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Time series learning

Learning a mapping on the basis of a (possi-
bly small) data set of examples is an ill-posed
inverse problem (Haykin99).

Concerning temporal time series learning, noise,
ambiguity of the mapping, and discontinuity of
the signal affect the generalization performance
of the learning machines.



A popular way to reduce ill-posedness in tem-
poral data learning consists in assuming an in-
put scale (Dietterich90) suitable to alleviate the
mapping ambiguity problem.

To this aim we should find the optimal di-
mension of the input vector and the time lag
between its elements.

After the setting of the mapping input vector
and of other design issues, the temporal data
can be learned by a machine.



Accurate learning of a continuous mapping is
supported by the Universal Function Approx-
imation property holding for some classes of
learning machines including, e.g., Multi Layer
Perceptrons, Radial Basis Functions Nets, and
Fuzzy Basis Functions Nets (Cybenko89, Pog-
gio90, Wang92).

However, for small data set, simple learning
machines exhibit better generalization capabil-
ities (Vapnik95).



In this talk: constructive framework for the
design of time series learning machines, pro-
posed in (Masulli95, Masulli99, Haykin98)

In particular:

� apply results and prescriptions related to the
delay-embedding theorem (Takens81, Mane81)
to the design of learning machines of con-
tinuous mappings of temporal data.

� decompositive ensemble method based on
the Singular-Spectrum Analysis (SSA) (Vau-
tard92) in order to extend the constructive
approach to the learning of discontinuous
and/or intermittent signals (Masulli99, Ma-
sulli2000).



Successful applications to the design of learn-
ing machines for:

� simulated non-linear and chaotic signal pre-
diction (Masulli95)

� system identification (Masulli99)

� daily rainfall forecasting (Masulli2000, Ma-
sulli02).



Hints from Dynamical Systems Theory

State Space

A deterministic dynamical system is described
by a set of differential equations.

Its evolution is represented by the trajectory
in state space (of dimension n) of the vector
Q = (x; ẋ;y; ẏ;z; ż; : : :)>

where x; ẋ;y; ẏ;z; ż; : : : are the variables of the
system and their derivatives.

The figure made in state space by Q is the
attractor of the system.

For non-linear systems, the dynamical vari-
ables (x;y;z : : :) are coupled.

The evolution of one variable (let say x) is not
independent of all the other ones (y; z : :: ).



Except for few simple phenomena, the set of
differential equations is unknown.

Even, often the whole set of relevant effective
dynamical variables is not always well defined.

But, as the variables are interdependent, the
observation of only one of those brings infor-
mation — maybe in an implicit way — on the
other ones and consequently on the complete
dynamical system.

This is the reason why time series of non-
linear dynamic systems are so useful.



Embedding Theorem

The question is now: “How to reconstruct the
complete dynamical system with only the one-
variable time series ( s1;s2;s3; : : :) ?”

The Embedding Theorem proposed indepen-
dently in 1981 Takens and Mañé gives an an-
swer to the above question.

In the Takens-Mañé theorem we consider an
augmented vector S built with d elements of the
time series.

The dimension of the vector d has to be greater
than two times the box-counting dimension D0

of the attractor of the system:

d > 2D0 (1)



A vector S satisfying the Takens-Mañé bound
cited in the previous paragraph will evolve in a
reconstructed state space, and its evolution will
be in a diffeomorphic relation with the origi-
nal Q state space point (a diffeomorphism is a
smooth one-to-one relation).

In other words, for every practical purposes
the evolution of S is a fair copy of the evolution
of Q.

It is worth noting that: there is a distinction
between the order of the differential equation
(n) which is the dimension of the state space
where live the true state vector Q and the suffi-
cient dimension of a reconstructed state space
(d) where the reconstructed vector S lives.



An Example

In order to elucidate the Embedding Theorem,

let consider a sine wave st = A sin( t ).

In d=1 (i.e. the st space) this wave oscillates
in the interval (�A;+A).

Two points which are close in the sense of
Euclidean (or other distance) may have quite
different values of ṡ(t).

In this way two ”close” points may move in
opposite directions along the single spatial axis.



In a two dimensional space ( st;st+T), where
T is a time lag, the ambiguity of the dynamics
of points is resolved.

The system evolves on a figure (in general
an ellipse) that is topologically equivalent to a
circle.

If we draw the sine wave in the three dimen-
sions ( st;st+T ;st+2T), no further unfolding oc-
curs and the sine is represented as a new ellipse.



The Method of Embedding

In order to reconstruct the dynamical system
we can use the time delay embedding method
(Abarbanel96).

This method consists in building d-dimensional
state vectors Si = ( si;si+T ; ::: ;si+(d�1)T).

In principle, it suffices that d � n.

But, the effective dimension d is not directly
related to the dynamical dimension n � as in
the case of weak coupled variables.

We must choose:

->  T (time lag)
-> d



Choosing the time delay

The time delay T (or time lag) used in the em-
bedding has to be chosen carefully.

If it is too long, the samples si;si+T ; ::: ;si+(d�1)T

are not correlated and then, in general, the dy-
namical system can not be reconstructed.

This happens in particular for chaotic sys-
tems, for which even two initially close chaotic
trajectories will diverge exponentially in time.

If time delay T is too short, every sample is
essentially a copy of the previous one, bringing
very little information on the dynamical sys-
tem.



We use the Shannon’s mutual information to
quantify the amount of information shared by
two samples in order to get an useful estimation
of the time lag T .

Let’s defined the average mutual information
between measurements ai drawn from the set A
and measurements bi drawn from set B.

The set of measurements A is made of the
values of the observable si and the set B is made
of the values si+t (t is a time interval).

Average mutual information is then :

I ( t ) = ∑
si2A;si+t2B

P(si;si+t)� log2
P(si;si+t)

P(si)P(si+t)
;

(2)
where P(: : :) are probabilities distributions based
on frequency observations.

First Minimum of Average Mutual Information



It has been suggested (Fraser86, Fraser89, Vas-
tano89, Abarbanel96) to take the time T , where
the first minimum of I(t) occurs, as the value to
use at the time delay in the phase space recon-
struction.

In this way the values of sn and sn+ T are the
most independent of each other in an information-
theoretic sense.

Moreover the first minimum of average mu-
tual information is a good candidate for the in-
terval between the components of the state vec-
tors that will be input to the neural network
model of the non-linear dynamical process.



Evaluating the Global Embedding Dimension

From the Embedding Theorem, the box count-
ing dimension D0 should be evaluated.

In principle, it can be estimated directly from
the time series itself, but this task is very sen-
sitive to the noise and needs large set of data
points (order of 10D0 data points) (Abarbanel96).

In order to avoid those problems, we can es-
timate the embedding dimension dE , defined as
the lowest (integer) dimension which unfolds
the attractor,

i.e. the minimal dimension for which fold-
ings due to the projection of the attractor in a
lower dimensional space are avoided.

The embedding dimension is a global dimen-
sion and in general is different from the local
dimension of the underlying dynamics.



The Embedding Theorem guarantees that if
the dimension of the attractor is D0, then we
can unfold the attractor in a space of dimension
dE (dE > 2Do).

It is worth noting that dE is not a necessary
condition for unfolding, but is sufficient.

The dimension of input layer of the Multi-
Layer Perceptron will be then of dimension high
enough in order that the deterministic part of
the dynamics of the system is unfold.



Global False Nearest Neighbors

In practice, the method of Global False Nearest
Neighbors proposed by Abarbanel (1996), can
be used to evaluate the embedding dimension
dE .

Given a data space reconstruction in dimen-
sion d, with data vectors Si =(si;si+T ; ::: ;si+(d�1)T),

where the time delay T is the first minimum
of average mutual information(Eq. 2).

Let be SNN
i = (sNN

i ;sNN
i+T ; ::: ; sNN

i+(d�1)T), the
nearest neighbor vector in phase space.



If the vector SNN
i is a false

Si, having arrived in its neighborhood by pro-
jection from a higher dimension because the
present dimension d does not unfold the attrac-
tor, then by going to the next dimension d + 1
we may move this point out of the neighbor-
hood of Si.

We define the distance ξ between points when
seen in dimension d +1 relative to the distance
in dimension d as

ξi �

s
R2

d�1(i)�R2
d(i)

R2
d(i)

; (3)

then

ξi =
jsi+dT � sNN

i+dT j

Rd(i)
: (4)

As suggested by Abarbanel(1996), SNN
i and

Si can be classified as a false neighbor if ξi is a
number greater than a threshold θ (ξi � θ).

In many applications a good value for θ is 15.

neighbor (FNN) of 



In case of clean data from a dynamical sys-
tem, we expect that the percentage of FNNs
will drop from nearly 100% in dimension one
close to zero when dE is reached.



It is worth noting that, as we go to higher di-
mensional spaces the volume available for data
grows as the distance to the power of dimen-
sion, and no near neighbor will be classified
close neighbor.

In this case we can modify the Eq. 4 as

ξi =
jsi+dT � sNN

i+dT j

RA
; (5)

where A is the nominal “radius” of the attractor
defined as the Root Mean Square (RMS) error
value of data about its mean, e.g.:

RA =
1
N

N

∑
i=1

jsi� savj; (6)

sav =
1
N

N

∑
i=1

si: (7)



In (Montarsolo98) a very efficient implemen-
tation of FNN algorithm is presented. This al-
gorithm is based on the work by Nene and Na-
yar (Nene97).

It is worth noting that there are two main ar-
guments that can suggest to size the input layer
of a predictor based on MLPs smaller than the
evaluation obtained using the FNN method.

In fact this evaluation is still an upper bound,
and moreover for an assigned size of the train-
ing set, a limitation of the complexity of the
learning machine can lead to better generaliza-
tion.



Bells Whistles and Pitfalls of FNN

� The global FNN calculation is simple and
fast.

� The FNN calculation applied to signals com-
ing from two different outputs of the same
dynamical system gives, in general, two dif-
ferent values of dE . Then from each signal
we will obtain different reconstructed coor-
dinate systems, but both consistent with the
original dynamical system.

� FNN method is valid even if the signal of
interest results from a filtered output of a
dynamical system (Abarbanel96, Dave97).



� If the signal is contamined by noise (assumed
to be generated by an high dimensional sys-
tem), it may be that the contamination will
dominate the signal of interest and FNN will
show the dimension required to unfold the
contamination. Here, a simple byproduct
of FNN calculation is an indication of noise
level in a signal.



Ensemble Method based on Singular Spectrum Anal-
ysis Decomposition

Singular Spectrum Analysis

The methodology described in the previous sec-
tion has been successfully applied in the design
of Multi-Layer Perceptrons and Neuro-Fuzzy
systems to

� forecasting of simulated non-linear and chaotic
systems (Masulli97, Masulli97)

� real world problem such as the modeling of
the vibration dynamic of a real system con-
sisting in a 150 MW Siemens steam turbine
(Masulli99).



The proposed methodology can not be directly
applied to forecasting discontinuous or inter-
mittent signals, as the universal function ap-
proximation theorems for neural networks (Cy-
benko89) and fuzzy systems (Wang92b) require
the continuity of the function to be approxi-
mate.

In order to avoid the effect of discontinuities
of a signal we can apply the Singular-Spectrum
Analysis (SSA) (Kumaresan80, Pike84, Vau-
tard92, Lisi95) to the signal to be forecasted.

In SSA the state vector Si =(si;si+1; ::: ;si+M�1)
is a temporal window (augmented vector) of the
series s, made up by a given number of samples
M.



The cornerstone of SSA is the Karhunen-Loève
expansion or Principal Component Analysis (PCA)
that is based on the eigenvalues problem of the
lagged covariance matrix Zs.

Zs has a Toeplitz structure, i.e. constant diag-
onals corresponding to equal lags:

0
BBBBBB@

c(0) c(1) : : : c(M�1)
c(1) c(0) c(1) : : :

: : : : : :

: : : : : :

: : : : : c(1)
c(M�1) : : : c(1) c(0)

1
CCCCCCA
(8)

In absence of prior information about the sig-
nal it has been suggest (Vautard92) to use the
following estimate for Zs:

c( j) =
1

N� j

N� j

∑
i=1

sisi+ j (9)



The original series can be expanded with re-
spect to the orthonormal basis corresponding to
the eigenvectors of Zs

si+ j =
M

∑
k=1

pk
i u

k
j; 1� j �M; 0� i� N�M

(10)
where pk

i are called principal components (PCs)
and the eigenvectors uk

j are called the empir-
ical orthogonal functions (EOFs), and the or-
thornomality property

M

∑
k=1

uk
ju

k
l = δ jl; 1� j �M; 1� l �M (11)

holds.

It is worth noting that SSA does not resolve
periods longer than the window length M.



Hence, if we want to reconstruct a strange at-
tractor, whose spectrum includes periods of ar-
bitrary length, the large M the better, avoiding
to exceeding M = N

3 (otherwise statistical er-
rors could dominate the last values of the auto-
covariance function).

In (Vautard89, Ghil91, Vautard92, Keppenne93,
Lisi95, Ghil97) many applications of Singular
Spectrum Analysis have been presented, includ-
ing noise reduction, detrending, spectral esti-
mate, and prediction.

Concerning the application of SSA to predic-
tion, that is the main interest of the present pa-
per, it is supported by the following argument:

Since the PCs are filtered version of the sig-
nal and typically band-limited, their behavior is
more regular than that of the raw series s, and
hence more predictable.



Vautard and Ghil (1992) fit an autoregressive
(AR) model for each individual PC using the
AR coefficient estimate of Burg (1978), while
Lisi, Nicolis and Sandri (1995) used Multi-Layer
Perceptrons in order to estimate filtered version
of the raw signal using obtained using SSA.

In order to reduce the computational costs
we decompose the raw series s in reconstructed
waves corresponding to SSA subspaces equiv-
alent to similar explained variance and we pre-
dict them using Multi-Layer Perceptrons com-
bined with independent evaluation of time lag
using the first minimum of mutual information
and embedding dimension using False Nearest
Neighbors method.



Reconstructed components and reconstructed waves

Following Vautard and Ghil (1992), suppose we
want to reconstruct the original signal si start-
ing from a SSA subspace A of k eigenvectors.

By analogy with Eq. 10, the problem can be
formalized as the search for a series ŝ of length
N, such that the quantity

HA(ŝ) =
N�M

∑
i=0

M

∑
j=1

(ŝi+ j� ∑
k2A

pk
i u

k
j)

2 (12)

is minimized.

In other words, the optimal series ŝ is the one
whose augmented version Ŝ is the closest, in
the least-squares sense, to the projection of the
augmented series S onto EOFs with indices be-
longing to A .



The solution of the least-squares problem of
Eq. 12 is given by

ŝi =

8>>>>><
>>>>>:

1
M ∑M

j=1 ∑k2A pk
i� ju

k
j for M � i� N�M+1

1
i ∑i

j=1 ∑k2A pk
i� ju

k
j for 1� i�M�1

1
N�i+1 ∑M

j=i�N+M ∑k2A pk
i� ju

k
j for N�M+2� i� N:

(13)

When A consists on a single index k, the se-
ries ŝ is called the kth RC, and will be denoted
by ŝk.

RCs have additive properties, i.e.

ŝ = ∑
k2A

ŝk (14)

In particular the series s can be expanded as
the sum of its RCs:

s =
M

∑
k=1

ŝk (15)



Note that, despite its linear aspect, the trans-
form changing the series s into ŝk is, in fact,
non-linear, since the eigenvectors uk depend non-
linearly on s.

If we truncate this sum to an assigned number
of RCs, the explained variance of the related
augmented vector Ŝ is the sum of the eigenval-
ues associated to those RCs, while the estima-
tion of the resulting reconstruction error is the
sum of the eigenvalues corresponding to the re-
maining RCs.

As a consequence, it is suitable to order the
RCs following the value of the eigenvalues.



Let be A1;A2; :::;AL L disjoint subspaces, then
a reconstructed wave (RW) Ωl (l = 1; :::;L) is
defined as

Ωl = ∑
k2Al

ŝk
; 1� l � L: (16)

Then, from Eq.s 15 and 16, one can obtain:

s =
L

∑
l=1

Ωl; (17)

that says that the original series s can be recov-
ered as the sum of all the individual RWs.



Ensemble Method

In order to design a predictor for complex sig-
nals, such as discontinuous and/or intermittent
signals, we can apply the following approach
that combines an unsupervised step and one su-
pervised one, building-up an such a way an en-
semble of learning machines:

� Unsupervised decomposition: Using the Sin-
gular Spectrum Analysis, decomposes the
original signal S in reconstructed waves (RWs),
corresponding to subspaces with equal ex-
plained variance;

� Supervised learning: Prepares a predictor
for each RW using the methodology

� Operational Phase: The prediction of the
original signal S is then obtained as the sum
of the predictions of individual RWs, i.e.
using Eq. 17.



It is worth noting that, sometime the most
complex waves (in general those correspond-
ing the the low eigenvalues) cannot satisfactory
predicted, using the available data.

Following the criteria of the best prediction
(Lisi95) in the Eq. 17 we can excluded them if,
when if enclosed in the sum, make worse the
overall prediction.

Note1:

Note 2:

The  proposed ensemble methods is a additive, but 
each machine learns a different  component of the signal 



1 Application to Rainfall Forecasting

2 Data Set and Methods

Forecasting of daily rainfall intensities series of
3652 samples each, collected by 135 stations
located in the Tiber river basin in the period
01/01/1958 - 12/31/ 1967.



Figure 1: Distribution of the 135 stations in the Tiber river basin.
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Figure 2: (a) Height map (in meters on the sea level) of the 135 stations on the
Tiber river basin. The Geographic Center (GC) of the 135 stations, the two stations
more correlated to MS, and the two stations less correlated to it (see Tab. 4) are
shown on the map. (b) Histogram of station’s height.
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The data processing started by considering
the series of the Mean Station (MS), defined as
the average of all 135 rainfall intensity series
(Fig. 3).

In Fig 4 a window on the period 07/01/66 -
12/30/66 is presented in order to better show
the discontinuity and intermittence of the stud-
ied signal.
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Fig. 3

Fig. 4



3 Learning the Mean Station

Fig. 5 shows the graph of the mutual informa-
tion of the MS’s time series. Its first minimum
gives T = 7.

This value has been used as the time lag for
the computation of Global False Nearest Neigh-
bors. The graph of FNN is shown in Fig. 6. Till
d = 6 the curve decreases with the growing of
dimension, and then reaches a plateau of 20%.
The embedding dimension is then dE = 6.
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Figure 5: Mean Station: Mutual Information. The first minimum is for t = 7.
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Figure 6: Mean Station: Global False Nearest Neighbors.
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Following the constructive approach, we de-
signed a predictor based on a Multi-Layer Per-
ceptron.

The MLP was made up by two hidden layers
of 5 units, an input layer of 6 inputs spaced by
a time lag of 7 days.

The results obtained by such a way are poor,
due to the discontinuity of the hydrological vari-
able.

In order to reduce the effects of the discon-
tinuities, we used the SSA decomposition en-
semble method.



We applied the Singular-Spectrum Analysis
(SSA) to a signal corresponding to the first 3000
samples of MS series. The window width used
for the SSA was M = 182, i.e. 6 months, that
is a period sufficient to take in account sea-
sonal periodicities of the related physical phe-
nomena.

Fig. 7 shows the ordered list of eigenvalues
and the explained variance of the reconstructed
signal using an increasing number of RCs.
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Figure 7: Mean Station: Eigenvalues spectrum (up) and explained variance of the
augmented vectors related to an increasing number of RCs (down).



Table 1: Reconstructed waves (RWs) from disjoint SSA subspaces (each of them
explaining 10% of the variance) and corresponding reconstructed components
(RCs). The SSA is performed using using a window of 182 days.

RW RCs

Ω1 1-4
Ω2 5-11
Ω3 12-19
Ω4 20-28
Ω5 29-39
Ω6 40-52
Ω7 53-70
Ω8 71-93
Ω9 94-126
Ω10 127-182

Then, from the original MS series we obtained
10 waves Ω1; :::;Ω10 reconstructed from 10 dis-
joint sub-spaces, each of them representing a
10% of the explained variance (Tab 1).



Waves Ω1; :::;Ω6 (corresponding to the first
52 RCs), are more regular than the remaining
waves (corresponding to subspaces with low eigen-
values) are more complex (Fig. 8).
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Figure 8: Reconstructed Waves. Period 07/01/1966 - 12/30/1966.



Fig. 9 shows the mutual information for each
RW, while Fig. 10 shows the corresponding Global
False Neighbors plots.
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Figure 9: Reconstructed waves - Mutual Information.
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Figure 10: Reconstructed Waves - Global False Neighbors using T=7.



The evaluations of the first minimum of mu-
tual information and of dE for each RW are pre-
sented in Tab. 2.

Table 2: First minimum of Mutual Information (T) and embedding dimension
(dE) computed using T and other time lags for each reconstructed wave.

RW T dE(T ) dE(7) dE(1)

Ω1 22 4 3 2
Ω2 9 18 14 3
Ω3 4 10 7 4
Ω4 5 18 14 4
Ω5 4 14 9 4
Ω6 3 5 6 4
Ω7 2 4 4 5
Ω8 2 4 4 6
Ω9 2 5 5 4
Ω10 5 10 8 4



Then, we designed a neural predictor based
on a MLP for each individual wave of the MS,
following the constructive approach, implement-
ing, in such a way, a SSA decomposition en-
semble of learning machines.



The best results for each RW have been ob-
tained using as inputs windows of 5 consecu-
tive elements and two hidden layers with di-
mensions described in Tab. 3.

Table 3: Size of the hidden layers (L1 and L2), Root Mean Square (RMS) error
and Maximum Absolute (MAXA) error for each reconstructed wave - Size of
MLPs Input Layer=5.

RW L1 L2 RMS MAXA

Ω1 6 4 .02 .05
Ω2 8 5 .03 .12
Ω3 6 4 .04 .15
Ω4 8 4 .04 .11
Ω5 8 5 .06 .14
Ω6 8 4 .15 .40
Ω7 4 4 .15 .38
Ω8 6 4 .64 1.92
Ω9 3 4 .75 2.40
Ω10 3 4 .29 .90



As each wave contains 3652 daily samples, in
our case for each wave we obtained a data set
of 3646 associative couples, each of them con-
sisting of a window of 5 consecutive elements,
as input, and the next day rainfall intensity, as
output.

Each MLP was trained using the first 2000
associative couples (training set), using the er-
ror back-propagation algorithm with momen-
tum (Vogl88), and a batch presentation of sam-
ples.

The following 1000 associative couples (val-
idation set) were used in order to implement an
early stopping of the training procedure.

The remaining 646 were used for measuring
the quality of the forecasting of the reconstructed
wave (test set).



Results on the Mean Station

The prediction results for each reconstructed wave
are presented in Tab. 3 and in Fig. 11.
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Figure 11: Reconstructed Waves - Scatter plots on the test set (using MLPs with
5 inputs).



The predictions obtained using the SSA de-
composition ensemble of learning machines (i.e.,
the sum of the predictions of the 10 waves) at
1 day ahead are very satisfactory, as for the re-
sulting MS prediction the Root Mean Square
(RMS) error on the test set is .95 mm of rain,
while the Maximum Absolute (MAXA) error
is 6.47 mm, i.e., the predicted signal is substan-
tially coincident with the measured MS rainfall
intensity signal.

As shown in Figs. 12, 13, and 14, the pre-
dictions of the MS rainfall intensity signal are
substantially coincident with the measured MS.

Note that in the comparison shown in Fig. 12
the predicted signal is clamped to zero.
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Mean Station: Oneday ahead forecasting in the period 07/01/66 - 12/30/66 of the test set using the ensembleof 10 MLPs with 5 inputs.
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Mean Station: One day ahead forecasting. Errors in the period 07/01/66 - 12/30/66 of the test set using theensemble of 10 MLPs with 5 inputs.
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Figure 14: Mean Station: scatter plot of the 1 day haed forecasting on the test set
using the ensemble of 10 MLPs with 5 inputs.



It is worth noting that the design of the en-
semble learning machine is critical. Choosing
a window M = 182 for the SSA, the best pre-
diction results were obtained using MLPs with
four or five inputs and two hidden layers.

Using MLPs predictors with four inputs we
obtained results slight worse.In this case the RMS
for MS is 1.05 mm and the MAXA is 8.05 mm
for MLPs predictors using four inputs.

We notice that the Maximum Absolute error
occurs the same day (11/05/1967) than for the
architecture using MLPs with five inputs.

A different window for SSA can give results
of inferior quality. E.g., using M=256 as the
window for SSA we obtained good prediction
performances only for for waves Ω1; ::;Ω6, cor-
responding to 60% of the explained variance
(first 76 RCs).



The resulting generalization of the SSA de-
composion ensemble was poor, even leaving out
in Eq. 17 the predictions of Ω7; ::;Ω10 as, if en-
closed in the addition, make worse the overall
prediction.

We underline that the dimension of the opti-
mal input layer (i.e. 5) is smaller than the dE

evaluated with the FNN method (Tab. 2).

This choice is supported by the generaliza-
tion trade-off due to complexity of the learning
machine and limed size of the training set

Concerning the time lag between inputs, we
investigated different values as the first mini-
mum of the mutual information is only a pre-
scription and not a theoretical result (Masulli97).



The plateau in the FNN plots of Fig. 5 is a
symptom of the presence of high dimensional
noise (Abarbanel96).

After the SSA decomposition we can notice
that the noise is concentrated mainly in RW10
and also in RW3, RW5, and RW9, as shown in
the plateaus in their FNN plots (Fig. 10.



Learning the Individual Stations

The daily rainfall series of individual stations
are more discontinuous of the MS, but are well
correlated to it.

In Fig. 15(a) we plot the correlation map of
the daily rainfall series of the individual sta-
tions to the MS, while the corresponding his-
togram is presented in Fig. 15(b).
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Figure 15: (a) Correlation to MS map of the 135 stations on the Tiber river basin.
The Geographic Center (GC) of the 135 stations, the two stations more correlated
to MS, and the two stations less correlated to it (see Tab. 4) are shown on the map.
(b) Histogram of station’s correlation to MS.

Linear correlation



The average linear correlation coefficient is
.7.

Moreover, using the Fisher-Snedecor test, we
find a linear dependence at the 0.01 level of sta-
tion’s correlation versus the distance from Ge-
ographical Center (GC) of the 135 stations.

GC is defined as the average position of the
135 stations. Its longitude with respect to Green-
wich is: 42 38’ 88.8” E , its latitude is: 12 32’
51.0”, and its Height is 473.1 meters.



To the aim of design efficient predictors of
for the individual stations, we explored the fol-
lowing alternative approaches:

Approach A: Design of a single neural predic-
tor for each station, sizing of its input layer
using the measurement of the average mu-
tual information and the method of Global
False Nearest Neighbors.

Approach B: Implementing the unsupervised
decompositive ensemble method based on
SSA for each station, following the same
approach previously presented for the MS.



Approach C: Decomposing the series of a sta-
tion using the SSA already performed on
the MS, calculating the RCs, aggregating
the RCs in 10 RWs following Tab. 1, and
then training one MLP for each RW. The
prediction of the station’s series will be the
sum of the predictions of the 10 RWs.

Approach D: Decomposing the series of a sta-
tion using the SSA already performed on
the MS, calculating the RCs, aggregating
the RCs in 10 RW following Tab. 1. The
prediction of the station’s series will be the
sum of the predictions of the 10 RWs ob-
tained using the MLPs trained for the MS
(with hidden layers shown in Tab. 3).

Note that the Approaches B, C, and D are en-
semble methods based on the SSA decomposi-
tion of the signal, with different flavors.



Results on Individual Stations

From our experimentation, the Approach A is
unable to give useful results for any individual
station, as well as for he MS station.

The Approach B, while is the most compu-
tationally expensive, at the same time leads to
poor results, that we could ascribe to ill-conditioning
in the SSA due to the significant presence of
noise in the series of an individual station.

The Approaches C and D give similar good
results.

Using the Approach D (that is less computa-
tionally expensive than Approach C) the aver-
age RMS for all the stations is about 2.71 mm
of rain



The results obtained with Approach C are of-
ten slight better than those of Approach D.
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Figure 16: Errors in the period 07/01/1966 - 12/30/1966 using ensembles of 10
MLPs with 5 inputs.The plots are relative to the two stations more correlated to
MS, and to the two stations less correlated to it (see Tab. 4).
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Figure 17: Scatter plots on the test sets using ensembles of 10 MLPs with 5 inputs.
The plots are relative to the two stations more correlated to MS, and the two
stations less correlated to it (see Tab. 4).



In Fig. 18 the one day haed prediction RMS
for the 135 stations is presented in form of as a
geographic map and as an histogram.
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Figure 18: (a) One day haed prediction RMS map for the 135 stations on the Tiber
river basin. The Geographic Center (GC) of the 135 stations, the two stations more
correlated to MS, and the two stations less correlated to it (see Tab. 4) are shown
on the map. (b) Histogram of station’s one day haed prediction RMS.
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Conclusions

Constructive methodology to the design of effi-
cient predictors even for complex signals, such
as discontinuous or intermittent signals.

Ensemble method that combines an unsuper-
vised and a supervised step:

Unsupervised decomposition: The original sig-
nal is decomposed in reconstructed waves
(RWs), using the Singular Spectrum Analy-
sis.

Supervised learning: For each RW we design
and train a MLP predictor using suggestions
from dynamical systems theory.

In the operational phase the prediction of the
original signal is obtained as the sum of the pre-
dictions of individual RWs.



The daily rainfall predictions of MS are very
satisfactory, with a Root Mean Square error equal
to .95 mm of rain.

Learning of individual stations. Steps:

1. Decompose the series of the station using
the SSA already performed on the MS; cal-
culate the RCs and aggregate the RCs in a
number of RWs.

2. Train one MLP for each RW.

The prediction of the station’s series is the sum
of the predictions of the 10 RWs.

It is possible to skip step 2 and using in pre-
diction the MLPs already trained for the MS.

The daily rainfall predictions on individual
station obtained with this latter approach show
an average Root Mean Square errors of 2.71
mm of rain.


