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Classifier Combination Methods

• Decision Optimization:

find consensus among a given set of classifiers

• Coverage Optimization:
create a set of classifiers that work best with a 
given decision combination function



Decision Optimization

• Develop classifiers with expert knowledge
• Try to make the best use of their decisions

via majority/plurality vote, sum/product rule, 
probabilistic methods, Bayesian methods, 
rank/confidence score combination …

• The joint capability of the classifiers set an intrinsic limit 
on the combined accuracy

• There is no way to handle the blind spots





Difficulties in  
Decision Optimization

• Reliability versus overall accuracy

• Fixed or trainable combination function

• Simple models or combinatorial estimates

• How to model complementary behavior



Coverage Optimization

• Fix a decision combination function
• Generate classifiers automatically and systematically 

via training set sub-sampling (stacking, bagging, boosting),
subspace projection (RSM), 
superclass/subclass decomposition (ECOC), 
random perturbation of training processes, noise injection …

• Need enough classifiers to cover all blind spots
(how many are enough?)

• What else is critical?



Difficulties in
Coverage Optimization 

• What kind of differences to introduce:
– Subsamples?  Subspaces?  Super/Subclasses?
– Training parameters? 
– Model geometry?

• 3-way tradeoff:  
– discrimination + diversity + generalization

• Effects of the form of component classifiers



Dilemmas and Paradoxes

• Weaken individuals for a stronger whole?

• Sacrifice known samples for unseen 
cases?

• Seek agreements or differences?



Model of 
Complementary Decisions

• Statistical independence of decisions:
assumed or observed?

• Collective  vs.  point-wise error estimates

• Related estimates of neighboring samples



Stochastic Discrimination

• A mathematical theory that relates several 
key concepts in pattern recognition:

– Discriminative power
– Complementary information
– Generalization power

• It offers a way to describe complementary 
behavior of classifiers



Supervised Classification --
Discrimination Problems



Stochastic Discrimination

• Make random guess of class models

• Select and combine the guesses to 
build a classifier



History

• Mathematical theory  

[Kleinberg 1990 AMAI, 1996 AoS, 2000 MCS]

• Development of theory 
[Berlind 1994 Thesis, Chen 1997 Thesis]

• Algorithm outlines [Kleinberg 2000 PAMI]

• Algorithms, experimentation, variants: 

[Kleinberg, Ho, Berlind, Bowen, Chen, Favata, 
Shekhawat, 1993 – 2002]



Key Concepts and Tools in SD

• Set-theoretic  abstraction

• Symmetry of probabilities in model or feature 
spaces 

• Enrichment  /  Uniformity  / Projectability

• Convergence of discriminant by the law of 
large numbers



Set-Theoretic Abstraction

• Study classifiers by their decision regions
• Ignore all algorithmic details
• Two classifiers are equivalent if their 

decision regions are the same



The 0th Example
• Given a set of 3 points  S = {a, b, c}
• Consider subsets of S with 2 members:

s1 = {a, b}       s2 = {a, c}      s3 = {b, c}

• Each si covers 2/3 of the members in S
• Let  M = { s1, s2, s3 }
• Each point of S is covered by:

a ∈ s1, s2 2/3 of members in M
b ∈ s1, s3 2/3 of members in M
c ∈ s2, s3 2/3 of members in M

• 2 models / 3 models = 2 points / 3 points
• This symmetry comes from the uniformity of M:

M is unbiased for members of S



Uniformity Implies Symmetry:
The Counting Argument

Count the number of pairs (q,m) such that
“model m covers point q”,  call this number N

If each point is covered by the same number X
of models (the collection is a uniform cover),

N = 3 point x  X covering models each point
N = 2 point in each model x Y models

3 X = 2 Y X / Y = 2 / 3



The 1st Example
• Given a feature space F containing a set A 

with 10 points:

• Consider all subsets m of F that cover exactly 
5 points of A,  e.g.,

m = {q1, q2, q6, q8, q9} 

• Each model m has captured  5/10 = 0.5 of A

ProbF (q∈ m| q ∈ A) = 0.5

• Call this set of models M 0.5, A

q0   q1   q2    q3    q4    q5    q6    q7    q8    q9



Some Members of M 0.5, A



q0   q1   q2    q3    q4    q5    q6    q7    q8    q9



• There are C(10,5) = 252  models in M 0.5, A

• Permute this set randomly to give m1,m2,…,m252



First 10 Items

Listed by the indices i of qi



• Take collections of the members in this order

M1 = {m1}

M2 = {m1, m2}
…
M252 = {m1, m2, …, m252}

• For each point q in A,  count how many 
members of each Mt cover A  

• Normalize the count by size of Mt, obtain 

Y(q,Mt) = --- Σ Cmk (q)  = ProbM (q∈ m| m ∈ Mt)

where Cm(q) = 1 iff  q ∈ m

t

1 t

k=1





As t goes to 252,  Y values become …

The Y table continues …



• Trace the value of Y(q, Mt)  for each q as t increases

• Values of Y converge to 0.5
• They are very close to 0.5 far before t=252



• When t is large,  we have

Y(q,Mt) = ProbM (q∈ m| m ∈ Mt)
= 0.5
= ProbF (q∈ m| q ∈ A)

• We have a symmetry of probabilities in two 
different spaces  M and F

• This is due to the uniform coverage of Mt on A
i.e., any two points in A are covered by the 
same number of models in Mt



Two-class discrimination

• Label points in A with 2 classes:

TR1 = {q0, q1, q2, q7, q8}
TR2 = {q3, q4, q5, q6, q9}

• Calculate a rating of each model m for each 
class:

r1 = ProbF (q∈ m| q ∈ TR1)

r2 = ProbF (q∈ m| q ∈ TR2)

q0   q1   q2 q3    q4    q5    q6 q7    q8 q9



Enriched Models

• Ratings r1 and r2 describe how well m is in 
capturing classes c1 and c2  as observed with 
TR1 and TR2

r1 (m) = ProbF (q∈ m| q ∈ TR1)

r2 (m) = ProbF (q∈ m| q ∈ TR2)

e.g. m = {q1, q2, q6, q8, q9}

r1 (m) = 3/5 enrichment degree d12(m) =
r2 (m) = 2/5 r1(m)-r2(m) = 0.2

q0   q1   q2 q3    q4    q5    q6 q7    q8 q9



The Discriminant 

• Recall Cm(q) = 1  iff  q ∈ m

• Define

X12 (q,m) = ------------------

• Define a discriminant 

Y12 (q,Mt) = --- Σ X12 (q,mk) 

Cm(q) – r2(m)

r1(m) – r2(m)

1

t

t

k=1





As t goes to 252,  Y values become …

The Y table continues …

q0     q1      q2 q3      q4   q5   q6 q7      q8 q9



• Trace the value of Y(q, Mt)  for each q as t increases

• Values of Y converge to 1 or 0  (1 for TR1, 0 for TR2)
• They are very close to 1 or 0 far before t=252



X12 (q,m) = ------------------
Cm(q) – r2(m)

r1(m) – r2(m)
X12 (q,m) = Cm(q) 

Y12 (q,Mt) = --- Σ X12 (q,mk)
1

t k=1

t

Why?



• Find the fraction of models of each rating that 
cover a fixed point q

f Mt, r1, TR1(q)    and      f Mt, r2, TR2(q) 

• Since Mt is expanded in a uniform way,
as t increases, for all x, 

f Mt, x, TRi(q)  → x

Profile of Coverage 



Ratings of m in Mt

We have models of 6 different “types”



Profile of Coverage of q0 at t=10

m2,m8m3,m5.m10



Ratings of m 
(repeated for reference)



Profile of Coverage 
for a fixed point q in TRi

f Mt, x, TRi(q) = x



Profile of coverage as a function of r1:  f Mt, r1, TR1(q)

Profile of coverage as a function of r2:  f Mt, r2, TR2(q)

q5           q6 q7      q8 q9

q0           q1           q2           q3       q4

q5           q6 q7      q8 q9

q0           q1           q2           q3       q4



Decomposition of Y

Can be shown to be 0 for 
q∈TR2 in a similar way.

Duality 
due to 
uniformity



Projectability of Models

• If F has more than the training points q:

• If the models m are larger – not only including 
the q points but also their neighboring p,
the same discriminant Y12 can be used to 
classify the p points

• The points p and q are Mt-indiscernible

q0,p0   q1,p1   q2,p2 q3,p3    q4,p4    q5,p5    q6,p6 q7,p7    q8,p8 q9,p9



Example Definition of a Model

q0,p0   q1,p1   q2,p2 q3,p3    q4,p4    q5,p5    q6,p6 q7,p7    q8,p8 q9,p9

∪ ∪
Points within m are m-indiscernible



Model Size and Projectability

• Points within the same model share the same 
interpretation

• Larger models -> more stable the ratings are 
w.r.t. sampling differences -> more similar 
classification between TR and TE

• Tradeoff with easiness to achieve uniformity



Enrichment and Convergence

• Larger enrichment degree -> smaller 
variance in X -> Y converges faster

• Models with large enrichment degree 
are more difficult to obtain

• Thus more difficult to achieve uniformity



The 3-way Tension

Enrichment

ProjectabilityUniformity



The 3-way Tension

Complementary 
Information

Discriminating Power

Generalization Power



Review

Key Concepts and Tools in SD

• Set-theoretic  abstraction

• Symmetry of probabilities in model or feature 
spaces 

• Enrichment  /  Uniformity  / Projectability

• Convergence of discriminant by the law of 
large numbers



Weak Models

• A weak model m is a subset of the feature space 
F

• It contains points sharing the same interpretation

• It should have a simple form, easy-to-compute 
membership function 

• It should have a minimum size
• It may be cheaply produced by a stochastic 

process
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Enriched Weak Models

• Rate a weak model by how well it captures 
points of each class

• Degree of enrichment is how much the model 
is biased between two classes

• A weak model is enriched if
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The Stochastic Discriminant

• For point q and model m, classes i and j:

• For a collection of t weak models Mt = {m1,m2,…,mt}:
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A Uniform Cover

• The collection of models should cover the space 
uniformly – any two points of the same class should 
fall equally likely in models of a specific rating

• M is A-uniform if for every x = r(m,A) such that Mx,A
is nonempty, and for any two points p,q in A:

• We need a collection of models that is both TRi-
uniform and TRj -uniform.
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Symmetry between 
Probabilities w.r.t. F and 2F

• If M is A-uniform, then for all q in A,
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• But by definition, for all m in Mx,A



Duality between Distributions of
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Convergence of the Discriminant

• With enriched weak models, values of Xij are distributed 
around 

+1 for points of class i  and
–1 for points of class j

• Yij converges to E(xij) with variance 1/t that of Xij

according to the law of large numbers

• Classifier obtainable within time proportional to 
1/u   (u = upper bound on error)  and 
1/dij

2 (dij = enrichment degree)











Open Problems in 
Stochastic Discrimination

• Algorithm for uniformity enforcement

• Desirable form of weak models

Fewer, more sophisticated classifiers?

• Other ways to address the 3-way trade-off

Enrichment  /  Uniformity  / Projectability



Random Decision Forest

• [Ho 1995, 1998]

• A structured way to create models

fully split a tree, use leaves as models

• Perfect enrichment and uniformity for TR 

• Promote projectability by subspace projection



Compact Distribution Maps

• [Ho & Baird 1993, 1997]

• Another structured way to create models

• Start with projectable models by 
coarse quantization of feature values

• Seek enrichment and uniformity 



Alternative Discriminants

• [Berlind 1994]

• Different discriminants for  N-class problems

• Additional condition on symmetry

• Approximate uniformity

• Hierarchy of indiscernibility



Estimates of 
Classification Accuracies

• [Chen 1997]

• Statistical estimate of classification accuracy
under weaker conditions:

Approximate uniformity

Approximate indiscernibility



Stochastic Discrimination

• A family of mathematical theories that relate 
several key concepts in pattern recognition:

– Discriminative power … enrichment
– Complementary information … uniformity
– Generalization power … projectability

• It offers a way to describe complementary 
behavior of classifiers

• It offers guidelines to design multiple 
classifier systems



Homework

• Read  http://www.cs.bell-labs.com/who/tkh/talks/example.ps

• Reproduce this example and all tables

• Try a different random permutation of M0.5,A

• Try changing size of m …

• Try changing size of TR1, TR2, …
see what happens with X and Y

• Try the ideas on other data …

• Visit http://kappa.math.buffalo.edu/sd
• \


