

Random forest: , $\mathrm{x}, \theta_{\mathrm{k}} \quad$ (i.i.d, $\left.\mathrm{k}=1, \ldots, \mathrm{~L}\right), \mathrm{L}$ is large

Strength and correlation:
$D(x)$: the class label of x suggested by D
Define margin function for a random forest to be

$$
\operatorname{mr}\left(\mathrm{x}, \omega_{i}\right)=\mathrm{P}_{\theta}\left(\mathrm{D}(\mathrm{x})=\omega_{i}\right)-\max _{t \neq i} \mathrm{P}_{\theta}\left(\mathrm{D}(\mathrm{x})=\omega_{t}\right),
$$

and the strength of the set of classifiers to be

$$
\mathrm{s}=\boldsymbol{E}_{\mathrm{x}, \omega}[\operatorname{mr}(\mathrm{x}, \omega)]
$$

Denote $\omega_{s}=\operatorname{argmax}_{t \neq i} \mathrm{P}_{\theta}\left(\mathrm{D}(\mathrm{x})=\omega_{t}\right)$ and define raw margin function to be

$$
\operatorname{rmr}\left(\mathrm{x}, \omega_{i}, \theta\right)=I\left(\mathrm{D}(\mathrm{x})=\omega_{i}\right)-I\left(\mathrm{D}(\mathrm{x})=\omega_{s}\right),
$$

where $I($.$) is an indicator function.$

The probability of error of the ensemble is bounded as follows

"Although the bound is likely to be loose, it fulfils the same suggestive function for random forests as VC-type bounds do for other types of classifiers."

The 2-class case:

$$
\operatorname{mr}\left(\mathrm{x}, \omega_{i}\right)=2 \mathrm{P}_{\theta}\left(\mathrm{D}(\mathrm{x})=\omega_{i}\right)-1, \quad i=1,2
$$

the strength of the set of classifiers is

$$
\mathrm{s}_{\mathrm{k}}=\boldsymbol{E}_{\mathrm{x}, \omega}[\operatorname{mr}(\mathrm{x}, \omega)]
$$

$$
\approx 2 \nless N\left[\Sigma_{\gamma} P_{\theta}\left(D(x)=\omega_{1}\right)+\Sigma_{2} P_{\theta}\left(D(x)=\omega_{2}\right)\right]-1
$$

True label ω_{1} True label ω_{2}

The correlation ρ_{\star} can be calculated as the averaged pairwise correlation between the -oracle outputs

NB. Both are just estimates!

An example:

banana-shaped data (gendatb routine from Matlab toolbox PRtools)

Training
$N=600$ data points

Testing

(a separate set)
$\mathrm{N}=600$ data points

The idea was to avoid using OB estimates which anyway simulate estimates on an independent testing set of the same size

Simple bagging, $\mathrm{L}=50$ classifiers

$L=50, N=600$

$\mathrm{L}=150, \mathrm{~N}=100$

true labels
guessed labels

Part 2: Non-pairwise diversity measures

0. A note on pairwise diversity (ρ) for random forests

- Measures based on a single data point + averaging (entropy, spread, KW variance)
- Interrater agreement (kappa for multiple raters)
- Measures based on difficulties of the data points
- Relationship with accuracy
- Open problems

Now we look at the whole ensemble of classifiers.

Classifier outputs

Oracle(binary)

1	0	1	1	1	0

Class labels
(abstract level)

ω_{1}	ω_{2}	ω_{1}	ω_{1}	ω_{3}	ω_{1}

Ordered list of class labels

ω_{12}	ω_{8}	ω_{11}	ω_{10}	ω_{9}	ω_{11}
ω_{11}	ω_{12}	ω_{9}	ω_{11}	ω_{8}	ω_{10}
ω_{10}	ω_{2}	ω_{10}	ω_{12}	ω_{10}	ω_{8}

Continuous-valued (measurement level)

ω_{1}	ω_{2}	ω_{3}	ω_{4}
0.1	0.4	0.3	0.2
0.3	0.3	0.3	0.1
0.2	0.1	0.7	0.0

- Measures based on a single data point (case, instance, example, object, whatever) and subsequently averaged over the whole data set.

2. Measures based on all data points.

For oracle outputs and $\mathrm{L}=8$ classifiers, are these diverse?

1	1	1	1	1	1	1	1	No-O-O-O-O-O-O!
0	0	0	0	0	0	0	0	Nope.
1	0	1	0	1	0	1	0	Yes.
								Yes.
1	1	1	1	0	0	0	0	

ENTROPY (oracle outputs)

How do we measure how far we are from the desired pattern of $L / 2$ 0 's and L/2 1s for N objects?

$$
\mathrm{E}=\frac{1}{\lceil\mathrm{~L}-1\rceil \mathrm{N}} \Sigma_{\mathrm{k}}\left[\min \left\{\Sigma 0^{\prime} \mathrm{s}, \Sigma 1^{\prime} \mathrm{s}\right\}\right]_{\mathrm{k}}
$$

Consider the output 0 or 1 as a random variable with relative frequencies $p_{0}=\left(\Sigma 0^{\prime} s\right) / L$ and $p_{1}=\left(\Sigma 1^{\prime} s\right) / L$, respectively. Then the (proper) formula for the entropy of the distribution, averaged across the N data points will be

$$
H=-\frac{1}{N} \Sigma_{k}\left[p_{0} \log p_{0}+p_{1} \log p_{1}\right]_{k}
$$

[Cunningham Carney, 2000]

ENTROPY (label outputs)

Breiman's Bias-Variance decomposition, 1996

Assume that classifier output for a given x^{*} is a random variable with p.m.f. $\mathrm{P}\left(\omega_{1} \mid \mathrm{x}^{*}, \mathrm{D}\right), \ldots, \mathrm{P}\left(\omega_{\mathrm{c}} \mid \mathrm{x}^{*}, \mathrm{D}\right)$. The classification error is

$$
\begin{aligned}
& \mathrm{P}\left(\text { error } \mid \mathrm{x}^{*}\right)=1-\Sigma_{j} \mathrm{P}\left(\omega_{j} \mid \mathrm{x}^{*}\right) \mathrm{P}\left(\omega_{j} \mid \mathrm{x}^{*}, \mathrm{D}\right) \\
& =1-\left\{\mathrm{P}\left(\omega_{B} \mid \mathrm{x}^{*}\right)-\mathrm{P}\left(\omega_{B} \mid \mathrm{x}^{*}\right)-\Sigma_{j} \mathrm{P}\left(\omega_{j} \mid \mathrm{x}^{*}\right) \mathrm{P}\left(\omega_{j} \mid \mathrm{x}^{*}, \mathrm{D}\right)\right\} \\
& =\left[1-\mathrm{P}\left(\omega_{B} \mid \mathrm{x}^{*}\right)\right]+\Sigma_{j}\left[\mathrm{P}\left(\omega_{B} \mid \mathrm{x}^{*}\right)-\mathrm{P}\left(\omega_{j} \mid \mathrm{x}^{*}\right)\right] \mathrm{P}\left(\omega_{j} \mid \mathrm{x}^{*}, \mathrm{D}\right) \\
& =\mathrm{P}_{B}\left(\mathrm{x}^{*}\right)+\Sigma_{j}\left[\mathrm{P}\left(\omega_{B} \mid \mathrm{x}^{*}\right)-\mathrm{P}\left(\omega_{j} \mid \mathrm{x}^{*}\right)\right] \mathrm{P}\left(\omega_{j} \mid \mathrm{x}^{*}, \mathrm{D}\right)
\end{aligned}
$$

$\left.\left[P\left(\omega_{B} \mid x^{*}\right)-P\left(\omega_{s} \mid x^{*}\right)\right] P\left(\omega_{s} \mid x^{*}, D\right)\right]$
bias

$$
+\Sigma_{j \neq s}\left[\mathrm{P}\left(\omega_{B} \mid \mathrm{x}^{*}\right)-\mathrm{P}\left(\omega_{j} \mid \mathrm{x}^{*}\right)\right] \mathrm{P}\left(\omega_{j} \mid \mathrm{x}^{*}, \mathrm{D}\right)
$$

$$
\begin{aligned}
& \mathrm{P}_{B}\left(\mathrm{x}^{*}\right) \\
& \left.+\left[\mathrm{P}\left(\omega_{B} \mid \mathrm{x}^{*}\right)-\mathrm{P}\left(\omega_{s} \mid \mathrm{x}^{*}\right)\right] \mathrm{P}\left(\omega_{s} \mid \mathrm{x}^{*}, \mathrm{D}\right)\right] \\
& +\Sigma_{j \neq s}\left[\mathrm{P}\left(\omega_{B} \mid \mathrm{x}^{*}\right)-\mathrm{P}\left(\omega_{j} \mid \mathrm{x}^{*}\right)\right] \mathrm{P}\left(\omega_{j} \mid \mathrm{x}^{*}, \mathrm{D}\right)
\end{aligned}
$$

Is the spread related to diversity?
An example: If we drew a classifier at random from the distribution P_{D},

$P($ error $\mid x)=0.6+[0.4-0.2] 0.4+[0.1 \times 0.2+0.3 \times 0.1]=0.73$

$$
P(\text { error } \mid \mathrm{x})=0.6+\frac{[0.4-0.2] 0.4}{0.08}+\frac{[0.1 \times 0.2+0.3 \times 0.1]}{0.05}=\underline{0.73}
$$

Take majority vote. This means "decide always ω_{s} for $\mathrm{x}^{* "}$.

$\mathrm{P}($ error $\mid \mathrm{x})=0.6+[0.4-0.2] 1.0$	= $\underline{0.80}$

KW variance (label outputs)

[Kohavi Wolpert, 1996, Bias plus variance decomposition for zero-one loss functions]

The c-class case:

$$
\mathrm{P}(\text { error } \mid \mathrm{x})=\operatorname{bias}^{2}(\mathrm{x})+\text { variance }(\mathrm{x})+\text { noise }^{2}(\mathrm{x})
$$

bias $^{2} \underline{(x)} \quad 1 / 2 \Sigma_{\omega}\left(P_{\text {true }}(\omega \mid x)-P_{\text {guessed }}(\omega \mid x)\right)^{2}$
variance $(\mathrm{x}) \quad 1 / 2\left(1-\Sigma_{\omega}\left(P_{\text {guessed }}(\omega \mid x)\right)^{2}\right.$
noise ${ }^{2}(\mathrm{x}) \quad 1 / 2\left(1-\Sigma_{\omega}\left(P_{\text {true }}(\omega \mid x)\right)^{2}\right.$
biass $^{2}(\underline{x})=1 / 2 \Sigma_{\omega}\left(P_{\text {true }}(\omega \mid x)-P_{\text {guessed }}(\omega \mid x)\right)^{2}$

variance $(x)=1 / 2\left(1-\Sigma_{\omega}\left(P_{\text {guessed }}(\omega \mid x)\right)^{2}\right)$
$1 / 2\left[1-\left((0.2)^{2}+(0.1)^{2}+(0.4)^{2}+(0.3)^{2}\right)\right]=\mathbf{0 . 3 5}$

$$
\text { noise }^{\underline{2}}(\underline{x})=1 / 2\left(1-\Sigma_{\omega}\left(P_{\text {true }}(\omega \mid x)\right)^{2}\right)
$$

$$
1 / 2\left[1-\left((0.3)^{2}+(0.1)^{2}+(0.2)^{2}+(0.4)^{2}\right)\right]=\mathbf{0 . 3 5}
$$

Vietri sul Mare, 270902

KW variance (oracle outputs)

Consider again the output 0 or 1 as a random variable with relative frequencies $p_{0}=\left(\Sigma 0^{\prime} s\right) / L$ and $p_{1}=\left(\Sigma 1^{\prime} s\right) / L$, respectively. Then the variance is

$$
\text { variance }(x)=1 / 2\left(1-\left(p_{0}\right)^{2}-\left(p_{1}\right)^{2}\right)
$$

Averaging across the whole data set,

$$
\mathrm{KW}=1 /\left(\mathrm{N} \times \mathrm{L}^{2}\right) \Sigma_{\mathrm{k}}\left[\left(\Sigma 0^{\prime} \mathrm{s}\right) \times\left(\Sigma 1^{\prime} \mathrm{s}\right)\right]_{\mathrm{k}}
$$

Curiously, KW and the averaged pairwise disagreement measure are related through

$$
\mathrm{KW}=(\mathrm{L}-1) /(2 \mathrm{~L}) \mathrm{D}_{\mathrm{av}}
$$

- Measures based on a single data point (case, instance, example, object, whatever) and subsequently averaged over the whole data set.

2. Measures based on all data points.

Interrater agreement, kappa, (oracle outputs)

Measure of difficulty θ

[Hansen Salamon, 1990]
Define a random variable $X=$ proportion of classifiers which correctly classify a randomly drawn sample x . Let $\mathrm{L}=7$.

Vietri sul Mare, 270902

measure of diversity $\theta=\operatorname{Var}(\mathrm{X})$

independent

$$
\theta=0.034
$$

identical

$\theta=0.240$
diverse

$\theta=0.004$

Generalized diversity

[Partridge Krzanowski, 1997]
Define a random variable $Y=$ proportion of classifiers which misclassify a randomly drawn sample x . $(\mathrm{Y}=1-\mathrm{X}$ defined before)

Denote by p_{i} the probability that $\mathrm{Y}=i / \mathrm{L}$, and by $\mathrm{p}(\mathrm{k})$ the probability that k randomly chosen classifiers will fail on a randomly drawn x.
$\mathrm{p}(1)=\sum_{i} \mathrm{p}_{i} \times i / \mathrm{L}$ (the probability of single classifier failing)
$\mathrm{p}(2)=\sum_{i} \mathrm{p}_{i} \times i(i-1) /(\mathrm{L}(\mathrm{L}-1))$ (the probability that two randomly chosen classifiers will fail together)

$$
G D=1-p(1) / p(2)
$$

Coincidence failure diversity

$$
\text { CFD }= \begin{cases}0, & \text { if } p_{0}=1, \\ 1 /\left(1-p_{0}\right) \Sigma_{i} p_{i} \times(L-i) /(L-1), & \text { if } p_{0}<1\end{cases}
$$

Relationship between diversity and accuracy

Correlations between the improvement on the single best classifier and some diversity measures (WBC)

	Q	ρ	Dis	DF	κ	θ	GD	CFD
MAJ	-17	-21	33	18	-20	35	28	38
NB	-15	-20	32	20	-18	37	26	36
BKS	-15	-17	17	5	-15	16	18	18
WER	-15	-17	17	5	-16	17	19	18
MAX	-1	-0	20	38	0	45	7	11
AVR	-13	-15	34	33	-14	47	22	30
PRO	-11	-11	29	33	-11	44	18	24
DT	-12	-15	32	30	-14	44	22	29

Relationship between diversity measures

4 네 Open problems

- How to narrow down the study? (Use a specific methodology for building the ensemble)
- Some theory would not go amiss.
- Diversity for label outputs and continuous-valued outputs might lead somewhere.

The difficulty comes from the fact that the output of the classifiers are vectors

