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Classifier Combination Methods

e Decision Optimization:
find consensus among a given set of classifiers

e Coverage Optimization:

create a set of classifiers that work best with a
given decision combination function




Decision Optimization

Develop classifiers with expert knowledge
Try to make the best use of their decisions

via majority/plurality vote, sum/product rule,
probabilistic methods, Bayesian methods,
rank/confidence score combination ...

The joint capabillity of the classifiers set an intrinsic limit
on the combined accuracy

There is no way to handle the blind spots




Example from a word recognition problem

e rank of true class for 20 word images among a lexicon of 1091 words:

clasgifier number
image numbear 1 2 3 4

102 55




Difficulties In
Decision Optimization

Reliability versus overall accuracy

Fixed or trainable combination function

Simple moc

How to Moo

e

e

S or combinatorial estimates

complementary behavior




Coverage Optimization

Fix a decision combination function
Generate classifiers automatically and systematically

via training set sub-sampling (stacking, bagging, boosting),
subspace projection (RSM),

superclass/subclass decomposition (ECOC),

random perturbation of training processes, noise injection ...

Need enough classifiers to cover all blind spots
(how many are enough?)
What else is critical?




Difficulties In
Coverage Optimization

* What kind of differences to introduce:
— Subsamples? Subspaces? Super/Subclasses?
— Training parameters?
— Model geometry?

o 3-way tradeoff:
— discrimination + diversity + generalization

» Effects of the form of component classifiers




Dilemmmas and Paradoxes

* Weaken individuals for a stronger whole?

o Sacrifice known samples for unseen
cases?

 Seek agreements or differences?




Model of
Complementary Decisions

o Statistical independence of decisions:
assumed or observed?

* Collective vs. point-wise error estimates

* Related estimates of neighboring samples




Stochastic Discrimination

« A mathematical theory that relates several
key concepts In pattern recognition:

— Discriminative power
— Complementary information
— Generalization power

|t offers a way to describe complementary
behavior of classifiers
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Stochastic Discrimination

 Make random guess of class models

« Select and combine the guesses to

build a classifier




History

Mathematical theory
[Kleinberg 1990 AMAI, 1996 AoS, 2000 MCS]

Development of theory
[Berlind 1994 Thesis, Chen 1997 Thesis]

Algorithm outlines [Kleinberg 2000 PAMI]

Algorithms, experimentation, variants:

[Kleinberg, Ho, Berlind, Bowen, Chen, Favata,
Shekhawat, 1993 — 2002]




Key Concepts and Tools in SD

Set-theoretic abstraction

Symmetry of probabilities in model or feature
spaces

Enrichment / Uniformity / Projectability

Convergence of discriminant by the law of
large numbers




Set-Theoretic Abstraction

« Study classifiers by their decision regions
 Ignore all algorithmic detalls

* Two classifiers are equivalent if their
decision regions are the same




The Oth Example

Given a set of 3 points S ={a, b, c}
Consider subsets of S with 2 members:
s;={a,b} s,={a,c} s;={b,c}

Each s; covers of the membersin S
Let M ={s;,S,,S;3}

Each point of S is covered by:
aes;,s, 2/3 of members in M
bes;,s; 2/3 of members in M
CeE S,, S 2/3 of members in M

2 models / 3 models =
This symmetry comes from the uniformity of M:
M Is unbiased for members of S




Uniformity Implies Symmetry:
The Counting Argument

Count the number of pairs (g,m) such that
“model m covers point q”, call this number N

If each point Is covered by the same number
of models (the collection Is a uniform cover),

N = 3 point x < covering models each point
N = 2 point in each model x ¥ models

=2 [v=2]3




The 1st Example

Given a feature space F containing a set A
with 10 points:

0 gl g2 g3 g4 g5 g6 g7 g8 a9

Consider all subsets m of F that cover exactly
5 points of A, e.qg.,

m =1{q1, 92, g6, g8, q9}
Each model m has captured 5/10 = 0.5 of A

Prob: (qe m|ge A) =0.5

Call this set of models M 0.5, A




Some Members of M 0.5 A

{QO:a dgi, 42, 43, 44 }
{QO:: g1, 42, 43, (g5 }
{QO:: g1, 42, 43, (6 }




0 gl g2 g3 g4 g5 g6 g7 g8 @°




* There are C(10,5) =252 modelsin M 5
e Permute this set randomly to give m;,m,,...,M,c,

Table 1: Models rm; in M5 5 4 in the arder of M = m,, my, ..., mies. Each model is shown with its
elements denoted by the indices i of q; in A. For example, m; = {qs, g, G, 92,90 }-
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First 10 Items

||| Listed by the indices i of g
‘ my = {Q3:'Q5JQ6:'Q8:'Q9




e Take collections of the members In this order
M, ={m}
M, = {m,, m,}

M,s, = {my, My, ..., Myso}

For each point g in A, count how many
members of each M, cover A

Normalize the count by size of M,, obtain

t
Y(@M) == XCyi() =Proby (qe m m e M)

where C.(q) =1 iff ge m
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0.00
0.50
0.33
0.50
0.60
0.50
0.43
0.50
0.56
0.50




The Y table continues ...

0.50
0.49
0.50
0.49
0.50
0.49
0.49
0.49
0.49
0.49
0.50
0.50
0.50
0.50
0.50
0.50
0.50

As t goes to 252, Y values become ...




* Trace the value of Y(q, M,) for each q as t increases

100 150

no. of weak models (IMI)

* Values of Y converge to 0.5
 They are very close to 0.5 far before t=252




« Whentis large, we have

Y(q,M,) = Proby, (qe m| m e M,
= 0.5

= Prob: (e m| g e A)

 We have a symmetry of probabilities in two
different spaces M and F

e This is due to the uniform coverage of M, on A

l.e., any two points In A are covered by the
same number of models in M,




Two-class discrimination

» Label points in A with 2 classes:
g3 g4 q> 06

=1 }
TR, = {03, 94, g5, g6, 99}

e Calculate a rating of each model m for each
class:
= Probg (ge m| g e )
r, = Probg (e m| g e TR),)




Enriched Models

« Ratings r, and r, describe how well m is in
capturing classes ¢, and c, as observed with
and TR,

= Probg (ge m| g )
r, (m) = Probg (ge m|ge TR),)

g3 g4 a5 g6 q9
, 06, q8, q9}

enrichment degree d,(m) =
r, (m) = 2/5 r,(m)-r,(m) =0.2




The Discriminant

e Recall C,(q)=1 Iff ge m

 Define
Cm(q) _ rz(m)
X1o (0,M) = =mmmmmmmmmmmmeeee
— Ip,(M)

e Deflne a discriminant

t
Y12 (q’Mt) — _,3;' Z X12 (q,mk)

k=1







The Y table continues ...

g3
As t goes to 252, Y values become ...




Trace the value of Y(qg, M,) for each g as t increases

19

h g Lh

pr—

Y(M,q)
=
Lh  —

0

100 150 200 250

no. of weak models (IMI)

Values of Y converge to 1 or O (1 for 0 for TR,)
They are very close to 1 or O far before t=252




Why?

C —
X415 (g,m) = C.(q) X,, (q,m) = m(q)rZ(m)

— I,(m)

L L

t
Y12 (A,M)) = '1;' kZ:1X12 (a,my)

100 150 200 250 5 100 150 200 250

no. of weak models (IMI) no. of weak models (IMI)




Profile of Coverage

* Find the fraction of models of each rating that
cover a fixed point g

f e e TR2(Q)  and f vt r2, TR2(0)

e Since M, Iis expanded In a uniform way,
as t increases, for all x,

f vt x TRi(D) — X




Ratings of m in M,

no. of points from TH; 0
no. of points rom THy 5 4
1 00 0.2 04 06 08 1.0

T2 1.0 08 06 04 02 0.0

We have models of 6 different “types”




Profile of Coverage of g, at t=10

go at ¢ = 10 is only covered by 5 models (mo, m3, ms, mg, mig) in My,

1

no. of models in My with r;
NMIU;TI T R (qﬂ)

me,Tl,TR1 (qﬂ)

T2 0.0 0.2
no. of models in M5 with ro 0 2
NMm,Tz ,TRQ(Q'D) 0 2
me,Tz,TRz (qﬂ) 0 1.0




Ratings of m
(repeated for reference)




Profile of Coverage
for a fixed point g in TR,




Profile of coverage as a function of




Decomposition of Y

HE(QJ Mt) = m[t(} 0 EE%DU 1 XIZ(QJ mkg_g)] + M[t EDD:; —1 Xl?(@: mku.z)]
M[tﬂ 4 Zku a=1 XlZ(Q: mkt}.:l)] + m[t kg 5—1 Xl?(@: mkc}.a)]
m[tu q Ekg 8= 1 (QJ mkﬂ.ﬂ)] —I_ _llﬂ[tl 0 Ekl D_l XlZ(Q: mkl.ﬂ)]'

_I_
_I_

to.0 + %o.2 + %04 + 0.6 + 208 %10 _

t | Duality
due to
uniformity

HZ(Q! Mt) =

Can be shown to be 0 for
ge TR, in a similar way.




Projectability of Models

 If F has more than the training points q:

q3,p3 Qg4,p4 Q5,pS Q6,p6 09.p9

 |If the models m are larger — not only including
the q points but also their neighboring p,

the same discriminant Y, can be used to
classify the p points

* The points p and q are M-indiscernible




Example Definition of a Model

{q‘v(%);rv(%) < v(q) < U(Q3)-2Fv(Q4)}U

q
{q‘w < v(g) < W}U

{g| 28 4(g)}.

q3,p3 | g4,p4 | ao.p>  g6,p6 | q9,p9
U U

Points within m are m-indiscernible




Model Size and Projectability

e Points within the same model share the same
Interpretation

e Larger models -> more stable the ratings are
w.r.t. sampling differences -> more similar
classification between TR and TE

e Tradeoff with easiness to achieve uniformity




Enrichment and Convergence

e Larger enrichment degree -> smaller
variance in X -> Y converges faster

* Models with large enrichment degree
are more difficult to obtain

 Thus more difficult to achieve uniformity




The 3-way Tension

Enrichment

Uniformity Projectability




The 3-way Tension

Discriminating Power

Complementary
Information Generalization Power




Review

Key Concepts and Tools in SD

Set-theoretic abstraction

Symmetry of probabilities in model or feature
spaces

Enrichment / Uniformity / Projectability

Convergence of discriminant by the law of
large numbers




Weak Models

A weak model m Is a subset of the feature space

F

It contains points sharing the same interpretation

It should have a simple form, easy-to-compute
membership function

t should have a minimum size

t may be cheaply produced by a stochastic
DroCcess




Enriched Weak Models

 Rate a weak model by how well it captures
points of each class

Imn Al
| Al

r(m, A) =

« Degree of enrichment is how much the model
IS biased between two classes

di(m)=r(m,TR)-r(m,TR)
« A weak model is enriched if [ol{1) X0,




The Stochastic Discriminant

* For point g and model m, classes | and j:

Xs(6, ) = {2{‘WJ1 if r(mTR) # r(m, TR)

r(mTR)—r(m,TRy)

5 If r(mTR) =r(m,TR)

where C(g,m)=1< e m

* For a collection of t weak models Mt = {m,,m,,




A Uniform Cover

« The collection of models should cover the space
uniformly — any two points of the same class should
fall equally likely in models of a specific rating

* Mis A-uniform if for every x = r(m,A) such that M, ,
IS nonempty, and for any two points p,q In A:

I:)ZF(pE m|me MX,A) = PZF (qe m|me MX’A)

* We need a collection of models that is both TR-
uniform and TR; -uniform.




Symmetry between
Probabilities w.r.t. F and 2F

* |If M is A-uniform, then for all g in A,

PZF (ge m|me Mx,A) =X

* But by definition, for all m in M, ,

P.(qe m|ge A) =X




Duality between Distributions of




Convergence of the Discriminant

* With enriched weak models, values of X; are distributed
around

+1 for points of class 1 and
—1 for points of class |

Y; converges to E(x;) with variance 1/t that of X;
according to the law of large numbers

Classifier obtainable within time proportional to
1/u (u = upper bound on error) and
1/d;# (d; = enrichment degree)




(a) (b)

Figure 2. (a) True distributions and (b) classi-
fication with 500 weak models.
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Figure 3. Accuracy (a) without and (b) with
uniformity promotion.







Figure 5. Classification of space with 100 of
(a) type 1 and (b) type 2 models.
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Figure 6. Accuracies with (a) type 1 and (b)
type 2 models.




Training Set

BackProp Testing Set

% correcty S —
F0
65 —

60 |

55

| | | | | | | | | | |
0 100 200 300 400 500 600 700 E00 900 1000

Mumber of weak models

Figure 7. Accuracies on the DNA data.




Open Problems in
Stochastic Discrimination

 Algorithm for uniformity enforcement

e Desirable form of weak models
Fewer, more sophisticated classifiers?

e Other ways to address the 3-way trade-off
Enrichment / Uniformity / Projectability




Random Decision Forest

[Ho 1995, 1998]

A structured way to create models

fully split a tree, use leaves as models

Perfect enrichment and uniformity for TR

Promote projectability by subspace projection




Compact Distribution Maps

[Ho & Baird 1993, 1997]

Another structured way to create models

Start with projectable models by
coarse quantization of feature values

Seek enrichment and uniformity




Alternative Discriminants

[Berlind 1994]

Different discriminants for N-class problems
Additional condition on symmetry
Approximate uniformity

Hierarchy of indiscernibility




Estimates of
Classification Accuracies

e [Chen 1997]

o Statistical estimate of classification accuracy
under weaker conditions:
Approximate uniformity

Approximate indiscernibility




Stochastic Discrimination

« A family of mathematical theories that relate
several key concepts in pattern recognition:

— Discriminative power ... _enrichment
— Complementary information ... uniformity
— Generalization power ... projectability

|t offers a way to describe complementary
behavior of classifiers

|t offers guidelines to design multiple
classifier systems




Homework

Read

Reproduce this example and all tables
Try a different random permutation of Mg 5 5

Try changing size of m ...

Try changing size of TR1, TR2, ...

see what happens with X and Y

Try the ideas on other data ...
Visit




