
Thomas G. Dietterich
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331

http://www.cs.orst.edu/~tgd

Bias-Variance Analysis of
Ensemble Learning

Outline

Bias-Variance Decomposition for Regression
Bias-Variance Decomposition for Classification
Bias-Variance Analysis of Learning Algorithms
Effect of Bagging on Bias and Variance
Effect of Boosting on Bias and Variance
Summary and Conclusion

Bias-Variance Analysis in
Regression

True function is y = f(x) + ε
where ε is normally distributed with zero
mean and standard deviation σ.

Given a set of training examples, {(xi, yi)},
we fit an hypothesis h(x) = w ¢ x + b to
the data to minimize the squared error
 Σi [yi – h(xi)]2

Example: 20 points
y = x + 2 sin(1.5x) + N(0,0.2)

50 fits (20 examples each)

Bias-Variance Analysis

Now, given a new data point x* (with
observed value y* = f(x*) + ε), we would
like to understand the expected
prediction error

 E[(y* – h(x*))2]

Classical Statistical Analysis

Imagine that our particular training
sample S is drawn from some population
of possible training samples according to
P(S).
Compute EP [(y* – h(x*))2]
Decompose this into “bias”, “variance”,
and “noise”

Lemma

Let Z be a random variable with probability
distribution P(Z)
Let Z = EP[Z] be the average value of Z.
Lemma: E[(Z – Z)2] = E[Z2] – Z2

E[(Z – Z)2] = E[Z2 – 2 Z Z + Z2]
 = E[Z2] – 2 E[Z] Z + Z2

 = E[Z2] – 2 Z2 + Z2

 = E[Z2] – Z2

Corollary: E[Z2] = E[(Z – Z)2] + Z2

Bias-Variance-Noise
Decomposition

E[(h(x*) – y*)2] = E[h(x*)2 – 2 h(x*) y* + y*2]
 = E[h(x*)2] – 2 E[h(x*)] E[y*] + E[y*2]
 = E[(h(x*) – h(x*))2] + h(x*)2 (lemma)
 – 2 h(x*) f(x*)
 + E[(y* – f(x*))2] + f(x*)2 (lemma)
 = E[(h(x*) – h(x*))2] + [variance]
 (h(x*) – f(x*))2 + [bias2]
 E[(y* – f(x*))2] [noise]

Derivation (continued)

E[(h(x*) – y*)2] =
 = E[(h(x*) – h(x*))2] +
 (h(x*) – f(x*))2 +
 E[(y* – f(x*))2]
 = Var(h(x*)) + Bias(h(x*))2 + E[ε2]
 = Var(h(x*)) + Bias(h(x*))2 + σ2

Expected prediction error = Variance + Bias2 + Noise2

Bias, Variance, and Noise

Variance: E[(h(x*) – h(x*))2]
Describes how much h(x*) varies from
one training set S to another
Bias: [h(x*) – f(x*)]

 Describes the average error of h(x*).
Noise: E[(y* – f(x*))2] = E[ε2] = σ2

 Describes how much y* varies from f(x*)

50 fits (20 examples each)

Bias

Variance

Noise

50 fits (20 examples each)

Distribution of predictions at
x=2.0

50 fits (20 examples each)

Distribution of predictions at
x=5.0

Measuring Bias and Variance

In practice (unlike in theory), we have
only ONE training set S.
We can simulate multiple training sets by
bootstrap replicates

S’ = {x | x is drawn at random with
 replacement from S} and |S’| = |S|.

Procedure for Measuring Bias
and Variance

Construct B bootstrap replicates of S
(e.g., B = 200): S1, …, SB
Apply learning algorithm to each
replicate Sb to obtain hypothesis hb
Let Tb = S \ Sb be the data points that do
not appear in Sb (out of bag points)
Compute predicted value hb(x) for each x
in Tb

Estimating Bias and Variance
(continued)

For each data point x, we will now have
the observed corresponding value y and
several predictions y1, …, yK.
Compute the average prediction h.
Estimate bias as (h – y)
Estimate variance as Σk (yk – h)2/(K – 1)
Assume noise is 0

Approximations in this
Procedure

Bootstrap replicates are not real data
We ignore the noise

If we have multiple data points with the
same x value, then we can estimate the
noise
We can also estimate noise by pooling y
values from nearby x values (another use
for Random Forest proximity measure?)

Bagging

Bagging constructs B bootstrap
replicates and their corresponding
hypotheses h1, …, hB

It makes predictions according to
y = Σb hb(x) / B

Hence, bagging’s predictions are h(x)

Estimated Bias and Variance of
Bagging

If we estimate bias and variance using the
same B bootstrap samples, we will have:

Bias = (h – y) [same as before]
Variance = Σk (h – h)2/(K – 1) = 0

Hence, according to this approximate way of
estimating variance, bagging removes the
variance while leaving bias unchanged.
In reality, bagging only reduces variance and
tends to slightly increase bias

Bias/Variance Heuristics

Models that fit the data poorly have high bias:
“inflexible models” such as linear regression,
regression stumps
Models that can fit the data very well have low
bias but high variance: “flexible” models such
as nearest neighbor regression, regression
trees
This suggests that bagging of a flexible model
can reduce the variance while benefiting from
the low bias

Bias-Variance Decomposition
for Classification

Can we extend the bias-variance
decomposition to classification problems?
Several extensions have been proposed; we
will study the extension due to Pedro
Domingos (2000a; 2000b)
Domingos developed a unified decomposition
that covers both regression and classification

Classification Problems

Data points are generated by yi = n(f(xi)),
where

f(xi) is the true class label of xi
n(¢) is a noise process that may change the true
label f(xi).

Given a training set {(x1, y1), …, (xm, ym)}, our
learning algorithm produces an hypothesis h.
Let y* = n(f(x*)) be the observed label of a new
data point x*. h(x*) is the predicted label. The
error (“loss”) is defined as L(h(x*), y*)

Loss Functions for
Classification

The usual loss function is 0/1 loss. L(y’,y)
is 0 if y’ = y and 1 otherwise.
Our goal is to decompose Ep[L(h(x*), y*)]
into bias, variance, and noise terms

Discrete Equivalent of the Mean:
The Main Prediction

As before, we imagine that our observed
training set S was drawn from some population
according to P(S)
Define the main prediction to be
 ym(x*) = argminy’ EP[L(y’, h(x*))]

For 0/1 loss, the main prediction is the most
common vote of h(x*) (taken over all training
sets S weighted according to P(S))
For squared error, the main prediction is h(x*)

Bias, Variance, Noise

Bias B(x*) = L(ym, f(x*))
This is the loss of the main prediction with respect
to the true label of x*

Variance V(x*) = E[L(h(x*), ym)]
This is the expected loss of h(x*) relative to the
main prediction

Noise N(x*) = E[L(y*, f(x*))]
This is the expected loss of the noisy observed
value y* relative to the true label of x*

Squared Error Loss

These definitions give us the results we
have already derived for squared error
loss L(y’,y) = (y’ – y)2

Main prediction ym = h(x*)
Bias2: L(h(x*), f(x*)) = (h(x*) – f(x*))2

Variance:
 E[L(h(x*), h(x*))] = E[(h(x*) – h(x*))2]

Noise: E[L(y*, f(x*))] = E[(y* – f(x*))2]

0/1 Loss for 2 classes

There are three components that
determine whether y* = h(x*)

Noise: y* = f(x*)?
Bias: f(x*) = ym?
Variance: ym = h(x*)?

Bias is either 0 or 1, because neither f(x*)
nor ym are random variables

Case Analysis of Error
f(x*) = ym?

ym = h(x*)?

y* = f(x*)?

correct error
[variance]

yes

yes no [bias]

y* = f(x*)?

error
[noise]

correct
[noise

cancels
variance]

ym = h(x*)?

y* = f(x*)?

error
[bias]

correct
[variance
cancels

bias]

yes no [variance]

y* = f(x*)?

correct
[noise

cancels
bias]

error
[noise

cancels
variance
cancels

bias]

yes no [noise] yes no [noise] yes no [noise] yes no [noise]

no [variance]

Unbiased case

Let P(y* ≠ f(x*)) = N(x*) = τ
Let P(ym ≠ h(x*)) = V(x*) = σ
If (f(x*) = ym), then we suffer a loss if
exactly one of these events occurs:
L(h(x*), y*) = τ(1-σ) + σ(1-τ)

 = τ + σ – 2τσ
 = N(x*) + V(x*) – 2 N(x*) V(x*)

Biased Case

Let P(y* ≠ f(x*)) = N(x*) = τ
Let P(ym ≠ h(x*)) = V(x*) = σ
If (f(x*) ≠ ym), then we suffer a loss if either both
or neither of these events occurs:

L(h(x*), y*) = τσ + (1–σ)(1–τ)
 = 1 – (τ + σ – 2τσ)
 = B(x*) – [N(x*) + V(x*) – 2 N(x*) V(x*)]

Decomposition for 0/1 Loss
(2 classes)

We do not get a simple additive decomposition
in the 0/1 loss case:

 E[L(h(x*), y*)] =
 if B(x*) = 1: B(x*) – [N(x*) + V(x*) – 2 N(x*) V(x*)]
 if B(x*) = 0: B(x*) + [N(x*) + V(x*) – 2 N(x*) V(x*)]

In biased case, noise and variance reduce
error; in unbiased case, noise and variance
increase error

Summary of 0/1 Loss

A good classifier will have low bias, in
which case the expected loss will
approximately equal the variance
The interaction terms will usually be
small, because both noise and variance
will usually be < 0.2, so the interaction
term 2 V(x*) N(x*) will be < 0.08

0/1 Decomposition in Practice

In the noise-free case:
 E[L(h(x*), y*)] =

 if B(x*) = 1: B(x*) – V(x*)
 if B(x*) = 0: B(x*) + V(x*)

It is usually hard to estimate N(x*), so we
will use this formula

Decomposition over an entire
data set

Given a set of test points
T = {(x*1,y*1),…, (x*n,y*n)},

we want to decompose the average loss:
L = Σi E[L(h(x*i), y*i)] / n

We will write it as
L = B + Vu – Vb

where B is the average bias, Vu is the average
unbiased variance, and Vb is the average
biased variance (We ignore the noise.)
Vu – Vb will be called “net variance”

Experimental Studies of Bias
and Variance

Artificial data: Can generate multiple
training sets S and measure bias and
variance directly
Benchmark data sets: Generate
bootstrap replicates and measure bias
and variance on separate test set

Algorithms to Study

K-nearest neighbors: What is the effect
of K?
Decision trees: What is the effect of
pruning?
Support Vector Machines: What is the
effect of kernel width σ?

K-nearest neighbor
(Domingos, 2000)

Chess (left): Increasing K primarily reduces Vu
Audiology (right): Increasing K primarily
increases B.

Size of Decision Trees

Glass (left), Primary tumor (right): deeper
trees have lower B, higher Vu

Example: 200 linear SVMs
(training sets of size 20)

Error: 13.7%

Bias: 11.7%

Vu: 5.2%

Vb: 3.2%

Example: 200 RBF SVMs
σ = 5

Error: 15.0%

Bias: 5.8%

Vu: 11.5%

Vb: 2.3%

Example: 200 RBF SVMs
σ = 50

Error: 14.9%

Bias: 10.1%

Vu: 7.8%

Vb: 3.0%

SVM Bias and Variance

Bias-Variance tradeoff controlled by σ
Biased classifier (linear SVM) gives
better results than a classifier that can
represent the true decision boundary!

B/V Analysis of Bagging

Under the bootstrap assumption,
bagging reduces only variance

Removing Vu reduces the error rate
Removing Vb increases the error rate

Therefore, bagging should be applied to
low-bias classifiers, because then Vb will
be small
Reality is more complex!

Bagging Nearest Neighbor

Bagging first-nearest
neighbor is equivalent
(in the limit) to a
weighted majority vote
in which the k-th
neighbor receives a
weight of

exp(-(k-1)) – exp(-k)

Since the first nearest neighbor gets more than half of the vote, it will
always win this vote. Therefore, Bagging 1-NN is equivalent to 1-NN.

Bagging Decision Trees

Consider unpruned trees of depth 2 on
the Glass data set. In this case, the error
is almost entirely due to bias
Perform 30-fold bagging (replicated 50
times; 10-fold cross-validation)
What will happen?

Bagging Primarily Reduces
Bias!

Questions

Is this due to the failure of the bootstrap
assumption in bagging?
Is this due to the failure of the bootstrap
assumption in estimating bias and
variance?
Should we also think of Bagging as a
simple additive model that expands the
range of representable classifiers?

Bagging Large Trees?

Now consider unpruned trees of depth
10 on the Glass dataset. In this case,
the trees have much lower bias.
What will happen?

Answer: Bagging Primarily
Reduces Variance

Bagging of SVMs

We will choose a low-bias, high-variance
SVM to bag: RBF SVM with σ=5

RBF SVMs again: σ = 5

Effect of 30-fold Bagging:
Variance is Reduced

Effects of 30-fold Bagging

Vu is decreased by 0.010; Vb is
unchanged
Bias is increased by 0.005
Error is reduced by 0.005

Bias-Variance Analysis of
Boosting

Boosting seeks to find a weighted
combination of classifiers that fits the
data well
Prediction: Boosting will primarily act to
reduce bias

Boosting DNA splice (left) and
Audiology (right)

Early iterations reduce bias. Later iterations also
reduce variance

Review and Conclusions

For regression problems (squared error loss),
the expected error rate can be decomposed
into

Bias(x*)2 + Variance(x*) + Noise(x*)
For classification problems (0/1 loss), the
expected error rate depends on whether bias
is present:

if B(x*) = 1: B(x*) – [V(x*) + N(x*) – 2 V(x*) N(x*)]
if B(x*) = 0: B(x*) + [V(x*) + N(x*) – 2 V(x*) N(x*)]
or B(x*) + Vu(x*) – Vb(x*) [ignoring noise]

Sources of Bias and Variance

Bias arises when the classifier cannot
represent the true function – that is, the
classifier underfits the data
Variance arises when the classifier
overfits the data
There is often a tradeoff between bias
and variance

Effect of Algorithm Parameters
on Bias and Variance

k-nearest neighbor: increasing k
typically increases bias and reduces
variance
decision trees of depth D: increasing D
typically increases variance and reduces
bias
RBF SVM with parameter σ: increasing σ
increases bias and reduces variance

Effect of Bagging

If the bootstrap replicate approximation
were correct, then bagging would reduce
variance without changing bias
In practice, bagging can reduce both bias
and variance

For high-bias classifiers, it can reduce bias
(but may increase Vu)
For high-variance classifiers, it can reduce
variance

Effect of Boosting

In the early iterations, boosting is primary
a bias-reducing method
In later iterations, it appears to be
primarily a variance-reducing method
(see end of Breiman’s Random Forest
paper)

