
Thomas G. Dietterich
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331

http://www.cs.orst.edu/~tgd

Ensembles for Cost-Sensitive
Learning

Outline

Cost-Sensitive Learning
Problem Statement; Main Approaches

Preliminaries
Standard Form for Cost Matrices
Evaluating CSL Methods

Costs known at learning time
Costs unknown at learning time
Open Problems

Cost-Sensitive Learning

Learning to minimize the expected cost
of misclassifications
Most classification learning algorithms
attempt to minimize the expected
number of misclassification errors
In many applications, different kinds of
classification errors have different costs,
so we need cost-sensitive methods

Examples of Applications with
Unequal Misclassification Costs

Medical Diagnosis:
Cost of false positive error: Unnecessary treatment;
unnecessary worry
Cost of false negative error: Postponed treatment or
failure to treat; death or injury

Fraud Detection:
False positive: resources wasted investigating non-
fraud
False negative: failure to detect fraud could be very
expensive

Related Problems

Imbalanced classes: Often the most
expensive class (e.g., cancerous cells) is
rarer and more expensive than the less
expensive class
Need statistical tests for comparing
expected costs of different classifiers and
learning algorithms

Example Misclassification Costs
Diagnosis of Appendicitis

Cost Matrix: C(i,j) = cost of predicting
class i when the true class is j

True State of Patient
Predicted
State of
Patient

0100Negative
11Positive

NegativePositive

Estimating Expected
Misclassification Cost

Let M be the confusion matrix for a
classifier: M(i,j) is the number of test
examples that are predicted to be in
class i when their true class is j

True Class
Predicted
Class

368Negative
1640Positive

NegativePositive

Estimating Expected
Misclassification Cost (2)

The expected misclassification cost is
the Hadamard product of M and C
divided by the number of test examples
N:

 Σi,j M(i,j) * C(i,j) / N

We can also write the probabilistic
confusion matrix: P(i,j) = M(i,j) / N. The
expected cost is then P * C

Interlude:
Normal Form for Cost Matrices

Any cost matrix C can be transformed to
an equivalent matrix C’ with zeroes along
the diagonal
Let L(h,C) be the expected loss of
classifier h measured on loss matrix C.
Defn: Let h1 and h2 be two classifiers. C
and C’ are equivalent if
 L(h1,C) > L(h2,C) iff L(h1,C’) > L(h2,C’)

Theorem
(Margineantu, 2001)

Let ∆ be a matrix of the form

If C2 = C1 + ∆, then C1 is equivalent to C2

δk…δ2δ1

…
δk…δ2δ1

δk…δ2δ1

Proof

Let P1(i,k) be the probabilistic confusion
matrix of classifier h1, and P2(i,k) be the
probabilistic confusion matrix of classifier
h2

L(h1,C) = P1 * C
L(h2,C) = P2 * C
L(h1,C) – L(h2,C) = [P1 – P2] * C

Proof (2)

Similarly, L(h1,C’) – L(h2, C’)
 = [P1 – P2] * C’
 = [P1 – P2] * [C + ∆]
 = [P1 – P2] * C + [P1 – P2] * ∆

We now show that [P1 – P2] * ∆ = 0, from which
we can conclude that

 L(h1,C) – L(h2,C) = L(h1,C’) – L(h2,C’)
 and hence, C is equivalent to C’.

Proof (3)

[P1 – P2] * ∆ = Σi Σk [P1(i,k) – P2(i,k)] * ∆(i,k)
 = Σi Σk [P1(i,k) – P2(i,k)] * δk

 = Σk δk Σi [P1(i,k) – P2(i,k)]
 = Σk δk Σi [P1(i|k) P(k) – P2(i|k) P(k)]
 = Σk δk P(k) Σi [P1(i|k) – P2(i|k)]
 = Σk δk P(k) [1 – 1]
 = 0

Proof (4)

Therefore,
 L(h1,C) – L(h2,C) = L(h1,C’) – L(h2,C’).

Hence, if we set δk = –C(k,k), then C’ will
have zeroes on the diagonal

End of Interlude

From now on, we will assume that C(i,i)
= 0

Interlude 2: Evaluating Cost-
Sensitive Learning Algorithms

Evaluation for a particular C:
BCOST and BDELTACOST procedures

Evaluation for a range of possible C’s:
AUC: Area under the ROC curve
Average cost given some distribution D(C)
over cost matrices

Two Statistical Questions

Given a classifier h, how can we
estimate its expected misclassification
cost?
Given two classifiers h1 and h2, how can
we determine whether their
misclassification costs are significantly
different?

Estimating Misclassification
Cost: BCOST

Simple Bootstrap Confidence Interval
Draw 1000 bootstrap replicates of the test
data
Compute confusion matrix Mb, for each
replicate
Compute expected cost cb = Mb * C
Sort cb’s, form confidence interval from the
middle 950 points (i.e., from c(26) to c(975)).

Comparing Misclassification
Costs: BDELTACOST

Construct 1000 bootstrap replicates of the test set
For each replicate b, compute the combined confusion
matrix Mb(i,j,k) = # of examples classified as i by h1, as j
by h2, whose true class is k.
Define ∆(i,j,k) = C(i,k) – C(j,k) to be the difference in cost
when h1 predicts class i, h2 predicts j, and the true class
is k.
Compute δb = Mb * ∆
Sort the δb’s and form a confidence interval [δ(26), δ(975)]
If this interval excludes 0, conclude that h1 and h2 have
different expected costs

ROC Curves

Most learning algorithms and classifiers
can tune the decision boundary

Probability threshold: P(y=1|x) > θ
Classification threshold: f(x) > θ
Input example weights λ
Ratio of C(0,1)/C(1,0) for C-dependent
algorithms

ROC Curve

For each setting of such parameters, given a
validation set, we can compute the false
positive rate:

 fpr = FP/(# negative examples)
 and the true positive rate

 tpr = TP/(# positive examples)
 and plot a point (tpr, fpr)

This sweeps out a curve: The ROC curve

Example ROC Curve

AUC: The area under the ROC
curve

AUC = Probability that two randomly
chosen points x1 and x2 will be correctly
ranked: P(y=1|x1) versus P(y=1|x2)
Measures correct ranking (e.g., ranking
all positive examples above all negative
examples)
Does not require correct estimates of
P(y=1|x)

Direct Computation of AUC
(Hand & Till, 2001)

Direct computation:
Let f(xi) be a scoring function
Sort the test examples according to f
Let r(xi) be the rank of xi in this sorted order
Let S1 = Σ{i: yi=1} r(xi) be the sum of ranks of
the positive examples
AUC = [S1 – n1(n1+1)/2] / [n0 n1]
where n0 = # negatives, n1 = # positives

Using the ROC Curve

Given a cost matrix C, we must choose a value
for θ that minimizes the expected cost
When we build the ROC curve, we can store θ
with each (tpr, fpr) pair
Given C, we evaluate the expected cost
according to
 π0 * fpr * C(1,0) + π1 * (1 – tpr) * C(0,1)

 where π0 = probability of class 0, π1 =
probability of class 1
Find best (tpr, fpr) pair and use corresponding
threshold θ

End of Interlude 2

Hand and Till show how to generalize the
ROC curve to problems with multiple
classes
They also provide a confidence interval
for AUC

Outline

Cost-Sensitive Learning
Problem Statement; Main Approaches

Preliminaries
Standard Form for Cost Matrices
Evaluating CSL Methods

Costs known at learning time
Costs unknown at learning time
Variations and Open Problems

Two Learning Problems

Problem 1: C known at learning time
Problem 2: C not known at learning time
(only becomes available at classification
time)

Learned classifier should work well for a
wide range of C’s

Learning with known C

Goal: Given a set of training examples
{(xi, yi)} and a cost matrix C,

Find a classifier h that minimizes the
expected misclassification cost on new
data points (x*,y*)

Two Strategies

Modify the inputs to the learning
algorithm to reflect C
Incorporate C into the learning algorithm

Strategy 1:
Modifying the Inputs

If there are only 2 classes and the cost of
a false positive error is λ times larger
than the cost of a false negative error,
then we can put a weight of λ on each
negative training example
 λ = C(1,0) / C(0,1)
Then apply the learning algorithm as
before

Some algorithms are insensitive
to instance weights

Decision tree
splitting
criteria are
fairly
insensitive
(Holte, 2000)

Setting λ By Class Frequency

Set λ / 1/nk, where nk is the number of
training examples belonging to class k
This equalizes the effective class
frequencies
Less frequent classes tend to have
higher misclassification cost

Setting λ by Cross-validation

Better results are obtained by using
cross-validation to set λ to minimize the
expected error on the validation set
The resulting λ is usually more extreme
than C(1,0)/C(0,1)
Margineantu applied Powell’s method to
optimize λk for multi-class problems

Comparison Study

Grey: CV λ wins; Black: ClassFreq wins; White: tie

800 trials (8 cost models * 10 cost matrices * 10 splits)

Conclusions from Experiment

Setting λ according to class frequency is
cheaper gives the same results as
setting λ by cross validation
Possibly an artifact of our cost matrix
generators

Strategy 2:
Modifying the Algorithm

Cost-Sensitive Boosting
C can be incorporated directly into the
error criterion when training neural
networks (Kukar & Kononenko, 1998)

Cost-Sensitive Boosting
(Ting, 2000)

Adaboost (“confidence weighted”)
Initialize wi = 1/N
Repeat

Fit ht to weighted training data
Compute εt = Σi yi ht(xi) wi

Set αt = ½ * ln (1 + εt)/(1 – εt)
wi := wi * exp(–αt yi ht(xi))/Zt

Classify using sign(Σt αt ht(x))

Three Variations
Training examples of the form (xi, yi, ci), where ci is the
cost of misclassifying xi

AdaCost (Fan et al., 1998)
wi := wi * exp(–αt yi ht(xi) βi)/Zt

 βi = ½ * (1 + ci) if error
 = ½ * (1 – ci) otherwise

CSB2 (Ting, 2000)
wi := βi wi * exp(–αt yi ht(xi))/Zt

 βi = ci if error
 = 1 otherwise

SSTBoost (Merler et al., 2002)
wi := wi * exp(–αt yi ht(xi) βi)/Zt

βi = ci if error
βi = 2 – ci otherwise
ci = w for positive examples; 1 – w for negative examples

Additional Changes

Initialize the weights by scaling the costs
ci

wi = ci / Σj cj

Classify using “confidence weighting”
Let F(x) = Σt αt ht(x) be the result of boosting
Define G(x,k) = F(x) if k = 1 and –F(x) if k =
–1
predicted y = argmini Σk G(x,k) C(i,k)

Experimental Results:
(14 data sets; 3 cost ratios; Ting, 2000)

Open Question

CSB2, AdaCost, and SSTBoost were
developed by making ad hoc changes to
AdaBoost
Opportunity: Derive a cost-sensitive boosting
algorithm using the ideas from LogitBoost
(Friedman, Hastie, Tibshirani, 1998) or
Gradient Boosting (Friedman, 2000)
Friedman’s MART includes the ability to
specify C (but I don’t know how it works)

Outline

Cost-Sensitive Learning
Problem Statement; Main Approaches

Preliminaries
Standard Form for Cost Matrices
Evaluating CSL Methods

Costs known at learning time
Costs unknown at learning time
Variations and Open Problems

Learning with Unknown C

Goal: Construct a classifier h(x,C) that
can accept the cost function at run time
and minimize the expected cost of
misclassification errors wrt C
Approaches:

Learning to estimate P(y|x)
Learn a “ranking function” such that f(x1) >
f(x2) implies P(y=1|x1) > P(y=1|x2)

Learning Probability Estimators

Train h(x) to estimate P(y=1|x)
Given C, we can then apply the decision
rule:

y’ = argmini Σk P(y=k|x) C(i,k)

Good Class Probabilities from
Decision Trees

Probability Estimation Trees
Bagged Probability Estimation Trees
Lazy Option Trees
Bagged Lazy Option Trees

Causes of Poor Decision Tree
Probability Estimates

Estimates in leaves are based on a small
number of examples (nearly pure)
Need to sub-divide “pure” regions to get
more accurate probabilities

Probability Estimates are
Extreme

0

50

100

150

200

250

300

350

400

450

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Single decision
tree;

700 examples

Need to Subdivide “Pure”
Leaves

P(y=1|x)

x

0.5

Consider a region of the feature space X.
Suppose P(y=1|x) looks like this:

Probability Estimation versus
Decision-making

P(y=1|x)

x

0.5

predict class 0 predict class 1

A simple CLASSIFIER will introduce one
split

Probability Estimation versus
Decision-making

P(y=1|x)

x

0.5

A PROBABILITY ESTIMATOR will
introduce multiple splits, even though the
decisions would be the same

Probability Estimation Trees
(Provost & Domingos, in press)

C4.5
Prevent extreme probabilities:

Laplace Correction in the leaves
 P(y=k|x) = (nk + 1/K) / (n + 1)

Need to subdivide:
no pruning
no “collapsing”

Bagged PETs

Bagging helps solve the second problem
Let {h1, …, hB } be the bag of PETs such
that hb(x) = P(y=1|x)
estimate P(y=1|x) = 1/B * Σb hb(x)

ROC: Single tree versus 100-
fold bagging

AUC for 25 Irvine Data Sets
(Provost & Domingos, in press)

Notes

Bagging consistently gives a huge
improvement in the AUC
The other factors are important if
bagging is NOT used:

No pruning/collapsing
Laplace-corrected estimates

Lazy Trees

Learning is delayed until the query point
x* is observed
An ad hoc decision tree (actually a rule)
is constructed just to classify x*

Growing a Lazy Tree
(Friedman, Kohavi, Yun, 1985)

x1 > 3

x4 > -2

Only grow the
branches
corresponding to x*

Choose splits to
make these
branches “pure”

Option Trees
(Buntine, 1985; Kohavi & Kunz, 1997)

Expand the Q best candidate splits at
each node
Evaluate by voting these alternatives

Lazy Option Trees
(Margineantu & Dietterich, 2001)

Combine Lazy Decision
Trees with Option Trees
Avoid duplicate paths (by
disallowing split on u as
child of option v if there is
already a split v as a child
of u):

v u

vu

Bagged Lazy Option Trees
(B-LOTs)

Combine Lazy Option Trees with
Bagging (expensive!)

Comparison of
B-PETs and B-LOTs

Overlapping Gaussians
Varying amount of training data and
minimum number of examples in each
leaf (no other pruning)

B-PET vs B-LOT

Bagged PETs give better ranking

Bagged LOTs give better calibrated probabilities

Bagged PETs Bagged LOTs

B-PETs vs B-LOTs

Grey: B-LOTs win Black: B-PETs win White: Tie

Test favors well-calibrated probabilities

Open Problem: Calibrating
Probabilities

Can we find a way to map the outputs of
B-PETs into well-calibrated probabilities?

Post-process via logistic regression?
Histogram calibration is crude but effective
(Zadrozny & Elkan, 2001)

Comparison of Instance-Weighting and
Probability Estimation

Black: B-PETs win; Grey: ClassFreq wins; White: Tie

An Alternative:
Ensemble Decision Making

Don’t estimate probabilities: compute
decision thresholds and have ensemble
vote!
Let ρ = C(0,1) / [C(0,1) + C(1,0)]

 Classify as class 0 if P(y=0|x) > ρ
Compute ensemble h1, …, hB of
probability estimators

 Take majority vote of hb(x) > ρ

Results
(Margineantu, 2002)

On KDD-Cup 1998 data (Donations), in
100 trials, a random-forest ensemble
beats B-PETs 20% of the time, ties 75%,
and loses 5%
On Irvine data sets, a bagged ensemble
beats B-PETs 43.2% of the time, ties
48.6%, and loses 8.2% (averaged over 9
data sets, 4 cost models)

Conclusions

Weighting inputs by class frequency
works surprisingly well
B-PETs would work better if they were
well-calibrated
Ensemble decision making is promising

Outline

Cost-Sensitive Learning
Problem Statement; Main Approaches

Preliminaries
Standard Form for Cost Matrices
Evaluating CSL Methods

Costs known at learning time
Costs unknown at learning time
Open Problems and Summary

Open Problems

Random forests for probability estimation?
Combine example weighting with ensemble
methods?
Example weighting for CART (Gini)
Calibration of probability estimates?
Incorporation into more complex decision-
making procedures, e.g. Viterbi algorithm?

Summary

Cost-sensitive learning is important in many
applications
How can we extend “discriminative” machine
learning methods for cost-sensitive learning?
Example weighting: ClassFreq
Probability estimation: Bagged LOTs
Ranking: Bagged PETs
Ensemble Decision-making

Bibliography

Buntine, W. 1990. A theory of learning classification rules. Doctoral
Dissertation. University of Technology, Sydney, Australia.
Drummond, C., Holte, R. 2000. Exploiting the Cost (In)sensitivity of
Decision Tree Splitting Criteria. ICML 2000. San Francisco: Morgan
Kaufmann.
Friedman, J. H. 1999. Greedy Function Approximation: A Gradient
Boosting Machine. IMS 1999 Reitz Lecture. Tech Report, Department of
Statistics, Stanford University.
Friedman, J. H., Hastie, T., Tibshirani, R. 1998. Additive Logistic
Regression: A Statistical View of Boosting. Department of Statistics,
Stanford University.
Friedman, J., Kohavi, R., Yun, Y. 1996. Lazy decision trees.
Proceedings of the Thirteenth National Conference on Artificial
Intelligence. (pp. 717-724). Cambridge, MA: AAAI Press/MIT Press.

Bibliography (2)

Hand, D., and Till, R. 2001. A Simple Generalisation of the Area Under
the ROC Curve for Multiple Class Classification Problems. Machine
Learning, 45(2): 171.
Kohavi, R., Kunz, C. 1997. Option decision trees with majority votes.
ICML-97. (pp 161-169). San Francisco, CA: Morgan Kaufmann.
Kukar, M. and Kononenko, I. 1998. Cost-sensitive learning with neural
networks. Proceedings of the European Conference on Machine
Learning. Chichester, NY: Wiley.
Margineantu, D. 1999. Building Ensembles of Classifiers for Loss
Minimization, Proceedings of the 31st Symposium on the Interface:
Models, Prediction, and Computing.
Margineantu, D. 2001. Methods for Cost-Sensitive Learning. Doctoral
Dissertation, Oregon State University.

Bibliography (3)

Margineantu, D. 2002. Class probability estimation and cost-sensitive
classification decisions. Proceedings of the European Conference on
Machine Learning.
Margineantu, D. and Dietterich, T. 2000. Bootstrap Methods for the Cost-
Sensitive Evaluation of Classifiers. ICML 2000. (pp. 582-590). San
Francisco: Morgan Kaufmann.
Margineantu, D., Dietterich, T. G. 2002. Improved class probability
estimates from decision tree models. To appear in Lecture Notes in
Statistics. New York, NY: Springer Verlag.
Provost, F., Domingos, P. In Press. Tree induction for probability-based
ranking. To appear in Machine Learning. Available from Provost's home
page.
Ting, K. 2000. A comparative study of cost-sensitive boosting algorithms.
ICML 2000. (pp 983-990) San Francisco, Morgan Kaufmann. (Longer
version available from his home page.)

Bibliography (4)

Zadrozny, B., Elkan, C. 2001. Obtaining calibrated probability estimates
from decision trees and naive Bayesian classifiers. ICML-2001. (pp 609-
616). San Francisco, CA: Morgan Kaufmann.

