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Ensemble M ethods

Ensemble averaging: linear combination of
different learners (Perrone & Cooper, 1993;
Hashemm, 1997);

Boosting & Bagging: training set resampling
(Freund & Shapire, 1996; Breiman, 1996);
Misture of experts. non-linear combination of
different learners (Jordan & Jacobs, 1994);

Feature selection: learners based on groups of
Input features (Cherkauker, 1996);

EtcC.
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Output Coding Decomposition
Ensembles

Decomposition approach to classification:

» Splits a complex multiclass problem, or polychotomy, In
a set of less complex and independent twoclass problems
(dichotomies) and

Recomposes the outputs of dichotomizers, in order to
solve the original polychotomy .

L earning machines composed by two main units;
*Decomposition Unit that analyzes the input pattern and
calculates the codeword using an assigned decomposition
scheme.

*Decision Unit that associates the computed codeword with
aclass.
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Decomposition approach to
classification

*Splits a complex multiclass problem, or polychotomy, in
a set of less complex and independent twoclass problems
(dichotomies) and

*Recomposes the outputs of dichotomizers, in order to
solve theoriginal polychotomy .

Learning machines composed by two main units:
*Decomposition Unit that analyzes the input pattern and
calculates the codeword using an assigned decomposition
scheme.

*Decision Unit that associates the computed codeword with
aclass.




io Vot ng and decomposition approach

: to classification

-_ P Homogeneous voting (e.g., Perrone,1993; Meir,1994; Breiman,
1994): Multiple runs of the same algorithm on the same learning
problem are combined by voting. It can only reduces variance.

* Non- homogeneous voting (e.g., Shapire,1990; Quinlan, 1993b):
Voting multiple hypotheses constructed by different learning
® algorithms applied to the same problem. It can reduce both bias and
=® varianceif the various algorithms are different.

Decoding (reconstruction) of a codeword in the decomposition
approach to classification is equivalent to a vote among those
=-® dichotomizers that learned the relevant boundaries
& ® (Kong&Dietterich,1995)

=® \/oting only improve performancesif the errors made by various
= ® voters are not “highly” correlated.




Decomposition Unit

Let be

« X multidimensional space of attributes

e C,,...,C, labels of classes.

* P:X —>{C,..,C,} K- classespolychotomy (or
K-polychotomy),

The decomposition of P generatesaset of L
dichotomizers f,,..., f,

A dichotomizer f Is adiscriminating function that
subdivides C" andC, theinput patterns in two
digoint superclasses each of them grouping a subset
of classes of the K-polychotomy




Decomposition Matrix

D=|d,] i=1..,1 k=1..,K
represents the decomposition and

connects classes C,,...,C, to thesuperclasses CandC’
+1 if C, cC’

-1 1f C cC

01t C u(C uC)=0
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|3 Representations of a

"

j 5 Decomposition Matrix

Class codewords
¢ o o g (il
-1 - +1
B +1
-1
-1
0
= +1
1 - +1

Dichotomies

0 \—1




8® Reconstruction Unit

& ® Inthis stage, a pattern is assigned to the class whose codeword
= ® ismost smilar to the output of the set of dichotomizers.

class=arg \I{sim(F,ck)

where:

c, codeword of classC,
simsimilarity measure

Dichotomizers outputs
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[S Decomposition Schemes (DS)

: ! DS decomposes a polychotomy into a set of dichotomies

m A priori decomposition schemes:

* One-Per-Class (OPC) (Nilsson, 1965)
* Minimal (|\/| | N) (Moreira, Mayoraz, 1997)

* Maximal (MAX) (Moreira, Mayoraz, 1997)

» Output Distributed Codes (ODC) (Sginowski, Rosenberg, 1987)

» PairWise Coupling (PWC) (Hastie, Tibshirani 1996)

» PairWise Correcting Classifiers (CC) (Moreira, Mayoraz, 1998)

*Error Correcting Output Codes (ECOC) (Dietterich, Bakiri, 1991, 1995)
m A posteriori decomposition schemes (Mayoraz, Moreira, 1996)
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(3 One-Per-Class DS

—d
| g Classical approach (Nilsson,1965)

= ® Each dichotomy separates a single class from all others

g ® K classes = K dichotomies

OPC decomposition
matrix (4 classes)
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(+1
-1
-1

—1

-|-1/

=-® Decision boundaries between couple of classes are learned

. ® onlytwice




Minimal DS

(Mayoraz& Moreira,1997)

K classes = |:|_|()g2(|()_‘ dichotomies

MIN decomposition matrix (4 classes)

(+1 +1 -1 -1
+1l -1 +1 -1,

Decision boundaries between couple of classes are learned
once




Maximal DS

(Mayoraz& Moreira,1997)

All possible dichotomies

K classes = %(3K +1) — 2" redundant dichotomies.

We delete:
» equivalent dichotomieslike f =—f
e trivial dichotomieslike f*(-1)=0

Kclasses= | =2K1_1 useful (i.e., not redundant)
dichotomies




MAX decomposition
matrix (4 classes)
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PairWise Coupling DS

(Moreira& Mayoraz,1998)

Each dichotomy separates a class ¢i from class ¢

Ignoring all other classes

dichotomies

PWC decomposition
matrix (4 classes)

(+1 -1 0 O0)
+1 0 -1 O
+1 0 0 -1
O +1 -1 O
O +1 0 -1

L0 0 +1 -1,




Variants of PWC DS

Correcting Classifiers (CC) decomposition scheme
(+1 +1 -1

+1 -1 +1
CC decomposition +1 -1 -1

matrix (4 classes) -1 +1 +1
-1 +1 -1
-1 -1 +1

Correcting Classifiers (PWC-CC) decomposition scheme
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|5 Error Correcting Output Codes

i DS (ECOC)

) ® (Dietterich&Bakiri, 1991,1995)
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Coding theory = classification problems

L arge decomposition schemes based on ECOC as class
codewords:

 redundancy of codewords gives error recovering
capabilities to the reconstruction unit = An ECOC DS allows
a correct classification even if asubset of dichotomizers are
wrong.

* decision boundaries between pairs of classes are |earned
many times




|3 Error Correcting Output

"

2 Codes DS

+1
+1
+1
+1
+1
+1
\+1

ECOC decomposition

problem (4 classes)

Decision boundaries between pairs of classes
are learned many times




ECOC effectiveness (1)

The maximal number of errorsthat can be corrected in
an ECOC DS s

MaxNE = LADz_lJ

where A, Isthe minimal Hamming distance (MDH)
between pairs of columns (codewords) in the
decomposition matrix D.

— Column separation - a codeword must be far from the
other codewords of the decomposition matrix (Hamming
distance).




ECOC effectiveness (2)

ECOC are effectiveif errorsinduced by channel noise on
single bits are independent (Peterson,1972).

If an ECOC DS containsvery ssimilar rows
(dichotomies) each error of an assigned dichotomizer will
be likely to appear in the most similar dichotomizers.

— Row separation - dichotomizers f. and f, Vi= j
should be not correlated = each row should be far from
the other rows and from their complements (Hamming
distance).







ECOC Exhaustive algorithm

e given aHamming distance, it
maximizes the distance among

® codewords
=9
e equidistance between couple of

codewords

® ° “Bayesconsistent” (James,1998): If
@ ©ach dicothomizer approximates the
Bayes (optimal) discriminant function
then the overall polychotomizer will
produce Bayes Classification

o ° Problem: exponential growth of the
{l o dichotomieswith the number of classes

ECOC exhaustive
decomposition matrix
(4 classes)




Bose Chauduri Hocguenghem
(BCH) algorithm - 1

and Hocguenghem based on polinomial
representation of the finite Galois fields (Bose,
Chauduri, 1960).

The maximization of the Hamming distance for a
fixed codeword length isin genera suboptimal.
BCH ECOC arenot Bayes optimal, but allow to
generate ECOC codewords of tractable length

= The algorithm was originally employed for error
recovering in seria transmission of data




Bose Chauduri Hocguenghem
(BCH) algorithm - 2

= Problem: the algorithm try to maximixe the distance
among codewords, but can duplicate rows of the
decomposition matrix or generate trivial dichotomies

In the context of classification problems the correlations

among codeword bits become significant.

We have a bit modified the original algorithm, testing also
the distance among rows of the generated ECOC
decomposition matrix: Rows identical or below a desired
Hamming distance are deleted.




|3 Recent development in ECOC

"

| 5 Machines

=Combination of ECOC and Boosting techniques
(Shapire, 1997);

= Finding aDS minimizing the Empirical Loss is NP
complete (Crammerr & Singer, 2000) = DS with

continuous codes in order to make the problem
tractable using a constrained quadratic optimisation
problem.
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|+ Recent Improvements to ECOC

=Random selected DS => well-separated codewords
(Berger, 1999);

=Circular ECOC =» reduce sensivity to codeword
selection (Ghaderi & Windeatt, 2000);

=Binary labelling techniques =» reduces the
correlation between base learners (Windeatt $
Ghaderi, 2001)




| e Successful applications of Output

: Coding Decomposition Ensembles

|mprovements over standard k-way classifiers

= Classification of cloud types (Aha & Bankert,
1997);

Text classification (Berger, 1999; |Ghani, 2000);

|[Food qualification (Pardo, Sberveglieri, Masulli
& Vaentini, 2001);

Face verification (Kittler, Ghaderi, Windeatt &
Mathas, 2001);

Bioinformatics (Vaentini, 2002).




I e Why Output Coding Decomposition

1 ® Ensemblesgeneralize sowell?
=

= ® = Reduction of both bias and variance (Kong

j o &Dietterich, 2000; [Berger, 1999)

2 » = Large margin classifiers framework

(Shapire, Freund, Bartlett & Lee, 1998;
. : Allwein, Shapire & Singer, 2000).
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Output Coding Decomposition
Ensembles

OPEN PROBLEMS-1

= Experimental analysisof the trade-off between
error recovering capabilities and lear nability of
the dichotomiesinduced by the decomposition
scheme. Theoretical analyses:. Allwein, Shapire &

Singer (2000).
Study of the relationship between codeword

length and perfor mances. Preliminary results:
Ghani (2000).

Selection of optimal dichotomizersfor the DU.
Addressed by: Berger (1999), Ghani (2000),
Masulli & Vaentini (2000).




e Output Coding Decomposition
® Ensembles
® OPEN PROBLEMS-2

How to design codes jointly maximizing the distance
between rows and columns of the DM (a-priori
methods).

=How to design codes for a given multiclass problem
(a-posterior methods)

—Greedy approach (Mayoraz & Moreira, 1997)

—Soft weight sharing (Alpaydin & Mayoraz, 1999)

—Continuous codes & constrained optimisation
problem (Crammer & Singer, 2000)

“How to relate performances of ECOC and
dependence among output errors (Kong &
Dietterich, 1995; Guruswami & Sahai, 1999).
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i » Learning Machines implementing
g ® the Decomposition Unit

— 9

|mplementation of decomposition schemes to classification:

@ Decision trees, etc.) trained on the full training set to produce

® the right codewords on its outputs. We say that each output of
8 2 monolithic classifier is an implicit dichotomizer.

2 ® ¢ paralld classifiers: or Output Coding Decomposition

L ® Ensembles; L independent dichotomizers (e.g., Simple

i@ Perceptrons, Support Vector Machines, and, again, MISO

2 » MLP, Decision trees, etc.) each one trained independently on a
i @ Specific dichotomic tasks using the full training set.

. 2




Parallel Classifiers

Parallel Linear Classifiers (PLD)
(Alpaydin& Mayoraz,1998)

Parallel multiclassifiers based on decomposition of
polychotomies into dichotomies using a separate linear
|ear ning machine for implementing each dichotomizer.

Parallel Non-linear Classifiers (PND)

Parallel multiclassifiers based on decomposition of
polychotomies into dichotomies using a separate non-linear
learning machine for implementing each dichotomizer.
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PND using MLP dichotomizers

o Ty

MLPFP dichotom.1

A A

- )

MLP dichotom.2
\ : J\
| Integration| computed

| — -

i Unit class
—[MLP dichutum.jl/
4[ MLPF dichotom.

Decomposition Reconstruction
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Architecture of the decomposition unit.

Dependency among codeword bits coding the
classes.

Decoding function selected for the decision unit.

Rel ationships between ensemble accuracy, base
earner accuracy and error correcting power.




Data sets

Data # attributes #training # testing
samples samples

3 5 30000 30000
3 6 1200 1200

5-fold cross-
val

6 214 10-fold cross-
val

|etter 16 26 16000 4000
optdigits 64 10 3823 1797

P6 / p9 synthetic - normal distributed clusters of
data classes without/with overlaps.

=-® d5 synthetic — each class 2 digoint gaussian clusters
- ® Glass, letter and optdigits from UCI repository.

5 9 1800
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Architectures — Results - 1

pb pg glass latter optdigits

ECOC MLP monoalithic classifiers do not outperform standard MLP
(consistent with Dietterich & Bakiri, 1995)
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Architectures — Results - 2

OaPC lingar

BECOC lingar

Estimated error rate
385 88 38
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pa pe glass letiar opidigils

-data sets p6, p9, and optdigits no significant statistical
dlfference among OPC and ECOC decomposition,

-glass data PLD ECOC outperforms all other types of
=® nolychotomizers

+® o|etter PLD OPC achieve better results.




Architectures — Results - 3

PND
7

8
g
@
g
£
;i

pE ] glass letter optdigits

edata sets p6 and optdigits: no significant differences
among OPC and ECOC PND can be noticed.

*p9 data set, ECOC shows expected errors significantly
smaller than OPC.

eglass and letter data sets expected errors are significantly
smaller for ECOC compared with OPC.




e .

o ECOC PND show expected error rates significantly lower

T
.
2

SO0 OO

than OPC PND.

PLD show remarkable higher errors over all data sets, and in

particular they fail over p9.

Summarizing:

the expected errorsare significantly smaller for

PND compared with direct monolithic MLP classifiers
and PLD

ECOC outperforms OPC decomposition only in

PND ensembles.




® Question: Why PND perform better than ECOC
monolithic learning machines?

PND dichotomizers are less complex than ECOC
monolithic learning machines =» better
generalization capabilities.

In PND each codeword bit islearned and
computed by itsown ML P, specialized for its
particular dichotomy, while in monolithic
classifiers each codeword bit is learned and
computed by a (non) linear combination of hidden
layer outputs =» higher correlation among
codeword bits




e
§ o Architectures — Discussion - 2
29
29 Question: Why PND perform better than PLD
=® |earning machines?

=® |n PLD the error recovering capabilities
= ® induced by ECOC are counter-balanced by

- : higher error rates of linear dichotomizers.
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(S Dependency €=>Effectiveness

_ : Code theory: if errors on different codeword bits are
dependent, the s of error correcting code is
reduced (Peterson and Weldon, 1972)
=» Dependence among output errors affects
the effectiveness of ECOC methods (Kong &
Dietterich, 1995; Guruswami & Sahai, 1999;
Masulli & Vaentini, 2000)

) o Levels

=» Codeword levd: if aDM contains very similar rows
(dichotomies), each error of an assigned dichotomizer
will be likely to appear in the most correlated
dichotomizers =»reduction of effectiveness of ECOC.

-=» Architectural level




i s Measurement of Dependence
§ o among Output Errors-1

=® Masulli & Vaentini (2001) proposed some measures

of dependence of output errors based on mutual
Infor mation.

o Mutual information (MI) measures the matching
between the joint probability density distribution
! » andtheproduct of the marginal probability density
distribution of the output errors

= ® MI special case of the Kullback-Lelbler divergence between
= ® twodistributions

- 2
- 2
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j o Measurement of Dependence
j 5 among Output Errors- 2

Py Def: mutual information error index

P = ? T Tmieg, Ef}
=® itisthe sum of the mutual mformatlon of the output

=® arrorsbetween al the output pairs of the learning
=® machines

B =» computable quantity to estimate the dependence
between codeword bit errors

4 ® |
2 » An high value of #= corresponds to an high
| » dependence between output errorsand vice versa.




[+ Measurement of Dependence

3 among Output Errors-4

=
=
9
°
L
=
= 9
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= Each point corresponds to ECOC |learning machines

Implemented with MLP with different number of
hidden units and using different partitions of the
output error.

On all the data sets about all the points are above the
dotted line, i.e. all the values of &, are greater for
ECOC monolithic compared with ECOC PND.

The results show that monolithic architecturesare
affected by a higher dependence among codeword
bit errors. Thisis consistent with the previous
discussion, at architectural level, about the

Inter dependence among monolithic MLP ECOC
outputs.




[s Measurement of Dependence

' _
s among Output Errors-5

LA
LA

=

ECOC monolithic

=
=
E

:
S
-
&5

4
| | il ] ]

3 4 5 3 4 5

EL:IDC FIHD ensemble ECOC PND ensemble

Data set: d5 Data set: glass
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[s Measurement of Dependence

"

j 3 among Output Errors- 6

B .
a
o
=
- a
ES 2
o
=)
a

/

&
|

5

ECOC monohithic

.
=2
Ea
%5
E4
S,
(=]

;
§
¢

o

23 4 5 & 37T 8 9 @ (%] 20 dI:I EIIJ 3
ECOC PND ensemble ECOC PND ensemble

Data set: opdigits Data set: |etter




f o Ensemble Accuracy and
§ 5 Decoding Function - 1

s ® = Canthechoice of a particular decoding

: : function affects the performance of ECOC

) » MLP ensembles?

=® - How the minimum Hamming distance with

=® fixed length codewords affects the

effectiveness of an ECOC ensemble?




f s Ensemble Accuracy and

: Decoding Function - 3
-® Decoding functions based on

Hamming distance: ﬂgmars—argm?‘ 1Dy — i3]
if Cifz)ei—1,+1} “
L1 norm: Dy fx) = arg m}ﬁi B — f:-f";:%:ﬁééf

if Ciz) R T

L2 norm: Dy, =) —ﬁrgmaﬂ“zﬂ Cil=)f

it Ciz) e R =
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=® We generated ECOC decomposition matrices with
constrained random algorithms.

= eliminate
= trivial dichotomies (e.g. rowswith all +1 or all -1), and
= egual or complementary rows (i.e. dichotomies)

= achieve adesired minimum Hamming distance
(MHD) between the columns (codewords) of the




validation.
Dataset 1, 2. optdigits and image-segmentation

data sets from the UCI repository (merge of
training and test sets).

Dataset 3. synthetic p20 data set (NEURObjects).
20 classes 3-dimensional - each class 3 digoint
clusters of data normally distributed with diagonal
covariance matrices.
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| » ENsemble Accuracy and

(3 Decoding Function —Results 1

| 3 Considering the proposed data sets:

# " Thecomparison of the estimated generalization
error of the ECOC ensembles shows that the
decoding functionsbased onthelL 1 and L2

norms outperform the decoding based on the
Hamming distance.

Only on the p20 data set with 50-bit ECOC ensembles
with linear perceptrons as base learners there is no
difference between L1 norm and Hamming distance
based decoding, but in this task the ECOC ensemble
clearly fails, performing a sort of random guessing.

=® - thereisno significant differenceusingL1 or L2

=®  normsin decoding
£ 9




| « ENsemble Accuracy and
|, Decoding Functlon Results 2

optdigits data set

Q035

32 bits ECOC
MLP 4 hidden

32 bits ECOC
MLP 10 hidden

4 & B 13
Minimum Hamming distancs




Ensemble Accuracy and

§ Decodlng Functlon Results 3

10
Minimum Hamming distanos

2

L1 strat —e—
L2 =tiot ——é—-
Hamnring sttar —F -

10 15
Minimum Hamming distanos

optdigits data set

32 bits ECOC
linear perceptron

64 bits ECOC
linear perceptron




Ensemble Accuracy and

leﬂct—e-—

&
Minimum Hamming distance

L1 strat —e—

L2 =tiot ——é—-
Hamnring sttar —F - 4

10 15
Minimum Hamming distanos

§ Decodlng Functlon Results 4

optdigits data set

32 bit ECOC
MLP 4 hidden

32 bit ECOC
MLP 10 hidden




o Ensemble Accuracy and Decoding

: Function — Discussion

=® Decoding function plays an important role

s ® - L1and L2 norm distance seem to be well-suited
=® for the decoding

= ® - Hamming distance based decoding function

achieves worse results

L1 and L2 normsexploit the" confidence" inthe
prevision of each base learner, while Hamming
decoding discards all the information except the
hard member ship to aclass




Generalization error & MHD

= Relationship between the estimated
generalization error and the minimum
Hamming distance (MHD) between the
codewords.

Expected a monotonic decrement with the MHD

= ® not confirmed: trends not regular and only in afew
cases (shown in previous slide) we can observe a
monotonic decrement of the error with MHD.




-

| ¢ ECOC ensemble performance vs.
[3 baselearner accuracy - 1

® Question: Why the selection of different base learners affectsin
: a so significant manner the performance of the ensemble?

® => Experimental analysis of relationship among:

9 . average base learner error

® . minimum Hammi ng distance (MHD) between the
® codewords.

=-® Note: The error recovering power of ECOC methods depends
on the MHD between codewords (if the output errors of the
decomposition unit are independent)
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o

| ¢ ECOC ensemble performance vs.
(® base learner accuracy - 2

Experimental results:
= optdigits data set:
— average base learner error increments with MHD
minimum Hamming distance

— ensemble error tends to decrease with the MHD,
especially using long codewords

= Image-segmentation data set:

— average base learner error increases with MHD
— ensemble error oscillates around .035 and .040
020 synthetic data set:

— ﬁ\)l/ﬁrgge base learner error not clear dependency on

— ensemble error decreases with the increasing of MHD
only using base learners with 6 hidden units; not clear
dependency on MHD in other cases.
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f» ECOC ensemble performance vs.

| 3 base learner accuracy - 3

- : Summarizing:
§ o No simplerelationships between the

2 » ensemble error and the average base learner

=®  arror with respect to the MHD between
+® codewords

I.e. If we use fixed length codewords an increment of
the MHD does not necessarily lead to improved
performances of the ECOC ensemble.




9
B o ECOC ensemble performance vs. base
g ® learner accuracy — Discussion -1

- 3
=® Explanation: Different codewords induce different
dichotomies.

= ® The dichotomies can or cannot be hard learnable

depending
— on the structure of the data and
— on the type of the base learner used

Complex classification problems require complex
dichotomizers =» overfitting

The learnability is partially reflected by the average
base |earner error.




3 ECOC ensemble performance vs. base

® |earner accuracy — Discussion —2
T
| @ The ECOC ensemble performance depends on acomplex
Interaction among:

= MHD

= accuracy of thedichotomizers

= dependency among the codeword bit errors.
Different experimental cases.

the effect due to the error recovering power prevails on
the increment of the base learner error

the error recovering power is counter-balanced by the
Increased average base learner error

similar trends of the ensemble error and the average base
learner error with respect to MHD

etc.
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Outline

= Output Coding Decomposition Ensembles
= Open problems

= Experimental analysis of factors affecting the effectiveness o
Output Coding Decomposition Ensembles

= Application to Electronic Nose data (+)

= Conclusions

(*) in collaboration with
Matteo Pardo, INFM-Brescia (Italy) and
Giorgio Sbherveglieri, Univ. Brescia (Italy)




Application to OIL and COFFEE

gualification using electronic nose
data

Francesco M asulli, Univ. Pisa (Italy)
Giorgio Valentini, Univ. Genoa (ltaly)
Matteo Pardo, INFM (ltaly)
Giorgio Sberveglieri, Univ. Brescia (Italy)
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History of Electronic Noses

= Hartman (1954): Array of 8 electrochemical cells
given different electric patterns to odour samples.

= Moncrieff (1961): Array of 6 thermistors covered
by different materials, e.g., polymers, gels, and
fat. He claimed, even if each thermistor in not
selective to odours, the array was able to
* » discriminate alarge number of odours

=® - AlphaMos Co. — France (early '90): Sellsthe
first electronic noses.

Electronic Noses technology to be consolidated




Electronic Nose - 1

Task: classification of gas mixtures (such asfood
flavors, odors)

= A single sensor (e.g., semiconductor thin films)
—not selective
—Non-linear and unknown mapping odor-output

= Vectorial datafrom an array of sensorswith
different characteristics are more selective




Electronic Nose

Electronic Noses.
—array of sensors +
—learning machines (for data analysis)

Data sets char acteristics:
—Few data (100-1000 samples)
—Low dimensional (5-10 sensors)




Human nose €& =» el ectronic nose

Epitelio olfattivo

Assone Glomerulo

Molecole

Valatili
NASO

BIOLOGICO [2:[>
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> Schemeof PICO1 EN developed
g2 at the Gas Sensor Lab - Brescia
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Coffee analysis with Pico-1

= Two coffee groups:

—6 mono varieties + |talian Certified ESpresso
(ICE)

—7 blends for Espresso
= Analysiswith Pico-1
= 5 sensors, static sampling, ground coffee, 210 and
249 samples

= Task: mono varieties and blend of coffee
discrimination
« Use of PCA + ANN
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Output Coding Decomposition
Ensembles show alower
estimated generalization
error than singlelearning
machines (e.g. Multi-Layer
Perceptrons) =

accurate systems well-suited
to reliable commercial
electronic nose devices




Outline

Output Coding Decomposition Ensembles
Open problems

Experimental analysis of factors affecting the
effectiveness of Output Coding Decomposition
Ensembles

Application to Electronic Nose data
Conclusions
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Output Coding Decomposition
Ensembles

OPEN PROBLEMS-1

= Experimental analysis of the trade-off between
error recovering capabilities and learnability of the
dichotomies induced by the decomposition
scheme. Theoretical analyses. Allwein, Shapire &

Singer (2000), Vaentini (2000).

Study of the relationship between codeword length
and performances. Preliminary results. Ghani
(2000).

Selection of optimal dichotomizers for the DU.

Addressed by: Berger (1999), Ghany (2000),
Masulli & Valentini (2000).




Output Coding Decomposition
Ensembles
OPEN PROBLEMS-2

How to design codes jointly maximizing the distance
between rows and columns of the DM (apriori
methods).

=How to design codes for a given multiclass problem
(a-posterior methods)

—Greedy approach (Mayoraz & Moreira, 1997)
—Soft weight sharing (Alpaydin & Mayoraz, 1999)

—Continuous codes & constrained optimisation
problem (Crammer & Singer, 2000)

1o
)
®

=How to relate performances of ECOC and dependence
among output errors (Kong & Dietterich, 1995;
Guruswami & Sahal, 1999).




Output Coding Decomposition
Ensembles
OPEN PROBLEMS-3

We need more studies to relate the accuracy of the
ECOC ensemble with the complexity of the induced
decomposition.

The relationship effectiveness of ECOC ensemble-
complexity of the data is an item common to other
ensemble methods (Ho, 2001) and require specific studies
and experimental analysis using appropriate measures of
complexity, based on geometrical or topological
characteristics of data (Li & Vitanyi, 1993).







