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The learning problem

Let D = {(x;,%:) € X x Y}2, be a set of m i.i.d. observations
drawn according to a probability distribution p(x,y). We also call
z=(x,y) and Z =X xY.

If Y is R, we have regression. If Y is {—1,41} we have binary
classification.

We focus on regression and let fp : X — IR be the solution of a
learning algorithm (i.e. least squares estimation method).



Error functionals

The performance of a learning algorithm is evaluated by means
of a loss function V(y, f(z)) such that 0 < V(y, f(x)) < B, for
any choice of f and any (x,y) € Z.

Expected error: R(f) = Ezy[V (y, f(x))]
Empirical error: Remp(f) = %2;.”:1 V (y;, f(z;))

A key problem: to relate R(fp) tO Remp(fp) Or other error esti-
mates (see below).



Regularization-based learning algorithms

We focus on learning algorithms for which fp is the minimizer of
a reqgularization functional

Hu(f) = = Vi, £(2) + ullflI%
m;—1

The minimization is over a repr. kernel Hilbert space Hyx and:

e K : X x X — IR is continuous and positive definite (Mercer
kernel)

o ||f||k is the norm of f in Hg.

e 11 > 0 is the regularization parameter

fp is our kernel machine.



Some kernel machines

e Regularization Networks: V = (y — f)2

e SVM for regression: V(y, f) = |(ly — f| — )|+,
with || =&, if £ > 0 and zero otherwise.

e SVM for classification: (y € {—1,1}): V(y,f) = |1 —yf|+

Note that in the classification case, fp is still a real valued func-
tion. The classification function is computed as sign(fp)



Form of the solution

If V is convex, the minimizier of H, is unique and has the form:

flz) =) o;K(z;,x)
i=1

Coefficient «; are found by solving a dual optimization problem:

m

o = argmin, {W(a) = Y S(a;) +% 3 aiajK(xi,a;j)}

i=1 i,j=1
with S a convex function.



A well khown example

In support vector machines for classification f(x) = >>I" ; o; K(z;, ),

and the a = (a1,...,am) is the solution of the following QP-

problem:

1 m m
main 5 Z aiajK(aci,xj) — Z Y;a;
1,7=1 1=1

subject to:

[
I
=
Q
[

mu



Ensembles of kernel machines

Given kernel machines fi(xz), fo(x), ....fr(x) (e.g., each f; uses
different training data, or different representations of the data,
or different kernels, JA,...) the ensemble machine is

F(z) = c1f1(z) + cofo(z) + ... + epfr(z)
e ct =4, t=1,...,T (bagging combination)
e ¢; are learned from data: (adaptive combination)

e ¢; depends on x (some mixture of experts)



Why ensembles of kernel machines?

May increase stability!

Relations with interesting learning approaches: bagging and
boosting.

What happens with very large datasets? (maybe train many
machines each using a “small” subset of the data)

See (Collobert et al. 02), (Yamana et al. 02)

Particularly useful when K is computationally expensive!

Learning by components is often “natural” (face = eyes +
mouth 4 nose) see (Heisele et al., 2001).
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Sensitivity analysis in general

Let f be the machine trained after some perturbation (of the
dataset D, features/kernel parameters, pu,...)

Question: Can we quantify how much f differs from f7

Maybe helps understand merits and weakness of the ensembles
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Leave-one-out error

We focus on the following perturbation: we remove one point
(any) from the training set.

Let fl be the machine trained on D\{(z;,y;)}

The leave-one-out (m—fold cross validation) error is defined as:

Ryoo = Z V(yia f[z](xz))
1=1

This is close to the empirical error if the machine is ‘“very stable’ .
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Leave-one-out error (cont.)

Ry,, is an almost unbiased estimator of the generalization error:

Ep [R(fp)] = Ep [Ryoo(D)]
where D’ is a dataset of size m — 1 and expectations are taken
w.r.t. p({(zi, yi)}ieq)

Useful for model selection! We can use Ry,, to tune the hyper-
parameters used by the algorithm (e.g. the variance of the Gaus-

sian kernel in SVM) - See (Chapelle et. al 2001).

Drawback: Ry,, may have high variance! (later)
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Estimating Ry,

Problem: Computing Ry, is difficult: we need to train m ma-
chines! How to estimate Ry,,”

Assume we know that |f(z;) — fi(x;)| < A(z;). Then:
m
Ryoo < D ITI% V (i, f(z;) + AA(z;))
i=1 IS

Theorem (Zhang, 2001) |f(z;) — fi(z;)| < || K (24, ;)
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Proof

o: optimal parameters
wlil: Dual problem for dataset DU,
alll: Minimizier of W (ol = 0)

Define K;; = K(x;,z;) and set for simplicity i = m.

m
For every ¢ € {1,...,m} we have: S'(ap)+ > o;jK;;=0
—

J

S convex — S'(ay)(ay! — ay) < Sy — S(ay)

m
S(ag) — Y. oK j(ay) — ap) < S(afh)
=1
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Proof (continued)

Summing over £ € {1,...,m — 1} we have:
m—1 m _ m—1 _
> |S(an) = 3 aKjley! —ap)| < 3 S(ay)

Adding %Z?}[:ll OéjKjgozg to both sides and rearranging:

. 1 i i 1 i i
whl(a) + 5 > (aj — YKoy — af)) - 50%2Kz'z' < whl(a)
J=1
Note that Wlil(ald) < Wl(a), so last inequality becomes:
S i NP
> (aj — oz]? YK jo(ay — ap’) < of Ky
J,4=1
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Proof (continued)

m
i ; 12
> (aj — o Kjlap— o) = |If — )%
ji=1

We now use the following property:

9(2)| < 9l g/ K (z,7), Vg€ HK

It follows that: |f(x;) — f(x;)| < ||f — F9 /Ky which combined
with last inequality brings the result.
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Estimate of R,,, of some kernel machine
classifiers

The leave-out-out misclassification error of kernel machine clas-
sifiers is upper bounded as:

m m
Rppo = > 0(—yif"(2:)) < > 0(|lei| K (4, 7i) — yif (%))
i=1 i=1
See: (Haussler and Jaakkola, 1998)

Remember that: f(z) = > a;K(z;, )
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Leave-one-out error of an SVM classifier

For an SVM classifier, when the data is separable, Ry,, Can be
farther bounded using geometry (Vapnik, 1998; Chapelle and
Vapnik, 2000):

m 2
> 0oy K (i, %) — yif (i) < 1;—2
1=1

R: radius of the smallest sphere containing the support vectors
(points for which «; # 0, i.e. errors or points near the separating
surface)

1 . -
d = T margin of SVM
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Leave-one-out error of bagging kernel
machines

The Ry,, of a bagging combination of kernel machines,

F(z) = c1f1(x) + cofo(z) + ... + e fr(x)
is upper bounded by (see Evgeniou et. al., 2000)

m T
> 6 (Z ctloge| Ki(xi, z4) — yiF(wi))
i=1

t=1
where we used the notation: fi(z) = X1 1 oy Ki(zi, ).

Compare to one machine: Ry < Y i 0(|au| K (4, 2:) — yif (2:))
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Leave-one-out error SVM ensembles

For an ensemble of SVMSs, this can again be bounded using
geometry:

g . H(tz:]- Ct|a’it|}<t(fci,xi) — yZF(xz)) S t§ :1 ¢t dté
1= = -

R;: radius of sphere containing support vectors of machine t
d;: margin of SVM ¢

Now the *“average geometry’” is important.
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How predictive is the bound? (small C)

Postal data (C=0.5, Train= 791, Test = 2007)

Bag |-0-0, b=0 svm |-0-o0, b=0
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Try to pick variance of the Gaussian kernel. Solid line: test error, Dashed
line: Estimate of Ry,,. Left side: Bagging 30 SVMs, Right side: One SVM
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How predictive is the bound? (big C)

Postal data (C=100, Train= 791, Test = 2007)

Bag I-0-0, b=0
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The bound is more accurate for ensemble than single SVM!

C controls stability.
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Some remarks
The above result indicates that bagging SVMs is more ‘stable”
than a single SVM, especially when each machine is trained on
a small dataset.
Can we make this finding more formal?
Little open problem: how to compute the leave-one-out error of

the other ensembles? Experimentally those show good stability
too (see Evgeniou et al., 2000).
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Extensions

The above analysis can be extended to other learning tasks more
than regression and binary classification. In particular multiclass

classification:

e Error correcting codes of kernel machines (Passerini et al.,
2002)

e Multiclass classification schemes which directly maximize mul-
ticlass margin (Crammer and Singer, 2002)
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Towards a formal definition of stability

A possible approach is to bound the second order momentum

of R(fp) — Ry,,(D). We can then use Chebyshev's inequality to
bound R in terms of Ry,,.

Lemma: If fp is the solution of a deterministic and symmetric
algorithm, we have:

2
Ep (R~ Reao)?] < 5 +3BEp. [[V(y, fo()) — V(w, fpia ()]

See (Bousquet and Elisseeff, 2002) and the pioneering work of (Devroye and
Wagner, 1979).
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Definition of stability

We say that our learning algorithm has hypothesis stability G,
w.r.t. loss V if:

Vi€ {1,..,m}, Ep |[V(y, fp(@)) = V(y, fpu (2))] < Bm

We can think of this stability as the average change of the loss
of our solution in response to the leave-one-out perturbation.
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From stability to generalization

Starting from:
BQ
Ep [(R - RKOO)Q} < 2— + 3BBm
m
call X = R — Ry,, and use Chebyshev's inequality: P(X > ¢) <
E[X?]/e2.

Setting § = E[X?]/e2 we see that the following bound holds with
probability at least 1 — §:

B2 4+ 6 Bmfm
20m

R§R£00+\/
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From stability to generalization (cont.)

A similar result holds also for the empirical error if we modify
the notion of stability to pointwise hypothesis stability:

Vi € {1,...,m}, Bp ||V (yi, fp(2:)) — V(Wis i @)l] < B

Theorem (Bousquet and Elisseeff, 2002) If fp has pointwise hy-
pothesis stability By, the following bound holds with probability
at least 1 — ¢:

B2 4+ 12Bmfm
2mod

R(fD) < Remp(fD) + \/

29



Some simplifications

Often V has a Lipschitz property:

where A is a positive constant.

In this case it is sufficient to study stability of fp directly. For
example, the hypothesis stability will be:

Vi€ {1,..,m}, Ep, ||fp(@) — fpu(@)] < Bm
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Classification

The standard trick to deal with classification is to upper bound

the misclassification loss, 8(¢) (where £ = —yf) with function:
(1 if £€>0
m(¢) =4 1-5 if £€[-7,0]
| O otherwise
my is Lipschitz with A = 2. It follows that:

14+ 12mpBm
2m~yd

Bpy -uip@)) < = 3 (vl +

=1
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A stronger notion of stability

A drawback of previous analysis is that the confidence § appears
in the bounds as /1/§. We cannot consider an union of such
bounds! (e.g., for model selection).

Uniform stability:

Using uniform stability, we can get exponential bounds (6 appears
as log(1/4). See (Bousquet and Elisseeff, 2002).

Uniform stability is an upper bound for hypothesis stability.
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Stability of kernel machines

We have seen before that, for kernel machines:

1f(z) — f¥(z)| < Ck, where k= sup K (z, )

and remember that C = QL

mpy’

Thus, uniform stability is bounded by 27’;‘;“.

T he stability depends on the regularization parameter wu.
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Bagging

Bagging (Bootstrap Aggregating) is a learning method which
consists of averaging the solution of a learning algorithm A
trained several times on bootstrap sets of the training set.

e Sample T sets of £k < m points from D with the uniform
distribution, Dq1,D>,..., Dy (in standard bagging k = m).

e Train A on each Dy;. Let f; be the obtained function.

e Output the average function: 7>7_4 fi

Remark: when k£ < m (say less than 0.1m) we use the name
subagging to denote the average combination.

34



A randomized learning algorithm...

...it is a function A : Z™ x R onto (V)% where R is a space con-
taining elements r that model the randomization of the algorithm
and is endowed with a probability measure Py.

fpr: the solution of A.

Example 1: Bagging a deterministic algorithm: one bootstraped

iteration can be modeled with: R = {1,...,m}*,
P(r) = multi(k,1/m,...,1/m).
m times

Example 2: Neural Nets: R = weights of the networks, P(r):
probability of the initial weights.
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Stability of randomized algorithms

Definition Let fp, be the outcome of a randomized algorithm.
We say that fp, has random pointwise hypothesis stability Bm
with respect to the loss function V if:

Vi € {1,..,m}, Epp ||V (i fpo(2:)) = V(wis i p(@)]] < Bm.

Theorem (Elisseeff, Evgeniou, Pontil, 2002). Suppose fp, has
random pointwise hypothesis stability 8,,. Then with probability
at least 1 — 6:

2B2 4+ 12BmfBm

mod

R(fD,r) < Remp(fD,r) + \/
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Bagging and stability

Theorem (Elisseeff, Evgeniou, Pontil, 2002). Let 8,, be the
pointwise hypothesis stability of the algorithm used by bagging.
Then the pointwise hypothesis stability of bagging, Bm, is bounded

das:

- 0.632k
Bm <

B0.632k

Remark: The same definition/result holds for hypothesis stabil-
ity (not pointwise).

37



Proof

For simplicity we will prove the result for £k = m.

Let rq,..,rp De i.i.d random variables modeling the random sam-
pling of bagging, i.e. ry = (141, .,7tm) € {1,..,m}™ is the index
set of sub-sampled training points used by machine ¢.

The goal is to bound:

ED,I'l,..

1 T
T ; (fD(rt)(xz) - fD[i](rt) (:IZJ)H
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Proof - using i.i.d. assumption

Let's start to look at the expectation w.r.t. rq,..,rp:

|

1 T
ft;l Br, || D) (20 = Fpiitryy (@)l] = Br || oy (i) = Fpti gy (@)

1 T

= 2= (I @) = Fpiigey (@)

t=1
This can be upper bounded as:

ry,...,rr

where, in the last step, we used the i.i.d. assumption.
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Proof - simple decomposition
Define AM(D(r)) = [fp)(®:) — fplit ) (@]

Note that if ; is not in the random sampling D(r), then All =0
(changing it does not change the outcome of the algorithm)

It follows that:

Er |AM] = Er |AP (1, ey + Lpepr))| = Br [AP 1)

We now average w.r.t to D and use the following decomposition:
m
Epy [AN(D()] = Y Ep,; [AND@))1,,ep00,|D(x)| = k| Pp [D(xr)| = K]

A(K)

k=1

40



Proof - symmetryzation trick

Because of the symmetry of r, the expectation w.r.t. r does not
change if we apply any permutation of the indexes:

1 .
A(k) = — Y Ep o |AN(DE)) 14 cproy | DET)| =k
m' 1 ( )
T oeS™m

where we denoted r? = (o(r1),..,0(rm)),

But, since |D(r?)| = k, on the average w.r.t to o, x; belongs to
D(r?) only k/m times. Thus:

A(K) = Bp, [AH(DE), D) = K] ©
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Proof - final step

To conclude note that Ep ;. [A(Dm(r), |Dm(r)| = k] is bounded by
the hypothesis stability of the underline algorithm for a training
set of size k. Thus:

Bp. [A1(DE)] < 3
k=1

where we noted that the probability Pp,,  [|[Dm(r)| = k] is inde-
pendent on Dy,.

k By,

P [|D(r)| = k] = 0.632080.632m
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Bias and variance decomposition
Let f, be the regression function and f = Ep[fp].

When V is the square loss, we have the following decomposition:

Ep [R(fp)] = R(f») + Bias(fp) + Var(fp)

where:
o Bias(f) = Bz |(fp(z) — F(x))?]

o Var(f) =Epg [(fp(e) - F(2))?]
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Relation between stability and variance

Using the following result adapted from (Devroye, 1991) it is
possible to link stability to the variance.

Theorem Suppose that fp has pointwise hypothesis stability Bm.
Then:

Var(f) < mB2,

Remark: here the algorithm is deterministic. Not clear how to
extend this to randomized algorithms.
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Experiments

UCI repository: http://www.ics.uci.edu/ " mlearn/MLRepository.html
See also: http://ida.first.gmd.de/ raetsch/data/benchmarks.html
Underline learning algorithm: SVM with Gaussian kernel.

The variance and the C parameter in the SVM were previously
selected using 5—fold cross validation.
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Datasets

Dataset Inputs | Train | Test
Breast-Cancer 9 140 77

Heart 13 170 100
Thyroid 5 140 75

Banana 2 400 | 4900
Diabetis 3 468 300
Flare-Solar 0] 666 400
German 20 700 300
Image 18 1300 | 1010
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Subagging

30 SVM's were combined

Dataset | P=10% P =20% 1SVM
Breast 285 +48 | 27.1 =+ 4.6 | 26.6 + 4.8
53+ 4.4 56 £ 3.4 9.0 £ 5.0
Heart 175+ 3.4 | 159 £ 3.2 | 16.1 + 3.0
4.3 + 3.2 4.2 + 3.8 4.7 + 3.6
Thyroid 6.3 £ 2.9 49 + 2.3 50 £+ 2.3
3.6+ 2.2 3.1 &£ 2.1 4.7 + 2.5

Table shows the average test error and (below it) average absolute difference

between test and training error. (average is computed over 30 splits of the

dataset in training and testing)
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How many machines?

Test
training
0.16 .
0.14 v
K e
“““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““
0.14 1 1 1 1 1 1 1 1 1 0.13 1
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

e 10 machines already give a good approx. of the average.

e 30 machines give close approximation.
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Subagging

Dataset P =5% P=10% 1SVM

Banana 1394+ 15 | 127 1.2 | 11.7 £ 0.7
2.5+ 1.5 29+ 1.4 52 + 1.7

Diabetis | 24.6 = 1.9 | 23.5 £ 2.0 | 23.3 £ 2.3

2.6 £ 1.5 2.8+ 1.4 54 + 1.8
Flare 33.8+£2.3|134.0+1.9|34.9+ 3.0
2.5+ 2.0 2.4 £ 1.9 3.1 £ 1.9
German 262 £ 2.7 | 243 £ 1.9 | 234 + 1.7
2.7 £ 1.4 2.6 £ 1.6 6.7 £ 2.2
Image 8.9 +£ 0.8 7.1 £ 0.8 3.0 £ 0.6
0.8 +£ 0.6 0.7 £ 0.8 1.7 £ 0.6

Bagging 30 SVMs.




Breast Cancer dataset: 277 points, 9 attributes

T\P]| 5% | 10% | 20% | 40%
10 || 29.1]29.827.0]27.6
48 | 57 | 55 | 9.5
30 | 28.9|27.3 | 27.5 | 26.5
46 | 6.1 | 7.2 | 10.0
60 | 28.4|27.1 ]| 27.0 | 26.5
52 | 6.0 | 7.2 | 10.0

T : Number of machines

P : Percentage of data used by each SVM



Diabetis dataset: 768 points, 8 attributes.

T\P| 5% | 10% | 20% | 40%

10 25.5124.0 | 23.7 | 23.5
26 | 28 | 29 | 3.4
30 24.6 | 23.5 | 23.5 | 23.1
26 | 28 | 3.1 | 3.2
60 24.4 | 23.3 | 23.3 | 22.9
28 | 2.8 | 3.0 | 3.0

T : Number of machines

P : Percentage of data used by each SVM
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The effect of the subsample size
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Subagging neural nets

Three layers network with ten hidden units, trained with conju-
gate gradient (see Andonova et al., 2002).

Dataset \ P 5% 10% 20% 1NN

B-Cancer 26.7 £ 5.8 | 27.9 £ 3.7 | 28,6 £ 3.4 || 32.6 £ 5.7
5.3+ 4.5 6.4 +£36|11.0+£ 5.2 | 30.1 £5.5

Diabetis 243 +£ 20| 242 +£25 | 243 + 26| 28.6 £+ 1.3
3.2+ 2.3 5.2 +£ 2.9 82 +25 1243 1.7

German 245 £ 2.2 |1 246 £ 2.8 | 23.7 £ 1.9 || 29.9 +£ 2.7
2.9 +£ 2.0 4.9 £+ 3.0 82+ 3.3 | 27.7 £ 2.9

Image 8.8 £ 0.8 5.7 £ 0.6 45 + 18| 9.6 £ 18.2
1.5+ 1.6 1.5+ 2.3 1.8+ 25| 7.8 £ 18.9

Solar 3544+ 1.7 |1 354+25|35.0+16 | 33.8+1.7
3.0+ 1.8 3.7 £ 2.0 3.6 £ 2.0 2.8 £ 2.2
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Try to select the number of hidden units for an ensemble of
Neural Nets trained on 5% points in the original traininig set.

H. Units 0 2 5 10
B-cancer 28.8 £ 3.3 |1 30.1 £ 25| 355 +43| 32.6 £5.7
(INN) 219+ 1.3 |17.1 + 1.8 594+ 09| 25.0 £ 0.9
B-Cancer 26.6 - 3.1 | 3254+ 3.2 284+ 34| 26.7 £ 5.8
(Suggabing) || 22.4 + 1.6 | 244 4+ 1.3 234 +16| 23.3+£1.5
Diabetis 23.6 £ 25 |1 2624+3.2|2844+10| 28.6 +1.3
(1INN) 204 £ 2.3 |1 196 £ 5.6 | 10.7 + 2.3 43 + 1.5
Diabetis 246 £ 2.4 | 252 +1.6 | 25,0+ 19| 24.3 +£ 2.0
(Subagging) || 22.8 £+ 2.5 | 226 £ 1.7 | 21.9 £ 25| 21.6 +£ 2.1
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Open problems

Extend stability results of other ensembles (e.g., boosting)

Build stable ensembles (different sampling schemes, correla-
tion between machines,...)

Compute stability for neural networks, decision tress, ...

Improve bounds! Can we use empirical stability quantities?
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