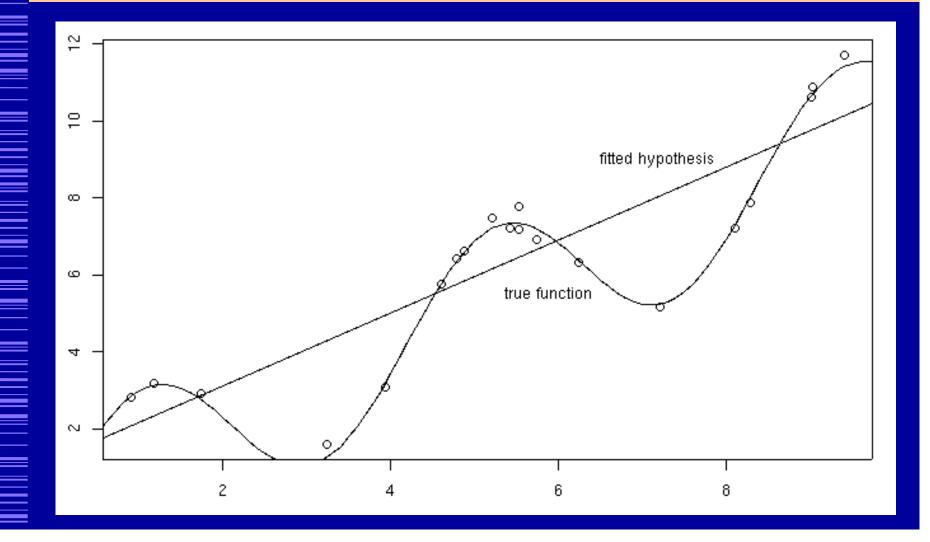
Bias-Variance Analysis of Ensemble Learning

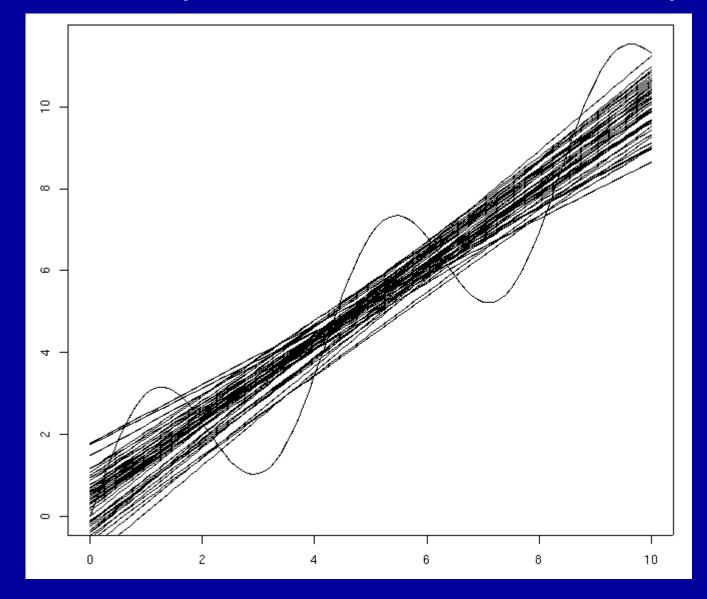
Thomas G. Dietterich Department of Computer Science Oregon State University Corvallis, Oregon 97331 http://www.cs.orst.edu/~tgd

Outline

- Bias-Variance Decomposition for Regression
- Bias-Variance Decomposition for Classification
- Bias-Variance Analysis of Learning Algorithms
- Effect of Bagging on Bias and Variance
- Effect of Boosting on Bias and Variance
- Summary and Conclusion


Bias-Variance Analysis in Regression

• True function is $y = f(x) + \varepsilon$


 where ε is normally distributed with zero mean and standard deviation σ.

Given a set of training examples, {(x_i, y_i)}, we fit an hypothesis h(x) = w ¢ x + b to the data to minimize the squared error
 Σ_i [y_i - h(x_i)]²

Example: 20 points y = x + 2 sin(1.5x) + N(0,0.2)

50 fits (20 examples each)

Bias-Variance Analysis

Now, given a new data point x* (with observed value y* = f(x*) + ε), we would like to understand the expected prediction error

$$E[(y^* - h(x^*))^2]$$

Classical Statistical Analysis

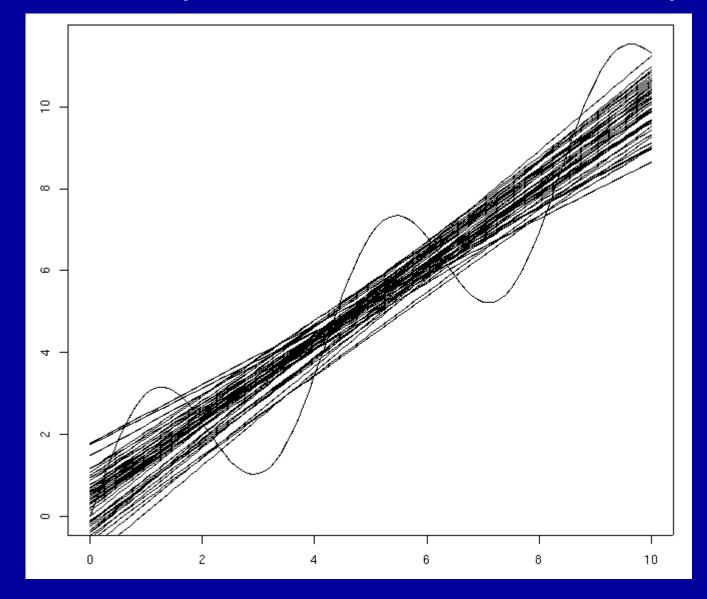
- Imagine that our particular training sample S is drawn from some population of possible training samples according to P(S).
- Compute $E_P [(y^* h(x^*))^2]$
- Decompose this into "bias", "variance", and "noise"

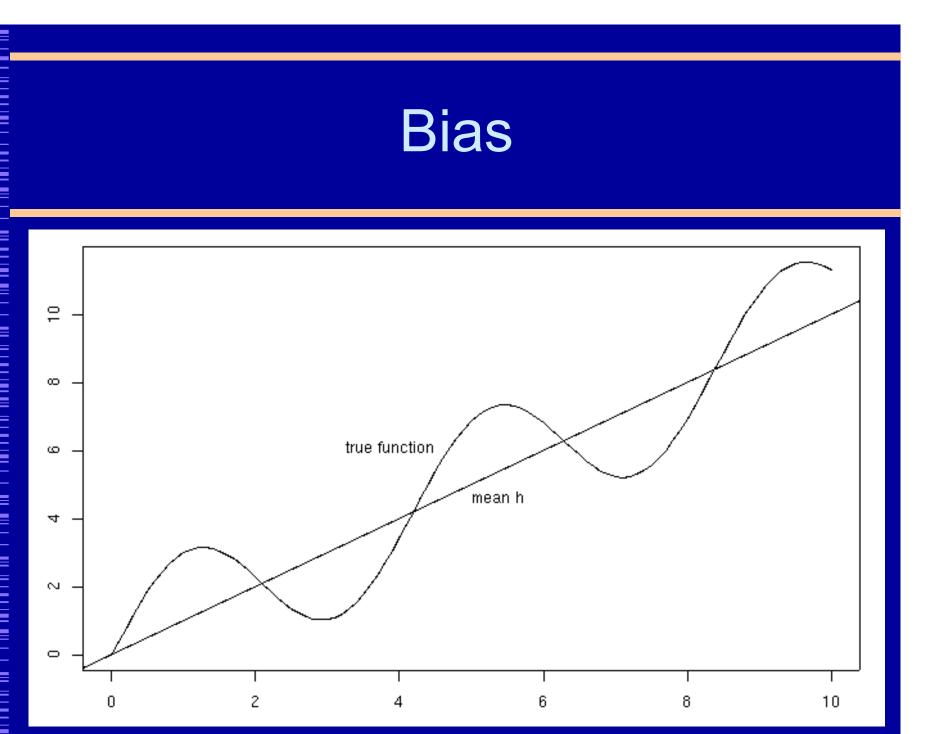
Lemma

- Let Z be a random variable with probability distribution P(Z)
- Let $\underline{Z} = E_{P}[Z]$ be the average value of Z.
- Lemma: $E[(Z \underline{Z})^2] = E[Z^2] \underline{Z}^2$ $E[(Z - \underline{Z})^2] = E[Z^2 - 2Z\underline{Z} + \underline{Z}^2]$ $= E[Z^2] - 2E[Z]\underline{Z} + \underline{Z}^2$ $= E[Z^2] - 2\underline{Z}^2 + \underline{Z}^2$ $= E[Z^2] - \underline{Z}^2$
- Corollary: $E[Z^2] = E[(Z \underline{Z})^2] + \underline{Z}^2$

Bias-Variance-Noise Decomposition

 $E[(h(x^*) - y^*)^2] = E[h(x^*)^2 - 2 h(x^*) y^* + y^{*2}]$ $= E[h(x^*)^2] - 2 E[h(x^*)] E[y^*] + E[y^{*2}]$ $= E[(h(x^*) - h(x^*))^2] + h(x^*)^2 \quad (lemma)$ $- 2 h(x^*) f(x^*)$ $+ E[(y^* - f(x^*))^2] + f(x^*)^2 \quad (lemma)$ $= E[(h(x^*) - h(x^*))^2] + [variance]$ $(h(x^*) - f(x^*))^2 + [bias^2]$ $E[(y^* - f(x^*))^2] \quad [noise]$

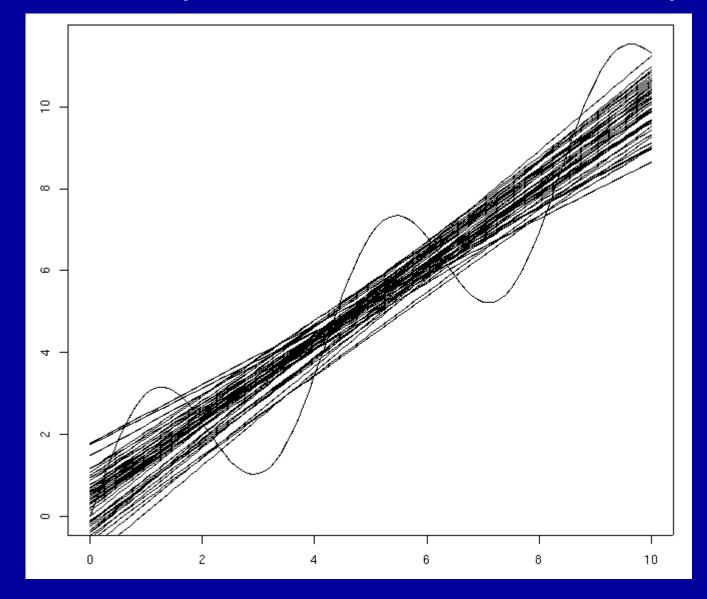

Derivation (continued)

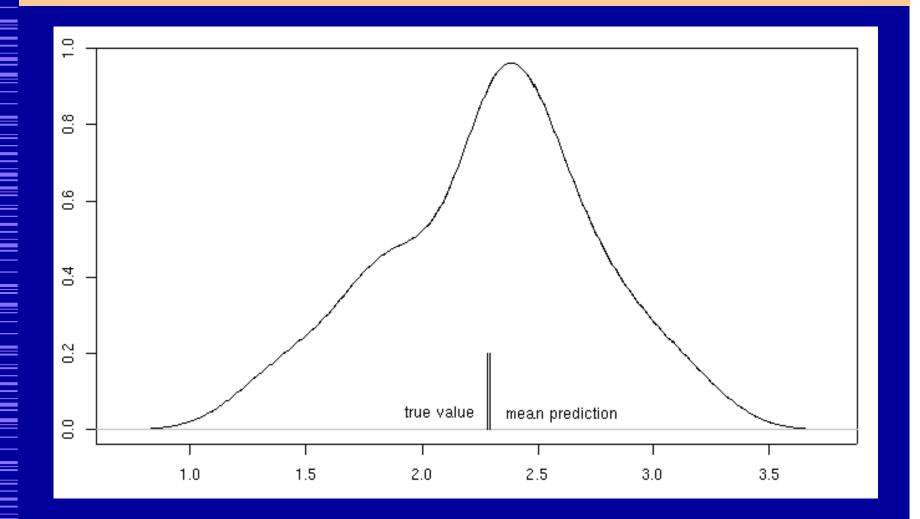

 $E[(h(x^*) - y^*)^2] =$ $= E[(h(x^*) - \underline{h(x^*)})^2] +$ $(\underline{h(x^*)} - f(x^*))^2 +$ $E[(y^* - f(x^*))^2]$ $= Var(h(x^*)) + Bias(h(x^*))^2 + E[\epsilon^2]$ $= Var(h(x^*)) + Bias(h(x^*))^2 + \sigma^2$ Expected prediction error = Variance + Bias² + Noise²

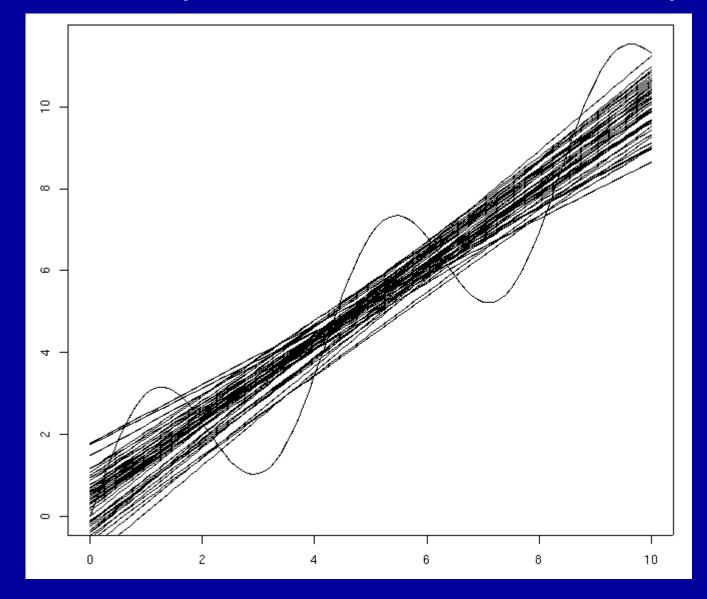
Bias, Variance, and Noise

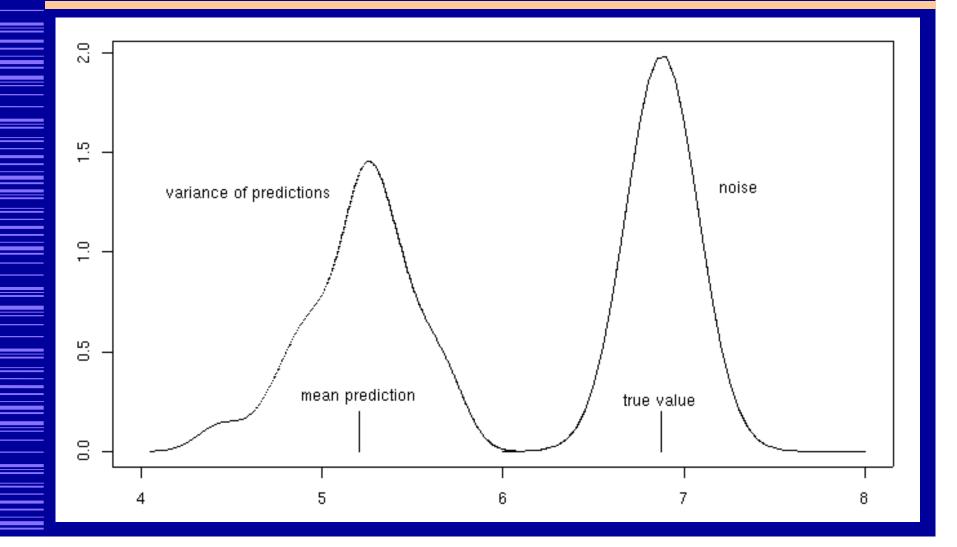
- Variance: E[(h(x*) h(x*))²]
 Describes how much h(x*) varies from one training set S to another
- ◆ Bias: [<u>h(x*)</u> f(x*)]
 - Describes the <u>average</u> error of $h(x^*)$.
- Noise: E[(y* f(x*))²] = E[ε²] = σ²
 Describes how much y* varies from f(x*)

50 fits (20 examples each)






50 fits (20 examples each)


Distribution of predictions at x=2.0

50 fits (20 examples each)

Distribution of predictions at x=5.0

Measuring Bias and Variance

- In practice (unlike in theory), we have only ONE training set S.
- We can simulate multiple training sets by bootstrap replicates
 - S' = {x | x is drawn at random with replacement from S} and |S'| = |S|.

Procedure for Measuring Bias and Variance

- Construct B bootstrap replicates of S (e.g., B = 200): S₁, ..., S_B
- Apply learning algorithm to each replicate S_b to obtain hypothesis h_b
- Let T_b = S \ S_b be the data points that do not appear in S_b (out of bag points)
- Compute predicted value h_b(x) for each x in T_b

Estimating Bias and Variance (continued)

- For each data point x, we will now have the observed corresponding value y and several predictions y₁, ..., y_K.
- Compute the average prediction <u>h</u>.
- ◆ Estimate bias as (<u>h</u> y)
- Estimate variance as $\Sigma_k (y_k \underline{h})^2 / (K 1)$
- Assume noise is 0

Approximations in this Procedure

- Bootstrap replicates are not real data
- We ignore the noise
 - If we have multiple data points with the same x value, then we can estimate the noise
 - We can also estimate noise by pooling y values from nearby x values (another use for Random Forest proximity measure?)

Bagging

- Bagging constructs B bootstrap replicates and their corresponding hypotheses h₁, ..., h_B
- It makes predictions according to
 y = Σ_b h_b(x) / B
- Hence, bagging's predictions are <u>h(x)</u>

Estimated Bias and Variance of Bagging

- If we estimate bias and variance using the same B bootstrap samples, we will have:
 - Bias = (<u>h</u> y) [same as before]
 - Variance = $\Sigma_k (\underline{h} \underline{h})^2 / (K 1) = 0$
- Hence, according to this approximate way of estimating variance, bagging removes the variance while leaving bias unchanged.
- In reality, bagging only reduces variance and tends to slightly increase bias

Bias/Variance Heuristics

- Models that fit the data poorly have high bias: "inflexible models" such as linear regression, regression stumps
- Models that can fit the data very well have low bias but high variance: "flexible" models such as nearest neighbor regression, regression trees
- This suggests that bagging of a flexible model can reduce the variance while benefiting from the low bias

Bias-Variance Decomposition for Classification

- Can we extend the bias-variance decomposition to classification problems?
- Several extensions have been proposed; we will study the extension due to Pedro Domingos (2000a; 2000b)
- Domingos developed a unified decomposition that covers both regression and classification

Classification Problems

- Data points are generated by y_i = n(f(x_i)), where
 - f(x_i) is the true class label of x_i
 - n(¢) is a noise process that may change the true label f(x_i).
- Given a training set {(x₁, y₁), ..., (x_m, y_m)}, our learning algorithm produces an hypothesis h.

Let y* = n(f(x*)) be the observed label of a new data point x*. h(x*) is the predicted label. The error ("loss") is defined as L(h(x*), y*)

Loss Functions for Classification

- The usual loss function is 0/1 loss. L(y',y) is 0 if y' = y and 1 otherwise.
- Our goal is to decompose E_p[L(h(x*), y*)] into bias, variance, and noise terms

Discrete Equivalent of the Mean: The Main Prediction

- As before, we imagine that our observed training set S was drawn from some population according to P(S)
- Define the main prediction to be

 $y_m(x^*) = \operatorname{argmin}_{y'} E_P[L(y', h(x^*))]$

- For 0/1 loss, the main prediction is the most common vote of h(x*) (taken over all training sets S weighted according to P(S))
- For squared error, the main prediction is $h(x^*)$

Bias, Variance, Noise

- Bias B(x*) = L(y^m, f(x*))
 - This is the loss of the main prediction with respect to the true label of x*
- Variance V(x*) = E[L(h(x*), y^m)]

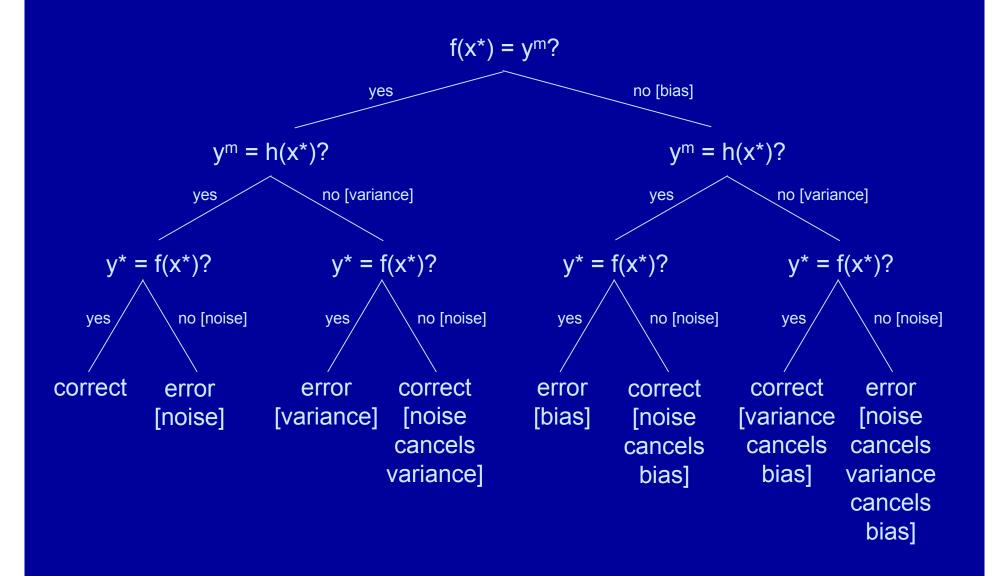
 This is the expected loss of h(x*) relative to the main prediction

Noise N(x*) = E[L(y*, f(x*))]

This is the expected loss of the noisy observed value y* relative to the true label of x*

Squared Error Loss

- These definitions give us the results we have already derived for squared error loss L(y',y) = (y' - y)²
 - Main prediction $y^m = h(x^*)$
 - Bias²: $L(h(x^*), f(x^*)) = (h(x^*) f(x^*))^2$


Variance:

 $E[L(h(x^*), \underline{h(x^*)})] = E[(h(x^*) - \underline{h(x^*)})^2]$ • Noise: E[L(y*, f(x*))] = E[(y* - f(x*))^2]

0/1 Loss for 2 classes

- There are three components that determine whether y* = h(x*)
 Noise: y* = f(x*)?
 Bias: f(x*) = y^m?
 Variance: y^m = h(x*)?
 Bias is either 0 or 1, because neither f(x*)
 - nor y^m are random variables

Case Analysis of Error

Unbiased case

- Let $P(y^* \neq f(x^*)) = N(x^*) = \tau$
- Let $P(y^m \neq h(x^*)) = V(x^*) = \sigma$
- If (f(x*) = y^m), then we suffer a loss if exactly one of these events occurs:
 L(h(x*), y*) = τ(1-σ) + σ(1-τ)

=
$$\tau + \sigma - 2\tau\sigma$$

= N(x*) + V(x*) - 2 N(x*) V(x*)

Biased Case

- Let $P(y^* \neq f(x^*)) = N(x^*) = \tau$
- Let $P(y^m \neq h(x^*)) = V(x^*) = \sigma$
- If (f(x*) ≠ y^m), then we suffer a loss if either both or neither of these events occurs:

$$L(h(x^*), y^*) = \tau \sigma + (1-\sigma)(1-\tau)$$

 $= 1 - (\tau + \sigma - 2\tau\sigma)$

 $= B(x^*) - [N(x^*) + V(x^*) - 2 N(x^*) V(x^*)]$

Decomposition for 0/1 Loss (2 classes)

- We do not get a simple additive decomposition in the 0/1 loss case:
 E[L(h(x*), y*)] = if B(x*) = 1: B(x*) - [N(x*) + V(x*) - 2 N(x*) V(x*)]
 - if $B(x^*) = 0$: $B(x^*) + [N(x^*) + V(x^*) 2 N(x^*) V(x^*)]$
- In biased case, noise and variance <u>reduce</u> error; in unbiased case, noise and variance <u>increase</u> error

Summary of 0/1 Loss

- A good classifier will have low bias, in which case the expected loss will approximately equal the variance
- The interaction terms will usually be small, because both noise and variance will usually be < 0.2, so the interaction term 2 V(x*) N(x*) will be < 0.08

0/1 Decomposition in Practice

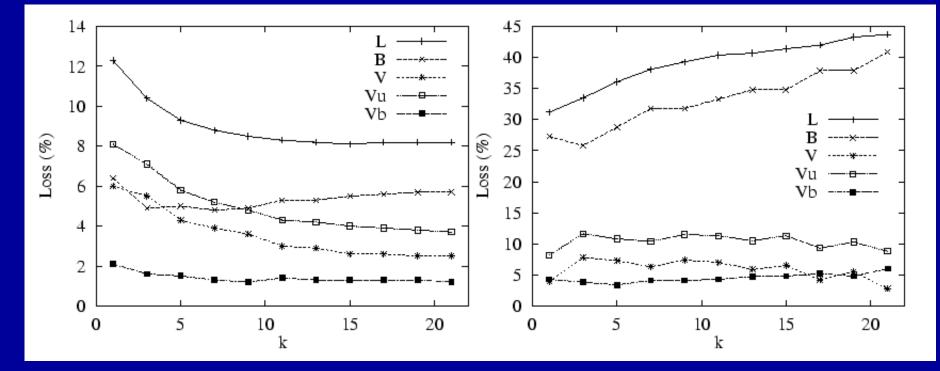
In the noise-free case:
 E[L(h(x*), y*)] =
 if B(x*) = 1: B(x*) - V(x*)
 if B(x*) = 0: B(x*) + V(x*)

 It is usually hard to estimate N(x*), so we will use this formula

Decomposition over an entire data set

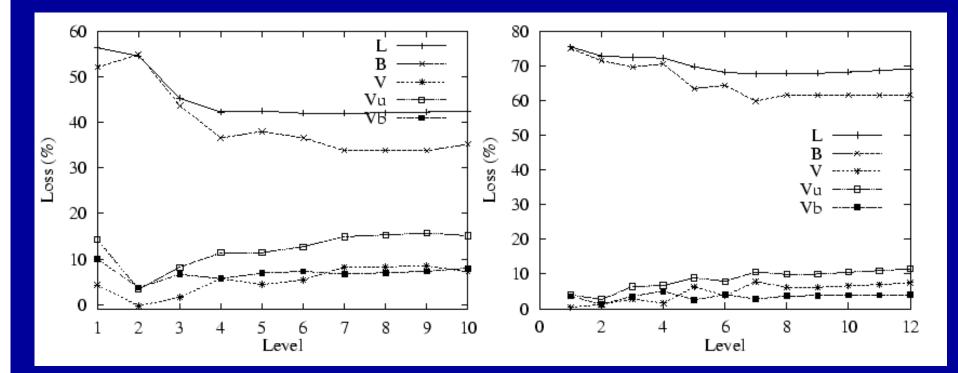
Given a set of test points $T = \{(x_{1}^{*}, y_{1}^{*}), \dots, (x_{n}^{*}, y_{n}^{*})\},\$ we want to decompose the average loss: $\underline{L} = \sum_{i} E[L(h(x^{*}_{i}), y^{*}_{i})] / n$ We will write it as L = B + Vu - Vbwhere B is the average bias, Vu is the average unbiased variance, and Vb is the average biased variance (We ignore the noise.)

<u>Vu</u> – <u>Vb</u> will be called "net variance"


Experimental Studies of Bias and Variance

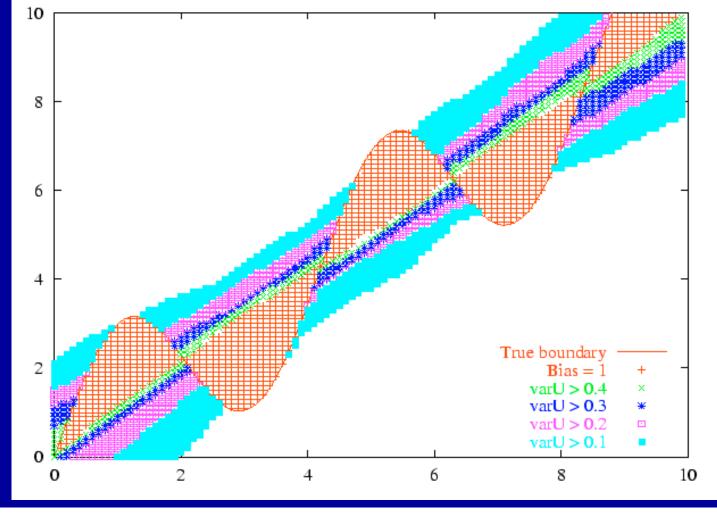
- Artificial data: Can generate multiple training sets S and measure bias and variance directly
- Benchmark data sets: Generate bootstrap replicates and measure bias and variance on separate test set

Algorithms to Study

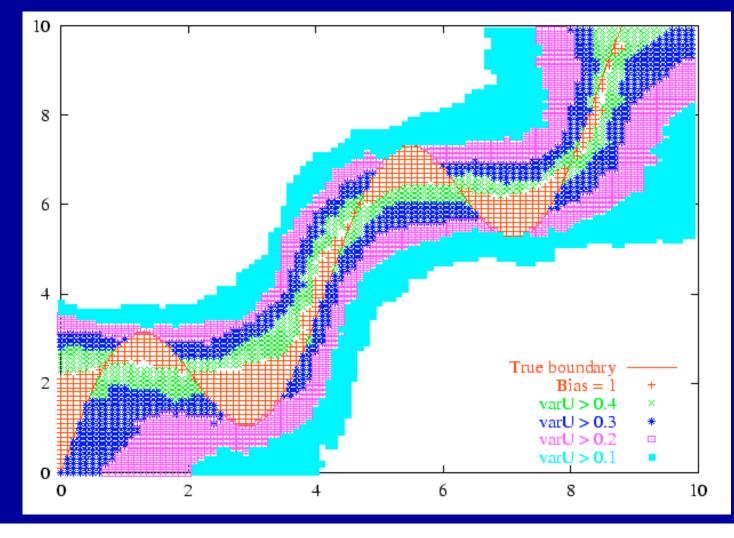

- K-nearest neighbors: What is the effect of K?
- Decision trees: What is the effect of pruning?
- Support Vector Machines: What is the effect of kernel width σ?

K-nearest neighbor (Domingos, 2000)

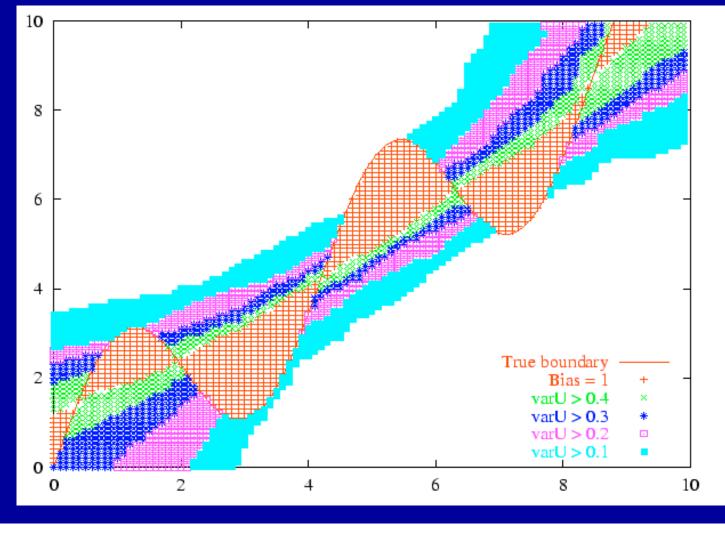
- Chess (left): Increasing K primarily reduces Vu
- Audiology (right): Increasing K primarily increases B.


Size of Decision Trees

 Glass (left), Primary tumor (right): deeper trees have lower B, higher Vu


Example: 200 linear SVMs (training sets of size 20)

Error: 13.7% Bias: 11.7% Vu: 5.2% Vb: 3.2%


Example: 200 RBF SVMs $\sigma = 5$

Error: 15.0% Bias: 5.8% Vu: 11.5% Vb: 2.3%

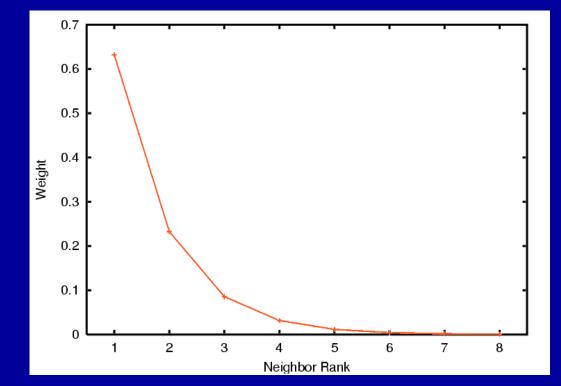
Example: 200 RBF SVMs $\sigma = 50$

Error: 14.9% Bias: 10.1% Vu: 7.8% Vb: 3.0%

SVM Bias and Variance

	Error	Bias	Var_U	Var_B	Net var	Tot var
linear	0.137	0.117	0.052	0.032	0.020	0.084
${\rm rbf}\;\sigma=5$	0.150	0.058	0.115	0.023	0.092	0.137
rbf $\sigma=50$	0.149	0.101	0.078	0.030	0.048	0.109

 Bias-Variance tradeoff controlled by σ
 Biased classifier (linear SVM) gives better results than a classifier that can represent the true decision boundary!

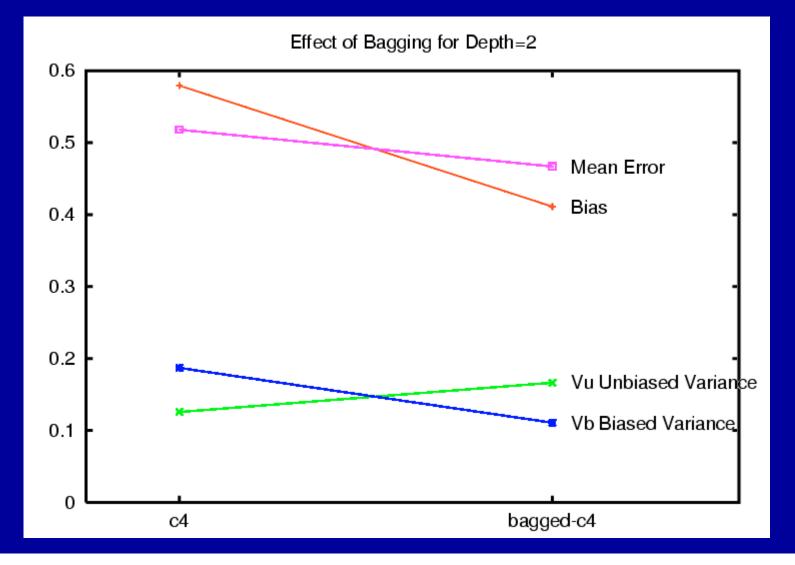

B/V Analysis of Bagging

- Under the bootstrap assumption, bagging reduces only variance
 - Removing Vu reduces the error rate
 - Removing Vb increases the error rate
- Therefore, bagging should be applied to low-bias classifiers, because then Vb will be small
- Reality is more complex!

Bagging Nearest Neighbor

Bagging first-nearest neighbor is equivalent (in the limit) to a weighted majority vote in which the k-th neighbor receives a weight of

 $\overline{\exp(-(k-1))} - \exp(-k)$

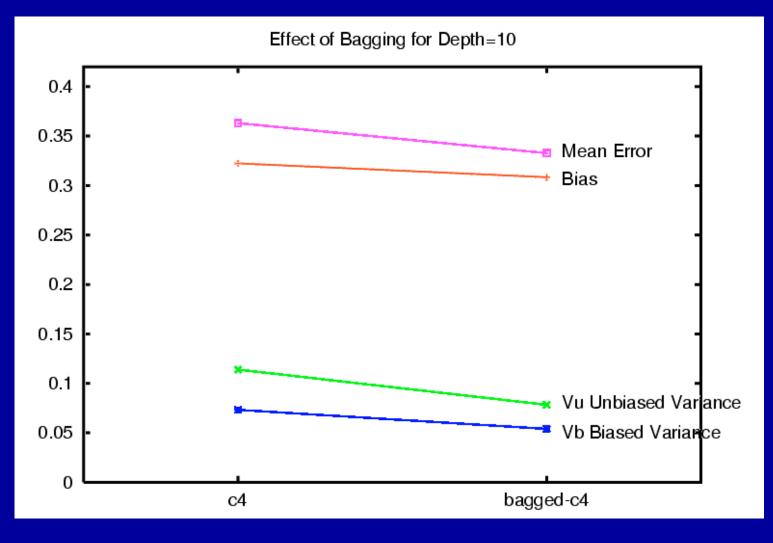


Since the first nearest neighbor gets more than half of the vote, it will always win this vote. Therefore, Bagging 1-NN is equivalent to 1-NN.

Bagging Decision Trees

- Consider unpruned trees of depth 2 on the Glass data set. In this case, the error is almost entirely due to bias
- Perform 30-fold bagging (replicated 50 times; 10-fold cross-validation)
- What will happen?

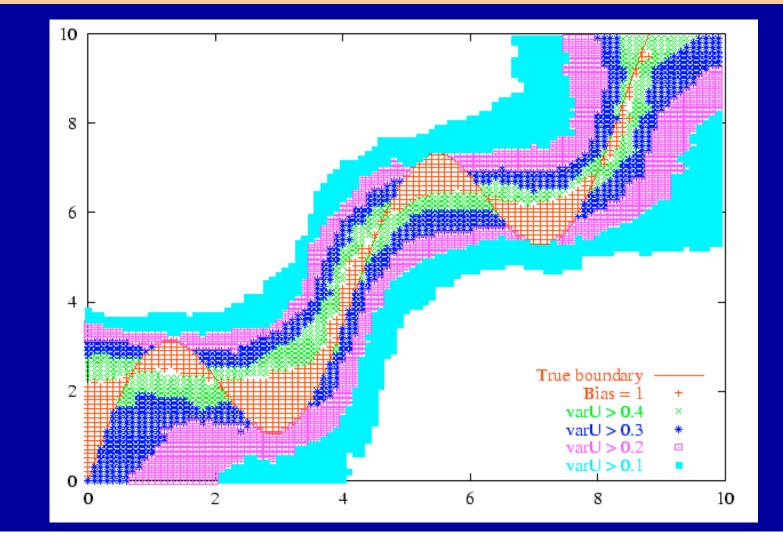
Bagging Primarily Reduces Bias!

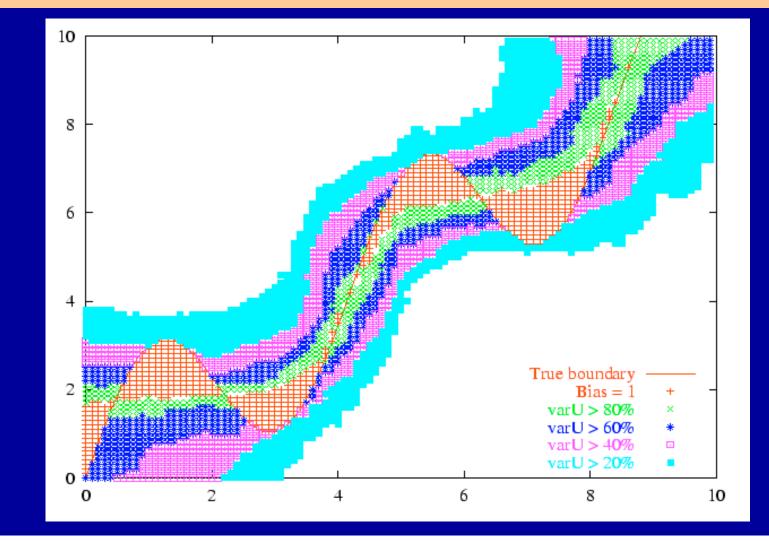

Questions

- Is this due to the failure of the bootstrap assumption in bagging?
- Is this due to the failure of the bootstrap assumption in estimating bias and variance?
- Should we also think of Bagging as a simple additive model that expands the range of representable classifiers?

Bagging Large Trees?

- Now consider unpruned trees of depth 10 on the Glass dataset. In this case, the trees have much lower bias.
- What will happen?


Answer: Bagging Primarily Reduces Variance

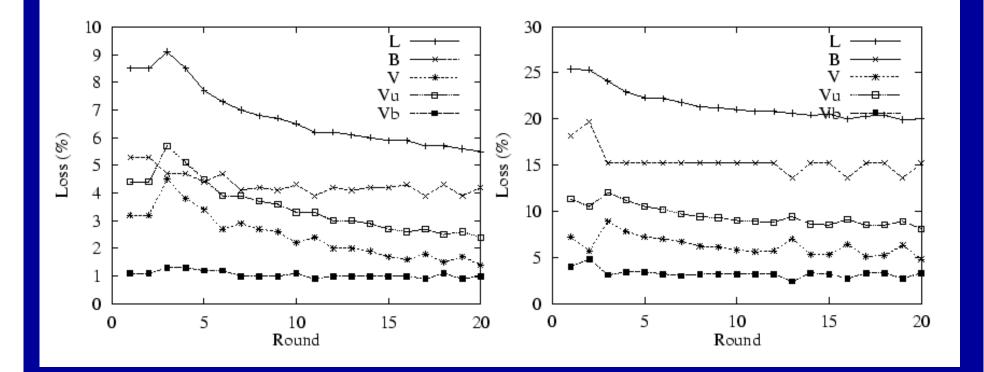

Bagging of SVMs

 We will choose a low-bias, high-variance SVM to bag: RBF SVM with σ=5

RBF SVMs again: $\sigma = 5$

Effect of 30-fold Bagging: Variance is Reduced

Effects of 30-fold Bagging


	Error	Bias	Var_U	Var_B	Net var	Tot var
rbf $\sigma=5$	0.150	0.058	0.115	0.023	0.092	0.137
bagged r bf $\sigma=5$	0.145	0.063	0.105	0.023	0.082	0.128

- Vu is decreased by 0.010; Vb is unchanged
- Bias is increased by 0.005
- Error is reduced by 0.005

Bias-Variance Analysis of Boosting

- Boosting seeks to find a weighted combination of classifiers that fits the data well
- Prediction: Boosting will primarily act to reduce bias

Boosting DNA splice (left) and Audiology (right)

Early iterations reduce bias. Later iterations also reduce variance

Review and Conclusions

- For regression problems (squared error loss), the expected error rate can be decomposed into
 - Bias(x*)² + Variance(x*) + Noise(x*)
- For classification problems (0/1 loss), the expected error rate depends on whether bias is present:
 - if $B(x^*) = 1$: $B(x^*) [V(x^*) + N(x^*) 2 V(x^*) N(x^*)]$

• if $B(x^*) = 0$: $B(x^*) + [V(x^*) + N(x^*) - 2 V(x^*) N(x^*)]$

or B(x*) + Vu(x*) – Vb(x*) [ignoring noise]

Sources of Bias and Variance

- Bias arises when the classifier cannot represent the true function – that is, the classifier underfits the data
- Variance arises when the classifier overfits the data
- There is often a tradeoff between bias and variance

Effect of Algorithm Parameters on Bias and Variance

- k-nearest neighbor: increasing k typically increases bias and reduces variance
- decision trees of depth D: increasing D typically increases variance and reduces bias
- RBF SVM with parameter σ: increasing σ increases bias and reduces variance

Effect of Bagging

- If the bootstrap replicate approximation were correct, then bagging would reduce variance without changing bias
- In practice, bagging can reduce both bias and variance
 - For high-bias classifiers, it can reduce bias (but may increase Vu)
 - For high-variance classifiers, it can reduce variance

Effect of Boosting

- In the early iterations, boosting is primary a bias-reducing method
- In later iterations, it appears to be primarily a variance-reducing method (see end of Breiman's Random Forest paper)