Classifier Generating Methods and Stochastic Discrimination

Tin Kam Ho
Bell Laboratories
Lucent Technologies

Classifier Combination Methods

- Decision Optimization: find consensus among a given set of classifiers
- Coverage Optimization: create a set of classifiers that work best with a given decision combination function

Decision Optimization

- Develop classifiers with expert knowledge
- Try to make the best use of their decisions via majority/plurality vote, sum/product rule, probabilistic methods, Bayesian methods, rank/confidence score combination ...
- The joint capability of the classifiers set an intrinsic limit on the combined accuracy
- There is no way to handle the blind spots

Example from a word recognition problem

- rank of true class for 20 word images among a lexicon of 1091 words:

| | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| image number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

1	102	1	55	1	597	34	393	1	303	19
2	25	4	478	193	498	213	707	45	956	996
3	29	342	2	86	1	941	36	798	448	260
4	2	5	208	76	5	4	16	9	565	183
5	221	90	84	351	259	1038	838	725	819	617
6	570	130	513	33	761	274	1	351	345	105
7	77	40	91	569	11	505	250	271	366	155
8	219	8	356	218	725	72	8	18	139	19
9	41	11	1	2	19	4	16	9	59	44
10	70	82	79	30	338	3	36	26	38	100
11	3	4	214	53	6	470	4	295	420	953
12	2	68	48	188	3	87	49	29	256	718
13	3	768	149	262	34	1046	235	842	289	909
14	68	657	121	289	192	325	979	45	3	953
15	1	7	91	139	512	26	16	37	47	44
16	3	157	113	16	70	6	17	5	163	192
17	69	8	663	780	773	130	724	32	260	953
18	407	100	97	45	710	169	147	18	1057	24
19	1	10	205	189	930	386	309	296	696	699
20	2	98	721	15	852	130	771	6	3	92

Difficulties in Decision Optimization

- Reliability versus overall accuracy
- Fixed or trainable combination function
- Simple models or combinatorial estimates
- How to model complementary behavior

Coverage Optimization

- Fix a decision combination function
- Generate classifiers automatically and systematically
via training set sub-sampling (stacking, bagging, boosting), subspace projection (RSM), superclass/subclass decomposition (ECOC), random perturbation of training processes, noise injection ...
- Need enough classifiers to cover all blind spots (how many are enough?)
- What else is critical?

Difficulties in Coverage Optimization

- What kind of differences to introduce:
- Subsamples? Subspaces? Super/Subclasses?
- Training parameters?
- Model geometry?
- 3-way tradeoff:
- discrimination + diversity + generalization
- Effects of the form of component classifiers

Dilemmas and Paradoxes

- Weaken individuals for a stronger whole?
- Sacrifice known samples for unseen cases?
- Seek agreements or differences?

Model of
 Complementary Decisions

- Statistical independence of decisions: assumed or observed?
- Collective vs. point-wise error estimates
- Related estimates of neighboring samples

Stochastic Discrimination

- A mathematical theory that relates several key concepts in pattern recognition:
- Discriminative power
- Complementary information
- Generalization power
- It offers a way to describe complementary behavior of classifiers

Supervised Classification -Discrimination Problems

Stochastic Discrimination

- Make random guess of class models
- Select and combine the guesses to build a classifier

History

- Mathematical theory [Kleinberg 1990 AMAI, 1996 AoS, 2000 MCS]
- Development of theory [Berlind 1994 Thesis, Chen 1997 Thesis]
- Algorithm outlines [Kleinberg 2000 PAMI]
- Algorithms, experimentation, variants: [Kleinberg, Ho, Berlind, Bowen, Chen, Favata, Shekhawat, 1993 - 2002]

Key Concepts and Tools in SD

- Set-theoretic abstraction
- Symmetry of probabilities in model or feature spaces
- Enrichment / Uniformity / Projectability
- Convergence of discriminant by the law of large numbers

Set-Theoretic Abstraction

- Study classifiers by their decision regions
- Ignore all algorithmic details
- Two classifiers are equivalent if their decision regions are the same

The 0th Example

- Given a set of 3 points $S=\{a, b, c\}$
- Consider subsets of S with 2 members:

$$
s_{1}=\{a, b\} \quad s_{2}=\{a, c\} \quad s_{3}=\{b, c\}
$$

- Each s_{i} covers $2 / 3$ of the members in S
- Let $M=\left\{s_{1}, s_{2}, s_{3}\right\}$
- Each point of S is covered by:

$$
\begin{array}{ll}
a \in s_{1}, s_{2} & 2 / 3 \text { of members in } M \\
b \in s_{1}, s_{3} & 2 / 3 \text { of members in } M \\
c \in s_{2}, s_{3} & 2 / 3 \text { of members in } M
\end{array}
$$

- 2 models $/ 3$ models $=2$ points $/ 3$ points
- This symmetry comes from the uniformity of M : M is unbiased for members of S

Uniformity Implies Symmetry: The Counting Argument

Count the number of pairs (q,m) such that "model m covers point q", call this number N

If each point is covered by the same number of models (the collection is a uniform cover),
$\mathrm{N}=3$ point $\mathrm{x} \times$ covering models each point
$\mathrm{N}=2$ point in each model $\mathrm{x} Y$ models

$$
3 X=2 Y \quad X / Y=2 / 3
$$

The 1st Example

- Given a feature space F containing a set A with 10 points:
q0 q1 q2 \quad q3 \quad q4 \quad q5 \quad q6 \quad q7 \quad q8 \quad q9
- Consider all subsets m of F that cover exactly 5 points of A, e.g.,

$$
m=\{q 1, q 2, q 6, q 8, q 9\}
$$

- Each model m has captured $5 / 10=0.5$ of A

$$
\operatorname{Prob}_{F}(\mathrm{q} \in \mathrm{~m} \mid \mathrm{q} \in \mathrm{~A})=0.5
$$

- Call this set of models $\mathrm{M}_{0.5, \mathrm{~A}}$

Some Members of $\mathbf{M}_{0.5, \mathrm{~A}}$

$\left\{\begin{array}{lllll}q_{0}, & q_{1}, & q_{2}, & q_{3}, & q_{4}\end{array}\right\}$ $\left\{q_{0}, \quad q_{1}, \quad q_{2}, \quad q_{3}, \quad q_{5}\right\}$ $\left\{q_{0}, \quad q_{1}, \quad q_{2}, \quad q_{3}, \quad q_{6}\right\}$
q0 \quad q1 \quad q2 \quad q3 \quad q4 \quad q5 \quad q6 \quad q7 \quad q8 \quad q9

- There are $\mathrm{C}(10,5)=252$ models in $\mathrm{M}_{0.5, \mathrm{~A}}$ - Permute this set randomly to give $\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{252}$

Table 1: Models m_{t} in $M_{0 S, A}$ in the order of $M=m_{1}, m_{2}, \ldots, m_{252}$. Each model is shown with its elements denoted by the indices i of q_{i} in A. For example, $m_{1}=\left\{q_{3}, q_{5}, q_{5}, q_{8}, q_{9}\right\}$.

m_{t}	elements										
m_{1}	35689	m_{43}	12689	m_{85}	24578	m_{127}	01469	m_{169}	02468	m_{211}	02458
m_{2}	01268	m_{44}	04569	m_{88}	23568	m_{128}	03679	m_{170}	35678	m_{212}	13457
m_{3}	04789	m_{45}	01245	m_{87}	01267	m_{129}	04579	m_{171}	03589	m_{213}	24689
m_{4}	25689	m_{46}	01458	m_{88}	01257	m_{130}	01237	m_{172}	34679	m_{214}	03478
m_{5}	02679	m_{47}	15679	m_{89}	05679	m_{131}	24789	m_{173}	12346	m_{215}	23589
m_{6}	34578	m_{48}	12457	m_{90}	24589	m_{132}	45689	m_{174}	12458	m_{216}	24679
m_{7}	13459	m_{49}	02379	m_{91}	04589	m_{133}	16789	m_{175}	35789	m_{217}	02456
m_{8}	01238	m_{50}	02568	m_{92}	12467	m_{134}	13479	m_{176}	02358	m_{218}	05689
m_{9}	12347	m_{51}	12357	m_{93}	13578	m_{135}	02349	m_{177}	35679	m_{219}	12789
m_{10}	01579	m_{52}	14678	m_{94}	02369	m_{138}	13469	m_{178}	13458	m_{220}	02346
m_{11}	34589	m_{63}	12678	m_{95}	12469	m_{137}	03678	m_{179}	01459	m_{221}	23489
m_{12}	03459	m_{54}	23567	m_{96}	04567	m_{138}	23679	m_{180}	03479	m_{222}	23467
m_{13}	23459	m_{65}	02789	m_{97}	14679	m_{139}	46789	m_{181}	14789	m_{223}	12489
m_{14}	02457	m_{56}	24567	m_{98}	13467	m_{140}	01468	m_{182}	23678	m_{224}	14589
m_{15}	02368	m_{57}	13569	m_{99}	45678	m_{141}	03689	m_{183}	03456	m_{225}	25678
m_{16}	02689	m_{58}	01259	m_{100}	03469	m_{142}	02478	m_{184}	13456	m_{226}	12579
m_{17}	01368	m_{69}	23479	m_{101}	34789	m_{148}	23457	m_{185}	01568	m_{227}	03458

First 10 Items

m_{t}	elements
m_{1}	35689
m_{2}	01268
m_{3}	04789
m_{4}	25689
m_{5}	02679
m_{6}	34578
m_{7}	13459
m_{8}	01238
m_{9}	12347
m_{10}	01579

Listed by the indices i of q_{i}

$$
m_{1}=\left\{q_{3}, q_{5}, q_{6}, q_{8}, q_{9}\right\}
$$

- Take collections of the members in this order

$$
\begin{aligned}
& M_{1}=\left\{m_{1}\right\} \\
& M_{2}=\left\{m_{1}, m_{2}\right\} \\
& \ldots \\
& M_{252}=\left\{m_{1}, m_{2}, \ldots, m_{252}\right\}
\end{aligned}
$$

- For each point q in A, count how many members of each M_{t} cover A
- Normalize the count by size of M_{t}, obtain

$$
Y\left(q, M_{t}\right)=-1-\sum_{k=1}^{t} C_{m k}(q)=\operatorname{Prob}_{M}\left(q \in m \mid m \in M_{t}\right)
$$

where $C_{m}(q)=1$ iff $q \in m$

	$N\left(M_{t}, q\right)$										
M_{t}	q_{0}	q_{1}	q_{2}	q_{3}	q_{4}		q_{5}	q_{6}	q_{7}	q_{8}	q_{9}
M_{1}	0	0	0	1	0		1	1	0	1	1
M_{2}	1	1	1	1	0		1	2	0	2	1
M_{3}	2	1	1	1	1		1	2	1	3	2
M_{4}	2	1	2	1	1		2	3	1	4	3
M_{5}	3	1	3	1	1		2	4	2	4	4
M_{6}	3	1	3	2	2		3	4	3	5	4
M_{7}	3	2	3	3	3		4	4	3	5	5
M_{8}	4	3	4	4	3		4	4	3	6	5
M_{9}	4	4	5	5	4		4	4	4	6	5
M_{10}	5	5	5	5	4		5	4	5	6	6
$Y\left(M_{t}, q\right)$											
q_{0}	q_{1}	q_{2}	q_{3}	q_{4}		q_{5}		q_{6}	q_{7}	q_{8}	q_{9}
0.00	0.00	0.00	1.00	0.00		1.00		1.00	0.00	1.00	1.00
0.50	0.50	0.50	0.50	0.00		0.50		1.00	0.00	1.00	0.50
0.67	0.33	0.33	0.33	0.33		0.33		0.67	0.33	1.00	0.67
0.50	0.25	0.50	0.25	0.25		0.50		0.75	0.25	1.00	0.75
0.60	0.20	0.60	0.20	0.20		0.40		0.80	0.40	0.80	0.80
0.50	0.17	0.50	0.33	0.33		0.50		0.67	0.50	0.83	0.67
0.43	0.29	0.43	0.43	0.43		0.57		0.57	0.43	0.71	0.71
0.50	0.38	0.50	0.50	0.38		0.50		0.50	0.38	0.75	0.62
0.44	0.44	0.56	0.56	0.44		0.44		0.44	0.44	0.67	0.56
0.50	0.50	0.50	0.50	0.40		0.50		0.40	0.50	0.60	0.60

The Y table continues ...

$\left[\begin{array}{llllllllll||}0.00 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 \\ 0.50 \\ 0.50 & 0.49 & 0.51 & 0.50 & 0.50 & 0.51 & 0.50 & 0.50 & 0.49 & 0.50 \\ 0.50 & 0.50 & 0.51 & 0.50 & 0.50 & 0.51 & 0.50 & 0.50 & 0.49 & 0.50 \\ 0.50 & 0.49 & 0.51 & 0.50 & 0.50 & 0.51 & 0.51 & 0.49 & 0.49 & 0.50 \\ 0.50 & 0.50 & 0.51 & 0.50 & 0.50 & 0.50 & 0.51 & 0.49 & 0.49 & 0.50 \\ 0.50 & 0.49 & 0.51 & 0.50 & 0.51 & 0.50 & 0.51 & 0.49 & 0.49 & 0.50 \\ 0.50 & 0.49 & 0.51 & 0.50 & 0.50 & 0.50 & 0.51 & 0.50 & 0.49 & 0.50 \\ 0.49 & 0.49 & 0.51 & 0.50 & 0.50 & 0.50 & 0.51 & 0.49 & 0.49 & 0.50 \\ 0.50 & 0.49 & 0.51 & 0.50 & 0.50 & 0.50 & 0.51 & 0.50 & 0.49 & 0.50 \\ 0.50 & 0.49 & 0.51 & 0.50 & 0.50 & 0.50 & 0.51 & 0.49 & 0.49 & 0.50 \\ 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.51 & 0.50 & 0.50 & 0.50 \\ 0.50 & 0.50 & 0.50 & 0.49 & 0.50 & 0.50 & 0.51 & 0.50 & 0.50 & 0.50 \\ 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 \\ 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.51 & 0.49 & 0.49 & 0.50 \\ 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 \\ 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 \\ 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 \\ \hline\end{array}\right.$

As t goes to 252, Y values become ...

- Trace the value of $\mathrm{Y}\left(\mathrm{q}, \mathrm{M}_{\mathrm{t}}\right)$ for each q as t increases

- Values of Y converge to 0.5
- They are very close to 0.5 far before $t=252$
- When t is large, we have

$$
\begin{aligned}
Y\left(q, M_{t}\right) & =\operatorname{Prob}_{M}\left(q \in m \mid m \in M_{t}\right) \\
& =0.5 \\
& =\operatorname{Prob}_{\mathrm{F}}(\mathrm{q} \in \mathrm{~m} \mid \mathrm{q} \in A)
\end{aligned}
$$

- We have a symmetry of probabilities in two different spaces M and F
- This is due to the uniform coverage of M_{t} on A i.e., any two points in A are covered by the same number of models in M_{t}

Two-class discrimination

- Label points in A with 2 classes:

$$
\begin{aligned}
& q 0 \quad q 1 \quad q 2 \quad q 3 \quad q 4 \quad q 5 \quad q 6 \quad q 7 \quad q 8 \quad q 9 \\
& T R_{1}=\{q 0, q 1, q 2, q 7, q 8\} \\
& T R_{2}=\{q 3, q 4, q 5, q 6, q 9\}
\end{aligned}
$$

- Calculate a rating of each model m for each class:

$$
\begin{aligned}
& r_{1}=\operatorname{Prob}_{F}\left(q \in m \mid q \in T R_{1}\right) \\
& r_{2}=\operatorname{Prob}_{F}\left(q \in m \mid q \in T R_{2}\right)
\end{aligned}
$$

Enriched Models

- Ratings r_{1} and r_{2} describe how well m is in capturing classes c_{1} and c_{2} as observed with TR_{1} and TR_{2}

$$
\begin{aligned}
& r_{1}(m)=\operatorname{Prob}_{F}\left(q \in m \mid q \in T R_{1}\right) \\
& r_{2}(m)=\operatorname{Prob}_{F}\left(q \in m \mid q \in T R_{2}\right)
\end{aligned}
$$

e.g. $\quad m=\{q 1, q 2, q 6, q 8, q 9\}$
$r_{1}(m)=3 / 5 \quad$ enrichment degree $d_{12}(m)=$
$r_{2}(m)=2 / 5 \quad r_{1}(m)-r_{2}(m)=0.2$

The Discriminant

- Recall $\mathrm{C}_{\mathrm{m}}(\mathrm{q})=1$ iff $\mathrm{q} \in \mathrm{m}$
- Define

$$
X_{12}(q, m)=\frac{C_{m}(q)-r_{2}(m)}{r_{1}(m)-r_{2}(m)}
$$

- Define a discriminant

$$
Y_{12}\left(q, M_{t}\right)=\frac{1}{t}-\sum_{k=1}^{t} X_{12}\left(q, m_{k}\right)
$$

					$X_{12}\left(q, m_{t}\right)$ if	
				$q \in m_{t}$	$q \notin m_{t}$	
M_{t}	m_{t}	r_{1}	r_{2}	$r_{1}-r_{2}$	$q \in$	-0.33
M_{1}	m_{1}	0.20	0.80	-0.60	-0.33	
M_{2}	m_{2}	0.80	0.20	0.60	1.33	-0.33
M_{3}	m_{3}	0.60	0.40	0.20	3.00	-2.00
M_{4}	m_{4}	0.40	0.60	-0.20	-2.00	3.00
M_{5}	m_{5}	0.60	0.40	0.20	3.00	-2.00
M_{6}	m_{6}	0.40	0.60	-0.20	-2.00	3.00
M_{7}	m_{7}	0.20	0.80	-0.60	-0.33	1.33
M_{8}	m_{8}	0.80	0.20	0.60	1.33	-0.33
M_{9}	m_{9}	0.60	0.40	0.20	3.00	-2.00
M_{10}	m_{10}	0.60	0.40	0.20	3.00	-2.00

$Y_{12}\left(q, M_{t}\right)$									
q_{0}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}	q_{7}	${ }^{9} 8$	$q 9$
1.33	1.33	1.33	-0.33	1.33	-0.33	-0.33	1.33	-0.33	-0.33
1.33	1.33	1.33	-0.33	0.50	-0.33	0.50	0.50	0.50	-0.33
1.89	0.22	0.22	-0.89	1.33	-0.89	-0.33	1.33	1.33	0.78
2.17	0.92	-0.33	0.08	1.75	-1.17	-0.75	1.75	0.50	0.08
2.33	0.33	0.33	-0.33	1.00	-1.33	0.00	2.00	0.00	0.67
2.44	0.78	0.78	-0.61	0.50	-1.44	0.50	1.33	-0.33	1.06
2.28	0.62	0.86	-0.57	0.38	-1.28	0.62	1.33	-0.10	0.86
2.17	0.71	0.92	-0.33	0.29	-1.17	0.50	1.12	0.08	0.71
1.70	0.96	1.15	0.04	0.59	-1.26	0.22	1.33	-0.15	0.41
1.83	1.17	0.83	-0.17	0.33	-0.83	0.00	1.50	-0.33	0.67

The Y table continues ...

1.01	1.04	1.04	0.09	-0.04	-0.05	0.06	0.92	0.99	-0.05
1.01	1.04	1.04	0.09	-0.04	-0.05	0.05	0.92	0.99	-0.05
1.00	1.05	1.05	0.08	-0.05	-0.04	0.05	0.91	1.00	-0.04
1.01	1.03	1.03	0.07	-0.03	-0.05	0.06	0.92	1.01	-0.05
1.01	1.02	1.04	0.06	-0.04	-0.03	0.07	0.93	0.99	-0.06
1.02	1.01	1.03	0.06	-0.03	-0.04	0.06	0.94	1.00	-0.04
1.01	1.02	1.02	0.07	-0.04	-0.03	0.05	0.95	1.01	-0.05
1.02	1.00	1.02	0.06	-0.05	-0.02	0.04	0.96	1.00	-0.04
1.03	0.99	1.03	0.05	-0.03	-0.03	0.04	0.96	0.98	-0.03
1.03	1.00	1.04	0.04	-0.02	-0.01	0.03	0.95	0.97	-0.03
1.04	0.99	1.05	0.03	-0.01	-0.02	0.02	0.96	0.96	-0.02
1.05	0.98	1.06	0.03	0.00	-0.03	0.03	0.97	0.95	-0.03
1.06	0.98	1.04	0.02	0.00	-0.02	0.02	0.96	0.96	-0.02
1.06	0.98	1.04	0.02	0.00	-0.02	0.02	0.96	0.96	-0.02
1.05	0.99	1.03	0.01	-0.01	-0.01	0.01	0.97	0.97	-0.01
1.03	0.98	1.03	0.00	-0.01	0.01	0.03	0.97	0.97	-0.01
1.02	0.99	1.02	-0.01	0.00	0.00	0.02	0.98	0.98	0.00
1.01	1.00	1.01	-0.02	0.01	0.01	0.01	0.99	0.99	-0.01
1.00	1.00	1.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00
1.00	1.00	1.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00

- Trace the value of $Y\left(q, M_{t}\right)$ for each q as t increases

- Values of Y converge to 1 or 0 (1 for $\mathrm{TR}_{1}, 0$ for TR_{2})
- They are very close to 1 or 0 far before $t=252$

Why?

$X_{12}(q, m)=C_{m}(q)$
$X_{12}(q, m)=C_{m}(q)-r_{2}(m)$
$X_{12}(q, m)=-e_{m}(q)-r_{2}(m)$
$Y_{12}\left(q, M_{t}\right)=\frac{1}{t}-\sum_{k=1}^{t} X_{12}\left(q, m_{k}\right)$
$\sqrt{7}$
\sqrt{V}

Profile of Coverage

- Find the fraction of models of each rating that cover a fixed point q

$$
\mathrm{f}_{\mathrm{Mt}, \mathrm{r1}, \operatorname{TR1}}(\mathrm{q}) \quad \text { and } \quad \mathrm{f}_{\mathrm{Mt}, \mathrm{r} 2, \operatorname{TR2}}(\mathrm{q})
$$

- Since M_{t} is expanded in a uniform way, as t increases, for all x,

$$
\mathrm{f}_{\mathrm{Mt}, \mathrm{x}, \mathrm{TRi}}(\mathrm{q}) \rightarrow \mathrm{x}
$$

Ratings of \mathbf{m} in $\mathbf{M}_{\mathbf{t}}$

no. of points from $T R_{1}$	0	1	2	3	4	5
no. of points from $T R_{2}$	5	4	3	2	1	0
r_{1}	0.0	0.2	0.4	0.6	0.8	1.0
r_{2}	1.0	0.8	0.6	0.4	0.2	0.0

We have models of 6 different "types"

Profile of Coverage of q_{0} at $\mathrm{t}=\mathbf{1 0}$

q_{0} at $t=10$ is only covered by 5 models $\left(m_{2}, m_{3}, m_{5}, m_{8}, m_{10}\right)$ in M_{10},
r_{1}
no. of models in M_{10} with r_{1}
$N_{M_{10}, r_{1}, T R_{1}}\left(q_{0}\right)$
$f_{M_{10}, r_{1}, T R_{1}}\left(q_{0}\right)$
r_{2}
no. of models in M_{10} with r_{2}
$N_{M_{10}, r_{2}, T R_{2}}\left(q_{0}\right)$
$f_{M_{10}, r_{2}, T R_{2}}\left(q_{0}\right)$

0.0	0.2
0	2
0	0
0	0

0.0	0.2	0.4	0.6	0.8	1.0
0	2	4	2	2	0
0	2	3	0	0	0
0	1.0	0.75	0	0	0

Ratings of m (repeated for reference)

					$X_{12}\left(q, m_{t}\right)$ if	
				r_{t}	m_{t}	r_{1}
M_{2}	r_{2}	$r_{1}-r_{2}$	$q \in m_{t}$	$q \notin m_{t}$		
M_{1}	m_{1}	0.20	0.80	-0.60	-0.33	1.33
M_{2}	m_{2}	0.80	0.20	0.60	1.33	-0.33
M_{3}	m_{3}	0.60	0.40	0.20	3.00	-2.00
M_{4}	m_{4}	0.40	0.60	-0.20	-2.00	3.00
M_{5}	m_{5}	0.60	0.40	0.20	3.00	-2.00
M_{6}	m_{6}	0.40	0.60	-0.20	-2.00	3.00
M_{7}	m_{7}	0.20	0.80	-0.60	-0.33	1.33
M_{8}	m_{8}	0.80	0.20	0.60	1.33	-0.33
M_{9}	m_{9}	0.60	0.40	0.20	3.00	-2.00
M_{10}	m_{10}	0.60	0.40	0.20	3.00	-2.00

Proffle of Coverage for a fixed point q in $\mathbf{T R}_{\mathbf{i}}$

Profile of coverage as a function of $\mathrm{r1}$: $\mathrm{f}_{\mathrm{Mt}, \mathrm{r} 1, \mathrm{TR1}}(\mathrm{q})$

Profile of coverage as a function of r 2 : $\mathrm{f}_{\mathrm{Mt}, \mathrm{r}, \text {, TR2 }}(\mathrm{q})$

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{q0} \& \multirow[t]{2}{*}{q1} \& \multirow[t]{2}{*}{$q 2$

7} \& q3 \& q4

\hline \& \& \& \&

\hline \& \& \& \&

\hline q5 \& q6 \& q7 \& q8 \& q9

\hline
\end{tabular}

Decomposition of \mathbf{Y}

$Y_{12}\left(q, M_{t}\right)=\frac{t_{0.0}}{t}\left[\frac{1}{t_{0.0}} \sum_{k 0.0=1}^{t_{0.0}} X_{12}\left(q, m_{k_{0.0}}\right)\right]+\frac{t_{0.2}}{t}\left[\frac{1}{t_{0.2}} \sum_{k_{0.2}=1}^{t_{0.2}} X_{12}\left(q, m_{k_{0.2}}\right)\right]+$

$$
\frac{t_{0.4}^{6}}{t}\left[\frac{1}{t_{0.4}} \sum_{k 0.4}^{t_{0.4}^{0.0}} X_{12}\left(q, m_{k_{0.4}}\right)\right]+
$$

$$
\frac{t_{0.8}}{t}\left[\frac{1}{t_{0.8}} \sum_{k_{0.8}=1}^{t_{0.8}^{0.4}} X_{12}\left(q, m_{k_{0.8}}\right)\right]+
$$

$$
E\left(X_{12}\left(q, m_{x}\right)\right)=E\left(\frac{C_{m_{x}}(q)-y}{x-y}\right)=\frac{E\left(C_{m_{x}}(q)\right)-y}{x-y}=\frac{x-y}{x-y}=1
$$

$$
Y_{12}\left(q, M_{t}\right)=\frac{t_{0.0}+t_{0.2}+t_{0.4}+t_{0.6}+t_{0.8}+t_{1.0}}{t}=1
$$

Duality due to uniformity

Can be shown to be 0 for $\mathrm{q} \in \mathrm{TR}_{2}$ in a similar way.

Projectability of Models

- If F has more than the training points q :
q0,p0 q1.p1 q2,p2 q3.p3 q4,p4 q5,p5 q6,p6 q7,p7 q8,p8 q9,p9
- If the models m are larger - not only including the q points but also their neighboring p, the same discriminant Y_{12} can be used to classify the p points
- The points p and q are M_{t}-indiscernible

Example Definition of a Model

$$
\begin{aligned}
m_{1}= & \left\{q \left\lvert\, \frac{v\left(q_{2}\right)+v\left(q_{3}\right)}{2}<v(q)<\frac{v\left(q_{3}\right)+v\left(q_{4}\right)}{2}\right.\right\} \cup \\
& \left\{q \left\lvert\, \frac{v_{(}\left(q_{4}\right)+v\left(q_{5}\right)}{2}<v(q)<\frac{v\left(q_{6}\right)+v\left(q_{7}\right)}{2}\right.\right\} \cup \\
& \left\{q \left\lvert\, \frac{\left.v_{(} q_{7}\right)+v\left(q_{8}\right)}{2}<v(q)\right.\right\} .
\end{aligned}
$$

Points within m are m -indiscernible

Model Size and Projectability

- Points within the same model share the same interpretation
- Larger models -> more stable the ratings are w.r.t. sampling differences -> more similar classification between TR and TE
- Tradeoff with easiness to achieve uniformity

Enrichment and Convergence

- Larger enrichment degree -> smaller variance in X-> Y converges faster
- Models with large enrichment degree are more difficult to obtain
- Thus more difficult to achieve uniformity

The 3-way Tension

Enrichment

The 3-way Tension

Discriminating Power

Complementary Information

Review

Key Concepts and Tools in SD

- Set-theoretic abstraction
- Symmetry of probabilities in model or feature spaces
- Enrichment / Uniformity / Projectability
- Convergence of discriminant by the law of large numbers

Weak Models

- A weak model m is a subset of the feature space F

$$
m \in 2^{F}
$$

- It contains points sharing the same interpretation
- It should have a simple form, easy-to-compute membership function
- It should have a minimum size
- It may be cheaply produced by a stochastic process

Enriched Weak Models

- Rate a weak model by how well it captures points of each class

$$
r(m, A)=\frac{|m \cap A|}{|A|}
$$

- Degree of enrichment is how much the model is biased between two classes

$$
d_{i j}(m)=r\left(m, T R_{i}\right)-r\left(m, T R_{j}\right)
$$

- A weak model is enriched if

$$
d_{i j}(m)>0
$$

The Stochastic Discriminant

- For point q and model m, classes i and j :

$$
X_{i j}(q, m)=\left\{\begin{aligned}
2\left(\frac{C(q, m)-r\left(m, T R_{j}\right)}{r\left(m, T R_{i}\right)-r\left(m, T R_{j}\right)}\right)-1 & \text { if } r\left(m, T R_{i}\right) \neq r\left(m, T R_{j}\right) \\
0 & \text { if } r\left(m, T R_{i}\right)=r\left(m, T R_{j}\right)
\end{aligned}\right\}
$$

- For a collection of t weak models $\mathbf{M}^{t}=\left\{m_{1}, m_{2}, \ldots, m_{\uparrow}\right\}$:

$$
Y_{i j}^{t}\left(q, \mathrm{M}^{t}\right)=\frac{\sum_{k=1}^{t} X_{i j}\left(q, m_{k}\right)}{t}
$$

A Uniform Cover

- The collection of models should cover the space uniformly - any two points of the same class should fall equally likely in models of a specific rating
- \mathbf{M} is A-uniform if for every $x=r(m, A)$ such that $\mathbf{M}_{x, A}$ is nonempty, and for any two points p, q in A :

$$
P_{2^{\mathfrak{F}}}\left(p \in m \mid m \in \mathbf{M}_{x, A}\right)=P_{2^{F}}\left(q \in m \mid m \in \mathbf{M}_{x, A}\right)
$$

- We need a collection of models that is both TR $_{i^{-}}$ uniform and TR_{j}-uniform.

Symmetry between Probabilities w.r.t. F and 2F

- If \mathbf{M} is A-uniform, then for all q in A,

$$
P_{2^{₹}}\left(q \in m \mid m \in \mathrm{M}_{x, A}\right)=x
$$

- But by definition, for all m in $\mathbf{M}_{x, A}$

$$
P_{\mathbf{F}}(q \in m \mid q \in A)=x
$$

Duality between Distributions of

$$
\lambda_{q} C(q, m) \quad \text { and } \quad \lambda_{m} C(q, m)
$$

$\lambda q\left[Y_{i j}\left(q, \tilde{\mathbf{M}}^{t}\right)\right] \quad$ and $\quad \lambda \mathrm{M}^{t}\left[Y_{i j}\left(q, \mathrm{M}^{t}\right)\right]$

Convergence of the Discriminant

- With enriched weak models, values of X_{ij} are distributed around
+1 for points of class i and
-1 for points of class j
- Y_{ij} converges to $\mathrm{E}\left(\mathrm{X}_{\mathrm{ij}}\right)$ with variance $1 / \mathrm{t}$ that of X_{ij} according to the law of large numbers
- Classifier obtainable within time proportional to 1/u (u = upper bound on error) and $1 / \mathrm{d}_{\mathrm{ij}}{ }^{2}\left(\mathrm{~d}_{\mathrm{ij}}=\right.$ enrichment degree $)$

Figure 2. (a) True distributions and (b) classification with 500 weak models.

Figure 3. Accuracy (a) without and (b) with uniformity promotion.

Figure 5. Classification of space with 100 of (a) type 1 and (b) type 2 models.

(a)

(b)

Figure 6. Accuracies with (a) type 1 and (b) type 2 models.

Figure 7. Accuracies on the DNA data.

Open Problems in Stochastic Discrimination

- Algorithm for uniformity enforcement
- Desirable form of weak models Fewer, more sophisticated classifiers?
- Other ways to address the 3-way trade-off Enrichment / Uniformity / Projectability

Random Decision Forest

- [Ho 1995, 1998]
- A structured way to create models
fully split a tree, use leaves as models
- Perfect enrichment and uniformity for TR
- Promote projectability by subspace projection

Compact Distribution Maps

- [Ho \& Baird 1993, 1997]
- Another structured way to create models
- Start with projectable models by coarse quantization of feature values
- Seek enrichment and uniformity

Alternative Discriminants

- [Berlind 1994]
- Different discriminants for N -class problems
- Additional condition on symmetry
- Approximate uniformity
- Hierarchy of indiscernibility

Estimates of Classification Accuracies

- [Chen 1997]
- Statistical estimate of classification accuracy under weaker conditions:

Approximate uniformity
Approximate indiscernibility

Stochastic Discrimination

- A family of mathematical theories that relate several key concepts in pattern recognition:
- Discriminative power
- Complementary information
- Generalization power ... projectability
- It offers a way to describe complementary behavior of classifiers
- It offers guidelines to design multiple classifier systems

Homework

- Read http://www.cs.bell-labs.com/who/tkh/talks/example.ps
- Reproduce this example and all tables
- Try a different random permutation of $\mathrm{M}_{0.5, \mathrm{~A}}$
- Try changing size of m...
- Try changing size of TR1, TR2, ... see what happens with X and Y
- Try the ideas on other data ...
- Visit htto://kappa.math.buffalo.edu/sd

