

average
• So far, it is not completely clear when, and how much, 

simple averaging can perform well, and when weighted 
average can significantly outperform it
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An example of unclear results
(Roli and Fumera, MCS 2002)

• Test set error rates (averaged over ten runs)

k-NN MLP1 MLP2 Error range
Ensemble 1 10.01 11.68 12.05 2.04
Ensemble 2 10.01 18.20 18.00 8.19
Ensemble 3 10.01 13.27 17.78 7.77
Ensemble 4 10.01 25.97 26.23 16.22
Ensemble 5 10.01 17.78 26.23 16.22

combiner error rates optimal weights
Esa Ewa Esa-Ewa k-NN MLP1 MLP2

Ensemble 1 10.00 9.37 0.63 0.576 0.200 0.224
Ensemble 2 12.09 9.69 2.40 0.689 0.080 0.231
Ensemble 3 10.69 9.63 1.06 0.681 0.231 0.088
Ensemble 4 16.81 9.79 7.02 0.838 0.006 0.156
Ensemble 5 12.44 9.73 2.71 0.752 0.103 0.143
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Outline of the Lecture

1. An analytical framework for simple averaging of 
classifiers’ outputs

2. Extension of the framework to weighted average
3. Analytical and numerical comparison between simple and 

weighted average
4. Conclusions
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An analytical framework for simple averaging
(Tumer and Ghosh, 1996, 1999)

• An analytical framework to quantify the improvements in 
classification accuracy due to simple averaging of 
classifiers’ outputs has been developed by Tumer and 
Ghosh

• This framework applies to classifiers which provide 
approximations of the posterior probabilities

• The framework shows that simple averaging can reduce 
the error “added” to the Bayes one

• In particular, Tumer and Ghosh analysis points out and 
quantifies the effect of output correlations on simple 
averaging accuracy
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An analytical framework for simple averaging

• Consider the output of an individual classifier for class i, 
given an input pattern x:

fi(x) = pi(x) + εi(x)
– pi(x): a posteriori probability of class i
– εi(x): estimation error

Assume estimation errors are small and concentrated 
around the boundaries, so that the obtained decision 
boundaries are close to the optimal Bayesian boundaries

• This allows to focus the analysis around the decision 
boundaries
The following analysis is made for a one-dimensional case, 
but it can be extended to the multi-dimensional case 
(Tumer, 1996)
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Analysis around the decision boundaries
• Assume that the estimation errors cause a “small” shift of the 

optimal decision boundary by an amount b:  fi(x*+b) = fj(x*+b)
• This shift produces the added error region shown in figure 

(darkly shaded area) over Bayes error (lightly shaded area)

x

pi(x) pj(x)

x* xb
Di Dj

b

Obtained
boundary

Optimum
boundary

fi(x)
fj(x)
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Added error probability

• Tumer and Ghosh showed that the added error probability
can be expressed as a function of the distribution of the 
estimation errors εi(x) and εj(x)

• To compute the expected value of added error probability:
– A first order approximation is used for pk(x) around x*:

pk(x*+b) ≅ pk(x*) + bp’k(x*)
– The error εk(x) is broken into a bias βk and a noise term ηk with 

variance σ2
k:

εk(x) = βk + ηk(x)
Important hypothesis: the ηk(x) are i.i.d. variables with variance σ2

The most likely values of the shift “b” are small
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Added error probability
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Added error for individual classifiers

• For the case of biased classifiers, Tumer and Ghosh
showed that the expected value Eadd is:

where s is a constant term
• Eadd is the sum of two terms:

– the first term is proportional to the variance of the estimation errors
– the second term is proportional to the squared difference of the 

biases of classes i and j

Remind that the total error is the sum of the added error 
and the Bayes error: Etot = Eadd + Ebayes
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Simple averaging of classifiers’ outputs

• The approximation of pi(x) provided by averaging the outputs of N
classifiers is:

where

• Uncorrelated classifiers:
– the ηi

m(x), m = 1,…,N,  are i.i.d. variables
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Simple averaging of unbiased and 
uncorrelated classifiers

• Unbiased estimation errors: βi
m = 0, m = 1,…,N

• Again, important hypothesis:
– the ηi

m(x), m = 1,…,N,  are i.i.d. variables

• Tumer and Ghosh showed that the variance of the 
estimation error is reduced by a factor N by averaging:

• Accordingly, the added error of individual classifiers is 
reduced by a factor N:
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Remarks

• We are assuming that the estimation errors of individual 
classifiers have the same variance σ2

• For unbiased classifiers, this means that:

• I.e., classifiers exhibit equal errors (“balanced” classifiers)
• Classifiers can be imbalanced in the biased case, but 

Tumer and Ghosh did not analyse explicitly the effect of 
such “imbalance” on simple averaging performances

21σ
s

Eadd =
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Simple averaging of biased classifiers

• Added error of individual classifiers:

• Added error of the combination of N classifiers:

• The variance component is reduced by a factor N
• The bias component is not necessarily reduced by N

Averaging is very effective for reducing the variance 
component, but not for the bias component
So, individual classifiers with low biases should be 
preferred
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Simple averaging of biased classifiers

• Added error of simple averaging can be rewritten as:

• Where β can be regarded as the bias of an individidual 
classifier, and 

• If the contributions to the added error of the variance and 
the bias are of similar magnitude, the actual reduction is 
given by min(z2, N)

• If the bias can be kept low, then once again N become the 
reduction factor
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Correlated and unbiased classifiers

• Hypothesis:
– the ηi

m(x), m = 1,…,N,  are identically distributed, but correlated 
variables

• Added error of individual classifiers:

• Added error of the linear combination of N classifiers:

where
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Correlated and unbiased classifiers

• The reduction factor achieved by simple averaging 
depends on the correlation between the estimation errors

• Three cases can happen:
– δ > 0 (positive correlation):

the reduction factor is less than N
– δ = 0 (uncorrelated errors):

the reduction factor is N (as shown previously)
– δ < 0 (negative correlation):

the reduction factor is greater than N

Negatively correlated estimation errors allow to achieve a 
greater improvement than independent errors
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Remarks

• The correlation δ is:

1
1
−

−≥
N

δ

•As more and more classifiers are used (increasing N), it 
become very difficult to design uncorrelated classifiers
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Correlated and biased classifiers

• Added error of individual classifiers:

• Added error of the linear combination of N classifiers:

• As for uncorrelated errors, averaging is effective for
reducing the variance component of the added error
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Remarks

• Tumer and Ghosh analysis assumes a single decision 
boundary for each couple of data classes

• So, some conclusions (e.g., for the unbiased and 
uncorrelated case) can be optimistic

• For a given classification task, different decision 
boundaries can exhibit different estimation errors

• They did not analyse the effect of classifiers with different 
errors and pair-wise correlations (“imbalanced” classifiers) 
on simple averaging performances

Tumer and Ghosh analysis does not deal with the 
general case of linear combiners (Weighted Average)
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Experimental Evidences

• SONAR data set (Tumer and Ghosh, 1999)
• Two distinct feature sets and two neural nets (MLP and 

RBF)

They showed that using different classifiers trained with 
different features sets provides low/negative correlated 
outputs
Simple averaging of such uncorrelated classifiers reduces 
the error over the best individual classifiers of about 3%
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Multimodal biometrics
(Roli et al., 5th Int. Conf. on Information Fusion, 2002)

• XM2VTS database
– face images, video sequences, speech recordings
– 200 training and 25 test clients, 70 test impostors

• Eight classifiers based on different techniques
– two speech classifiers
– six face classifiers
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Multimodal biometrics application

• Test set error rates of individual classifiers

• The four classifier ensembles

Error rate Class. 1 Class. 2 Class. 3 Class. 4 Class. 5 Class. 6 Class. 7 Class. 8
Average 7.185 3.105 4.205 0.740 7.055 7.510 7.310 12.940
Client 6.750 2.750 7.000 0.000 6.000 7.250 6.500 12.250
Impostor 7.620 3.460 1.410 1.480 8.110 7.770 8.120 13.630

Classifiers Average Error Rates Error range
Ens. 1 5,1,7 7.055 7.185 7.310 0.255
Ens. 2 2,7,6 3.105 7.310 7.510 4.405
Ens. 3 2,3,6 3.105 4.205 7.510 4.405
Ens. 4 2,6,8 3.105 7.510 12.940 9.835
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Multimodal biometrics application

• Test set average error rates of simple averaging vs. BKS

• For three cases out of four, the difference between simple 
averaging and BKS lies in the range 1% - 2%

• Simple averaging performs reasonably well also for 
imbalanced classifiers. Especially, for uncorrelated 
classifiers with balanced pair-wise correlations !

 S.A. BKS 
Ens. 1 6.014 4.909
Ens. 2 5.739 4.246
Ens. 3 4.420 0.474
Ens. 4 5.509 3.487
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Extension to Weighted Average
(Roli and Fumera, SPR 2002, MCS 2002)

• N linearly combined classifiers, normalised weights wk

• Hypotheses:
– the εi

k are unbiased (βi
k=0)

– ∀ m,n ηi
m and ηi

n are correlated, but the correlation coefficient ρmn

does not dependent on the class i
– ηi

m and ηj
n are uncorrelated for i ≠ j, ∀ m,n

– Individual classifiers can have different variances !

• The probabilities estimated by the combiner are:
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Added error for Weighted Average

• Roli and Fumera showed that the added error around the 
boundary between classes i and j can be expressed as:

• Since                  , it can be rewritten as:Eadd
k =
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Uncorrelated and Unbiased Classifiers

• The expression of the added error reduces to:

• The optimal weights are inversely proportional to Ek
add:

Simple average (wk = 1/N) is optimal for classifiers with 
balanced (i.e. equal) errors
Weighted average is required for imbalanced classifiers
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Comparison between SA and WA
unbiased and uncorrelated errors

• The difference between the added error of SA and WA 
(using the optimal weights for WA) is:

• What is the “pattern” of classifiers’ errors that maximes the 
advantage of WA over SA ?

• Is such advantage depending only on the error “range”?
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Upper bound of WA over SA
(Roli and Fumera, MCS 2002; manuscript in preparation)

• For a given error range (EN
add - E1

add), the maximum of ESA -
EWA is achieved when:
– k classifiers have errors equal to E1

add

– N-k classifiers have errors equal to EN
add

– Where                                                       , and k =          or k = addaddadd EENNEk * −
=  *k 
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ESA - EWA vs error range EN - E1
An example for N=3 uncorrelated classifiers

0,0%

1,0%

2,0%

3,0%

4,0%

5,0%

6,0%

0,0% 5,0% 10,0% 15,0%

Error Range

Esa - Ewa E1 = 1%
E1 = 5%
E1 = 10%

E1

E2 E3

Upper bound conditions: E2= E3

•The advantage of WA over SA increases with the error
range

•But it remains less than 3%
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Weighted averaging of correlated classifiers

• The expected value of the added error is:

• For balanced performance and correlation, the optimal 
weights are wk = 1/N, analogously to the uncorrelated case

• The value of ESA-EWA is affected by errors and correlations 
imbalance

• What are the conditions on errors and correlations that 
maximes the advantage of WA over SA ?
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Weighted averaging of correlated classifiers

• For correlated classifiers, the optimal weights and the 
difference ESA-EWA cannot be computed analytically

The upped bound conditions for the difference ESA-EWA

were searched by numerical analysis
For different values of Ek

add and ρmn’, the optimal wk were 
computed by minimising EWA by exhaustive search. The 
value of ESA-EWA was also computed by numerical analysis

This analysis also showed some effects of errors and 
correlations imbalance on the difference ESA-EWA
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Balanced Errors and Imbalanced Correlations
• Numerical analysis was limited to the cases of N=3 and 

N=5 classifiers
• For a given correlation range (ρN - ρ1) the maximum of ESA -

EWA is achieved when:
– k classifiers have correlations equal to min{ρmn}= ρ1

– N-k classifiers have correlations equal to max{ρmn}= ρN

– The value of k depends on the values of Ek
add’s and ρmn’s

ρN

...
...

ρ1

1 2 N-1 Nk k+1 ......
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Balanced errors and Imbalanced correlations 
An Example (N=3)

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

3,0%

0,0 0,2 0,4 0,6 0,8 1,0

Correlation Range

Esa - Ewa

rm = -0.25
rm = 0
rm = 0.5

ρ1

ρ2 ρ3

rm=ρ1

Individual classifiers errors = 10%

•It is worth noting that WA outperforms SA if classifiers have 
the same accuracy but different pair-wise correlations

•SA suffers correlations imbalance



IIASS Vietri Linear Combiners F. Roli 39

Imbalanced errors and correlations

• Numerical analysis showed that the maximum advantage 
of WA over SA is obtained for this case

• The upped bound conditions for the difference ESA-EWA is
the conjunction of the conditions found for imbalanced 
errors and correlations
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Imbalanced errors and Imbalanced correlations 
An Example (N=3)

0,0%

1,0%

2,0%

3,0%

4,0%

5,0%

6,0%

7,0%

0,0% 5,0% 10,0% 15,0%

Error Range

Esa - Ewa

E1 = 1%
E1 = 5%
E1 = 10%

Correlation range: [-0.5; +0.9]

The advantage of WA over SA reaches 7%, while it was less 
than 3% for uncorrelated classifiers
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An example of experimental evidence:
Remote sensing application

• Feltwell data set
PRL Electronics Annex
Vol. 21, 2000

– five agricultural classes
– fifteen features

• 6 ATM and 9 SAR channels
– training set: 5820 pixels
– test set: 5124 pixels
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Remote Sensing Application
(Roli and Fumera, MCS 2002)

• Test set error rates (averaged over ten runs)

k-NN MLP1 MLP2 Error range
Ensemble 1 10.01 11.68 12.05 2.04
Ensemble 2 10.01 18.20 18.00 8.19
Ensemble 3 10.01 13.27 17.78 7.77
Ensemble 4 10.01 25.97 26.23 16.22
Ensemble 5 10.01 17.78 26.23 16.22

combiner error rates optimal weights
Esa Ewa Esa-Ewa k-NN MLP1 MLP2

Ensemble 1 10.00 9.37 0.63 0.576 0.200 0.224
Ensemble 2 12.09 9.69 2.40 0.689 0.080 0.231
Ensemble 3 10.69 9.63 1.06 0.681 0.231 0.088
Ensemble 4 16.81 9.79 7.02 0.838 0.006 0.156
Ensemble 5 12.44 9.73 2.71 0.752 0.103 0.143
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Remarks / Open Issues

• The comparison between WA and SA was focused on the 
upper bound conditions

• Lower bound conditions are matter of our on-going 
research

• The advantage of WA over SA for different ensembles can 
be evaluated if such ensembles have the same error ranges

Open issues:
• Advantage of WA over SA for ensembles with different 

error ranges
• Quantitative and general measures of imbalance degree
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The imbalance concept

• In general, the concept of imbalanced classifiers is hard to 
be formally defined

• A “pattern” of imbalance that is useful for a fuser can hurt 
the performances of another fuser

• For linear combiners, this definition of imbalance can be 
given:

two classifier ensembles exhibiting the same values of
ESA-EWA have the same degrees of imbalance
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Analysis of error-reject trade-off for linear combiners
(Roli et al., ICPR 2002)

• Roli et al. also extended the framework to the analysis of 
the error-reject trade-off

• We showed that the linear combination can improve the 
error-reject trade-off of individual classifiers

In particular, we showed that linear combination can 
reduce the risk “added” to the Bayes one
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MCS Workshops Series
http://www.diee.unica.it/mcs

• The series of workshops on Multiple Classifiers Systems, 
organized by the University of Cagliari and the University of 
Surrey, are motivated by the acknowledgment of the 
fundamental role of a common international forum for 
researchers of the diverse communities.
– Multiple Classifier Systems 2000, Cagliari, Italy
– Multiple Classifier Systems 2001, Cambridge, UK
– Multiple Classifier Systems 2002, Cagliari, Italy
– Multiple Classifier Systems 2003, Guildford, UK

• Join the discussion list mcs2002-discussion-list@diee.unica.it
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