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Motivation

Previous talk:

e Use over-complex architecture (little bias)

e Address the resulting variance by injecting independence and
averaging
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Motivation

Previous talk:

e Use over-complex architecture (little bias)

e Address the resulting variance by injecting independence and
averaging

This talk:

e Use very compact architecture (small variance)

e Attempt to fit the data as best as possible (low bias)
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Hybrid Architecture:
Fitting the data better
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z = f(x,y) is composed of five clusters and a sigmoidal surface.
e Data complexity: not homogenous across regions

e Linear, Sigmoidal and Gaussian regions

Requires a divide and conquer approach with different com-
plexity architecture.
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Type of hidden units
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MLP and RBF are complimentary units

" A function can be decomposed into mutually
exclusive radial and projection based parts”
(Donoho and Johnstone, 89)
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Background

Previous work on flexible estimators that include Ridge and RBF
functions:

e Generalized additive models (Hastie & Tibshirani, 90)

e Higher-Order Networks (Lee et al., 86)

9O (wj; - x;) + D> wikzpzy).
; ko

aj

e Adding a squared version of the inputs (old statistical idea)
SMLP (Flake, 98):

aj = g (wji-z)+ DY wizp).
i P
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Classical approach

First find radial part and then projection part on the
residual error
Problem: Difficult to recover from residuals (caused

by bad approximators)
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Hybrid RBF/BP Architecture (PRBFN)

Projection Units

Qutput Unit

RBF Units
Input layer




Hidden unit outputs

Projection units:
a; = o(Q_(wj; - ;).
1
Radial basis unit:

oz, w;) = exp~@—wi)?/(2rg)
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Challenges: Automatic Architecture Selection

e Determine network size and unit type

e Computational efficiency (no retraining)
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Network construction & training procedure

Decompose the input space into homogenous regions

Choose the appropriate unit for each specific region in input

space

— Includes determination of initial weights

Determine network size (prune)

Train the full network
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Network construction & training procedure

Decompose the input space into homogenous regions

Choose the appropriate unit for each specific region in input

space

— Includes determination of initial weights

Determine network size (prune)

Train the full network
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Input space division

e A CART like algorithm:

e Recursively divide current input space into two sub

regions

e Choose two anchor points:

i argmax f(z) C1={z:d(z,z1) <d(z,z2)}

argmin f(x) Co={z:d(x,z2) <d(z,zl)}

L2
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Input space division (continued)

e Objective function:

SSR(Co) = Y (y; — 90)2,
y;€Co

e Maximum reduction in:

ASSR(Cpo) = SSR(Cp) — (SSR(C1) + SSR(C5)).
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Left: RBF, right: ridge (positive and negative)

Hidden unit weights

e RBF unit: set center at the maximum point of the subspace.

e Projection unit: set the weight vector to be normalized and
maximal at the maximum point of the subspace.
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Unit type selection via the Evidence

e [ he Bayes Factors are defined as:

p(M1|D) _ p(D|M;3)p(M;)
p(M2|D)  p(D|M2)p(Mz)

e Integrating the unknown weights:
p(DIM) = [ p(D,W|M)dW
= | p(DIW, M)p(W|M)dW.

e T he integration can be performed by using Laplace integral,
(Taylor approximation to the second order).

p(D|M) 2 2r) | H|~Pp(D|Wing, M)p(Wing| M)
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Unit type selection (objective)

Choose the model (RBF or MLP) which maximizes the likeli-
hood. Or:

e Assume: Gaussian noise on the targets N(0,«?), and Gaus-
sian prior on the weights: N(0, 82).

o Let y; = wo(x;) + wo, Where ¢ is either an RBF or MLP.
consider:

1 Yty (g —t)*, 1 wiw

L = AMﬁVZ\MQZQ&@A 502 VAMﬂVH\meHﬁAI|MQM ).

e Consider the log of L (ignoring constants)

e (v — 15)? wiw
502 + log(B) + M|QM

LL = Nlog(a) +
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Unit type selection overview

For

Yz 1 (wi(w, wo) — )2 wTw
o2 +109(8) + =55

set the gradient of LL to zero with respect to «, 8, w, wg and find
optimal values.

LL = Nlog(«a) +

Given optimal values, select the model with highest MAP.

rbfbp



Unit type selection (details)

e set V, gLL =0, to obtain

SN (g — t)?
5 .

QM”

B2 =wtw.

e MLE minimizes the error only, without penalizing on model
complexity (small weights)
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Unit type selection (continued)

e Differentiating LL with respect to wg gives:

1 N . N
= N (L wi-w X 6.

e Differentiating LL with respect to w gives:

B2y N §|IM t; SN 1 b |
B2 N | ¢2 — M zsm Y, ¢ + a?

w =
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Unit type selection (continued)

The Hessian of the negative log-likelihood is given by:

Yimy o b | Li ¢

2

H = «
MUs”H ﬁv@ E
02 .
Using
_ SN (g — t3)? w?
LL = Nlog(a) + S0 +109(8) + 55 252

and the Gaussian approximation:
p(D|M) 2 (2m) | H|HPp(D|Wing, M)p(Wino| M),

the log of the evidence becomes:

LL = ~Nlog(a) - 10(8) — - 10g(|H]).
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Unit selection algorithm

Initialize o and g.

Loop: compute w,wo, and a, B using the previous derivation

Stop when a converges (Aa«) is small.

Based on «, 8 and H, select the unit with highest MAP:
1
LL = —Nlog(a) — log(B) — ms&_mc.

H ~ Ni and WNQQA_QC = O(N—)
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Network construction & training procedure

Decompose the input space into homogenous regions

Choose the appropriate unit for each specific region in input
space

— Includes determination of initial weights

Determine network size (prune)

Train the full network
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Pruning using a Gaussian error model

Assume that the target function values are corrupted by

Gaussian noise with zero mean and equal variance o2,

Assume that the patterns in the training set are independent,
the likelihood of the data under the model is

1 N (yn —tn)?
L= - mx_oAIMU:IH@: n)

2
(2n)2olN 20

).

For maximization, consider the log value of L:

N N — tn)?
1L = —Yiog(2n) - Nlog(o) — n=1n—tn)~
2 202

The maximum likelihood with respect to o is:

N

H
)M M
Q.|| M |~w .
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Likelihood Ratio Test (for pruning)

The LRT can be used to select between two nested models.

Given two models M1 C M2 the

—2log( ) ~ x?(dp — d).

Uses P — Values to reject the null hypothesis, that is, the

simple model is equivalent to the complicated one.

Applicable only for pruning.

rbfbp



Bayesian Information Criteria (BIC)
approximation

e [ he BIC approximation can be derived, by using Gaussian
distribution to the a-priori parameters density to arrive at:

d
BIC = 10g(p(D|M)) = 109(p(D, Wing| M)) — 7 10g(N),
where log(p(D, Wimng|M)) is the MLE, N, the number of
points, and d is the number of parameters.

(Schwartz 78, Kass & Raftery, 95)
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Pruning algorithm summary

Find 61 and o, for each model using the MLE. The LRT

becomes:

x2(d2 — d1) ~ 2N log(5%) — 2N 10g(53).

Apply P values to reject the null (small model is better)

Similarly, BIC becomes:

BIC; = —N _OQAO\.,&V —

Choose the larger BIC.

d;

2

log(N),

i=1,2.
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Final global training

Divide input space and assign units to each sub-region.

Select type of hidden unit for each sub-region (and initial
values).

Stop when error goal, or maximum number of units, is
achieved.

Prune un-necessary weights.

Full Global optimization.
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he final global optimization can remove
overfitting caused by data driven subspace
division.
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Application: Function approximation
(Clustering)

Clusterization for Function Approximation (CFA) Data was taken
from (Gonzalez et al. 2002).

e [ hree data sets.

e CFA is used at the first stage for RBFN.

e Study the normalized root mean square error (NRMSE):

NRMSE = | 3 [f(z%) — £12/ 3" [f (=) — 72,
1=1 1=1
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CFA Application (continued)

e T he first target to approximate is:
sin(2mwx)

czp(2) ,x € [0, 10].

fi(z) =

e Four prototypes and 1000 samples of fi1 generated by evalu-
ating inputs taken uniformly from the interval [0, 10].

e [ he second function, also taken from CFA, to consider is:

fo(x) = 0.2+ 0.8(x + 0.7sin(2wx) ),z € [0, 1]

from 21 equidistant input-output training examples belonging
to the interval [0, 1].
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CFA Application (continued)

e [ he third function from CFA is a two-input data:

(1 —2)(2z1 4+ 1) (z2 —2)(2z2 + 1)
1+ &m 1+ &W
where a complete set of 441 examples obtained from a grid

of 21221 points equi-distributed in the input interval defined
for f3.

\WwAH”_JHMv —

y L1, T € _”|mv m“_
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Hybrid Net Regression Results
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f1 (continuous line) and the output of PRBFN (dashed line), the
prototypes are shown as rectangles.
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CFA Results

fl

f2

f3

RBFN-CFA

0.95240.001

0.380+0.035

0.92640.008

PRBFN2

0.103+0.001

0.08240.001

0.663+0.001

Comparison of normalized mean squared error results on three
data sets The results for RBFN—CF A are quoted from (Gonzalez

et al. 2002).
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Small datasets

LogGauss | 2D Sine Elec Circ.
RBF-Reg-Tree | 0.02+0.14 | 0.91+0.19 | 0.12+0.03
RBF-OLS - 0.744+0.41 | 0.20+0.03
RBF-EM 0.02+0.02 | 0.53+0.19 | 0.18#£0.02
PRBFN 0.02+0.02 | 0.53+0.21 | 0.154+0.03
PRBFN2 0.01+0.01 | 0.46+0.19 | 0.12+0.03

Data sets from (Orr et al, 2000). The electric circuit was taken
from Friedman, ( MARS got similar results).

rbfbp



Pumadyn Regression

Pumadyn dynamics of puma robot arm (from DELVE).

8 dimension and 32 dimension input space

Target : angular acceleration of one link.

We used the data which is strongly corrupted by Gaussian
noise

A highly non linear problem
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Methods for comparison

Lin-1 Linear least squares regression.

KNN-cv-1 KNN for regression. K is selected by CV.

MLP-ens-1 MLP ensembles with early stopping and conju-
gate gradient.

HME-ens-1 Hierarchical mixtures of experts. (early stop-
ping).

GP-map-1 Gaussian processes for regression, using

MLP-MC-1 MLP (ensembles) trained by MCMC. . a max-
Imum a-posteriori via conjugate gradient.
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MARS3.6-bag-1 MARS with bagging.

PRBFN-AS-RBF RBF with pruning.

PRBFN-AS-MLP MLP with pruning.

PRBFN-LRT Full PRBFN method LRT for pruning.

PRBFN2 PRBFN - BIC model selection and LRT pruning.



Results: 32 inputs

Training size 04 128 512 1024

Lin-1 1.98+0.25 | 1.20+£0.05 | 0.89+0.02 | 0.86+0.02
KNN-cv-1 1.00£0.02 | 1.01+£0.03 | 0.92+0.02 | 0.90+0.02
MLP-ens-1 1.25+0.04 | 1.13+£0.09 | 0.89+0.02 | 0.86+0.02
HME-ens-1 1.224+0.02 | 1.124+0.04 | 0.89+£0.02 | 0.87+£0.02
GP-map-1 1.01£0.06 | 0.70+£0.12 | 0.36+0.01 | 0.35+0.01
MLP-mc-1 0.88+0.06 | 0.58+0.06 | 0.594+0.06 | 0.35+0.01
MARS3.6-bag-1 | 0.93+0.06 | 0.53+0.03 | 0.35+0.01 | 0.34+0.01
PRBFN-AS-RBF | 1.14+0.2 0.57£0.09 | 0.39+£0.02 | 0.38+0.03
PRBFN-AS-MLP | 1.114+0.08 | 0.84+0.06 | 0.54+0.06 | 0.40+£0.02
PRBFN-LRT 1.45+0.2 1.144+0.09 | 0.55+0.05 | 0.44+0.03
PRBFN2 0.75+0.11 | 0.43+0.02 | 0.37+0.02 | 0.34+0.01

rbfbp




Results: 8 inputs

Training Size 64 128 512 1024

Lin-1 0.73+0.02 | 0.68+0.02 | 0.634+0.014 | 0.63+0.02
KNN-CV-1 0.79+0.02 | 0.71+£0.02 | 0.584+0.02 | 0.53+0.02
MLP-ens-1 0.72+0.02 | 0.67x=0.02 | 0.494+0.01 | 0.41+0.01
HME-ens-1 0.72+0.02 | 0.67x0.02 | 0.544+0.02 | 0.44+0.02
GP-map-1 0.44+0.03 | 0.38+0.01 | 0.33+0.01 | 0.32+0.01
MLP-MC-1 0.45+0.01 | 0.394+0.02 | 0.32+0.01 | 0.324+0.01
MARS3.6-bag-1 | 0.51+0.02 | 0.38+0.01 | 0.344+0.01 | 0.34+£0.01
PRBFN-AS-RBF | 0.51+0.03 | 0.384+0.02 | 0.33+0.01 | 0.324+0.01
PRBFN-AS-MLP | 0.57£0.05 | 0.59+£0.14 | 0.33+0.08 | 0.324+0.01
PRBFEN-LRT 0.72+0.11 | 0.60x£0.05 | 0.41+0.01 | 0.3540.02
PRBFN2 0.48+0.03 | 0.38+0.01 | 0.33+0.01 | 0.32+0.01
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Related work

Hassibi et al. with Optimal Brain Surgeon

Mackey with Bayesian inference of weights and regularization

parameters

HME Jordan and Jacob, division of input space.

Kass and Raftery using BIC.
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Summary

Pruning removes 90% of the parameters and reduces the
variance of estimator

PRBFN is better then RBF or MLP alone.

Bayesian techniques disadvantages: the prior distribution of
parameters, but on the data tested, better than LRT.

Determination of unit parameters, greatly reduces training
time

Unit type selection is crucial in PRBFEN

Unit selection with MAP is better than unit selection with
MLE.
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Classification: Initial decomposition of input
space

e Breiman et al (CART 84) have used a twoing criterion for
splitting region of input space

e \We have adopted a similar entropy criterion which we have
extended to non-parallel projections:

AEr(Cp) = Er(Co) — [Er(C1) + Er(C2)].

The definition of Er(Cp) includes the empirical probability of
Co: Pg, = |Col/|D|.
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Details of the (non-parallel) decomposition

Consider two subsets V;, V;.

Consider the two biggest class member inputs.
Let m; = (1/n;) Xpev, . be the subset mean.

Set y; € {—1,1} be the corresponding class labels.
Si = Zaev;(® — mg) (@ — m)t, Sw = S1 + So.

w = S;1(ml —m2).

Minimize Ey = M%HHASH&& + wo — y;)2. w.r.t wp.
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Network construction & training procedure

Decompose the input space into homogenous regions

Choose the appropriate unit for each specific region in input
space

— Includes determination of initial weights

Determine network size

Train the full network
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Unit Selection

Is done via likelihood ratio between the models as before.
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Initial weights

Initial weights for an RBF unit: center of the cluster.
For a projection unit, we use a linear approximation w!lx. Thus,
we maximize

N
L(w,a) = ) w! z;
=l

T

subject to w*w = 1, which implies maximization of

N
Llw,a) = MU wlz; — a(wlw — 1),
=1

N N
= w=() z)/ (X =) .
i=1 .

1=1
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Network construction & training procedure

Decompose the input space into homogenous regions

Choose the appropriate unit for each specific region in input
space

— Includes determination of initial weights

Determine network size

Train the full network
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Stopping criterion

3@. is the number of patterns from class ¢ that are sent to the
left node.
mt/ﬂ IS be the expected number of patterns sent due to a ran-
dom split.
The y2 statistics is given by:

> < (N} — E[Nj])?

X“= >,

=1 EIV]

Splitting stops when x2 is below a predefined confidence level.
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Network construction & training procedure

Decompose the input space into homogenous regions

Choose the appropriate unit for each specific region in input
space

— Includes determination of initial weights

Determine network size

Train the full network
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Full gradient descent

Gradient descent is performed on:

e [ he input to hidden unit weights

e [ he hidden to output weights

e [ he radii of the RBF.

Care should be taken so that the radii do not shrink to zero.
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Classification results

Algorithm | Sonar Vowel waveform | Hepatitis | Letters
RBF-Tree | 71.7£0.5 | — — 79.8+5

RBF-OLS | 82.3+2.4 | 51.64+2.9 | 83.8+0.2 | 82.7+3

RBF-EM | — 48.44+2.4 | 83.5+0.2 | 77.3+3 85.494+2.0
PRBFN 901.3+2.1 | 67.04+2.1 | 85.8+0.2 | 82.11+4 85.5 £1.9
PRBFN2 | 92.3+1.9 | 68.0£1.9 | 85.84+0.3 | 84.24+4 94.02 +0.0

RBF-Tree - Orr: using regression tree for clustering.
RBF-OLS - Matlab: an incremental architecture.

RBF-EM - Bishop: EM for clustering.
PRBFN - Last years version: manual model selection.
PRBFN2 - Latest version: automatic model selection.
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Summary

Pruning removes 90% of the parameters and reduces the
variance of estimator

PRBFN is better then RBF or MLP alone.

Bayesian techniques disadvantages: the prior distribution of
parameters (but on the data tested, better than LRT.)

Determination of unit parameters, greatly reduces training
time

Unit type selection is crucial in PRBFEN

Unit selection with MAP is better than unit selection with
MLE.
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