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Outline

1.  What is RF?

2.  Properties as a classification machine.

a)  excellent accuracy

b) scales up

b) handles
 thousands of variables

        many valued categoricals (v.4.0)
 extensive missing values (v4.0)
 badly unbalanced data sets (v4.0)

c)  gives internal unbiased estimate of
test set error as trees are added to 
ensemble

d) cannot overfit

2)  facilities for looking inside the black box

a) variable importance

b) outlier detection

c) data views via scaling

d)  application to unsupervised data
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What is RF?= Random Forests

A random forest (RF) is a collection of tree predictors

f (x,T,Θk ), k =1,2,..., K )

where the Θk are i.i.d random vectors.

The forest prediction is the unweighted plurality
of class votes  The LLN insures convergence  as
k→∞ and the test set error rates (modulo a little
noise) are monotonically decreasing.

The key to accuracy is low correlation and bias.
To keep bias low, trees are grown to maximum
depth.  To keep correlation low, the current
version uses this randomization.

1)  Each tree is grown on a bootstrap sample of
the training set.

2)  A number m is specified much smaller than
the total number of variables M.  At each node,
m variables are selected at random out of the M,
and the split is the best split on these m variables

The only adjustable parameter in RF is m.  The
default value for m is M .  But RF is not sensitive
to the value of m over a wide range.
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Two Key Byproducts

The out-of-bag test set

For every tree grown, about one-third of the
cases are out-of-bag (out of the bootstrap
sample).  Called oob.

The oob samples can serve as a test set for the
tree grown on the non-oob data.  This is used to:

i) Form unbiased estimates of the forest test set
error as the trees are added.

2) Form estimates of variable importance.

The node proximities

Since the trees are grown to maximum depth, the
terminal nodes are small.  For each tree grown,
pour all the data down the tree.  If two data
points xn and xk  occupy the same terminal node,
then increase prox(xn ,xk ) by one.

At the end of forest growing, these proximities,
divided by the number of trees, form an intrinsic
similarity measure between pairs of data vectors.
This is used to:

1)  Estimate missing values.
2)  Give informative data views via metric scaling.
3)  Locate outliers.
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Properties as a classification machine.

a)  excellent accuracy

b)  scales up
\

c)  handles
 thousands of variables

        many valued categoricals (v.4.0)
 extensive missing values (v4.0)
 badly unbalanced data sets (v4.0)

d)  gives internal unbiased estimate of
test set error as trees are added to 
ensemble

e) cannot overfit (already discussed)
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Accuracy

My paper:  Random Forests , Machine
Learning(2001)  45  5-320 gives comparisons:

The test set accuracy of RF is compared to
Adaboost on a number of benchmark data sets.
RF is slightly better.  Adaboost is very sensitive
to noise in the labels.  RF is not.

Compared to SVMs:

RF is not as accurate as SVMs on pixel image
data.

It is superior in document classification.

On benchmark data sets commonly used in
Machine Learning the SVM results I have seen
show error rates comparable to RF.

Based on my present knowledge, RF is
competitive in accuracy with the best classification
algorithms that are out there now.
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Scaling up to Large Data Sets

The analysis of RF shows that it's compute time is

cNT M N log(N)

NT  = number of trees
M   = number of variables
N    = number of instances

The constant was estimated with a run on a data
set with 15,000 instances and 16 variables.

Using this value leads to the estimate that to
grow a forest of 100 trees for a data set with
100,000 instances and 1000 variables
would take three hours on my 800Mhz machine.

Parallelizing is Trivial

Each tree is grown independently of the
outcomes of the other trees grown.  If each of J
processors is given the job of growing K trees,
there is no need for interprocessor
communication until all have finished their runs
and the results are aggregated.
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Number of Variables

RF has been run on genetic data with thousands
of variables and no variable selection and given
excellent results.

But there are limits.  If the number of noisy
variables becomes too large, variable selection will
have to be used.

But the threshold for RF is much higher than for
non-ensemble methods.
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Handling Categorical Variables

Handling categorical values has always been
difficult in many classification algorithms.

For instance, given a categorical variable with
20,000 values, how is it to be dealt with? A
customary way is to code it into 20000 0-1,
variables, a nasty procedure which substitutes
20,000 variables for one.

This occurs in practice--in document
classification, one of the variables may be a list of
20,000 words.

RFD handles categorical in the efficient way that
CART does--with a fast O(N) algorithm to find
the best split of the categoricals at each node.

T
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Replacing Missing Values

RF has two ways of replacing missing values.

The Cheap Way

Replace every missing value in the mth
coordinate by the median of the non-missing
values of that coordinate or by the most frequent
value if it is categorical.

The Right Way

This is an iterative process.  If the mth coordinate
in instance xn is missing then it is estimated by a
weighted average over the instances xk  with
non-missing mth coordinate where the weight is
prox(xn ,xk ).

The replaced values are used in the next iteration
of the forest which computes new proximities.

The process it automatically stopped when no
more improvement is possible or when five
iterations are reached.
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An Example

The training set for the satellite data has 4434
instances, 36 variables and 6 classes.  A test set is
available with 2000 instances.

With 200 trees in the forest, the test set error is
9.8%   Then 20%, 40%, 60% and 80% of the data
were deleted as missing (randomly).  Both the
cheap fix and the right fix were applied, and the
test error computed.

Test Set Error (%)

Missing %  20%       40% 60% 80%

cheap  11.8 13.4 15.7 20.7
right  10.7 11.3 12.5 13.5

It's surprising that with 80% missing data the
error rate only rises from 9.8% to 13.5%

I've gotten similar results on other data sets.
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Unbalanced Data Sets

A data set is unbalanced if one or more classes--
often the classes of interest, are severely
underrepresented.  This occurs in QSAR data,
document classification,  and in genetics data.

The algorithm for the  3 class, 21 variable, wave
form data was altered to produce both an
unbalanced training and test set.  The class
populations numbers are:

training: 1002 1006 51
test 1521 1404 75

 In RF the user can set targets for the relative
error rate of each class.  Setting 1,1,1, means
make all the error rates equal.  This is the output
of a run with this setting:

 oob error: 32.5 32.4 31.4
test set error 31.3 30.3 38.7

The other way is to set a capture rate for the
target class.  Setting it at 90% for class 3 gives
these results.

    capture%     %true 3    % false 3
oob 90.2 18.3 87.8
test set 92.0 23.7 90.3
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The OOB Test Set Error  Estimate

For every tree grown, about one-third of the
cases are oob (out-of-bag --out of the bootstrap
sample).

Put these oob cases down the corresponding tree
and get a predicted classification for them.

For each case n, pluralize the predicted
classification over all the trees that n was oob to
get a test set estimate ŷn for yn.

Averaging the loss over all n give the oob test set
estimate of prediction error.

Runs on many data sets have shown it to be
unbiased with error on the order of using a test
set of the same size as the training set.

It is computed at user set intervals in the forest
construction process and outputted to the
monitor.
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   Science Uses Data To Explore Problems.

Think of the data as being generated by a black
box .

A vector of  input variables  x (independent
variables) go into one side.

Response variables y come out on the other side.

All we see are a sample of data

(yn ,xn ) n =1,..., N )

From this, scientists want to draw conclusions about
the mechanism operating inside the black box.

Two important principle:

1) The inferences made about the inside of the black
box come from the model(algorithm) you use to fit the
data--and not from nature

2) The better the model fits the data, the more sound
the inferences about the black box are.
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Criterion for How Well the Model Fits

Suppose there is a model f (x)that outputs an
estimate ŷ of the true y for each value of x .

Then a measure of how well f fits the data is
given by how close ŷ is to y.  This can be
measured as follows: given an independent test
set

(y' n ,x' n ) n =1,..., N' )

and a loss function L(y,ŷ) , define the estimated
prediction error as

PE = avn.' L(yn
' , f (xn'

' ))

If there is no test set, use cross-validation to
estimate PE.

The lower the PE, the better the fit to the data
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Information From Our  Black Box

Nature forms the outputs y from the inputs x by
means of a black box with complex and unknown
interior.

                    y   x              nature

Current most accurate prediction methods are also
complex black boxes.

              y     x
    neural nets
    forests
    support vectors

Two black boxes, of which ours seems only slightly
less inscrutable than nature's.

My biostatisticians friends tell me, "Doctors can
interpret logistic regression."  There is no way they
can interpret a black box containing fifty trees hooked
together.  In a choice between accuracy and
interpretability, they'll go for interpretability. "
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Accuracy vs. Interpretability

Framing the question as the choice between accuracy
and interpretability is an incorrect interpretation of
what the goal of a statistical analysis is.

The point of a model is to get useful information about
the relation between the response and predictor
variables.

Interpretability is a way of getting information.

But a model does not have to be simple to provide
reliable information about the relation between
predictor and response variables.

• The goal is not interpretability, but accurate 
   information

RF can supply more and better information about the
inside of the black box than any current
"interpretable" models.

This will be illustrated by examples.
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 Tools for Black Box Inspection

i)  Estimating variable importance

i.e. which variables are instrumental in the 
      classification.

i)   Data views via proximities and metric scaling.

iii)  Outlier detection via proximities

iv)  A device that makes  i)-iii) applicable to 
unlabeled data
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Variable Importance.

Because of the need to know which variables are
important in the classification, RF has three
different ways of looking at variable importance.

 Sometimes influential variables are hard to spot--
using these three measures provides more
information.

Measure 1

To estimate the importance of the mth variable, in
the oob cases for the kth tree, randomly permute
all values of the mth variable

Put these altered oob  x-values down the tree
and get classifications.

Proceed as though computing a new internal
error rate.

The amount by which this new error exceeds the
original test set error is defined as the importance
of the mth variable.
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Measures 2 and 3

For the nth case in the data, its margin at the end
of a run is the proportion of votes for its true
class minus the maximum of the proportion of
votes for each of the other classes.

The 2nd measure of importance of the mth
variable is the average lowering of the margin
across all cases when the mth variable is
randomly permuted as in method 1.

The third measure is the count of how many
margins are lowered minus the number of
margins raised.

We illustrate the use of this information by some
examples.
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An Example--Hepatitis Data

Data:   survival or non survival of 155 hepatitis
patients with 19 covariates.

Analyzed by  Diaconis and Efron in 1983 Scientific
American.

The original Stanford Medical School analysis
concluded that the important variables were
numbers 6, 12, 14, 19.

Efron and Diaconis drew 500 bootstrap samples
from the original data set and used a similar
procedure, including logistic regression, to isolate
the important variables in each bootstrapped data
set.

 Their conclusion , "Of the four variables
originally selected not one was selected in more
than 60 percent of the samples.

Hence the variables identified in the original
analysis cannot be taken too seriously."
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       Logistic Regression Analysis

 Error rate for logistic regression  is 17.4%.

Variables importance is based on absolute values
of the coefficients of the variables divided by their
standard deviations.
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FIGURE 1  STANDARDIZED COEFFICIENTS-LOGISTIC REGRESSION

The conclusion is that variables 7 and 11 are the
most important covariates.  When logistic
regression is run using only these two variables,
the cross-validated error rate rises to  22.9% .
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       Analysis Using RF

The error rate is 12.3%--30% reduction from the
logistic regression error.  Variable importances
(measure 1) are graphed below:
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FIRURE 2 VARIABLE IMPORTANCE-RANDOM FOREST

Two variables are singled out--the 12th and the
17th  The test set error rates running 12 and 17
alone were  14.3% each.

Running both together did no better.  Virtually all
of the predictive capability is provided by a single
variable, either 12 or 17.  (they are highly
correlated)
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Remarks

There are 32 deaths and 123 survivors in the
hepatitis data set.  Calling everyone a survivor
gives a baseline error rate of 20.6%.

Logistic regression lowers this  to 17.4%.   It is not
extracting much useful information from the data,
which may explain its inability to find the
important variables.

Its weakness might have been unknown and the
variable importances accepted at face value if its
predictive accuracy is not evaluated.

The standard procedure when fitting data models
such as logistic regression  is to delete variables.

Diaconis and Efron (1983) state , "...statistical
experience suggests that it is unwise to fit a
model that depends on 19 variables with only 155
data points available."

RF  thrives on variables--the more the better.
There is no need for variable selection ,On a
sonar data set with 208 cases and 60 variables,
the RF error rate is 14%. Logistic Regression has
a 50% error rate.
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       Microarray Analysis

RF was run on a microarray lymphoma data set
with three classes, sample size of 81 and 4682
variables (genes) without any variable selection.
The error rate was  low (1.2%).

What was also interesting from a scientific
viewpoint  was an estimate of the importance of
each of the 4682 gene expressions.

RF was run and the measures of importance
computed.  Here are the results for the first
measure of importance.
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Next are the results for the second measure
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        Variable Importance Measure 2

The graphs show that measure 1 has the least
sensitivity, showing only one significant variable.

 Measure 2 has more, showing not only the
activity around the gene singled ol by measure 1
but also a secondary burst of activity higher up.

Measure 3 (not shown) has too much sensitivity,
fingering too many variables.
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Using The Proximity Measure To Cluster

bupa liver disorders

This is a two-class biomedical data set consisting
of six covariates, the last being alcohol
consumption per day.

The first  five attributes are the results of blood
tests thought to be related to liver functioning.
The 345 patients are classified into two classes by
the severity of their liver disorders.

What can we learn about this data?

The misclassification error rate is 28% in a Random
Forests run.

Variable Importance (method 1)
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FIGURE 2  VARIABLE IMPORTANCE-BUPA LIVER
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Clustering

Using the proximity measure outputted by RF,
there are two class #2 clusters.

In each of these clusters, the average of each
variable is computed and plotted:

Figure 3  Cluster Variable Averages

Something interesting emerges.  The class two
subjects consist of two distinct groups:

Those that have high scores on blood tests 3, 4,
and 5  Those that have low scores on those tests.

We will revisit this example below.
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        Scaling Coordinates

The proximities between instances k and n form a
matrix {prox(n,k)}.  The values 1-prox(n,k) are
squared distances in a high-dimensional Euclidean
space.

Then, there are  scaling coordinates which project
the data onto lower dimensional spaces while
trying to preserving the distances between them.

This is the projection of the liver data.
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Projecting the Microarray Data

The next example uses the microarray data.  With
4682 variables, it is difficult to see how to cluster
this data.  Using proximities and the first two
scaling coordinates gives this picture:
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Random forests misclassifies one case.  This case
is represented by the isolated point in the lower
left hand corner of the plot.
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Projecting the Glass Data

The third example is glass data with 214 cases, 9
variables and 6 classes.  This data set has been
extensively analyzed (see Pattern recognition and
Neural Networks-by B.D Ripley).

Here is a plot of the 2nd vs. the 1st scaling
coordinates.:
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Outlier Location

Outliers are defined as cases having small
proximities to all other cases.

Since the data in some classes is more spread ol
than others, outlyingness is defined only with
respect to other data in the same class as the
given case.

To define a measure of outlyingness,
we first compute, for a case n, the sum of the
squares of prox(n,k) for all k in the same class as
case n.

Take the inverse of this sum--it will be large if the
proximities prox(n,k) from n to the other cases k
in the same class  are generally small.  Denote this
quantity by ol(n).

For all n in the same class, compute the median of
the ol(n), and then the mean absolute deviation
from the median.

Subtract the median from each ol(n) and divide by
the deviation to give a normalized measure of
outlyingness.

The values less than zero are set to zero.
Generally, a value above 10 is reason to suspect
the case of being outlying.
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      Outlyingness In Micorarray Data

Here is a graph of outlyingness for the
microarray data
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There are two possible outliers--one is the first 
case in class 1,  the second is the first case in class
2.
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Outlyingness In Pima Indian Data

As second example, we plot the outlyingness for
the Pima Indians hepatitis data.  This data set has
768 cases, 8 variables and 2 classes.

It has been used often as an example in Machine
Learning research and is suspected of containing
a number of outliers.
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If 10 is used as a cutoff point, there are 12 cases 
suspected of being outliers.
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Analyzing Unlabeled Data

Using an interesting device, it is possible to turn
problems about the structure of unlabeled data
(i.e. clusters, etc.) into a classification context.

Unlabeled date consists of N vectors {x(n)} in M
dimensions.  These vectors are assigned class
label 1.

A synthetic set of N vectors is created and
assigned class label 2.

The second synthetic set is created by
independent sampling from the one-dimensional
marginal distributions of the original data.

If the value of the mth coordinate of the original
data  for the nth case is x(m,n), then a case in the
synthetic data is constructed as follows:

Its first coordinate is sampled at random from the
N  values x(1,n), its second coordinate is sampled
at random from the N values x(2,n), and so on.

Thus the synthetic data set can be considered to
have the distribution of M independent variables
where the distribution of the mth variable is the
same as the univariate distribution of the mth
variable in the original data.
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Run  RF

When this two class data is run through random
forests a high misclassification rate--say over 40%,
implies that there is not much dependence
structure in the original data.

That is, that its structure is largely that of M
independent variables--not a very interesting
distribution.

But if there is a strong dependence structure
between the variables in the original data, the
error rate will be low.

In this situation, the output of random forests can
be used to learn something about the structure of
the data.

Some examples follow:
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Examples

These are the unsupervised projection graphs for
the glass and microarray data.
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Challenge from Merck

Data supplied by Merck consists of the first 468
spectral intensities in the spectrums of 764
compounds.  The challenge presented by Merck
was to find small cohesive groups of outlying
cases in this data.

 Creating the 2nd synthetic class there was
excellent separation with an error rate of 0.5%,
indicating strong dependencies in the original
data.  We looked at outliers and generated this
plot.
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     Using Scaling

This plot gives no indication of outliers.  But
outliers must be fairly isolated  to show up in the
outlier display.

To search for outlying groups scaling coordinates
were computed.  The plot of the 2nd vs. the 1st is
below:

- . 2

- . 15

- . 1

- . 05

0

.05

.1

.15

.2

.25

2n
d 

sc
al

in
g 

co
or

di
na

te

- . 25 - . 2 - . 15 - . 1 - . 05 0 .05 .1 .15 .2 .25
1st scaling coordinate

Metric Scaling
Specta Data

his shows, first, that the spectra fall into two main
clusters. There is a possibility of a small outlying
group in the upper left hand corner.

To get another picture, the 3rd scaling coordinate
is plotted vs. the 1st.
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      Another Picture
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The group in question is now in the lower left
hand corner and its separation from the body of
the spectra has become more apparent.
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    To Summarize

i )  With any model fit to data, the information 
extracted is about the model--not nature.

ii)  The better the model emulates nature, the 
more reliable our information.

iii)  A prime criterion as to how good the 
emulation is the error rate  in predicting 
future outcomes.

iv) The most accurate current prediction 
algorithms can be applied to very high 
dimensional data, but are also complex.

v)  But a complex predictor can yield a wealth
of "interpretable" scientific information about
the prediction mechanism and the data.

CURTAIN!

Curtain Call:

Random Forests is free software.

www.stat.berkeley,edu/users/breiman
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