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Our Goals

Better understand

« Geometry and topology of point setsin high-
dimensional spaces

* Preservation of such characteristics under feature
transformations and sampling processes

* Their interaction with geometrical models used In
classifiers




Geometrical Complexity
of Classification

e Datasets:
— length of class boundary
— fragmentation of classes/ existence of subclasses
— global or local linear separability
— convexity and smoothness of boundaries
— Intrinsic / extrinsic dimensionality
— stability of these characteristics as sampling rate changes

e Classifier models:

— polygons, hyperspheres, Gaussian kernels, axis-parallel
cuts, piece-wise linear surfaces, polynomial surfaces,
thelr unions or intersections, ...
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WhereWereWein theLate 1990’ s?

o Statistical Methods

— Bayesian classifiers, polynomial discriminators, nearest-
neighbors, decision trees, neural networks, support
vector machines, ...

e Syntactic Methods

— regular grammars, context-free grammars, attributed
grammars, stochastic grammars, ...

» Structural Methods
— graph matching, elastic matching, rule-based systems, ...




Classifiers

« Competition among different ...
— choices of features
— feature representations
— classifier designs

* Chosen by heuristic judgements
* No clear winners




Classifier Combination M ethods

e Decision optimization methods
— find consensus from a given set of classifiers
— majority/plurality vote, sum/product rule
— probability models, Bayesian approaches
— logistic regression on ranks or scores
— classifiers trained on confidence scores




Classifier Combination M ethods

 Coverage optimization methods

— subsampling methods:
stacking, bagging, boosting

subspace methods.
random subspace projection, localized selection

superclass/subclass methods:
mixture of experts, error-correcting output codes

perturbation in training




L ayers of Choices

Best Features?
Best Classifier?
Best Combination M ethod?

Best (combination of )*
combination methods?




M or e Questions

* How do confidence scores
differ from feature values?
 |scombination a convenience or a necessity?

* \What are common among various
combination methods?

* \WWhen should the combination hierarchy
terminate?




Difficultiesin Classifier Comination

Many theories have inadequate assumptions
Geometry and probability lack connection
Combinatorics defies detailed modeling
Attempt to cover all cases gives weak results

Empirical results overly specific to problems
Lack of systematic organization of evidences




Data Dependent
Behavior of Classifiers

e Different classifiers excel In
different problems

e S0 do combined systems

e Thiscomplicates theories and
Interpretation of observations




Questionsto ask:

e Does this method work for all problems?

* Doesthis method work for this problem?

e Doesthis method work for

Study the of
data and classifiers




Characterization of

Data and Classifier Behavior




Sour ces of Difficulty
In Classification

» Class ambiguity

e Boundary complexity
o Sample size and dimensionality




Class Ambiqguity

|s the problem intrinsically ambiguous?
Arethe classes well defined?

What 1s the information content of the features?
Are the features sufficient for discrimination?




Boundary Complexity

Kolmogorov complexity

L ength may be exponential in dimensionality
Trivia description: list al points, class |abels
|s there a shorter description?




Sampling Density

N=2 N =10

N =100 N =500 N = 1000




Sample Size & Dimensionality

* Problem may appear deceptively ssmple or
complex with small samples

 Large degree of freedom in high-dim. spaces
* Representativeness of samplesvs.
generalization ability of classifiers




Mixture of Effects

* Real problems often have mixed effects of
class ambiguity
boundary complexity

sample size & dimensionality
* Geometrical complexity of class manifolds
probabilistic sampling process




Geometry vs. Probability

o Geomelry of classifiers determines
the rule of generalization to unseen samples

« Assumption of representative samples
@) Optimistic error bounds
 Distribution-free arguments

) Pessimistic error bounds




Geometry vs. Probability

 Difficult by probability: detecting 1 disease
case from 1,000,000 normal ones

* Not necessarily difficult by geometry:

O




Geometrical Complexity of
Classification Problems

Study geometry of data sets

Study geometry of decision regions

Develop a for describing
geometrical properties of point setsin
high-dimensional spaces

Develop for understanding data and
decision geometry




Building up the

|dentify key features of data geometry that are
relevant for classification

Develop algorithms to extract such features from
a dataset

Describe patterns of classifier behavior in terms
of geometrical features

... pattern recognition in pattern recognition problems
... Cclassification of classification problems




Easy or Difficult Problems

* Linearly separable problems




Easy or Difficult Problems

« Random noise

1000 points 500 points 100 points 10 points




Easy or Difficult Problems

e Others

Nonlinear _ 4x4 10x10
boundary Spirals checkerboard  checkerboard




Description of Complexity

* \WWhat are real-world problems like?

* Need adescription of complexity to
— set expectation on recognition accuracy
— characterize behavior of classifiers

e Apparent or true complexity?




Possible M easur es

o Separability of classes
— linear separability
— length of class boundary
— Intra/ inter class scatter and distances

* Discriminating power of features
— Fisher’ s discriminant ratio
— overlap of feature values
— feature efficiency




Possible M easur es

 Geometry, topology, clustering effects
— curvature of boundaries
— overlap of convex hulls
— packing of pointsin regular shapes
— Intrinsic dimensionality
— density variations




Linear Separability

* Intensively studied in early literature
 Many agorithms only stop with positive
conclusions
— Perceptrons, Perceptron Cycling Theorem, 1962
— Fractional Correction Rule, 1954

— Widrow-Hoff Delta Rule, 1960
— Ho-Kashyap algorithm, 1965




L ength of Class Boundary

* Friedman & Rafsky 1979

— FInd M ST (minimum spanning
tree) connecting all points
regardless of class

— Count edges joining
opposite classes

— Sensitive to separability
and clustering effects




Fisher’s Discriminant Ratio
e Defined for one feature:

2 2
s 1,01 4,0,

means, variances of classes 1,2

* One good feature makes a problem easy
o Take maximum over all features




Volume of Overlap Region

Overlap of class manifolds

Overlap region of each dimension as
afraction of range spanned by the two classes

Multiply fractions to estimate volume
Zero If no overlap




Convex Hulls & Decision Regions

e Hoekstra& Duin 1996

* Measure nonlinearity of
aclassifier w.r.t.

a given dataset

e Sengitive to smoothness
of decision boundaries




Shapes of Class M anifolds

e Lebourgeois & Emptoz 1996

e Packing of same-class
points in hyperspheres

hick and spherical,

or thin and elongated
manifolds




M easur es of Geometrical Complexity

maximum Fisher’s discriminant ratio

volume of overlap region

maximum (individual) feature efficiency
minimized error by linear programming (LP)
error rate of linear classifier by LP
nonlinearity of linear classifier by LP

fraction of points on boundary (MST method)
ratio of average intra/inter class NN distance
error rate of INN classifier

nonlinearity of INN classifier

fraction of points with associated adherence subsets retained
average number of points per dimension




Space of Complexity M easures

e Single measure may not suffice

* Make a measurement space

o See where datasets are In this space
* Look for acontinuum of difficulty:

Most difficult cases




Data Sets:. UCI

UC-Irvine collection
14 datasets (no missing values, > 500 pts)
844 two-class problems

452 linearly separable (&

392 linearly nonseparable

2 - 4648 points each

8 - 480 dimensional feature spaces




Data Sets: Random Noise

Randomly located and labeled points (€3
100 artificial problems

1 to 100 dimensional feature spaces

2 classes, 1000 points per class




Patter nsin M easurement Space
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Correlated or Uncorrelated M easur es
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Separation Separation + Scatter
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Observations

Noise sets and linearly separable sets
OCcupy opposite ends in many dimensions

|n-between positions tell relative difficulty

Fan-like structure in most plots

At least 2 independent factors, joint effects
Noise sets are far from real data

Ranges of noise sets. apparent complexity




Principle Component Analysis

Component
Prop. of Var.
Cum. Prop.

Loadings
F1
F2
F3
L1
L2
L3
N1
N2
N3
N4
T1
T2




Principle Component Analysis

"ucsep.pc' "ucsep.pc'
"ucnonsep.pc" "ucnonsep.pc"
"rannonsep.pc" "rannonsep.pc"




A Trajectory of Difficulty

1-dim, 2 classes, 100 pts/class,
Normal dist. stddev=30, mean= +k, -k

I )
"ucsep.pc' "Inssep.pc"
"ucnonsep.pc" "irisnonsep. pc"
"rannonsep.pc" "normi. pc"
"norm2-99. pc"
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What Else Can We D0?

Study effectiveness of these measures

|nterpret problem distributions

e Find clustersin this space
e Determineintrinsic dimensionality




What Else Can We D0?

Apply these measur esto mor e problems

o Study specific domains with these measures

o Study alternative formulations, sub-problems
Induced by localization, projection, transformation




What Else Can We D0?

Relate complexity measuresto
classifier behavior

e




Bagging vs Random Subspaces for Decision Forests

same imp Fisher’s discriminant ratio
no imp vs. length of class boundary

FdfclmpOdt
an |

AdfcimpOdt e 1t L8 e e e
Boundary




Bagging vs Random Subspaces for Decision Forests

Nonlinearity, nearest neighbors % Retained adherence subsets,
vs. linear classifier vs. intra/inter class NN distances

Manlinkm
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Error Rates of Individual Classifiers

Error rate, single trees Error rate, nearest neighbors
vS. sampling density vS. linear classifier

FatsiHdim - LinErr




Observations

Both types of forests are good for
problems of various degrees of difficulty

Neither is good for extremely difficult cases
- many points on boundary

- ratio of intra/inter class NN dist. closeto 1

- low Fisher’ s discriminant ratio

- high nonlinearity of NN or LP classifiers

Subsampling iIs preferable for sparse samples

Subspaces is preferable for smooth boundaries




Summary

Real-world problems have different types of
geometric characteristics

Relevant measures can be related to classifier
accuracies

Data complexity analysis improves understanding

of C

assifier or combination behavior

Hel

oful for combination theories and practices



Exploratory Needed

To study data or classifier geometry
To study

e correlations
e proximity structures between points

e correlations between proximity structures




Exploratory Analysis of
Proximities and Correlations Using

A wak on a
cluster graph
being tracked
In other views.

Distributed at

www.bell-labs.com/project/mirage




Proximity Structures

P=(S, G)

— S aset of subsetsin dataset D

— G: awelghted graph, weights represent proximity
1. Partitional structures:

— Spartitions D, G=(S,E)

2. Hierarchical structures:

— Gisatreethat splits D, S contains all the nodes

Traversals of the structures




Correlation of Proximity Structures

Continuity, Monotonicity, Linearity
of dependencies, and

Connectedness, Intrinsic dimensionality of the changes

“o
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Other Typesof Proximity Structures

Proximity structures not resulting from clustering:

e Trivial structures. singletons, distances
* Degenerate structures: categorical features

» Structures correlated by construction:
—e.g. CART & partitional structure on class |labels




Observation

Study of correlation between different proximity
structures is fundamental to data analysis

Thisincludes proximity between points, point sets,

projected to different subspaces




Addressing Curse of Dimensionality

No. of variables (NOT no. of objects) determines the
mathematical difficulty of modeling

Combinatorial difficulty scales exponentially with no. of
variables, but only linearly with no. of objects

Clustering in subspaces helps by divide-and-conquer




Mirage

Software tool for studying proximity in a data set,
especially for measurements of multiple types

Different treatments of individual subspaces
Examination of data as isolated subsets or I1n context

Heavy emphasis on interaction and intuitive
manipulations




Traversal of Partitional Structures
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Correlating with Other Views

A wak ona

cluster graph  |{cIS
being tracked

In other views.
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Parameter exploration in asimulation analysis

Console Options Help
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Correlation of clustersin one space with patterns in others

Console Options Help
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Examining data located in a neighborhood in an image

3 Mirage
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Beta-test copy available at




