Ensembles for Cost-Sensitive
Learning

Thomas G. Dietterich
Department of Computer Science
Oregon State University
Corvallis, Oregon 97331
http://www.cs.orst.edu/~tgd

Outline

+ Cost-Sensitive Learning
= Problem Statement; Main Approaches

+ Preliminaries

» Standard Form for Cost Matrices
» Evaluating CSL Methods

¢ Costs known at learning time
¢ Costs unknown at learning time
+ Open Problems

Cost-Sensitive Learning

¢ | earning to minimize the expected cost
of misclassifications

* Most classification learning algorithms
attempt to minimize the expected
number of misclassification errors

* |n many applications, different kinds of
classification errors have different costs,
SO we need cost-sensitive methods

Examples of Applications with
Unequal Misclassification Costs

+ Medical Diagnosis:

» Cost of false positive error: Unnecessary treatment;
unnecessary worry

= Cost of false negative error: Postponed treatment or
failure to treat; death or injury
¢ Fraud Detection:

s False positive: resources wasted investigating non-
fraud

» False negative: failure to detect fraud could be very
expensive

Related Problems

¢ Imbalanced classes: Often the most
expensive class (e.g., cancerous cells) is
rarer and more expensive than the less
expensive class

* Need statistical tests for comparing
expected costs of different classifiers and
learning algorithms

Example Misclassification Costs
Diagnosis of Appendicitis

¢ Cost Matrix: C(i,j) = cost of predicting
class | when the true class is |

_ True State of Patient
Predicted

State of
Patient

Positive | Negative

Positive 1 1
Negative 100 0

Estimating Expected
Misclassification Cost

* | et M be the confusion matrix for a
classifier: M(i,j) is the number of test
examples that are predicted to be In
class | when their true class is |

_ True Class
Predicted

Class

Positive | Negative

Positive 40 16
Negative 8 36

Estimating Expected
Misclassification Cost (2)

* The expected misclassification cost is
the Hadamard product of M and C
divided by the number of test examples
N:

%, M(i,j) * C(ij) / N

+ \We can also write the probabillistic
confusion matrix: P(i,j) = M(i,j) / N. The
expected costis then P * C

Interlude:
Normal Form for Cost Matrices

+ Any cost matrix C can be transformed to
an equivalent matrix C” with zeroes along
the diagonal

¢ Let L(h,C) be the expected loss of
classifier h measured on loss matrix C.

¢ Defn: Let h, and h, be two classifiers. C
and C’ are equivalent if

L(h,,C) > L(h,,C) iff L(h,,C") > L(h,,C’)

Theorem
(Margineantu, 2001)

¢ | et A be a matrix of the form

* IfC,=C, + A, then C, is equivalent to C,

Proof

¢+ Let P,(i,k) be the probabilistic confusion
matrix of classifier h,, and P,(i,k) be the
probabilistic confusion matrix of classifier

n,,C) = L(h,,C) =[P, —P,]*C

Proof (2)

¢ Similarly, L(h,,C’) —L(h,, C’)

=[P —P,]* C

=[P1=Po] 7 [C +A]

=[Py =P]"C+[P;—P,]* A

¢+ We now show that [P, — P,] * A =0, from which
we can conclude that

L(h,C) - L(h,,C) = L(h;,C’) - L(h,,C’)
and hence, C is equivalent to C'.

Proof (3)

[Py —P,] * A =2 % [Py(i,k) — Py(i,k)] * A(i,k)

= 2 2 [P4(1,k) — Py(i,k)

=% 0, 2,
=% 0, 2,

= X, 0, P(K) X [Py(i]k) = Py(ilK)

] o
P1(1,K) = Py(i,K)]

P4(ilk) P(k) — Py

=% o P(k) [1 - 1]

Proof (4)

¢ Therefore,
L(h,,C) - L(h,,C) =L(h,,C") — L(h,,C).

* Hence, if we set o, = —C(k,k), then C’ will
have zeroes on the diagonal

End of Interlude

¢ From now on, we will assume that C(i,i)
=0

Interlude 2: Evaluating Cost-
Sensitive Learning Algorithms

+ Evaluation for a particular C:
= BCost and BDeLTACosT procedures
¢ Evaluation for a range of possible C's:

s AUC: Area under the ROC curve

= Average cost given some distribution D(C)
over cost matrices

Two Statistical Questions

+ Given a classifier h, how can we
estimate its expected misclassification
cost?

+ Given two classifiers h, and h,, how can
we determine whether their
misclassification costs are significantly
different?

Estimating Misclassification
Cost: BCosT

+ Simple Bootstrap Confidence Interval

= Draw 1000 bootstrap replicates of the test
data

» Compute confusion matrix M,, for each
replicate

» Compute expected costc, =M, * C

» Sort ¢,’'s, form confidence interval from the
middle 950 points (i.e., from c(2%) to c(979)),

Comparing Misclassification
Costs: BDELTACOST

Construct 1000 bootstrap replicates of the test set

For each replicate b, compute the combined confusion
matrix M,(i,j,k) = # of examples classified as i by h,, as |
by h,, whose true class is k.

Define A(i,j,k) = C(i,k) — C(j,k) to be the difference in cost
when h, predicts class i, h, predicts j, and the true class
IS K.

Compute o, = M, * A

Sort the §,’s and form a confidence interval [0(?%), 5(°7)]

If this interval excludes 0O, conclude that h, and h, have
different expected costs

ROC Curves

* Most learning algorithms and classifiers
can tune the decision boundary
» Probability threshold: P(y=1|x) > 6
» Classification threshold: f(x) > 6

= Input example weights A

= Ratio of C(0,1)/C(1,0) for C-dependent
algorithms

ROC Curve

+ For each setting of such parameters, given a
validation set, we can compute the false
positive rate:

fpr = FP/(# negative examples)
and the true positive rate
tpr = TP/(# positive examples)
and plot a point (tpr, fpr)
* This sweeps out a curve: The ROC curve

Example ROC Curve

&
©
o
)
=
=
[12]
o]
o
)
-
[
I_

0.4 0.6
False Positive Rate

AUC: The area under the ROC
curve

¢+ AUC = Probability that two randomly
chosen points x, and x, will be correctly
ranked: P(y=1|x,) versus P(y=1|x,)

* Measures correct ranking (e.g., ranking

all positive examples above all negative
examples)

+ Does not require correct estimates of
P(y=1]x)

Direct Computation of AUC
(Hand & Till, 2001)

* Direct computation:
» Let f(x;) be a scoring function
= Sort the test examples according to f
» Let r(x;) be the rank of x; in this sorted order

o Let Sy =%y -4y 1(X;) be the sum of ranks of
the positive examples

where n, = # negatives, n, = # positives

Using the ROC Curve

¢ Given a cost matrix C, we must choose a value
for © that minimizes the expected cost

+* \When we build the ROC curve, we can store 0
with each (tpr, fpr) pair

+ Given C, we evaluate the expected cost
according to
ny ~ fpr * C(1,0) + &, * (1 —tpr) * C(0,1)
where m, = probability of class 0, , =
probability of class 1

+ Find best (tpr, fpr) pair and use corresponding
threshold 6

End of Interlude 2

+ Hand and Till show how to generalize the
ROC curve to problems with multiple
classes

+ They also provide a confidence interval
for AUC

Outline

¢ Cost-Sensitive Learning
= Problem Statement; Main Approaches

¢ Preliminaries

s Standard Form for Cost Matrices
s Evaluating CSL Methods

¢ Costs known at learning time
¢ Costs unknown at learning time
+ Variations and Open Problems

Two Learning Problems

¢ Problem 1: C known at learning time

¢ Problem 2: C not known at learning time
(only becomes available at classification
time)
» Learned classifier should work well for a
wide range of C’s

Learning with known C

¢ Goal: Given a set of training examples
{(x;, y;)} and a cost matrix C,

* Find a classifier h that minimizes the
expected misclassification cost on new
data points (x*,y*)

Two Strategies

* Modify the inputs to the learning
algorithm to reflect C

¢ Incorporate C into the learning algorithm

Strategy 1.
Modifying the Inputs

+ |f there are only 2 classes and the cost of
a false positive error is A times larger
than the cost of a false negative error,
then we can put a weight of A on each
negative training example

¢ A =C(1,0)/C(0,1)

* Then apply the learning algorithm as
before

Some algorithms are insensitive

to instance weights

!
Accuracy

¢ Decision tree
splitting
criteria are
fairly
Insensitive

(Holte, 2000)

Setting A By Class Frequency

¢ Set A/ 1/n,, where n, is the number of
training examples belonging to class k

* This equalizes the effective class
frequencies

¢+ | ess frequent classes tend to have
higher misclassification cost

Setting A by Cross-validation

+ Better results are obtained by using
cross-validation to set A to minimize the
expected error on the validation set

¢ The resulting A is usually more extreme
than C(1,0)/C(0,1)

* Margineantu applied Powell's method to
optimize A, for multi-class problems

Comparison Study

abalone
he patitis
lympho

segment
soybean

glass
lung

o
o
0
o
O
P~
o
L O
o
o
L O
A
o
O
w
o
L O
rn
o
-]
N
o
L O
—
o

Grey: CV A wins; Black: ClassFreq wins; White: ti

800 trials (8 cost models * 10 cost matrices * 10 splits)

Conclusions from Experiment

¢ Setting A according to class frequency is
cheaper gives the same results as
setting A by cross validation

+ Possibly an artifact of our cost matrix
generators

Strategy 2:
Modifying the Algorithm

+ Cost-Sensitive Boosting

¢ C can be incorporated directly into the
error criterion when training neural
networks (Kukar & Kononenko, 1998)

Cost-Sensitive Boosting
(Ting, 2000)

+ Adaboost (“confidence weighted”)
» Initialize w, = 1/N

= Repeat
e Fit h, to weighted training data
e Compute g, = X, y, hy(x;) w,
eSeto,="%"In(1+¢)(1-¢)
o W; 1= W,; ~ exp(—ay Y; hy(x;))/Z,

» Classify using sign(X; o, hy(x))

Three Variations

Training examples of the form (x;, y,, ¢), where ¢, is the
cost of misclassifying x;

AdaCost (Fan et al., 1998)
o W =W *exp(—o, Y, h(x) B)/Z
o B="%"(1+c) iferror
=%"*(1-c) otherwise

CSB2 (Ting, 2000)

o W =[w, *exp(—a, Y, h(x))/Z
e B=cC if error
=1 otherwise

SSTBoost (Merler et al., 2002)
o W, =W, " exp(—o,Y; h(x) B;)/Z
e B=CcC if error
e B.=2-c otherwise
e Cc, =W for positive examples; 1 —w for negative examples

Additional Changes

+ |nitialize the weights by scaling the costs
Ci
= W; =G/ %G

¢ Classify using “confidence weighting”
n Let F(x) =X o, hy(x) be the result of boosting
» Define G(x,k) = F(x) if k =1 and —F(x) if k =

—1

» predicted y = argmin, X, G(x,k) C(i,k)

Experimental Results:

(14 data sets; 3 cost ratios; Ting, 2000)

CSB2 better ——
AdaCost beller ——

100 |- N,,,
: : . "'__.-.-.-"

AdaCost and CSB2 Costs

10 s = N N s = = =
10 100

AdaBoost Cost

Open Question

+ CSB2, AdaCost, and SSTBoost were
developed by making ad hoc changes to
AdaBoost

+ Opportunity: Derive a cost-sensitive boosting
algorithm using the ideas from LogitBoost
(Friedman, Hastie, Tibshirani, 1998) or
Gradient Boosting (Friedman, 2000)

+ Friedman’'s MART includes the ability to
specify C (but | don’'t know how it works)

Outline

¢ Cost-Sensitive Learning
= Problem Statement; Main Approaches

¢ Preliminaries

s Standard Form for Cost Matrices
s Evaluating CSL Methods

¢ Costs known at learning time
¢ Costs unknown at learning time
+ Variations and Open Problems

Learning with Unknown C

¢ Goal: Construct a classifier h(x,C) that
can accept the cost function at run time
and minimize the expected cost of
misclassification errors wrt C

* Approaches:
» Learning to estimate P(y|x)

= Learn a “ranking function” such that f(x,) >
f(x5) implies P(y=1|x;) > P(y=1|x5)

Learning Probability Estimators

¢ Train h(x) to estimate P(y=1|x)

+ Given C, we can then apply the decision
rule:

n Y = argmin, X, P(y=k|x) C(i,k)

Good Class Probabilities from
Decision Trees

¢ Probabillity Estimation Trees

¢ Bagged Probability Estimation Trees
¢ |azy Option Trees

¢ Bagged Lazy Option Trees

Causes of Poor Decision Tree
Probability Estimates

¢ Estimates in leaves are based on a small
number of examples (nearly pure)

* Need to sub-divide “pure” regions to get
more accurate probabilities

Probability Estimates are
Extreme

Single decision
tree;

700 examples

Need to Subdivide “Pure”
Leaves

Consider a region of the feature space X.
Suppose P(y=1|x) looks like this:

4

Probability Estimation versus
Decision-making

A simple CLASSIFIER will introduce one
split

Probability Estimation versus
Decision-making

A PROBABILITY ESTIMATOR will
introduce multiple splits, even though the
decisions would be the same

P(y=1|x)

0.5+

Probability Estimation Trees

(Provost & Domingos, in press)

* C4.5

= Prevent extreme probabilities:
e Laplace Correction in the leaves
P(y=k|x) = (n,+ 1/K)/ (n + 1)
» Need to subdivide:
e NO pruning
e no “collapsing”

Bagged PETs

¢ Bagging helps solve the second problem

¢ Let{h,, ..., hg} be the bag of PETs such
that h,(x) = P(y=1|x)
estimate P(y=1|x) = 1/B * £, h,(X)

. Single tree versus 100-
fold bagging

100-fold Eiaé]ging ——
Single Tree —»—

w0
]
=
I
o)
@
=
@
in
™
L

[| [| [| [| | —.=' I .
0 50 100 150 200 250 300 350 400 450 500
False Positives

AUC for 25 Irvine Data Sets

(Provost & Domingos, in press)

AUC * 100

Bagged PET —+— -
Bagged C4.5 —»—

PET —s— |

IC-4.5 —

15 20 25

Domain

Notes

¢ Bagging consistently gives a huge
improvement in the AUC

* The other factors are important if
bagging is NOT used:
= No pruning/collapsing
= Laplace-corrected estimates

Lazy Trees

¢ | earning is delayed until the query point
X* Is observed

* An ad hoc decision tree (actually a rule)
IS constructed just to classify x*

Growing a Lazy Tree
(Friedman, Kohavi, Yun, 1985)

Only grow the

branches
corresponding to x* A
Choose splits to \

make these
branches “pure”

Option Trees
(Buntine, 1985; Kohavi & Kunz, 1997)

¢ Expand the Q best candidate splits at
each node

¢ Evaluate by voting these alternatives

Lazy Option Trees
(Margineantu & Dietterich, 2001)

¢+ Combine Lazy Decision
Trees with Option Trees

+ Avoid duplicate paths (by
disallowing split on u as
child of option v if there Is
already a split v as a child
of u):

Bagged Lazy Option Trees
(B-LOTs)

¢+ Combine Lazy Option Trees with
Bagging (expensive!)

Comparison of
B-PETs and B-LOTs

¢ Overlapping Gaussians

¢ VVarying amount of training data and
minimum number of examples in each
leaf (no other pruning)

B-PET m=imate of P Cla==1 |x)

B-PET vs B-LOT

B-LOT esimate of P{ Clas=1 |x

1 1 1 1
0.4 0a . 08
fu= dass probabilly P Class1 | x) fru= clas=s probablity P{ Cla=ss1 | =)

Bagged PETs Bagged LOTs

Bagged PETs give better ranking
Bagged LOTs give better calibrated probabilities

B-PETs vs B-LOTs

abalone
bcy
glass

he patitis
vehicle

Grey: B-LOTs win Black: B-PETs win White: Tie

Test favors well-calibrated probabilities

Open Problem: Calibrating
Probabillities

¢ Can we find a way to map the outputs of
B-PETs into well-calibrated probabilities?

= Post-process via logistic regression?

= Histogram calibration is crude but effective
(Zadrozny & Elkan, 2001)

Comparison of Instance-Weighting and
Probability Estimation

abalone
bcy
glass

he pa titis
vehicle

0 100 200 300 400 500 600 700 800

Black: B-PETs win; Grey: ClassFreq wins; White: Tie

An Alternative:
Ensemble Decision Making

* Don't estimate probabilities: compute
decision thresholds and have ensemble
vote!

¢ Letp=0C(0,1)/[C(0,1) + C(1,0)]
Classify as class 0 if P(y=0[x) > p

¢+ Compute ensemble h,, ..., hg of
probability estimators

Take majority vote of hy(x) > p

Results
(Margineantu, 2002)

¢+ On KDD-Cup 1998 data (Donations), In
100 trials, a random-forest ensemble
beats B-PETs 20% of the time, ties 75%,
and loses 5%

* On Irvine data sets, a bagged ensemble
beats B-PETs 43.2% of the time, ties
48.6%, and loses 8.2% (averaged over 9
data sets, 4 cost models)

Conclusions

+ \Weighting inputs by class frequency
works surprisingly well

+ B-PETs would work better if they were
well-calibrated

¢+ Ensemble decision making is promising

Outline

¢ Cost-Sensitive Learning
= Problem Statement; Main Approaches

¢ Preliminaries

s Standard Form for Cost Matrices
s Evaluating CSL Methods

¢ Costs known at learning time
¢ Costs unknown at learning time
¢ Open Problems and Summary

Open Problems

+ Random forests for probability estimation?

¢+ Combine example weighting with ensemble
methods?

+ Example weighting for CART (Gini)
+ Calibration of probability estimates?

¢ Incorporation into more complex decision-
making procedures, e.g. Viterbi algorithm?

Summary

Cost-sensitive learning is important in many
applications

How can we extend “discriminative™ machine
learning methods for cost-sensitive learning?

Example weighting: ClassFreq
Probability estimation: Bagged LOTs
Ranking: Bagged PETs

Ensemble Decision-making

Bibliography

Buntine, W. 1990. A theory of learning classification rules. Doctoral
Dissertation. University of Technology, Sydney, Australia.

Drummond, C., Holte, R. 2000. Exploiting the Cost (In)sensitivity of
Decision Tree Splitting Criteria. ICML 2000. San Francisco: Morgan
Kaufmann.

Friedman, J. H. 1999. Greedy Function Approximation: A Gradient
Boosting Machine. IMS 1999 Reitz Lecture. Tech Report, Department of
Statistics, Stanford University.

Friedman, J. H., Hastie, T., Tibshirani, R. 1998. Additive Logistic
Regression: A Statistical View of Boosting. Department of Statistics,
Stanford University.

Friedman, J., Kohavi, R., Yun, Y. 1996. Lazy decision trees.
Proceedings of the Thirteenth National Conference on Artificial
Intelligence. (pp. 717-724). Cambridge, MA: AAAI Press/MIT Press.

Bibliography (2)

Hand, D., and Till, R. 2001. A Simple Generalisation of the Area Under
the ROC Curve for Multiple Class Classification Problems. Machine
Learning, 45(2): 171.

Kohavi, R., Kunz, C. 1997. Option decision trees with majority votes.
ICML-97. (pp 161-169). San Francisco, CA: Morgan Kaufmann.

Kukar, M. and Kononenko, |. 1998. Cost-sensitive learning with neural
networks. Proceedings of the European Conference on Machine
Learning. Chichester, NY: Wiley.

Margineantu, D. 1999. Building Ensembles of Classifiers for Loss
Minimization, Proceedings of the 31st Symposium on the Interface:
Models, Prediction, and Computing.

Margineantu, D. 2001. Methods for Cost-Sensitive Learning. Doctoral
Dissertation, Oregon State University.

Bibliography (3)

Margineantu, D. 2002. Class probability estimation and cost-sensitive
classification decisions. Proceedings of the European Conference on
Machine Learning.

Margineantu, D. and Dietterich, T. 2000. Bootstrap Methods for the Cost-
Sensitive Evaluation of Classifiers. ICML 2000. (pp. 582-590). San
Francisco: Morgan Kaufmann.

Margineantu, D., Dietterich, T. G. 2002. Improved class probability
estimates from decision tree models. To appear in Lecture Notes in
Statistics. New York, NY: Springer Verlag.

Provost, F., Domingos, P. In Press. Tree induction for probability-based
ranking. To appear in Machine Learning. Available from Provost's home
page.

Ting, K. 2000. A comparative study of cost-sensitive boosting algorithms.

ICML 2000. (pp 983-990) San Francisco, Morgan Kaufmann. (Longer
version available from his home page.)

Bibliography (4)

¢ Zadrozny, B., Elkan, C. 2001. Obtaining calibrated probability estimates
from decision trees and naive Bayesian classifiers. ICML-2001. (pp 609-
616). San Francisco, CA: Morgan Kaufmann.

