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Abstract. In this paper, we compare the performances of some among the most
popular kernel clustering methods on several data sets. The methods are all based on
central clustering and incorporate in various ways the concepts of fuzzy clustering
and kernel machines. The data sets are a sample of several application domains
and sizes. A thorough discussion about the techniques for validating results is also
presented. Results indicate that clustering in kernel space generally outperforms
standard clustering, although no method can be proven to be consistently better
than the others.

Keywords. Kernel methods, Clustering, Experimental comparison, Fuzzy clustering,
Performance indexes for clustering

1. Introduction

In this paper, we compare the performances of some among the most popular kernel
clustering methods [7] on several data sets. In particular, we compare the clustering al-
gorithms in feature space, clustering with the kernelization of the metric, Support Vec-
tor Clustering, and three standard methods: K-means, FCM-I, and FCM-II. The motiva-
tion supporting such experimental comparison lies in the fact that these recent clustering
models have not been sufficiently validated in applications by the authors. The data sets
included in the present study are well known among the Machine Learning community.
All the data sets are labeled. Some of them can be found in the UCI repository [1], while
one of them is a bioinformatic data set. We decided to include a variety of data sets dif-
fering from cardinality, dimensionality, and number of classes. The comparison is done
on the basis of three performance indexes, in particular: misclassifications, normalized
mutual information, and conditional entropy.

In the next sections we briefly describe the methods compared, the data sets, and
the performance indexes. Section 5 shows the results, and the last section is devoted to a
discussion about them.



2. Methods

2.1. K-means

This is the standard K-means clustering algorithm [13], included as a baseline method.
The initialization is random, and it is made by selecting the position of the centroids
among the patterns to cluster. The only input is the number c of clusters to be found.

2.2. FCM-I and FCM-II

These algorithms are two flavours of Fuzzy c-means, differing in the objective function
they address. The fuzzy c-means algorithm (FCM-I) [4] identifies clusters as fuzzy sets.
In the original formulation, it minimizes the functional:

J(U,V) =
n∑

h=1

c∑
i=1

(uih)m ||xh−vi| |
2 (1)

with respect to the membership matrix U and the codebook V with the constraints∑c
i=1 uih = 1. The parameter m controls the fuzziness of the memberships and often it is

set to two; for high values of m the memberships tend to be equal, while for m close to
one we obtain crisp memberships as in K-means. By a Lagrangian approach, the update
equations are obtained as follows:

uih =

[∑c
j=1

(
||xh−vi ||

||xh−v j||

)](m−1)/2
vi =

∑n
h=1(uih)mxh∑n

h=1(uih)m (2)

The method that hereinafter is referred to as FCM-II is a variation [3][14] where a
maximum entropy criterion is introduced in the objective function by adding the penalty
term

λ

n∑
h=1

c∑
i=1

uih ln(uih) (3)

and fixing m = 1. The centroids are still updated with the previous equation, while the
membership update is as follows:

uih =

exp
(
−
||xh−vi ||

2

λ

)
∑c

j=1 exp
(
−
||xh−v j||2

λ

) (4)

In FCM-I we have to set the number of clusters c and the fuzziness m. In FCM-II
we have to set the number of clusters c and the fuzziness λ.

2.3. FCM-I-fs and FCM-II-fs

These are kernel methods. They are respectively Fuzzy c-means I in feature space and
Fuzzy c-means II in feature space [7].

Clustering in feature space is made by mapping each pattern using the mapping
function Φ() defined (possibly only implicitly) by the kernel K(a,b) = Φ(a)Φ(b), and



computing centroids vΦi in feature space. Distances can be computed by means of the
kernel trick.

In both algorithms, we have to select the number of clusters c and the kernel function
along with its parameters. In the following, we will use the Gaussian kernel with standard
deviation σ. In FCM-I fs we have to set the fuzziness m, while in FCM-II fs we have to
set the fuzziness λ.

2.4. FCM-I-km and FCM-II-km

These kernel methods are respectively Fuzzy c-means I with the kernelization of the
metric [15] and the Fuzzy c-means II with the kernelization of the metric.

Methods based on kernelization of the metric look for centroids in input space and
the distances between patterns and centroids is computed by means of kernels:

||Φ(xh)−Φ(vi)| |2 = K (xh,xh)+K (vi,vi)+2K (vi,xh) (5)

In both algorithms we have to select the number of clusters c and the kernel function
along with its parameters. In the following, we will use the Gaussian kernel with standard
deviation σ. In FCM-I fs we have to set the fuzziness m, while in FCM-II fs we have to
set the fuzziness λ.

2.5. SVC

This is the Support Vector Clustering algorithm [2]. The aim of this approach is to look
for an hypersphere centered in v containing almost all data, namely allowing some out-
liers. The support vector description of data in the kernel-induced space leads to possibly
non-linear surfaces separating the clusters in the original space. A labeling algorithm is
necessary to assign the same label to the patterns belonging to the same region.

We have to select the parameter C (or ν) and the kernel function along with its
parameters. In the following, we will use the Gaussian kernel with standard deviation σ.
We set C = 1, in order to avoid outlier rejection that is not handled by the other comparing
algorithms. The algorithm will automatically find the number of clusters.

3. Performance Indexes

A common problem in evaluating clustering methods is related to the unsupervised na-
ture of the method. Cluster attribution cannot be univocally determined, as opposed to
supervised classification, hence it cannot be summarized by a percentage of correct at-
tributions. Moreover, different algorithms and different runs of a given algorithm may
produce cluster differing in composition and sometimes in number, and, even when very
similar, clusters may be ordered differently from run to run, making it harder to match
two clustering results. The following performance indexes are a collection of criteria to
evaluate clustering performance, that also exploit supervised information available for
the data sets. Therefore, we will only select datasets for which a target is available. By
proposing several indicators, the reliability of the results is somewhat increased.

Let X = {x1, . . . ,xn} be a labeled data set composed of n patterns. Let’s denote the
class labels with ti, belonging to the set of the possible realizations T = {t1, . . . , tb}. The



class labels can be considered as the realization of a random variable T . Applying a
clustering algorithm to the elements of X, we obtain the cluster labels zi that can be
seen as the realization of a random variable Z. Here zi belongs to the set of possible
realizations Z = {z1, . . . ,zc}. In this context, it is possible to apply some statistical tools
to analyze the dependence between these two random variables.

3.1. Simple Match

A simple choice could be the match between the two realizations. In order to do that,
we have to take into account two things: in general c and b are not equal and the sets of
labels T and Z might be different. For these reasons we need to rearrange the cluster
labels according to a univoque criterion. A natural choice is to match as much as possible
the class labels. In other words, we need to transform the cluster label with a function
πk : Z → T such that πk(zi) = t j. In this way we obtain the new cluster labels vector
{t′1, . . . , t

′
n}. Now it is possible to compute the match between the two label vectors. We

will use the misclassification [12]:

µ = #{t′i , ti} (6)

and the accuracy:

ψ = #{t′i = ti}/n (7)

Among all the permutations πk, we select the one leading to the minimum value of µ.

3.2. Preliminary definitions for entropy based scores

Let’s define the confusion matrix:

Cluster
Labels

z1 z2 · · · zc
t1 a11 a12 · · · a1c

Class t2 a21 a22 · · · a2c

Labels
...

...
...

. . .
...

tb ab1 ab2 · · · abc

Each entry ai j of the confusion matrix contains the number of times that the clustering
algorithm assigned the cluster label z j to the pattern xi having class labels ti. On the basis
of the confusion matrix, the following probabilities can be defined:

p(ti) =
|ti |
n =

∑
r air
n

p(z j) =
|z j |

n =
∑

r ar j
n

p(ti,z j) =
ai j
n

(8)

Entropy for the random variables T and Z is defined as follows:

H(T ) =
∑

i

p(ti) log(p(ti)) (9)



H(Z) =
∑

j

p(z j) log(p(z j)) (10)

The joint entropy of T and Z is:

H(T,Z) = −
∑

i j

p(ti,z j) log(p(ti,z j)) (11)

We will use the following two entropy based scores to assess the quality of the clus-
tering results: Conditional Entropy H(T |Z) and Normalized Mutual Information IN(T,Z).

3.3. Conditional Entropy

The Conditional Entropy H(T |Z) is a measure of the uncertainty of a random variable T
given the value of the random variable Z [6]. It is defined as:

H(T |Z) =
∑

j

p(z j)H(T |Z = z j) = −
∑

j

p(z j)
∑

i

p(ti|z j) log(p(ti|z j)) (12)

Applying some transformations, it is possible to rewrite the Conditional Entropy:

H(T |Z) = H(T,Z)−H(Z) = −
∑

i j

p(ti,z j) log(p(ti,z j))+
∑

j

p(z j) log(p(z j)) (13)

Intuitively, if the two random variables are identical, knowing the realization of Z gives
no uncertainty about T , leading to a null conditional entropy. On the contrary, if the two
random variables are independent, there is still uncertainty in the value of T given Z.
Formally, in the dependent case, p(ti|z j) = 1 leading to H(T |Z) = 0. In the independent
case, p(ti|z j) = p(ti) leading to H(T |Z) = H(T ). The Conditional Entropy is zero when
each cluster found contains pattern from a single class. This can be useful to check the
purity of the cluster labels Z with respect to the class labels T . On the other hand, the
method is biased when the number of clusters c is very large. In the extreme case when
we assign one pattern per cluster, the Conditional Entropy results H(T |Z) = 0.

3.4. Normalized Mutual Information

The mutual information between two discrete random variables T and Z is [6]:

I(T,Z) =
∑

i j

p(ti,z j) log
(

p(ti,z j)
p(ti)p(z j)

)
(14)

The mutual information measures the information shared by two discrete random vari-
ables: it measures how much knowing one of these variables reduces our uncertainty
about the other. Intuitively, if the two random variables are independent, knowing the
realization of one of them does not give any information about the other and viceversa;
their mutual information is zero. If the two random variables are identical, the realization
of one of them determines the value of the other and viceversa. As a result, the mutual in-
formation is the same as the uncertainty contained in either one of the random variables,
that is their entropy. Formally, if they are uncorrelated, it is possible to factorize the joint
probability p(ti,z j)= p(ti)p(z j) leading to I(T,Z)= 0. If they are identical, I(T,Z) reduces



to the entropy H(T ) = H(Z), since p(x,y) = p(x) = p(y). These considerations show that
the mutual information is dependent on the data set; in other words, the upper bound is
not independent from the considered problem. It is possible to normalize I(T,Z) in the
interval [0,1] using the following [6]:

IN(T,Z) =
I(T,Z)

√
H(T )H(Z)

(15)

In this way, a value of IN(T,Z) close to one means high correlation between cluster and
class labels, a value near zero means independence.

4. Data Sets

As noted earlier, all data sets are labelled, so that we can exploit the supervised informa-
tion for ease of cluster evaluation.

4.1. Iris

(150 patterns of dimension 4, 3 classes.) This is one of the most popular data sets studied
by the Machine Learning community [8,5]. The data set contains three classes of 50
patterns each; each class refers to a type of iris plant. One class is linearly separable from
the other two that are overlapped. The features are four: sepal length, sepal width, petal
length, and petal width.

4.2. Breast

(683 patterns of dimensio 9, 2 classes.) The Breast Cancer Wisconsin (Original) Data Set
was obtained by the University of Wisconsin Hospitals, Madison from Dr. William H.
Wolberg [16]. The samples were analyzed in different moments, since they were received
periodically. The data set is composed by 699 nine-dimensional patterns, labeled as be-
nign or malignant. Since there are some missing values, we decided to remove the cor-
responding patterns, obtaining 683 patterns. The class distribution is 65% for the benign
class and 35% for the Malignant class.

4.3. Ecoli

(336 patterns of dimension 7, 8 classes.) Contains the protein localization sites of a
E. coli [11]. The 336 patterns are described by seven features, and are classified in eight
classes. Three of these classes contain less than five patterns.

4.4. Glass

(214 patterns of dimension 9, 6 classes.) This data set contains 214 patterns related to
the analysis of types of glass. The nine features describing each pattern are the refractive
index and the concentration of eight chemical elements (Na, Mg, Al, Si, K, Ca, Ba, and
Fe). The type of glass can be one among six: building windows float processed, building
windows non float processed, vehicle windows float processed, containers, tableware,
and headlamps.



4.5. Lung

(32 patterns of dimension 54, 3 classes.) The data set was published in Ref. [10]. It con-
tains 32 54-dimensional patterns that can belong to one out of three types of pathological
lung cancers. The Authors give no information about the individual variables.

5. Results

The methods presented in Section 2 have been tested on the data sets described in Sec-
tion 4. The number of classes can give some guidelines on the selection of the number
of clusters. It is worth noting, however, that in general the number of clusters and the
number of classes might be not related to each other. A typical example is the Iris data
set, where the two overlapped classes are very likely to be identified as one cluster by
a clustering algorithm. In other situations, it is possible to use some prior information
about the number of clusters. To perform a fair comparison among the methods, we used
the same number of clusters for all of them. Some algorithms find the natural number of
clusters given a particular set of parameters. In this case, we set the parameters in order
to have a selection of the wanted number of clusters by the algorithm. We tested the
methods varying all the parameters in a wide range; we report the results for the selection
giving the best performances. For the algorithms starting with a random initialization,
the results are averaged over 20 runs; in Table 1 each score is reported along with its
standard deviation.

6. Discussion

By inspecting the experimental results, it is possible to see that there are no methods that
perform better or worse than the others in general.

Concerning clustering methods using kernels, in general, we can see that the meth-
ods in feature space perform better than methods with the kernelization of the metric.
Clustering with the kernelization of the metric, in some situations give very poor results,
especially when the number of clusters is very high. SVC has been used only with C = 1,
i.e., without the rejection of the outliers. This fact affected the results that are not very
good in general. On the other hand, this choice was necessary to compare its results with
the other methods that do not handle an outlier class.

An important result, that is clear from the experimental validation, is that clustering
in kernel induced spaces outperform standard clustering algorithms. This is one of the
motivations that support the interest of the Machine Learning community for these recent
clustering techniques. On the other hand, the methods based on kernels require the tuning
of the kernel or the adjacency function. In many applications, we found that the values
of the standard deviation of such functions lead to good performances only in a narrow
interval.

The results therefore show that it is very difficult to identify the best approach in
terms of accuracy, and a similar conclusion (although not considered in this study) ap-
plies to computational efficiency.



Iris
Method Parameters ψ (µ) IN(T,Z) H(T |Z)
FCM-I-fs c = 3, σ = 0.6, m = 1.2 0.947, 0.000 (8.0, 0.0) 0.845, 0.000 0.172, 0.000
FCM-II-fs c = 3, σ = 0.6, λ = 0.1 0.923, 0.017 (11.5, 2.6) 0.810, 0.024 0.214, 0.029
FCM-I-km c = 3, σ = 3, m = 2.4 0.907, 0.000 (14.0, 0.0) 0.766, 0.000 0.260, 0.000
FCM-II-km c = 3, σ = 5, λ = 0.2 0.913, 0.000 (13.0, 0.0) 0.745, 0.000 0.283, 0.000
SVC c = 3, C = 1, σ = 0.35 0.680, 0.000 (48.0, 0.0) 0.736, 0.000 0.453, 0.000
FCM-I c = 3, m = 2.4 0.900, 0.000 (15.0, 0.0) 0.758, 0.000 0.270, 0.000
FCM-II c = 3, λ = 5.4 0.913, 0.000 (13.0, 0.0) 0.745, 0.000 0.283, 0.000
K-means c = 3 0.860, 0.083 (21.1, 12.5) 0.733, 0.061 0.309, 0.087

Breast
Method Parameters ψ (µ) IN(T,Z) H(T |Z)
FCM-I-fs c = 3, σ = 7.2, m = 1.2 0.972, 0.003 (18.9, 2.2) 0.702, 0.039 0.103, 0.014
FCM-II-fs c = 2, σ = 8, λ = 0.35 0.972, 0.000 (19.0, 0.0) 0.814, 0.000 0.116, 0.000
FCM-I-km c = 2, σ = 0.1, m = 1.2 0.653, 0.000 (237.0, 0.0) 0.009, 0.000 0.646, 0.000
FCM-II-km c = 2, σ = 0.01, λ = 0.02 0.652, 0.000 (238.0, 0.0) 0.007, 0.000 0.646, 0.000
SVC c = 3, C = 1, σ = 3.75 0.652, 0.000 (238.0, 0.0) 0.018, 0.000 0.646, 0.000
FCM-I c = 2, m = 1.2 0.960, 0.000 (27.0, 0.0) 0.748, 0.000 0.166, 0.000
FCM-II c = 2, λ = 400 0.972, 0.000 (19.0, 0.2) 0.812, 0.002 0.118, 0.001
K-means c = 2 0.960, 0.000 (27.0, 0.0) 0.748, 0.000 0.166, 0.000

Ecoli
Method Parameters ψ (µ) IN(T,Z) H(T |Z)
FCM-I-fs c = 7, σ = 0.6, m = 1.6 0.732, 0.001 (90.0, 0.2) 0.459, 0.001 0.731, 0.002
FCM-II-fs c = 7, σ = 0.8, λ = 0.09 0.727, 0.009 (91.8, 2.9) 0.455, 0.012 0.739, 0.022
FCM-I-km c = 7, σ = 0.1, m = 1.2 0.446, 0.000 (186.0, 0.0) 0.046, 0.000 1.446, 0.000
FCM-II-km c = 7, σ = 0.1, λ = 0.002 0.443, 0.000 (187.0, 0.0) 0.045, 0.000 1.448, 0.000
SVC c = 7, C = 1, σ = 0.22 0.446, 0.000 (186.0, 0.0) 0.148, 0.000 1.450, 0.000
FCM-I c = 7, m = 1.6 0.724, 0.001 (92.8, 0.4) 0.458, 0.004 0.738, 0.007
FCM-II c = 7, λ = 0.06 0.720, 0.009 (94.1, 3.1) 0.453, 0.015 0.746, 0.025
K-means c = 7 0.705, 0.016 (99.0, 5.4) 0.429, 0.024 0.790, 0.047

Glass
Method Parameters ψ (µ) IN(T,Z) H(T |Z)
FCM-I-fs c = 6, σ = 1, m = 1.4 0.623, 0.019 (80.8, 4.1) 0.408, 0.006 0.856, 0.013
FCM-II-fs c = 6, σ = 0.8, λ = 0.2 0.624, 0.010 (80.5, 2.2) 0.381, 0.012 0.898, 0.018
FCM-I-km c = 6, σ = 2, m = 1.2 0.463, 0.000 (115.0, 0.0) 0.074, 0.000 1.391, 0.000
FCM-II-km c = 6, σ = 10, λ = 0.001 0.393, 0.000 (130.0, 0.0) 0.039, 0.000 1.451, 0.000
SVC c = 6, C = 1, σ = 1.3 0.379, 0.000 (133.0, 0.0) 0.129, 0.000 1.443, 0.000
FCM-I c = 6, m = 1.8 0.610, 0.002 (83.4, 0.5) 0.363, 0.001 0.946, 0.0009
FCM-II c = 6, λ = 1.2 0.614, 0.038 (82.5, 8.2) 0.343, 0.027 0.976, 0.0349
K-means c = 6 0.571, 0.015 (91.7, 3.2) 0.404, 0.022 0.948, 0.026

Lung
Method Parameters ψ (µ) IN(T,Z) H(T |Z)
FCM-I-fs c = 3, σ = 4, m = 1.2 0.563, 0.000 (14.0, 0.0) 0.300, 0.000 0.760, 0.000
FCM-II-fs c = 3, σ = 6, λ = 0.1 0.581, 0.029 (13.4, 0.9) 0.290, 0.028 0.777, 0.024
FCM-I-km c = 3, σ = 70, m = 2 0.553, 0.035 (14.3, 1.1) 0.293, 0.048 0.788, 0.054
FCM-II-km c = 3, σ = 10, λ = 0.06 0.603, 0.015 (12.7, 0.5) 0.328, 0.005 0.754, 0.009
SVC c = 4, C = 1, σ = 1.9 0.500, 0.000 (16.0, 0.0) 0.173, 0.000 0.970, 0.000
FCM-I c = 3, m = 2.2 0.548, 0.030 (14.5, 0.9) 0.285, 0.061 0.790, 0.065
FCM-II c = 3, λ = 5 0.633, 0.042 (11.8, 1.3) 0.363, 0.000 0.707, 0.011
K-means c = 3 0.538, 0.024 (14.8, 0.8) 0.279, 0.055 0.796, 0.055

Table 1. Clustering results on all datasets.
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