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Bias-Variance Analysis In
Regression

¢ True functionis y = f(x) + ¢
= Where ¢ is normally distributed with zero
mean and standard deviation ©.
¢ Given a set of training examples, {(x;, Yy:)},
we fit an hypothesis h(x)=w ¢ x+b to
the data to minimize the squared error

% [y; — h(x)]?




Example: 20 points
y =X+ 2 sin(1.5x) + N(0,0.2)




50 fits (20 examples each)




Bias-Variance Analysis

+ Now, given a new data point x* (with
observed value y* = f(x*) + ¢€), we would
like to understand the expected
prediction error

E[ (y* —h(x*))]




Classical Statistical Analysis

¢ Imagine that our particular training
sample S is drawn from some population
of possible training samples according to
P(S).

» Compute Ep [ (y* - h(x*))?]

¢+ Decompose this into “bias”, “variance’,
and “noise”




Lemma

¢ Let Z be a random variable with probability
distribution P(Z)

* Let Z=Ep[ Z] be the average value of Z.
¢ Lemma: E[(Z-2)?] = E[Z?] - Z2
E[(Z-2)°]=E[22-22ZZ + Z7]
=E[Z°] -2 E[Z] Z+ Z7
=E[Z7]-22Z2+ Z7
= E[Z4] — Z2
¢ Corollary: E[Z4] =E[ (Z-2)?] + Z2




Bias-Variance-Noise
Decomposition

E[ (h(x*) —y*)? ] = E[ h(x*)? = 2 h(x*) y* + y*? ]
= E[ h(x*)*] =2 E[ h(x*) ] E[y*] + E[y*“]
= E[ (h(x*) = h(x*))? ] + h(x*)>  (lemma)
— 2 h(x®) f(x)
+ E[ (y" = f(x*))2 ]+ f(x*)? (lemma)
= E[ (h(x*) = h(x*))2 ] + [variance]
(h(x*) — f(x*))2 + [bias?]
E[ (y* — f(x*))?] [noise]




Derivation (continued)

E[ (h(x*) —y*)*]=
= E[ (h(x*) — h(x"))* ] +
(h(x*) — f(x*))* +
E[ (y*— f(x*))*]
= Var(h(x*)) + Bias(h(x*))? + E[ €2 ]
= Var(h(x*)) + Bias(h(x*))? + o2
Expected prediction error = Variance + Bias2 + Noise?




Bias, Variance, and Noise

+ Variance: E[ (h(x*) = h(x*))? ]

Describes how much h(x*) varies from
one training set S to another

¢ Bias: [h(x*) — f(x*)]
Describes the average error of h(x*).

+ Noise: E[ (y* — f(x*))2 ] = E[e?] = 62
Describes how much y* varies from f(x*)




50 fits (20 examples each)




true function




Variance







50 fits (20 examples each)




Distribution of predictions at
x=2.0




50 fits (20 examples each)




Distribution of predictions at
x=5.0

variance of predictions r,r’

true value




Measuring Bias and Variance

¢+ |n practice (unlike in theory), we have
only ONE training set S.

* \We can simulate multiple training sets by
bootstrap replicates

« S ={x | xis drawn at random with
replacement from S} and |S’| = |S].




Procedure for Measuring Bias
and Variance

* Construct B bootstrap replicates of S
(e.g., B=200):S,, ..., Sg

* Apply learning algorithm to each
replicate S, to obtain hypothesis h,

¢ Let T, =S\ S, be the data points that do
not appear in S, (out of bag points)

¢+ Compute predicted value h,(x) for each x
in T,




Estimating Bias and Variance
(continued)

* For each data point x, we will now have
the observed corresponding value y and
several predictions y,, ..., Y.

¢+ Compute the average prediction h.

¢ Estimate bias as (h—vy)

¢ Estimate variance as X, (y, — h)%/(K - 1)
+ Assume noise is 0




Approximations in this
Procedure

* Bootstrap replicates are not real data

+ \We ignore the noise

= [f we have multiple data points with the
same x value, then we can estimate the
noise

= \We can also estimate noise by pooling y
values from nearby x values (another use
for Random Forest proximity measure?)




Bagging

¢ Bagging constructs B bootstrap
replicates and their corresponding
hypotheses h,, ..., hg

+ |t makes predictions according to
y=2 h,(x)/B
* Hence, bagging’s predictions are h(x)




Estimated Bias and Variance of
Bagging

+ |If we estimate bias and variance using the
same B bootstrap samples, we will have:
» Bias=(h—-y) [same as before]
» Variance =%, (h—h)?/(K-1)=0

+ Hence, according to this approximate way of

estimating variance, bagging removes the
variance while leaving bias unchanged.

+ In reality, bagging only reduces variance and
tends to slightly increase bias




Bias/VVariance Heuristics

+ Models that fit the data poorly have high bias:
“Inflexible models” such as linear regression,
regression stumps

+ Models that can fit the data very well have low
bias but high variance: “flexible” models such
as nearest neighbor regression, regression
trees

+ This suggests that bagging of a flexible model
can reduce the variance while benefiting from
the low bias




Bias-Variance Decomposition
for Classification

+ Can we extend the bias-variance
decomposition to classification problems?

+ Several extensions have been proposed; we
will study the extension due to Pedro
Domingos (2000a; 2000b)

+ Domingos developed a unified decomposition
that covers both regression and classification




Classification Problems

¢ Data points are generated by y, = n(f(x;)),
where
» f(X) Is the true class label of x
» N(¢) is a noise process that may change the true
label f(x).
¢ Given a training set {(X4, Y1), .-+, (Xi,, Yi)}, OUr
learning algorithm produces an hypothesis h.

* Let y* = n(f(x*)) be the observed label of a new
data point x*. h(x*) is the predicted label. The
error (“loss”) is defined as L(h(x*), y*)




Loss Functions for
Classification

¢ The usual loss function is 0/1 loss. L(y',y)
is O if y’ =y and 1 otherwise.

* Our goal is to decompose E [L(h(x¥), y*)]
Into bias, variance, and noise terms




Discrete Equivalent of the Mean:
The Main Prediction

+ As before, we imagine that our observed
training set S was drawn from some population
according to P(S)

+ Define the main prediction to be
Ym(X") = argminy, Ep[ L(y’, h(x%)) ]
¢ For 0/1 loss, the main prediction is the most

common vote of h(x*) (taken over all training
sets S weighted according to P(S))

+ For squared error, the main prediction is h(x*)




Bias, Variance, Noise

+ Bias B(x*) = L(y™, f(x*))
= This is the loss of the main prediction with respect
to the true label of x*

+ Variance V(x*) = E[ L(h(x*), yM) ]

= This is the expected loss of h(x*) relative to the
main prediction

+ Noise N(x*) = E[ L(y*, f(x*))]

= This is the expected loss of the noisy observed
value y* relative to the true label of x*




Squared Error Loss

¢ These definitions give us the results we
have already derived for squared error

loss L(y.y) = (Y —y)?
= Main prediction y™ = h(x*
= Bias?: L(h(x*), f(x*)) = (h(x*) — f(x*))
= Variance:
E[ L(h(x*), h(x*)) ] = E[ (h(x*) — h(x*))* ]
= Noise: E[ L(y*, f(x*))] = E[ (y* — f(x*))?]




O/1 Loss for 2 classes

¢ There are three components that
determine whether y* = h(x*)

= Noise: y* = f(x*)?
= Bias: f(x*) =ym?
= Variance: y™ = h(x*)?
+ Bias is either 0 or 1, because neither f(x*)
nor y™ are random variables




Case Analysis of Error

f(x*) = ym?

W

y™ =h(x*)? y™ =h(x*)?

no [variance] yes no [variance]

y* = f(x)?

no [noise] yes no [noise] no [noise]

correct  error error correct error  correct correct error
[noise] [variance] [noise [bias] [noise [variance [noise
cancels cancels cancels cancels
variance] bias] bias] variance
cancels
bias]




Unbiased case

* Let P(y* # (X)) = N(X*) =7
e et P(y"#h(x*))=V(X*) =0
¢ |f (f(x*) = y™), then we suffer a loss if
exactly one of these events occurs:
L(h(x®), y*) = ©(1-0) + o(1-1)
=1+ G0 — 210
= N(x*) + V(x*) — 2 N(x*) V(x*)




Biased Case

_et P(y™* # f(x™)) = N(X*) =1

_et P(y™ # h(x*)) =V(X*) =0

f (f(x™) #ym), then we suffer a loss if either both
or neither of these events occurs:

L(h(x*), y*) = 0 + (1-0)(1-1)

=1-(t+0-210)

= B(x*) — [N(x*) + V(x*) — 2 N(x*) V(x*)]




Decomposition for 0/1 Loss
(2 classes)

+ \We do not get a simple additive decomposition
iIn the 0/1 loss case:
E[ L(h(X®), y*) ] =
if B(x*) = 1: B(x*) — [N(x*) + V(x*) — 2 N(x*) V(x*)]
if B(x*) = 0: B(x*) + [N(x*) + V(x*) — 2 N(x*) V(x*)]
+ |n biased case, noise and variance reduce

error; In unbiased case, noise and variance
Increase error




Summary of 0/1 Loss

* A good classifier will have low bias, In
which case the expected loss will
approximately equal the variance

* The interaction terms will usually be
small, because both noise and variance
will usually be < 0.2, so the interaction
term 2 V(x*) N(x*) will be < 0.08




0/1 Decomposition in Practice

¢+ In the noise-free case:
E[ L(h(X®), y*) ] =
if B(x*) =1: B(x*) - V(x")
if B(x*) = 0: B(x*) + V(x¥)
¢ |t is usually hard to estimate N(x*), so we
will use this formula




Decomposition over an entire
data set

+ Given a set of test points
T= {(X*1’y*1)’---’ (X*nvy*n)}v
we want to decompose the average loss:
L =% E[ L(h(x*), y*) 1/ n
+ We will write it as
L=B+Vu-Vb

where B is the average bias, Vu is the average
unbiased variance, and Vb is the average
biased variance (We ignore the noise.)

+ Vu — Vb will be called “net variance”




Experimental Studies of Bias
and Variance

+ Artificial data: Can generate multiple
training sets S and measure bias and
variance directly

¢+ Benchmark data sets: Generate
bootstrap replicates and measure bias
and variance on separate test set




Algorithms to Study

+ K-nearest neighbors: What is the effect
of K?

¢ Decision trees: What is the effect of
pruning?

* Support Vector Machines: What is the
effect of kernel width c?




K-nearest neighbor
(Domingos, 2000)

¢ Chess (left): Increasing K primarily reduces Vu

+ Audiology (right): Increasing K primarily
Increases B.




Size of Decision Trees
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¢+ Glass (left), Primary tumor (right): deeper
trees have lower B, higher Vu




Example: 200 linear SVMs
(training sets of size 20)

Error: 13.7%
Bias: 11.7%
—— Vu: 5.2%
—— Vb: 3.2%




Example: 200 RBF SVMs
G=95

Error: 15.0%
Bias: 5.8%
Vu: 11.5%
Vb: 2.3%

True boundary
Bias =1 + .

varll = 0.3 #*




Example: 200 RBF SVMs
c =30

Error: 14.9%
Bias: 10.1%
—— Vu: 7.8%
—— Vb: 3.0%




SVM Bias and Variance

Error Bias Vary Varg Net var Tot var
linear 0.137 0.117 0.052 0.032 0.020 0.084
rbf o =5 0.150 0.058 0.115 0.023 0.092 0.137
rbf o =50 0.149 0.101 0.078 0.030 0.048 0.109

+ Bias-Variance tradeoff controlled by &

+ Biased classifier (linear SVM) gives
better results than a classifier that can
represent the true decision boundary!




B/V Analysis of Bagging

+ Under the bootstrap assumption,
bagging reduces only variance

= Removing Vu reduces the error rate
= Removing Vb increases the error rate

* Therefore, bagging should be applied to
low-bias classifiers, because then Vb will
be small

¢ Reality is more complex!




Bagging Nearest Neighbor

Bagging first-nearest
neighbor is equivalent
(in the limit) to a
weighted majority vote
In which the k-th
neighbor receives a
weight of

exp(-(k-1)) — exp(-k)

Neighbor Rank

Since the first nearest neighbor gets more than half of the vote, it will
always win this vote. Therefore, Bagging 1-NN is equivalent to 1-NN.




Bagging Decision Trees

¢ Consider unpruned trees of depth 2 on
the Glass data set. In this case, the error
IS almost entirely due to bias

+ Perform 30-fold bagging (replicated 50
times; 10-fold cross-validation)

+ \What will happen?




Bagging Primarily Reduces
Bias!

Effect of Bagging for Depth=2
\ Mean Error
Bias

L\q Vu Unbiased Variance
Vb Biased Variance,

bagged-c4




Questions

¢+ |s this due to the failure of the bootstrap
assumption in bagging?
¢ |s this due to the failure of the bootstrap

assumption in estimating bias and
variance?

+ Should we also think of Bagging as a
simple additive model that expands the
range of representable classifiers?




Bagging Large Trees?

* Now consider unpruned trees of depth
10 on the Glass dataset. In this case,
the trees have much lower bias.

* \What will happen?




Answer: Bagging Primarily
Reduces Variance

Effect of Bagging for Depth=10

Mean Error
~— Bias

Vu Unbiased Varjance

——=® \/b Biased Variarce

bagged-c4




Bagging of SVMs

+ \We will choose a low-bias, high-variance
SVM to bag: RBF SVM with 6=5




RBF SVMs again: 6 =5

True boundary
Bias =1

varld = 0.3




Effect of 30-fold Bagging:
Variance is Reduced




Effects of 30-fold Bagging

Error Bias Vary Varg Net var Tot var
rhf ¢ =5 0.150 0.058 0.115 0.023 0.092 0.137
bagged rbf o =5 0.145 0.063 0.105 0.023 0.082 0.128

* \Vu is decreased by 0.010; Vb is
unchanged

¢ Bias is increased by 0.005
¢ Error is reduced by 0.005




Bias-Variance Analysis of
Boosting

+ Boosting seeks to find a weighted
combination of classifiers that fits the
data well

* Prediction: Boosting will primarily act to
reduce bias




Boosting DNA splice (left) and
Audiology (right)
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Early iterations reduce bias. Later iterations also
reduce variance




Review and Conclusions

* For regression problems (squared error loss),
the expected error rate can be decomposed
Into

» Bias(x*)? + Variance(x*) + Noise(x*)

* For classification problems (0/1 loss), the
expected error rate depends on whether bias
IS present:

a if B(x*) = 1: B(x*) — [V(X*) + N(x*) — 2 V(x*) N(x*)]
= if B(x*) = 0: B(x*) + [V(x*) + N(x*) — 2 V(x*) N(x*)]
s Or B(x*) + Vu(x*) — Vb(x*) [ignoring noise]




Sources of Bias and Variance

+ Bias arises when the classifier cannot
represent the true function — that is, the
classifier underfits the data

+ VVariance arises when the classifier
overfits the data

¢ There Is often a tradeoff between bias
and variance




Effect of Algorithm Parameters
on Bias and Variance

¢ k-nearest neighbor: increasing k
typically increases bias and reduces
variance

¢ decision trees of depth D: increasing D
typically increases variance and reduces
bias

¢+ RBF SVM with parameter c: increasing ¢
increases bias and reduces variance




Effect of Bagging

+ |f the bootstrap replicate approximation
were correct, then bagging would reduce
variance without changing bias

¢ |n practice, bagging can reduce both bias
and variance

= For high-bias classifiers, it can reduce bias
(but may increase Vu)

= For high-variance classifiers, it can reduce
variance




Effect of Boosting

¢ |n the early iterations, boosting is primary
a bias-reducing method

+ |n later iterations, it appears to be
primarily a variance-reducing method
(see end of Breiman's Random Forest

paper)




