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Ensemble Methods

Ensemble averaging: linear combination of 
different learners (Perrone & Cooper, 1993; 
Hashemm, 1997);
Boosting & Bagging: training set resampling 
(Freund & Shapire, 1996; Breiman, 1996);
Misture of experts: non-linear combination of 
different learners (Jordan & Jacobs, 1994); 
Feature selection: learners based on groups of 
input features (Cherkauker, 1996);
Etc.



Output Coding Decomposition 
Ensembles
Decomposition approach to classification:

• Splits a complex multiclass problem,  or   polychotomy,  in  
a  set  of less complex and independent twoclass  problems 
(dichotomies)  and 
•Recomposes  the  outputs of dichotomizers,  in order  to 
solve  the original polychotomy .

Learning machines  composed by two main units:
•Decomposition Unit that analyzes the input pattern and 
calculates the  codeword using an assigned decomposition 
scheme.  
•Decision Unit that associates the computed  codeword with 
a class.
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Voting and decomposition approach 
to classification

• Homogeneous voting (e.g., Perrone,1993; Meir,1994; Breiman, 
1994): Multiple runs of the same algorithm on the same learning 
problem are combined by voting. It can only reduces  variance.

• Non- homogeneous voting (e.g., Shapire,1990; Quinlan, 1993b): 
Voting multiple hypotheses constructed  by different learning 
algorithms applied to the same problem. It can reduce both bias and 
variance if  the various algorithms are different.

Decoding (reconstruction) of a codeword in the decomposition 
approach to classification is equivalent to a vote among those
dichotomizers that learned the relevant boundaries 
(Kong&Dietterich,1995)

Voting only improve performances if the errors made by various 
voters are not “highly” correlated.



Decomposition Unit
Let be
• multidimensional space of  attributes 
• labels of classes.  
• K- classes polychotomy  (or  
K-polychotomy),

The decomposition of  P generates a set of  L
dichotomizers 

A dichotomizer       is  a discriminating function  that 
subdivides                      the input patterns  in two 
disjoint superclasses each of them grouping a subset 
of classes of the K-polychotomy
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Decomposition Matrix

represents  the decomposition  and 

connects  classes                   to  the superclasses   
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Representations of a 
Decomposition Matrix
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Class codewords

1c 2c 3c 4c

1f +1 -1 0 -1

2f +1 0 -1 +1

3f -1 -1 +1 0

4f +1 0 +1 +1

5f +1 +1  0 1

6f +1 -1 -1 +1

7f -1 0 +1 0



Reconstruction Unit
In this stage, a pattern is assigned to the class whose codeword
is most similar  to the output of the set of dichotomizers. 
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Decomposition Schemes (DS)
A DS decomposes a polychotomy into a set of dichotomies

g A priori  decomposition schemes:

• One-Per-Class (OPC) (Nilsson, 1965)

• Minimal (MIN) (Moreira, Mayoraz, 1997)

• Maximal (MAX) (Moreira, Mayoraz, 1997)

• Output Distributed Codes (ODC) (Sejnowski, Rosenberg, 1987)

• PairWise Coupling (PWC) ( Hastie, Tibshirani 1996)

• PairWise Correcting Classifiers (CC) (Moreira, Mayoraz, 1998)

•Error Correcting Output Codes (ECOC) (Dietterich, Bakiri, 1991, 1995)

g A posteriori decomposition schemes (Mayoraz, Moreira, 1996)



One-Per-Class DS

Classical approach (Nilsson,1965)

Each dichotomy separates a single class from all others

K classes ⇒ K dichotomies
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Decision boundaries between couple of classes are learned  
only twice 



Minimal DS
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Maximal DS

(Mayoraz&Moreira,1997)

K classes ⇒ redundant dichotomies.

We delete:

• equivalent dichotomies like 

• trivial dichotomies like

K classes ⇒ useful (i.e., not redundant)          
dichotomies 
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MAX decomposition 
matrix (4  classes)
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PairWise Coupling DS
(Moreira&Mayoraz,1998)

Each dichotomy separates a class ci from class cj

ignoring all other classes
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Variants of  PWC DS:
Correcting Classifiers (CC) decomposition scheme 

CC decomposition 

matrix (4 classes)

Correcting Classifiers (PWC-CC) decomposition scheme
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Error Correcting Output Codes 
DS (ECOC)
(Dietterich&Bakiri, 1991,1995)

Coding theory ⇒ classification problems

Large decomposition schemes based on ECOC as class 
codewords:

• redundancy of codewords  gives error recovering 
capabilities to the reconstruction unit ⇒ An ECOC DS allows 
a correct classification even if a subset of dichotomizers are 
wrong. 

• decision boundaries between pairs of classes are learned 
many times



Error Correcting Output 
Codes DS
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ECOC effectiveness (1)
The maximal number of errors that can be corrected in 
an ECOC DS is

where        is the minimal Hamming distance (MDH) 
between pairs of columns (codewords) in the 
decomposition matrix D.

⇒ Column separation - a codeword must be far  from the 
other codewords of the decomposition matrix (Hamming 
distance).
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ECOC effectiveness (2)

ECOC are effective if errors induced by channel noise on 
single bits are independent (Peterson,1972).

If an ECOC DS contains very similar rows
(dichotomies) each error of an assigned dichotomizer  will 
be likely to appear in the most similar dichotomizers.

⇒ Row separation - dichotomizers      and                  
should be not correlated  ⇒ each row should be far from  
the other rows and from their complements (Hamming 
distance).

if jif j ≠∀



ECOC generation algorithms

• Exhaustive algorithm (MAX Decomposition)

• Bose Chauduri Hocquenghem (BCH) algorithm (1960,1959)

• Random climbing up algorithm (Dietterich&Bakiri,1995)

• Random Codes (RC) (James, 1998)

•Constrained random codes 



ECOC Exhaustive algorithm
• given a Hamming distance, it 
maximizes the distance among 
codewords 

• equidistance between couple of 
codewords 

• “Bayes consistent” (James,1998): If 
each dicothomizer approximates the 
Bayes (optimal) discriminant function 
then the overall polychotomizer will 
produce Bayes Classification

• Problem: exponential growth of the 
dichotomies with the number of classes
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Bose Chauduri Hocquenghem 
(BCH) algorithm - 1

Algebraic method developed by Bose, Chauduri 
and Hocquenghem based on  polinomial 
representation of the finite Galois fields (Bose, 
Chauduri, 1960).

The maximization of the Hamming distance for a 
fixed codeword length is in general suboptimal. 
BCH ECOC are not Bayes optimal, but allow to 
generate ECOC codewords of tractable length

The algorithm was originally employed for error 
recovering in serial transmission of data



Bose Chauduri Hocquenghem 
(BCH) algorithm - 2

Problem: the algorithm try to maximixe the distance 
among codewords, but can duplicate rows of the 
decomposition matrix or generate trivial dichotomies 

In the context of classification problems the correlations 
among codeword bits become significant. 

We have a bit modified the original algorithm, testing also 
the distance among rows of the generated ECOC 
decomposition matrix: Rows identical or below a desired 
Hamming distance are deleted.



Recent development in ECOC 
machines

Combination of ECOC and Boosting techniques 
(Shapire, 1997);

Finding a DS  minimizing the Empirical Loss is NP 
complete (Crammerr & Singer, 2000) DS with 
continuous codes in order to make the problem 
tractable using  a constrained quadratic optimisation 
problem.



Recent improvements to ECOC 
DS

Random selected DS  => well-separated codewords 
(Berger, 1999);

Circular ECOC reduce sensivity to codeword 
selection (Ghaderi & Windeatt, 2000);

Binary labelling techniques reduces the 
correlation between base learners (Windeatt $ 
Ghaderi, 2001)



Successful applications of Output 
Coding Decomposition Ensembles

Improvements over standard k-way classifiers
Classification of cloud types (Aha & Bankert, 
1997);
Text classification (Berger, 1999; |Ghani, 2000);
|Food qualification (Pardo, Sberveglieri, Masulli 
& Valentini, 2001);
Face verification (Kittler, Ghaderi, Windeatt & 
Mathas, 2001);
Bioinformatics (Valentini, 2002).



Why Output Coding Decomposition 
Ensembles generalize  so well?

Reduction of both bias and variance (Kong 
&Dietterich, 2000; |Berger, 1999)

Large margin classifiers framework 
(Shapire, Freund, Bartlett & Lee, 1998; 
Allwein, Shapire & Singer, 2000).
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Output Coding Decomposition 
Ensembles

OPEN PROBLEMS - 1
Experimental analysis of  the trade-off between 
error recovering capabilities and learnability of 
the dichotomies induced by the decomposition 
scheme. Theoretical analyses: Allwein, Shapire & 
Singer (2000).
Study of the relationship between codeword 
length and performances. Preliminary results: 
Ghani (2000).
Selection of  optimal  dichotomizers for the DU. 
Addressed by: Berger (1999), Ghani (2000), 
Masulli & Valentini (2000).



How to design  codes jointly maximizing the distance 
between rows and columns of the DM (a-priori 
methods). 

How to design  codes for a given multiclass problem 
(a-posterior methods)

–Greedy approach (Mayoraz & Moreira, 1997)

–Soft weight sharing (Alpaydin & Mayoraz, 1999)

–Continuous codes & constrained optimisation 
problem (Crammer & Singer, 2000)

How to relate performances of ECOC and 
dependence among output errors (Kong & 
Dietterich, 1995; Guruswami & Sahai, 1999).

Output Coding Decomposition 
Ensembles

OPEN PROBLEMS - 2



Learning Machines implementing 
the Decomposition Unit
Implementation of decomposition schemes to classification:

• monolithic classifier:  MIMO learning machine (e.g, MLP, 
Decision trees, etc.) trained on the full training set to produce 
the right codewords on its outputs. We say that each output of 
a monolithic classifier is an implicit dichotomizer.

• parallel classifiers: or  Output Coding Decomposition 
Ensembles: L independent dichotomizers (e.g., Simple
Perceptrons, Support Vector Machines, and, again, MISO 
MLP, Decision trees, etc.) each one  trained independently on a 
specific dichotomic tasks using the full training set. 



Parallel Classifiers

Parallel Linear Classifiers (PLD) 
(Alpaydin&Mayoraz,1998) 

Parallel multiclassifiers based on decomposition of
polychotomies into dichotomies using a separate linear 
learning machine for implementing each dichotomizer.

Parallel Non-linear Classifiers (PND) 

Parallel multiclassifiers based on decomposition of
polychotomies into dichotomies using a separate non-linear 
learning machine for implementing each dichotomizer.



PND using MLP dichotomizers
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Problems we address now

Experimental analysis of  factors affecting the 
effectiveness of ECOC methods. 

In particular we focus on the following items: 
Architecture of the decomposition unit. 
Dependency among codeword bits coding the 
classes. 
Decoding function selected for the decision unit. 
Relationships between ensemble accuracy, base 
learner accuracy and error correcting power. 



Data sets

p6 / p9 synthetic - normal distributed clusters of 
data classes without/with overlaps.

d5 synthetic – each class 2 disjoint gaussian clusters  
Glass, letter and optdigits from UCI repository. 

300003000053d5

5-fold cross-
val

180095p9

179738231064optdigits

4000160002616letter

10-fold cross-
val

21469glass

1200120063p6

# testing 
samples

#training 
samples

# classes# attributesData 
sets



Architectures – Results - 1

ECOC MLP monolithic classifiers do not outperform standard MLP 
(consistent with Dietterich & Bakiri, 1995)



Architectures – Results - 2

•data sets p6, p9, and optdigits no significant statistical 
difference among OPC and ECOC decomposition, 
•glass data PLD ECOC outperforms all other types of 
polychotomizers
•letter PLD OPC achieve better results. 



Architectures – Results - 3

•data sets p6 and optdigits: no significant differences 
among OPC and ECOC PND can be noticed.
•p9 data set, ECOC shows expected errors significantly 
smaller than OPC.
•glass and letter data sets expected errors are significantly 
smaller for ECOC compared with OPC.



Architectures – Results - 4

ECOC PND show expected error rates significantly lower 
than OPC PND. 

PLD show remarkable higher errors over all data sets, and in 
particular they fail over p9. 

Summarizing:
• the expected errors are significantly smaller for 

PND compared with direct monolithic MLP classifiers 
and PLD

• ECOC outperforms OPC decomposition only in 
PND ensembles.



Architectures – Discussion - 1
Question: Why PND   perform better than ECOC 

monolithic learning machines?
PND dichotomizers are less complex than ECOC 
monolithic learning machines better 
generalization capabilities. 
In PND each codeword bit is learned and 
computed by its own MLP, specialized for its 
particular dichotomy, while in monolithic 
classifiers each codeword bit is learned and 
computed by a (non) linear combination of hidden 
layer outputs higher correlation among 
codeword bits



Architectures – Discussion - 2

Question: Why PND  perform better than PLD 
learning machines? 

In PLD the error recovering capabilities 
induced by ECOC are counter-balanced by 
higher error rates of linear dichotomizers.



Dependency Effectiveness
Code theory: if errors on different codeword bits are 

dependent, the s of error correcting code is 
reduced (Peterson and Weldon, 1972) 

Dependence among output errors affects 
the effectiveness of ECOC methods (Kong & 
Dietterich, 1995; Guruswami & Sahai, 1999; 
Masulli & Valentini, 2000)

Levels:
Codeword level: if a DM contains very similar rows 
(dichotomies), each error of an assigned dichotomizer
will be likely to appear in the most correlated 
dichotomizers reduction of  effectiveness of ECOC. 
Architectural level



Measurement  of  Dependence 
among Output Errors - 1
Masulli & Valentini (2001) proposed some measures 

of dependence of output errors based on mutual 
information.

Mutual information (MI) measures the matching 
between the joint probability density distribution 
and the product of the marginal probability density 
distribution of the output errors 

MI special case of the Kullback-Leibler divergence between 
two distributions



Measurement  of  Dependence 
among Output Errors - 2
Def: mutual information error index

it is the sum of the mutual information of the output 
errors between all the output pairs of the learning 
machines
computable quantity to estimate the dependence 
between codeword bit errors 

An high value of        corresponds to an high 
dependence between output errors and vice versa.



Measurement  of  Dependence 
among Output Errors - 4

Each point corresponds to ECOC learning machines 
implemented with MLP with different number of 
hidden units and using different partitions of the 
output error.
On all the data sets about all the points are above the 
dotted line, i.e. all the values of       are greater for 
ECOC monolithic compared with ECOC PND. 
The results show that monolithic architectures are 
affected by a higher dependence among codeword 
bit errors. This is consistent with the previous 
discussion, at architectural level, about the 
interdependence among monolithic MLP ECOC 
outputs.



Measurement  of  Dependence 
among Output Errors - 5

Data set: d5 Data set: glass



Measurement  of  Dependence 
among Output Errors - 6

Data set: letterData set: opdigits



Ensemble Accuracy and 
Decoding Function - 1

Can the choice of a particular decoding 
function affects the performance of ECOC 
MLP ensembles?  

How the minimum Hamming distance with 
fixed length codewords affects the 
effectiveness of an ECOC ensemble?



Ensemble Accuracy and 
Decoding Function - 3
Decoding functions based on 

Hamming distance:
if
L1 norm: 
if 
L2 norm:
if 



Ensemble Accuracy and 
Decoding Function – Methods 1
We generated ECOC decomposition matrices with 

constrained random algorithms.
Constraints in order to 

eliminate 
trivial dichotomies (e.g. rows with all +1 or all -1), and 
equal or complementary rows (i.e. dichotomies)

achieve a desired minimum Hamming distance 
(MHD) between the columns (codewords) of the 
DM. 



Ensemble Accuracy and 
Decoding Function – Methods 2

Generalization error estimated using 5-fold cross 
validation. 

Data set 1, 2:  optdigits and image-segmentation
data sets from the UCI repository (merge of 
training and test sets).

Data set 3:  synthetic p20 data set (NEURObjects). 
20 classes 3-dimensional - each class  3 disjoint 
clusters of data normally distributed with diagonal 
covariance matrices. 



Ensemble Accuracy and 
Decoding Function – Results 1
Considering the proposed data sets: 

The comparison of the estimated generalization 
error of the ECOC ensembles shows that the 
decoding functions based on the L1  and L2  
norms  outperform the decoding based on the 
Hamming distance. 
Only on the p20 data set with 50-bit ECOC ensembles 

with linear perceptrons as base learners there is no 
difference between  L1 norm and Hamming distance 
based decoding, but in this task the ECOC ensemble 
clearly fails, performing a sort of random guessing. 

there is no significant difference using L1 or L2
norms in decoding



Ensemble Accuracy and 
Decoding Function – Results 2

32 bits ECOC 
MLP 10  hidden 

optdigits data set

32 bits ECOC 
MLP 4 hidden



Ensemble Accuracy and 
Decoding Function – Results 3

64 bits ECOC 
linear perceptron 

optdigits data set

32 bits ECOC 
linear perceptron



Ensemble Accuracy and 
Decoding Function – Results 4

32 bit ECOC 
MLP 10  hidden 

optdigits data set

32 bit ECOC 
MLP 4 hidden



Ensemble Accuracy and Decoding 
Function – Discussion
Decoding function plays an important role

L1 and L2 norm distance seem to be well-suited 
for the decoding
Hamming distance based decoding function 
achieves worse results 

L1 and L2 norms exploit the "confidence" in the 
prevision of each base learner, while Hamming 
decoding discards all the information except the 
hard membership to a class 



Generalization error & MHD

Relationship between the estimated 
generalization error and the minimum 
Hamming distance (MHD) between the 
codewords.

Expected a monotonic decrement with the MHD

not confirmed: trends  not regular and only in a few 
cases (shown in previous slide) we can observe a 
monotonic decrement of the error with MHD. 



ECOC ensemble performance vs. 
base learner accuracy - 1

Question: Why the selection of different base learners affects in 
a so significant manner the performance of the ensemble?
Experimental analysis  of  relationship among: 
overall ensemble error
average base learner error 
minimum Hamming distance (MHD) between the 
codewords. 

Note: The error recovering power of ECOC methods depends 
on the MHD between codewords (if the output errors of the 
decomposition unit are independent)



ECOC ensemble performance vs. 
base learner accuracy - 2
Experimental results:

optdigits data set:
– average base learner error increments with MHD 

minimum Hamming distance
– ensemble error tends to decrease with the MHD, 

especially using long codewords 
image-segmentation data set: 
– average base learner error increases with  MHD
– ensemble error oscillates around  .035 and .040  
p20 synthetic data set: 
– average base learner error not clear dependency on 

MHD 
– ensemble error decreases with the increasing of MHD 

only using base learners with 6  hidden units; not clear 
dependency on MHD in other cases.



ECOC ensemble performance vs. 
base learner accuracy - 3
Summarizing:

No  simple relationships between the 
ensemble error and the average base learner 
error with respect to the MHD between 
codewords 

i.e. if we use fixed length codewords an increment of 
the MHD does not necessarily lead to improved 
performances of the ECOC ensemble. 



ECOC ensemble performance vs. base 
learner accuracy – Discussion -1

Explanation: Different codewords induce different 
dichotomies. 

The dichotomies can or cannot be hard learnable 
depending 
– on the structure of the data and 
– on the type of the base learner used

Complex classification problems require complex 
dichotomizers overfitting

The learnability is partially reflected by the average 
base learner error. 



ECOC ensemble performance vs. base 
learner accuracy – Discussion –2
The ECOC ensemble performance depends on a complex 

interaction among: 
MHD
accuracy of the dichotomizers 
dependency among the codeword bit errors. 

Different experimental cases:
1. the effect due to the error recovering power prevails on 

the increment of the base learner error
2. the error recovering power is counter-balanced by the 

increased average base learner error 
3. similar trends of the ensemble error and the average base 

learner error with respect to MHD
4. etc.
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Application to OIL and COFFEE 
qualification using electronic nose 
data



History of  Electronic Noses

Hartman (1954): Array of 8 electrochemical cells 
given different electric patterns to odour samples. 
Moncrieff (1961): Array of 6 thermistors covered 
by different materials, e.g., polymers, gels, and 
fat. He claimed, even if each thermistor in not 
selective to odours, the array was able to 
discriminate a large number of odours
Alpha Mos Co. – France (early ’90): Sells the 
first electronic noses. 
Electronic Noses technology to be consolidated

. 



Electronic Nose - 1

Task: classification of gas mixtures  (such as food 
flavors, odors)
A single sensor (e.g., semiconductor thin films) 
–not selective
–Non-linear and unknown mapping odor-output

Vectorial data from an array of  sensors with 
different characteristics are more selective 



Electronic Nose

Electronic Noses:
– array of sensors + 
– learning machines (for data analysis)

Data sets characteristics:
– Few data (100-1000 samples)
– Low dimensional (5-10 sensors)



Human nose electronic nose



The Pico-1 Electronic Nose



Scheme of  PICO1 EN developed 
at the Gas Sensor Lab - Brescia



Coffee analysis with Pico-1

Two coffee groups: 

–6 mono varieties + Italian Certified Espresso 
(ICE) 

–7 blends for Espresso 

Analysis with Pico-1 

5 sensors, static sampling, ground coffee, 210 and 
249 samples

Task: mono varieties and blend of coffee 
discrimination
Use of PCA + ANN



Blends 249 samples



Blends

Output Coding Decomposition 
Ensembles show a lower   
estimated generalization 
error than  single learning 
machines (e.g. Multi-Layer
Perceptrons) 
accurate systems well-suited 
to reliable commercial 
electronic nose devices 



Outline

Output Coding Decomposition Ensembles

Open problems

Experimental analysis of factors affecting the 
effectiveness of Output Coding Decomposition 
Ensembles

Application to Electronic Nose data

Conclusions



Conclusions



Output Coding Decomposition 
Ensembles

OPEN PROBLEMS - 1
Experimental analysis of  the trade-off between 
error recovering capabilities and learnability of the 
dichotomies induced by the decomposition 
scheme. Theoretical analyses: Allwein, Shapire & 
Singer (2000), Valentini (2000).
Study of the relationship between codeword length 
and performances. Preliminary results: Ghani
(2000).
Selection of  optimal  dichotomizers for the DU. 
Addressed by: Berger (1999), Ghany (2000), 
Masulli & Valentini (2000). 



How to design  codes jointly maximizing the distance 
between rows and columns of the DM (a-priori 
methods). 

How to design  codes for a given multiclass problem 
(a-posterior methods)

–Greedy approach (Mayoraz & Moreira, 1997)

–Soft weight sharing (Alpaydin & Mayoraz, 1999)

–Continuous codes & constrained optimisation 
problem (Crammer & Singer, 2000)

How to relate performances of ECOC and dependence 
among output errors (Kong & Dietterich, 1995; 
Guruswami & Sahai, 1999).

Output Coding Decomposition 
Ensembles

OPEN PROBLEMS - 2



We need more studies to relate the accuracy of the 
ECOC ensemble with the complexity of the induced 
decomposition.

The relationship effectiveness of ECOC ensemble-
complexity of the data is an item common to other 
ensemble methods (Ho, 2001) and require specific studies 
and experimental analysis using appropriate measures of 
complexity, based on geometrical or topological 
characteristics of data (Li & Vitanyi, 1993). 

Output Coding Decomposition 
Ensembles

OPEN PROBLEMS - 3



end


