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Abstract. Quality assessment in clustering is a long-standing problem. In this
contribution we describe some indexes to measure properties of clusterings, tak-
ing advantage of the added flexibility provided by fuzzy paradigms. We first
present an approach to evaluate some indicators of quality of an individual clus-
tering, by analyzing the co-association matrix. Then we describe a technique to
evaluate the similarity of pairs of clusterings by comparing their respective co-
association matrices by means of generalizations of well-known indexes of parti-
tion comparisons. Finally, we illustrate how some indexes borrowed from spectral
graph theory can be used to evaluate clustering stability and diversity in ensem-
bles of several clusterings.

Possibilistic clustering, Clustering quality, Fuzzy clustering

1 Introduction

Quality assessment in clustering is a long-standing problem, mostly due to the fact that
clustering itself is not a well-defined problem.

Clusterings can be analyzed at several levels. An individual clustering can be as-
sessed to provide an evaluation of its quality. Clustering quality measures come in a lot
of varieties and flavors, as witnessed by the extensive literature available (see e.g. [18]
for a survey). For pairs of clusterings, indexes of similarity based on the co-association
matrix can be computed by several approaches [12,9,15]. Finally, when more than two
clusterings are to be considered as a whole, pairwise comparisons can be combined to
perform analyses on a wider scale [4,17].

When using fuzzy clustering models, it is possible to obtain a deeper insight in the
quality and features of a given clustering, pair of clusterings, or clustering ensemble. In
this contribution we describe some indexes to measure properties of clusterings, taking
advantage of this added flexibility. The approach borrows from spectral graph theory,
and is completely independent on the clustering model and on the data dimensionality.
After reviewing a family of fuzzy clustering methods (Section 2), we first present an
approach to evaluate some indicators of quality of an individual clustering, by analyz-
ing the co-association matrix (Section 3). Then we describe a technique to evaluate the
similarity of pairs of clusterings by comparing their respective co-association matrices
by means of generalizations of well-known indexes of partition comparisons (Section



4). Finally, we extend the approach to ensembles of fuzzy clusterings, to evaluate clus-
tering stability and diversity (Section 5). Some experimental results are then presented
(Section 6) and commented (Section 7).

2 Fuzzy clustering

This section reviews some specific centroid-based fuzzy clustering methods, on which
we based our present work. However, the techniques presented here do not use any
model-specific information, and they are generally applicable to any clustering method.

In general terms, a clustering is a set C = {X,Y, U} where X is a set of n data
items, Y is a set of c fuzzy sets (clusters), with c < n (usually c � n), and U is the
membership matrix relating X to Y , regarded as a set of n c-dimensional vectors ul.

2.1 Centroid-based fuzzy clustering

In the case of centroid-based fuzzy methods, X and Y are sets of d-vectors, and

yj =

∑n
l=1 uljxl∑n
m=1 umj

. (1)

Since the memberships ulj may be computed in different ways, the resulting cen-
troids are not necessarily the same for different methods. However, all methods consid-
ered here use the following generalized equation:

ulj = vlj/Zl, (2)

where vlj = e−||xl−yj ||/β , and Zl characterizes a given method.
By applying an entropic penalty, in the Maximum Entropy (ME) approach [14]

memberships are given by Eq. 2 with Zl =
∑c
l=1 e

ulj/β . These membership obey the
so-called “probabilistic constraint”,

∑c
j=1 ulj = 1 ∀l ∈ {1, . . . , n}.

The Possibilistic c-Means (PCM) [7,8] is based on removing any equality constraint
on the sum of memberships. This is replaced by a set of inequalities:

ulj ∈ [0, 1] ∀l ∀j 0 <
∑n
l=1 ulj < n∀j ∀l ∃j : ulj > 0 (3)

which imply that no cluster be empty and that each pattern be assigned to at least one
cluster. The interpretation of memberships is as “typicalities”. We focus on the second
formulation of the method [8], where the entropy of clusters is also considered, yielding:

ulj = e−ulj/βj . (4)

The parameters βj can be individually set for each cluster or considered as a global
property, as in the ME approach; in this case we can set a single value β for all the βj .
This corresponds to Eq. 2 if Zl = 1 ∀l.



2.2 The graded possibilistic model and clustering method

The graded possibilistic membership model presented in [11] assumes that events may
be independent to a certain degree, but not completely. This “soft transition” between
the probabilistic and the possibilistic cases is under the user’s control.

Let [ξ] be an interval variable defined as [ ξ, ξ ]. Memberships are subject to:

c∑
j=1

u
[ξ]
lj = 1 ∀l. (5)

This interval equality is satisfied for any point ul such that there exist a scalar num-
ber ξ∗ ∈ [ ξ, ξ ] s.t.

∑c
j=1 u

ξ∗

lj = 1. Eq. 5 is equivalent to a set of two inequalities:

c∑
j=1

u
ξ

lj ≥ 1

c∑
j=1

uξlj ≤ 1.

This formulation includes as the two extreme cases the “probabilistic” assumption
of ME: [ξ] = [1, 1] = 1,

∑c
j=1 ulj = 1, and the “possibilistic” assumption of PCM:

[ξ] = (0,∞),
∑c
j=1 u

ξ→0

lj > 1,
∑c
j=1 u

ξ→∞
lj < 1, in the limit.

Several choices are possible for ξ and ξ. The specific implementation that we adopt
in this work is: ξ = α and ξ = 1, where α ∈ (0, 1] controls the “possibility level”. In
this asymmetric implementation (AGPCM, Asymmetric Graded Possibilistic c-Means),
memberships whose sum exceeds 1 are forbidden. Therefore clustering is effectively
competitive among nearby centroids. However, for far-away centroids, the competition
decreases with α. The simplest case where [ξ] = [ 0, 1 ] allows points with (almost) zero
memberships to any cluster, and can be used to effectively implement automatic outlier
rejection. Zl is defined as:

Zl =
∑c
j=1 vlj if

∑c
j=1 vlj > 1

Zl =
(∑c

j=1 v
α
lj

)1/α
if

∑c
j=1 v

α
lj < 1

Zl = 1 else.

(6)

In [11] this particular model has been shown to possess robustness and outlier re-
jection properties, However, no criterion was given to set the values of α and β.

3 Evaluating fuzzy clustering

3.1 Co-association matrices for fuzzy clustering

Similarity of strings of crisp memberships can be measured by Hamming distance, the
sum of the bits of the bitwise-AND between two words. To generalize this operation
to the fuzzy domain we have to define the fuzzy conjunction connective AND. We
adopt the product t-norm [13]: Given two fuzzy memberships/truth values µ1 and µ2,



the conjunction logical connective is simply defined as µ1 ANDµ2 = µ1µ2. The co-
association of a given pair of data points to a given cluster yj ∈ C is the conjunction of
the respective point memberships to yj , and the degree of similarity of two points is the
average of these values. Therefore, for one clustering C, the co-association matrix [4]
(also termed bonding relationship in [1]) is the n×n Gram matrix S with the usual dot
product in the space of membership vectors. It can be obtained as

S(l) = U (l)U (l)′. (7)

Note that in the crisp case this definition collapses to the proposition “in clustering
C, data items xl and xm are in the same cluster”, by resulting in either 1 (for true) or
0 (for false); in the fuzzy case it is necessary to take all clusters into considerations
because, in general, none of them will be exactly zero or one.

3.2 Analysis of the co-association matrix
We will use two indexes computed on the co-association matrix. The first is simply the
normalized trace of S

ν =
1

n
tr(S) (8)

Depending on the type of memberships there are different kinds of clustering mod-
els, and different resulting values for co-association. The co-association is maximum
for a pair of data items clustered in exactly the same way by the given clustering. If
ulj = umj∀j, then Slm =

∑
j uljumj =

∑
j u

2
j if we assume ulj = umj = uj ∀j,

which is always true for the self-association Sll. Therefore we have to study
∑
u2j as a

function of the possible constraints on
∑
uj .

We can describe four cases, although they are really a continuum.

– Crisp clustering: uj ∈ {0, 1} ∀j,
∑
j uj = 1,

∑
j u

2
j = 1. For crisp clustering,

one element is 1, all others are 0, so co-association is 1 for equal memberships,
always 0 for different memberships. These are the limiting values for all cases.

– Fuzzy “probabilistic”: uj ∈ [0, 1] ∀j,
∑
j uj = 1,

∑
j u

2
j ≤ 1. Crisp cluster-

ing is a special, limit case of fuzzy “probabilistic” clustering. For equal member-
ships, co-association is 1 only in the crisp case (triangle inequality). If there are
nonzero membership values for more than one cluster, the self-association value
can be as low as 1/c.

– Fuzzy possibilistic: uj ∈ [0, 1] ∀j,
∑
j uj < c,

∑
j u

2
j < c,

∑
j u

2
j > 0.

Probabilistic clustering is in turn a special case of possibilistic clustering. Here the
self-association value can be as high as c or as low as 1/c.

– The asymmetric graded possibilistic model: uj ∈ [0, 1] ∀j,
∑
j uj ≤ 1,

∑
j u

2
j ≤

1,
∑
j u

2
j > 0, In this case, the self-association value can as low as 1/c, but it

cannot exceed 1.

In the crisp case, ν gives no information. In all fuzzy cases, however, it provides
an indication on the degree of fuzziness of the clustering under examination, a confi-
dence evaluation: if ν � 1 then most points have mutually equivalent memberships
to all clusters, indicating a bad clustering. In the possibilistic case, ν may also exceed
unity: then most points have high memberships to all clusters, an effect of too many
overlapping clusters. With AGPCM, ν ≤ 1 always, and a strong clustering has ν ≈ 1.



3.3 A spectral criterion

The second index proposed in this work is an eigengap statistic borrowed from spectral
graph theory [2,10]. It is well known that a pairwise proximity or similarity matrix can
be interpreted as the weighted adjacency matrix of a graph, so that the tools of spectral
graph theory can be used. Especially in the case of fuzzy clustering, the same approach
can be used to analyze both individual clusterings and sets of clusterings. We are now
focusing on the first case.

The co-association matrix S is a type of similarity measure, [17], a Gram matrix
where similarity is provided by the fact that a given pair of data item belongs to the same
cluster in a given clustering. If we view it as the adjacency matrix of a graph having all
available n data items as vertices and all possible n × n clustering similarities as edge
weights, then the degree matrix is the diagonal, n × n matrix D whose elements are
Dhh =

∑n
l=1 Slm. The Laplacian matrix of the data is L = D − S.

From spectral graph theory it is known [3,2] that the spectrum of a graph provides
information about its connected components. In particular, the multiplicity of eigen-
value 0 is the number of connected components in the graph. Therefore, it is possible
to apply an eigengap criterion to evaluate the degree of separatedness in a clustering.
Given the n ordered eigenvalues λl of diag(

∑n
l=1 Slm) − S, compute the following

eigengap index κ:

κ =
1

Q

N−1∑
h=1

h · e(λh+1−λh)/γ (9)

withQ = λN
∑N−1
k=1 e

(λk+1−λk)/γ .This is a “softmax-type” index. The maximum sum-
mand correspond to the maximum eigengap. The value of the index is exactly the index
of the eigengap for a perfect (crisp) clustering, but may differ for less strong partitions.
The gain term γ can be used to tune the sensitivity of the index; when it is low, the index
simply points out the location of the maximum eigengap; when it is raised, the relative
amplitude of the gap also plays a role, so that the index is also sensitive to the degree of
structure of the clustering. In our experiments, we set γ = 2.

4 Comparing two fuzzy clusterings

4.1 Comparing partitions

In many cases, a clustering induces a partition of the data, so measuring the agreement
or overlap between two clusterings C(h) and C(k) amounts to measuring the similarity
between two partitions. There are several partition similarities available in the literature.
The two main approaches include comparing matching clusters, and comparing co-
association information. In [15] we concentrated on the second approach, defining a set
of fuzzy pairwise indexes. In this work we focus on one of the most popular, the Jaccard
index [6], in the generalized fuzzy version.

4.2 The fuzzy Jaccard similarity

The Jaccard index is defined as J (C(h), C(k)) = |C(h) ∩ C(k)|/|C(h) ∪ C(k)|.



This expression can be written in terms of S. This allows us to obtain a fuzzy ver-
sion, by using a fuzzy co-association matrix. For the product t-norm we have as the
associated disjunction operator the probabilistic sum t-conorm, so that µ1 ORµ2 =
µ1 + µ2 − µ1µ2. For a pair of clusterings C(h), C(k), the Jaccard similarity index is

J
(
C(h), C(k)

)
=

〈S(h), S(k)〉F
‖S(h) + S(k)‖1 − 〈S(h), S(k)〉F

, (10)

where 〈M,N〉F denotes the Frobenius inner product between the two matrices M and
N of equal dimensions and |M |1 indicates the entry-wise 1-norm (sum of entries) of
matrix M . The Jaccard distance between C(h) and C(k) is L = 1− J

(
C(h), C(k)

)
.

4.3 Clusterings that are not partitions

A remark is in order regarding clustering techniques that are not (strictly) partitional.
For instance, PCM clusters are overlapping, so that the resulting clusterings are not
fuzzy partitions. In general, the main effect of this possibility is to yield values of sim-
ilarity exceeding unity. In our specific case, we only concentrated on the modified,
asymmetric graded possibilistic model, for which membership may sum up to less than
unity, but not more. The effect of this choice is that we still have a maximum value of
unity for similarity indexes (in this work J , but the same would hold for other options),
and, in the case of self-similarity, the difference can be used as an estimation of the
level of fuzziness of a set of memberships.

5 Evaluating fuzzy clustering ensembles

In this section we propose a criterion to analyze the matrix H defined as:

Hhk = J
(
Sh, Sk

)
(11)

where S(h) and S(k) refer to C(h) and C(k), two clusterings from a collection of N .

5.1 Spectral indexes for clustering ensembles

Having introducing J as a measure of clustering similarity [15], we can apply the same
arguments as in Section 3 to matrices measuring proximities between clusterings [16].
This approach provides tools to analyze the effect of varying a parameter, as for instance
the number of centroids, to evaluate the stability of a set clustering, and to measure the
diversity within a clustering ensemble, both as a global property, and on a local basis,
to find families of mutually similar models which are distinct from other families.

For a set of clusterings C(h), h ∈ {1, . . . , N}, compute the affinity matrix H (again
a Gram matrix, from the Mercer kernel J on the space of co-association matrices):

Hhk = J
(
C(h), C(k)

)
(12)

for all possible pairs of clusterings C(h), C(k).



Fig. 1. Toy problems: Gaussian clusters with variance = 0.05 (left), 0.15 (center), 0.30 (right).

The eigengap index can now be computed forH , which is the adjacency matrix of a
complete graph with all N clusterings as vertices and all N ×N clustering similarities
(measured by J ) as weights; the degree matrix is the N × N matrix ∆ with ∆hh =∑N
k=1Hhk. The Laplacian matrix is L = ∆−H and κ is computed as in Section 3.

5.2 Parameter or model selection

One specific problem in clustering, due to the unavailability of prior information or a
golden standard, is the ambiguity in the selection of parameters. A typical example is the
selection of c. In [16] a visual procedure is described. The clustering methods used in
this study also depend on other parameters in addition to c, namely, β and α. The latter
is specific to (A)GPCM. It allows the user to introduce a bias into the representation
of cluster; however, it may also cause convergence problems. Therefore an objective
evaluation of the resulting effects is useful.

In all instances where a “sweep” of a given parameter is possible, the analysis may
provide a quality indication to select the best value. Here we summarize two important
goals: model/parameter selection and diversity analysis for ensemble clustering.

Stability analysis is often used as a model selection tool. The procedures described
implement a stability analysis by inspection of the properties of matrixH , and differ by
the type of parameter. For parameters with a smooth influence on the clustering results,
a local analysis can be performed. This is the case for α and β. One possible technique
for local analysis, based on visualization, is presented in [16]. The maximum stability
is attained around the optimal value, thus allowing visual inspection. However, when a
parameter has a complex influence on the clustering result (e.g., c), a visual analysis is
not possible. In this case we use the eigengap index κ to point out the hidden structure.

Conversely, when the application is centered on ensemble clustering, a similar pro-
cedure can search for the maximum diversity, again as measured by κ.

6 Experiments

6.1 Experimental setup

With the aim to verify the behaviour of the proposed indexes, we performed experiments
on two datasets. The first is a set of three toy problems (Fig. 1). In our case, we are not



Fig. 2. κ and ν for individual clusterings with varying c for the Toy 1 dataset.

Fig. 3. κ and ν for individual clusterings with varying c for the Leukaemia dataset.

really interested in challenging a clustering algorithm. We need to degrade the resulting
clusterings in a controlled way, to point out the relationship between the features of the
problem and the corresponding values of ν and κ. We also tested the indexes on the
Leukaemia data set from [5], a high-dimensional, real world problem.

The toy problems are generated by spreading points around three equi-spaced cen-
troids (50 2-dimensional points per cluster, so n = 150) with three different values of
spread: variance = 0.05 (trivial, well separated problem), variance = 0.15 (overlapped,
non-separable clusters), and variance = 0.3 (structure completely lost).

For the Leukaemia problem we used the training set with n = 38 points in d = 7129
dimensions. It is known that these points can be clustered with c = 3 if only the 50 most
relevant features are retained. Here instead we used the whole feature set.

The clustering method used was AGPCM with β and α selected appropriately for
the problem at hand. Alternatively, selection of these parameters could also be per-
formed automatically with the same procedure presented for c. In general, we kept the
degree of possibility at a moderate level, with α = 0.8 to 0.9.

6.2 Results and comments

The first experiment uses Toy 1 (the trivial dataset) to illustrate the use of ν and κ for
the analysis of individual clusterings at various values of c. The experiments included



Fig. 4. Eigengap index for ensembles of 100 clusterings with varying c for the three toy problems.

10 random initializations, and the values presented in Fig. 2 are the averaged indexes.
It is expected that for c = 3 all clusterings (except for pathological random initializa-
tions) reach a maximum for ν and a minimum for κ, indicating a strong clustering and
a low variability. In fact, the optimal values are found for c = 1, where there is only one
solution (the barycenter of the data). However, the first significant minimum for κ is for
c = 3 as expected, where κ = 3, and for this value ν is quite high (about 0.93), indicat-
ing that on average the clusterings are very strong (apart from occasional local minima).
There is another minimum for c = 13, but this is likely due to random variability: with
growing c, the number of minima grows combinatorially, and just 10 random initializa-
tions are probably not enough. To validate this hypothesis, it is sufficient to check the
value of ν, which is about 0.38, indicating weak clusterings.

A similar experiment was performed for the Leukaemia dataset. Here, of course,
the results are much less clear (Fig. 3). However, there is a minimum of κ = 1.11 for
c = 3, which is the value reported in [5]. The value of the eigengap index, however, is
not 3 as expected, but only slightly larger than 1: this indicates that the clusters are not
well defined in the native 7129-dimensional space. The value of ν is correspondingly
low (ν = 0.35), indicating a not-so-strong clustering result.

Finally, multiple clusterings were obtained by 100 random initializations, for c rang-
ing from 1 to 10, for the three toy problems. The corresponding ensemble eigengap
index κ is traced in Fig. 4. This experiment outlines the stability of clustering while
varying a parameter (here c). The eigengap index, a measure of diversity, should be
high when looking for varied clusterings to be used as ensemble members, while it
should be low when searching for a good parameter value.

From the graph it is clear that the more difficult the problem, the higher the diversity.
Only for the trivial problem (Toy 1) κ = 1 in almost every case. For Toy 2, spurious
solutions are found as soon as c > 3, and for Toy 3, where the lack of structure probably
enhances the dependence on the initial conditions, this happens even for c > 2. It is
worth noticing that the behaviour of κ is not monotonic with c. This is probably due
to the inherent ambiguity in the clustering problem, where different soultions may be
found at different scales with comparable representation cost.



7 Remarks and future work

The proposed method is notably flexible, since it is agnostic with respect to cluster
structure and representation. Other clustering techniques may be treated similarly to
the centroid-based techniques used here. It may be integrated with a visual analysis, or
embedded in an almost completely automatic clustering tool.
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