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Abstract— Linear fuzzy clustering is a useful tool for knowl-
edge discovery in databases (KDD), and several modifications
have been proposed in order to analyze real world data. This
paper proposes a new approach for estimating local linear
models, in which linear fuzzy clustering is performed by selecting
variables that are useful for extracting correlation structure in
each cluster. The new clustering model uses two types of mem-
berships. One is the conventional membership that represents
the degree of membership of each sample in each cluster. The
other is the additional parameter that represents the relative
responsibility of each variable for estimation of local linear
models. The additional membership takes large values when the
variable has close relationship with local principal components,
and is calculated by using the graded possibilistic approach.
Numerical experiments demonstrate that the proposed method is
useful for identifying local linear model taking typicality of each
variable into account.

Index Terms— Fuzzy clustering, principal component analysis,
data mining, possibilistic clustering, variable selection.

I. INTRODUCTION

ONE of the useful approaches to knowledge discovery in
databases (KDD) is to capture the data structure of high

dimensional data sets by constructing low dimensional feature
space. Local principal component analysis (Local PCA) [1],
[2] is an extension of linear PCA for estimating local linear
sub-models by partitioning a data set into several groups. The
task can be regarded as the simultaneous application of linear
PCA and clustering. Linear fuzzy clustering [3], [4], [5] is a
technique for partitioning samples into several linear clusters
in order to capture local linear structure. In the Fuzzy c-
Varieties (FCV) clustering [3], [4], each cluster is represented
by its prototypical linear variety and the clustering criterion
is the sum of distances between data samples and prototypes.
Although the goal of linear fuzzy clustering is to capture the
cluster structures of data sets, the algorithm is often identified
with a technique for Local PCA because the vectors spanning
the prototypical linear varieties are derived by solving the
eigenvalue problems of fuzzy scatter matrices [6].

In the analysis of large scale data sets, it is often the
case that they include unnecessary variables which is not
informative for modeling. There are two approaches for esti-
mating the responsibility of variables in PCA. In the dimension
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reduction tasks, the goal is to select items or variables so as
to keep the original information as well as possible. When
several variables are mutually dependent, we can estimate the
data substructure even if we eliminate some of the redundant
variables. In order to select the redundant variables, several
criteria for variable selection in PCA have been proposed [7],
[8], [9]. When we want to obtain the best subset of variables,
we should search for the subset which has the largest (or
smallest) criterion value among all possible subsets. On the
other hand, in the data mining tasks, the goal is to extract
association rules and we wish to select the variables that are
mutually dependent, i.e., we should eliminate variables that
have no responsibility for the estimation of principal subspace.

This paper proposes a new approach to variable selection
in linear fuzzy clustering, which selects the variables that
have close relationship with local principal components, by
introducing the mechanism of variable selection into the
iterative algorithm of linear fuzzy clustering. In order to
evaluate the responsibility of variables, the proposed method
uses the least squares criterion for linear fuzzy clustering [10],
[11], [12], which is used for partitioning a data set based
on the lower rank approximation of data matrix in each
cluster. While the minimization of the least squares criterion
is regarded as the component-wise approximation of a data
matrix, the derived cluster structure is the same as that of
the conventional FCV clustering whose clustering criteria are
the squared distances between data points and prototypical
linear subspaces. Several extended algorithms for linear fuzzy
clustering, which can handle component-wise problems such
as missing values or intra-sample outliers, have been proposed
by using the least squares criterion. This paper proposes a
new linear fuzzy clustering algorithm that uses two types
of memberships for partitioning both samples and variables.
One is the conventional membership that represents the degree
of membership of each sample to each cluster. The other is
the additional parameter that represents the responsibility of
each variable for local model estimation in each cluster. Local
subspaces are estimated emphasizing meaningful variables that
have large memberships.

By the way, for variable selection in the k-Means clustering,
Huang et al. [13] introduced the memberships of variables
that play a role for fuzzy partitioning of variables. While they
considered the weights for evaluating the relative importance
of variables in data partitioning process, the proposed method
considers the weights for evaluating the absolute importance
of variables in local linear model estimation in each cluster.
The new memberships measure the degree of importance of
each variable using the reconstruction errors in the lower rank
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approximation, i.e., the new measure is responsible for estimat-
ing the prediction ability in reduced-rank prediction. So, large
memberships mean that the variables are well reconstructed by
the local linear models, and the linear models are estimated
so that they keep the information of the meaningful variables
as well as possible.

When we optimize the objective function including two
types of memberships, we should impose a different constraint
on the additional one. As the sum of the conventional mem-
berships over all clusters is constrained to be 1, the sum of the
responsibility over all variables is to be 1. However, when the
number of variables is large, the responsibility values become
very small and make it difficult to interpret the absolute
responsibility of the variables. To cope with this problem in
the mixed c-means clustering [14], Pal et al. [15] proposed
to relax the constraint (row sum = 1) on the typicality values
but retain the column constraint on the membership values so
that the additional values represent the absolute typicalities.
In this paper, the graded possibilistic approach [16], [17] is
applied to the estimation of memberships of variables. Because
the membership of each variable represents the possibility of
responsibility, they can be meaningful criteria for the variable
selection in PCA.

Section II presents a brief review of the formulation of
linear fuzzy clustering that uses the least squares criterion
for component-wise approximation. In Section III, a technique
for variable selection in linear fuzzy clustering is proposed by
introducing the memberships of variables into the least squares
criterion. Several numerical examples are presented in Section
IV, which reveals the characteristic features of the proposed
method. The final section summarizes the results of this paper.

II. LOCAL PRINCIPAL COMPONENT ANALYSIS AND

LINEAR FUZZY CLUSTERING

A. Principal Component Analysis and Variable Selection

In the analysis of large scale data sets, it is often the case
that they include unnecessary variables which have no useful
information for modeling, i.e., we can extract data substruc-
tures, in which several variables have mutual dependencies,
by eliminating unnecessary variables. In order to delete the
redundant variables, several criteria for variable selection in
PCA have been proposed [7], [8], [9], in which the goal
is to select items or variables so as to keep the original
information as well as possible. Assume that we have a 3-
D data set shown in Fig. 1, in which x1 and x2 are mutually
dependent while x3 is almost random. If the goal is the data
compression, we should calculate principal components by
estimating the principal 2-D subspace, and x1 and x2 are
redundant in estimating the substructure. So the conventional
variable selection criteria tries to eliminate x1 or x2. When
we want to obtain the best subset of variables, we should
search for the subset which has the largest (or smallest)
criterion value among all possible subsets. From the aspect
of practical application, the one-variable stepwise procedures
such as Backward elimination, Forward selection, Backward-
forward stepwise selection and Forward-backward stepwise
selection are used [9].
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Fig. 1. Example of variable selection in PCA

On the other hand, in the data mining tasks, the goal is to
extract association rules and we wish to select the variables
that are mutually dependent, i.e., we should eliminate variables
that can be regarded as random. In Fig. 1, x3 seems not
to have information for constructing any association rule,
and we should emphasize the mutual dependency between
x1 and x2 by estimating the linear structure (1-D principal
line). In this sense, it is useful for data mining to evaluate
the relative responsibilities of variables for estimation of
principal subspace. The remaining part of this paper proposes
a technique for estimating local linear models considering the
responsibility weights of variables after a brief review of the
related clustering methods.

B. Linear Fuzzy Clustering with Least Squares Criterion

Assume that we have an (n × m) data matrix X =
(xij) consisting of m-dimensional observation of n samples.
In the following, the data matrix is also represented as
X = (x1, · · · ,xm) using n-dimensional column vectors xj’s
composed of the elements of the j-th columns of X , or
X = (x̃1, · · · , x̃n)� using m-dimensional column vectors
x̃i’s composed of the i-th row elements of X , respectively.
(All bold symbols represent column vectors and the vectors
composed of the row elements of a matrix are superscripted
by “∼”.)

Linear fuzzy clustering is a technique for partitioning
samples into several linear clusters in order to capture local
linear structure. Fuzzy c-Varieties (FCV) [3], [4] partitions
a data set into C linear fuzzy clusters using linear varieties
as the prototypes of clusters. The clustering criterion for
the FCV clustering is the within-group-sum-of-errors from
p-dimensional prototypical linear varieties spanned by lin-
early independent vectors ack’s. The objective function is the
weighted sum of the distances as follows:

Lfcv =
C∑

c=1

n∑
i=1

uθ
ci

{
(x̃i − bc)�(x̃i − bc)

−
p∑

k=1

a �
ck Rciack

}
, (1)

Rci = (x̃i − bc)(x̃i − bc)�, (2)
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where uci denotes the membership degree of data point x̃i

to the c-th cluster and � represents the transpose of the
vector (or matrix). bc is the center of the c-th cluster. The
weighting exponent θ is called “fuzzifier” and plays a role for
fuzzification of memberships. The larger the θ, the fuzzier the
membership assignments.

The clustering algorithm is based on the alternate optimiza-
tion technique. The optimal ack’s are derived from necessary
condition for the optimality ∂Lfcv/∂ack = 0, and is the
solution of the eigenvalue problem of fuzzy scatter matrix.
Because the optimal ack’s are the eigenvectors corresponding
to the largest eigenvalues, the vectors can be regarded as the
fuzzy principal component vectors extracted in each cluster
considering memberships [6]. Consequently, cluster centers
and memberships are updated from conditions ∂Lfcv/∂bc = 0
and ∂Lfcv/∂uci = 0, respectively.

Although the FCV clustering is useful for partitioning
samples, is not suited to evaluation of the responsibilities of
variables because the clustering criterion can be used only for
calculating the membership degree of each sample. Another
formulation of the FCV clustering have been proposed by
modifying the least squares criterion for principal component
analysis [18]. Introducing memberships uci’s, the least squares
criterion for local PCA is defined as follows [11]:

Llsc =
C∑

c=1

tr
{
(X − Yc)�Uθ

c (X − Yc)
}

=
C∑

c=1

n∑
i=1

uθ
ci

m∑
j=1

(
xij −

p∑
k=1

fcikacjk − bcj

)2

,

(3)

where Uc is the (n × n) diagonal matrix Uc =
diag(uc1, · · · , ucn). Yc = (ycij) is the lower rank approxima-
tion of data matrix X , which is estimated in the c-th cluster
as follows:

Yc = FcA
�
c + 1nb�

c , (4)

where Fc = (f̃ c1, · · · , f̃ cn)� is the (n × p) score matrix
and Ac = (ac1, · · · ,acp) is the (m× p) principal component
matrix. 1n is n-dimensional vector whose all elements are 1.
Under the constraints that F�

c U
θ
c 1n = 0 and A�

c Ac = I ,
Eq.(3) is equivalent to the objective function of FCV and the
minimization problem is solved by computing the p largest
eigenvalues of the fuzzy scatter matrix and their associated
vectors.

C. Robust Linear Fuzzy Clustering

Using the component-wise formulation, we can handle miss-
ing values and intra-sample noise. Honda and Ichihashi [10],
[11], [12] introduced additional weight parameters wcij’s into
the least squares criterion and proposed the following objective
function.

Lrfcv =
C∑

c=1

n∑
i=1

uci

m∑
j=1

wcij

(
xij −

p∑
k=1

fcikacjk − bcj

)2

+λ
C∑

c=1

n∑
i=1

uci log uci, (5)

where wcij is the weight corresponding to element of data
matrix xij . In Eq.(5), entropy regularization approach [19] was
applied for fuzzification of memberships and the entropy term
was added instead of the weighting exponent in the standard
FCV algorithm. The larger the λ, the fuzzier the membership
assignments. (The fuzzification technique derives a similar
algorithm to that of entropy-constrained fuzzy clustering by
deterministic annealing (DA) [20]. As is mentioned in [21], the
entropy regularized linear fuzzy clustering algorithm can also
be identified with the soft version local PCA [2].) Additional
weight wcij represents the responsibility of element xij for
local model estimation. When xij is missing, wcij is set to
be zero and the corresponding error is ignored [11]. When
xij is regarded as noise observation in the c-th cluster, a
small value is assigned to wcij and the corresponding error
is ignored [12]. Usually, the weights for the robust approach
are calculated based on the iteratively reweighted least squares
(IRLS) technique [22].

D. Hybrid Approaches to FCM-type Fuzzy Clustering

While the IRLS technique is a useful approach to robust M-
estimation, the algorithm has close relationship with the robust
fuzzy clustering [23], and it can be said that weight wcij plays
a role of memberships in robust clustering with possibilistic
constraint [24]. In this sense, the robust FCV algorithm is a
hybrid model of FCM-type fuzzy clustering.

Several hybrid approaches to fuzzy clustering have been
proposed. In the approaches, the objective functions are de-
fined by using two different types of memberships. Fuzzy-
Possibilistic c-Means (FPCM) algorithm [14] solves the noise
sensitivity defect by introducing typicality values to the objec-
tive function of FCM. The algorithm simultaneously finds both
membership values (relative typicalities) and typicality values
(absolute typicalities) for each sample in the data set across
all clusters in order to estimate good centroids alleviating the
undesirable effects of outliers. For the task, the sum of the
typicality values over all samples is required to be 1 (the row
sum constraint).

Oh et al. [25] used two types of memberships in clustering
of cooccurrence matrix in order to classify not only individuals
but also categories. In order to group individuals and cate-
gories, which have high correlations each other, the algorithm
tries to maximize the degree of aggregation, i.e., the total
amount of products of qualitative variables and memberships
for individuals and categories. To avoid trivial solutions, the
total memberships of each cluster for categories are required to
be 1. Umayahara et al. [26] also proposed several formulations
of fuzzy clustering for categorical data based on multiset
theory using two memberships and the row sum constraints.

In the next section, two types of memberships and the row
sum constraints are introduced to linear fuzzy clustering in
order to classify not only samples but also variables.

III. LOCAL PRINCIPAL COMPONENT ANALYSIS

CONSIDERING RESPONSIBILITIES OF VARIABLES

A. Linear Fuzzy Clustering with Variable Selection

In order to eliminate unnecessary variables, the member-
ships of variables are introduced into the least squares criterion
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for Local PCA. This paper proposes two formulations based
on two major fuzzification techniques. One is the standard
approach adopted in the original FCM algorithm [3] that
uses the fuzzifier of weighting exponent. The other is the
entropy regularization approach [19] that is often associated
with probabilistic mixture models [21].

Using two types of memberships, the objective function
with the standard fuzzification approach is defined as follows:

Ls
fcvvs = J(θu,θv)

=
C∑

c=1

n∑
i=1

uθu

ci

m∑
j=1

vθv

cj

(
xij −

p∑
k=1

fcikacjk − bcj

)2

,

(6)

where vcj represents the degree of membership of the j-th
variable to the c-th cluster. The weighting exponent θv(θv >
1) plays a role for fuzzification of membership degrees of
variables. If the j-th variable has no useful information for
estimating the c-th prototypical linear variety, vcj has small
value and the j-th variable is ignored in calculation of clus-
tering criteria in the c-th cluster.

On the other hand, using the entropy regularization ap-
proach, the objective function is given as

Le
fcvvs = J(1,1) + λu

C∑
c=1

n∑
i=1

uci log uci

+λv

C∑
c=1

m∑
j=1

vcj log vcj

=
C∑

c=1

n∑
i=1

uci

m∑
j=1

vcj

(
xij −

p∑
k=1

fcikacjk − bcj

)2

+λu

C∑
c=1

n∑
i=1

uci log uci

+λv

C∑
c=1

m∑
j=1

vcj log vcj . (7)

The second entropy term plays a role for fuzzification of
memberships of variables, and is controlled by the fuzzifier
λv .

To obtain a unique solution, the objective functions are
minimized under the constraints that

F�
c U

θu
c Fc = I ; c = 1, · · · , C, (8)

F�
c U

θu
c 1n = 0 ; c = 1, · · · , C, (9)

C∑
c=1

uci = 1 ; i = 1, · · · , n, (10)

m∑
j=1

vcj = 1 ; c = 1, · · · , C, (11)

and A�
c Ac is orthogonal. Here, the additional memberships

represent the relative responsibilities of variables. So, the sum
of vcj is constrained to be 1 with respect to all m variables,
but not with respect to all C clusters.

By the way, the additional membership of vcj has a different
role from that of the modified k-Means clustering proposed

by Huang et al. [13] although the two objective functions
have similar forms except for the clustering criteria. In [13],
the memberships of variables were introduced in order to
evaluate the importance of variables in clustering process.
Then, the small memberships eliminate the effect of noisy
variables. On the other hand, the proposed memberships vcj

work for evaluating the importance of variables in local linear
model estimation in each cluster. So, the small memberships
eliminate not only the effect of noisy variables in clustering
process but also that of insignificant variables in linear model
estimation.

The clustering result is derived by an iterative algorithm
based on the alternate optimization technique. Here, the updat-
ing rules for parameters are first derived by using the standard
fuzzification approach. To derive the optimal Ac, bc and vcj ,
Eq.(6) is rewritten as follows:

Ls
fcvvs =

C∑
c=1

m∑
j=1

vθv

cj ecj, (12)

where

ecj = (xj − Fcãcj − 1nbcj)�Uθu
c (xj − Fcãcj − 1nbcj),

(13)

Ac = (ãc1, · · · , ãcm)�.

From ∂Ls
fcvvs/∂ãcj = 0, and ∂Ls

fcvvs/∂bcj = 0, we have

ãcj = (F�
c U

θu
c Fc)−1F�

c U
θu
c (xj − 1nbcj), (14)

and

bcj = (1�
nU

θu
c 1n)−11�

nU
θu
c (xj − Fcãcj). (15)

The membership vcj satisfying the probabilistic constraint of
Eq.(11) is given as

vcj =

{
m∑

l=1

(
ecj

ecl

) 1
θv−1

}−1

=
(ecj)−

1
θv−1∑m

l=1(ecl)−
1

θv−1
. (16)

In the same way, we can derive the optimal Fc and uci.
Eq.(6) is equivalent to

Ls
fcvvs =

C∑
c=1

n∑
i=1

uθu

ci dci, (17)

where

dci = (x̃i −Acf̃ ci − bc)�Ṽ θv
c (x̃i −Acf̃ ci − bc). (18)

∂Ls
fcvvs/∂f̃ci = 0 yields

f̃ci = (A�
c Ṽ

θv
c Ac)−1A�

c Ṽ
θv
c (x̃i − bc), (19)

where

Ṽc = diag(vc1, · · · , vcm). (20)
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The membership uci satisfying the probabilistic constraint of
Eq.(10) is given as

uci =

{
C∑

l=1

(
dci

dli

) 1
θu−1

}−1

=
(dci)−

1
θu−1∑C

l=1(dli)−
1

θu−1
. (21)

Next, the updating rules with the entropy regularization
approach are derived as follows: setting as (θu, θv) = (1, 1),
the optimal Ac, bc and Fc are given as Eqs.(14), (15) and (19),
respectively. In the same manner, from ∂Le

fcvvs/∂vcj = 0 and
∂Le

fcvvs/∂uci = 0, we have

vcj = exp
{
−ecj

λv
− 1
}

(22)

and

uci = exp
{
−dci

λu
− 1
}
. (23)

The probabilistic constraints of Eqs.(11) and (10) normalize
them as

vcj =
exp
{− ecj

λv

}
∑m

l=1 exp
{− ecl

λv

} (24)

and

uci =
exp
{− dci

λu

}
∑C

l=1 exp
{− dli

λu

} , (25)

respectively.
In this way, local subspaces are estimated ignoring unnec-

essary variables that have small memberships. However, when
the number m of variables is large, the values will be very
small because of the constraint of Eq.(11). So, it is often
difficult to interpret the absolute responsibility of a variable
from its responsibility value. The next subsection proposes
to apply the graded possibilistic approach and make the
additional memberships more useful for selecting variables.

B. Graded Possibilistic Approach to Variable Selection

The deficiency of the model proposed in the previous
subsection comes from the fact that it imposes the same
constraint with the conventional memberships on the variable
selection parameters. In the mixed c-means clustering, Pal
et al. [15] proposed to relax the constraint (row sum =
1) on the typicality values but retain the column constraint
on the membership values. So, for deriving the absolute
responsibilities of variables, the constraint is relaxed and the
possibilistic constraint is applied in this subsection. In the
possibilistic approach [24], the memberships can be regarded
as the probability that an experimental outcome coincides with
one of mutually independent events. However, it is possible
that sets of events are neither mutually independent nor com-
pletely mutually exclusive. Then, Masulli and Rovetta [16],
[17] proposed the graded possibilistic approach to clustering,
in which soft transition of memberships from probabilistic

vc1

vc2

0 0.25 0.5 0.75 1

0.25

0.5

0.75

1

Fig. 2. Bounds of the feasible regions for vcj for different values of α

to possibilistic constraint is performed by using the graded
possibilistic constraint.

In this subsection, the memberships of variables are esti-
mated by using the graded possibilistic approach. Assume that
a class of constraints is expressed by a unified formulation

Ψ =
m∑

j=1

v
[ξ]
cj − 1, (26)

where [ξ] is an interval variable representing an arbitrary real
number included in the range [ξ, ξ], i.e., there must exist a
scalar exponent ξ∗ ∈ [ξ, ξ] such that the equality Ψ = 0
holds. The constraint can be implemented by using a running
parameter α. The extrema of the interval are written as a
function of α, where

ξ = α, ξ =
1
α
, (27)

and α ∈ [0, 1]. This formulation obviously includes two
extreme cases. α = 1 implies the probabilistic assumption
because [ξ] = [1, 1] yields

∑m
j=1 vcj = 1. On the other

hand, α = 0 implies the possibilistic assumption because
[ξ] = [0,∞] yields

∑m
j=1 v

0
cj ≥ 1 and

∑m
j=1 v

∞
cj ≤ 1. Then,

the constraint with an interval is represented as a set of two
inequalities.

m∑
j=1

vα
cj ≥ 1,

m∑
j=1

v
1
α

cj ≤ 1. (28)

Figure 2 depicts the bounds of the feasible regions for m = 2.
The feasible value for vcj must lie on the eye-shaped area,
which becomes large in the direction of the arrows as the
value of α decreases.

For implementation of the graded possibilistic clustering, a
sample algorithm was introduced in [16], [17] considering the
entropy regularization (or DA approach). In this section, the
algorithm is redefined considering both of the standard fuzzi-
fication approach and the entropy regularization approach.
Assume that we have the free membership function φcj that
represents the absolute typicality of the j-th variable in the
c-th cluster, and the membership value vcj is given by the
following normalization.

vcj =
φcj

κj
. (29)

Under the condition of φcj ∈ [0, 1], a reasonal choice of φcj

for the entropy regularization approach is

φcj = exp
{−ecj

λv

}
. (30)
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On the other hand, the standard fuzzification approach does
not have such a free membership function. In this paper, the
possibilistic membership [24] is used instead of (ecj)−

1
θv−1

of Eq.(16), then φcj is given as

φcj =
1

1 + (ecj/ηc)
1

θv−1
, (31)

where ηc is a predefined constant. We can see that ecj = 0
derives φcj = 1, and φcj moves toward 0 as ecj → ∞.

In the graded possibilistic approach, κj takes one of the
following three values.

κj =

(
m∑

l=1

φ
1
α

cl

)α

if
m∑

l=1

φ
1
α

cl > 1, (32)

κj =

(
m∑

l=1

φα
cl

) 1
α

if
m∑

l=1

φα
cl < 1, (33)

κj = 1 else. (34)

Eq.(32) transforms memberships that are above the eye-shaped
area onto the upper boundary (

∑m
l=1 v

1
α

cl = 1) while Eq.(33)
transforms memberships under the eye-shaped area onto the
lower boundary (

∑m
l=1 v

α
cl = 1). Here,

∑m
l=1 φ

1
α

cl > 1 and∑m
l=1 φ

α
cl < 1 are mutually exclusive because φα

cl > φ
1
α

cl

derives
m∑

l=1

φα
cl < 1 ⇒

m∑
l=1

φ
1
α

cl ≤ 1, (35)

and
m∑

l=1

φ
1
α

cl > 1 ⇒
m∑

l=1

φα
cl ≥ 1. (36)

When α = 1, Eqs.(32) and (33) derive κj =
∑m

l=1 φcl,
and memberships vcj’s are reduced to the probabilistic ones
(
∑m

j=1 vcj = 1). On the other hand, α = 0 provides the
possibilistic membership assignment because all of κj’s are
given by Eq.(34). Then, the value of α should be gradually
decreased from 1 to 0.

The proposed algorithm can be written as follows:

Algorithm: Fuzzy c-Varieties with Variable Selection Using
Graded Possibilistic Approach

Step 1 Initialize Uc, Ṽc, Ac, bc, Fc in each cluster and
normalize them so that they satisfy the constraints
Eqs.(8)-(11) and A�

c Ac is orthogonal. Set the run-
ning parameter as α = 1. Choose termination thresh-
old ε and the step of running parameter Δα.

Step 2 Update Ac’s using Eq.(14) and transform them
so that each A�

c Ac is orthogonal.
Step 3 Update Fc’s using Eq.(19) and normalize them

so that they satisfy the constraints Eqs.(8) and (9).
Step 4 Update bc’s using Eq.(15).
Step 5 Update Ṽc’s using Eq.(29).
Step 6 Update Uc’s using Eq.(21) (or Eq.(25)).
Step 7 If

max
c,i

| uNEW
ci − uOLD

ci |< ε,

then go to Step 8. Otherwise, return to Step 2.

Step 8 If α = 0, then stop. Otherwise, set α = α−Δα
and return to Step 2.

When we use the entropy regularization approach, the above
algorithm with α = 1 is equivalent to that of probabilistic
constraint model. So, the algorithm exactly performs the
soft transition from the probabilistic clustering model to the
possibilistic one. On the other hand, when we use the standard
fuzzification approach, the algorithm is not equivalent to that
of probabilistic one even if α = 1. Then, we should use the
result of the probabilistic clustering model in the initialization
step. Furthermore, we must also choose the additional param-
eter ηc carefully.

C. Comparison with Robust FCV

Although the Robust FCV algorithm [12] is a technique
for handling intra-sample outliers, it can also be extended to
variable selection in linear fuzzy clustering. In this subsection,
the close relationship between the proposed method and the
robust M-estimation is discussed. In the proposed variable
selection model, the goal is to estimate linear models ignoring
unnecessary variables. In order to derive robust models that
are free from the influences of outliers, the objective functions
of least squares techniques have been enhanced to the robust
measures using robust ρ-functions [22]. Based on robust M-
estimation, the energy function to be minimized is defined as
follows:

L′
rfcv =

C∑
c=1

m∑
j=1

ρ(e1/2
cj ) + λ

C∑
c=1

n∑
i=1

uci log uci, (37)

where ρ(·) is a class of robust ρ-functions, and ecj is the previ-
ous residual for the j-th variable given by Eq.(13). To solve the
minimization problem, both the iteratively reweighted least-
squares (IRLS) technique [22] and the gradient descent method
with a local quadratic approximation are used. For the Geman-
McClure ρ function [27]

ρ(x) =
x2

x2 + σ2
, (38)

the weight corresponding to the j-th variable wcj is given by

wcj =
ψ(ecj, σ)
ecj

, (39)

where

ψ(ecj , σ) =
∂ρ(e1/2

cj )
∂ecj

=
2ecijσ

2

(e2cij + σ2)2
, (40)

and σ is a scale parameter that controls the convexity of the
robust function.

Using the responsibility weight of the j-th variable in the c-
th cluster, the objective function of the Robust FCV algorithm
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is redefined as

L′′
rfcv =

C∑
c=1

m∑
j=1

wcjecj + λ
C∑

c=1

n∑
i=1

uci log uci

=
C∑

c=1

n∑
i=1

uci

m∑
j=1

wcj

(
xij −

p∑
k=1

fcikacjk − bcj

)2

+λ
C∑

c=1

n∑
i=1

uci log uci. (41)

Here, let φ be the vector of parameters. The first derivative
with fixed wcj is similar to that of L′

rfcv as follows:

∂L′′
rfcv

∂φ
= wcj

∂ecj

∂φ

=
σ2

(ecj + σ2)2
∂ecj

∂φ
∼= ∂L′

rfcv

∂φ
. (42)

Therefore, minimization of the modified objective function of
Eq.(41) approximately achieves the optimization of Eq.(37),
and the proposed hybrid mechanism for variable selection in
linear fuzzy clustering, which uses two types of memberships,
has close relationship with the robust M-estimation that uses
the responsibility weights of variables based on the IRLS
technique.

By the way, it should be noted that the robust model
of Eq.(37) uses the weighted sum of squared errors with
respect to the j-th variable as the measure to be minimized
and robustifies it by using robust ρ-function. In this sense,
the responsibility weight wcj plays a role for robustification
using the robust M-estimation technique while the membership
weight uci fuzzifies the distance measure. Tuning of the
responsibility weight, however, is not performed by minimiza-
tion of a single objective function. On the other hand, in the
proposed linear fuzzy clustering algorithm, the robustification
mechanism is performed by using two different memberships
and the memberships are calculated by the minimization of a
single objective function.

D. Selection of Fuzzifier for Memberships of Variables

In the standard fuzzification method, the fuzzifier is often
set as θ = 2.0 or sometime as θ = 1.5 in view of clear
classification. On the other hand, the entropy regularization
approach does not have such general choice of the fuzzifier
because the degree of fuzziness is depends not only on the
value of fuzzifier but also on the scale of variables. Although
several techniques have been used for deriving the optimal
solutions for some regularization problems [28], we cannot
derive the optimal fuzzifier for the entropy regularizer using
such techniques because the entropy regularization is not
exactly a technique for regularizing ill-posed problems but for
fuzzification of memberships in the clustering context. So, the
degree of fuzziness should be decided based on the standpoint
of analyst in the same way as the standard fuzzification
technique. This subsection proposes an approach to automatic
selection of the fuzzifier for the memberships of variables so
as to reflect the view point of analyst.

It has been shown that the FCM algorithm with entropy
regularization method has close relation with the EM algo-
rithm for Gaussian Mixture Models (GMMs) and the iterative
algorithm is equivalent to the EM algorithm for GMMs in the
case where the unknown parameters of Gaussian components
are only the mean vectors [21]. In the model, fuzzifier λ is
identified with the double variance of the Gaussian component
density functions. The regularization by K-L information [21]
is an extended version of the entropy regularization that is
comparable with GMMs with full parameters. In the technique,
the fuzzifier λ is used for generalizing GMMs considering the
analyst’s view point.

The memberships of variables proposed in this paper are
also comparable with a Gaussian model. Although the goal
of clustering is not the estimation of a probability density
function, we can consider a corresponding probabilistic model
based on the algorithmic similarity. Assume that the previous
residuals for variables e

1/2
cj , j = 1, · · · ,m are drawn from

a probabilistic distribution and we have a Gaussian density
function pc(·) with fixed σ2

vc in the c-th cluster.

pc(e
1/2
cj ) =

1√
2πσvc

exp
(−ecj

2σ2
vc

)
, (43)

where ecj is the squared deviation for the j-th object. The free
membership of Eq.(30) is the normalized version of pc(e

1/2
cj )

such that pc(0) = 1, and the fuzzifier for the memberships is
equivalent to the double variance of the deviation (λv = 2σ2

vc).
Here, we can derive a possible approach to automatic

adjustment of the fuzzifier based on the sample variances
considering the analyst’s view point. In order to adjust the
fuzzifier, the fuzzifier is decomposed as λv = Λvσ

2
vc where

λv can be automatically adjusted in each cluster by updating
σ2

vc while Λv is a constant for tuning the degree of fuzziness.

σ2
vc =

1
m

m∑
j=1

ecj . (44)

Then, if Λv = 2, the possibilistic assignment of memberships
of variables corresponds to the Gaussian model.

Here, Λv = 2 is a natural choice from the view point of
probabilistic clustering [29] and Λv should be set smaller than
2 for clear classification.

IV. NUMERICAL EXPERIMENTS

A. Analysis of an Artificial Data Set

A numerical experiment was performed using an artificial
data set. Table I shows the coordinates of the samples. Samples
1-12 form the first group, in which x1, x2 and x3 are linearly
related, i.e., samples are distributed forming a line in the 3-D
space. However, x4 and x5 are random variables. So, x1, x2

and x3 should be selected in the group and we can capture
the local linear structure by eliminating x4 and x5. On the
other hand, samples 13-24 form the second group, in which
x2, x3 and x4 are linearly related, but x1 and x5 are random
variables. In this way, the local structures must be captured
by classifying not only samples but also variables.

First, applying the proposed algorithm with the standard
fuzzification method, the samples were partitioned into two
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TABLE I

ARTIFICIAL DATA SET

sample x1 x2 x3 x4 x5

1 0.000 0.000 0.250 0.143 0.365
2 0.091 0.091 0.295 0.560 0.605
3 0.182 0.182 0.341 0.637 0.001
4 0.273 0.273 0.386 0.529 0.557
5 0.364 0.364 0.432 0.949 0.195
6 0.455 0.455 0.477 0.645 0.206
7 0.545 0.545 0.523 0.598 0.026
8 0.636 0.636 0.568 0.616 0.729
9 0.727 0.727 0.614 0.004 0.407
10 0.818 0.818 0.659 0.255 0.641
11 0.909 0.909 0.705 0.088 0.244
12 1.000 1.000 0.750 0.589 0.213
13 0.199 0.750 0.250 0.000 0.321
14 0.411 0.705 0.295 0.091 0.167
15 0.365 0.659 0.341 0.182 0.419
16 0.950 0.614 0.386 0.273 0.109
17 0.581 0.568 0.432 0.364 0.561
18 0.323 0.523 0.477 0.455 0.127
19 0.899 0.477 0.523 0.545 0.349
20 0.399 0.432 0.568 0.636 0.100
21 0.249 0.386 0.614 0.727 0.682
22 0.214 0.341 0.659 0.818 0.714
23 0.838 0.295 0.705 0.909 0.605
24 0.166 0.250 0.750 1.000 0.244

clusters using the probabilistic constraint. The model param-
eters were set as θu = 2.0, θv = 2.0, p = 1 and α = 1. In
the sense of maximum membership, the first cluster included
samples 1-12, while the second cluster included the remaining
samples. The left columns of Table II show the derived mem-
berships of variables and local principal component vectors.
x4 and x5 were eliminated in the first cluster and a1 revealed
the relationship among x1, x2 and x3. On the other hand, in
the second cluster, small memberships were assigned to x1

and x5, and a2 represented the local structure of the second
group (samples 13-24). A similar clustering result can be
also derived by using the entropy regularization method. The
result is shown in the left columns of Table III. The model
parameters were set as λu = 0.01, λv = 0.5, p = 1 and α = 1.

The clustering results indicate that the proposed member-
ship vcj is useful for evaluating the typicality of the variable in
local linear model estimation where x1 and x4 are significant
only in the first and second cluster, respectively. Additionally,
the typicality values also play a role for rejecting the influences
of noise variable (x5) because x5 belongs to neither of two
clusters. In this way, the row sum constraints of Eq.(11) give
the memberships a different meaning from the conventional
column constraints that forces each samples to belong at least
one cluster. However, the memberships represent only the
relative responsibilities and cannot be used for determining
the absolute responsibilities.

Then, the graded possibilistic approach was applied to
the data set. The step of the running parameter was set as
Δα = 0.1. The right columns of Tables II and III show
the derived memberships of variables and local principal
component vectors. Because the responsibility of each variable
is represented by the possibilistic partition, the membership
values make it easy to select the variables to be considered. In

this way, the proposed algorithm is useful for variable selection
in linear fuzzy clustering.

By the way, in the standard fuzzification method, we must
choose additional parameter ηc. In this experiment, the result
of Table II was given with ηc = 0.05. However, the clustering
result severely depended on the value of ηc. So, a careful
choice is required in order to derive meaningful membership
values using the graded possibilistic approach.

In the entropy regularization method, we can evaluate
the degree of fuzziness considering the connection with the
gaussian mixture models [21]. When we use the probabilistic
constraint, the fuzzifier corresponds to the variance of the
gaussian distribution, and the clustering model is equivalent
to the gaussian mixture models if the fuzzifier is equal to the
double variance of the corresponding component distribution.
In the proposed clustering model, the generalized variance of
the c-th cluster is calculated as

σ2
uc =

∑n
i=1 ucidci∑n

i=1 uci
, (45)

and the values were given as (σ2
u1, σ

2
u2) = (0.01, 0.01) in this

experiment. So, it can be said that the derived fuzzy partition
with λu = 0.1 is slightly fuzzy compared with the gaussian
mixture models. On the other hand, in the possibilistic model,
the membership function corresponds to single gaussian model
and the fuzzifier plays a role of the variance of the distribution.
For memberships of variables, the variance of the c-th cluster
were (σ2

v1, σ
2
v2) = (0.15, 0.14). So, the value of λv = 0.05

was a strict choice, in which the degree of importance is more
emphasized than the gaussian distribution. In this way, the
clustering model with the entropy regularization is comparable
with its corresponding probabilistic model.

B. Analysis of Wine Data

Next, the proposed method was applied to Wine data [30],
which consists of 178 instances with 13 numerical attributes
and 1 class label. In this experiment, the entropy regularization
method was used for the fuzzification of memberships. Each
instance belongs to one of three classes. This data set is often
used for pattern recognition tasks. However, in this experiment,
it is used for an unsupervised classification task. So, the goal of
the analysis is to reveal the local structure of the data set using
only 13 attributes (without class label). Before application of
clustering algorithms, the data set was normalized so that each
attribute has zero mean and unit variance.

First, the data set was partitioned into two clusters using the
conventional FCV algorithm. The left side of Table IV shows
the average of memberships in each cluster. In the sense of
maximum membership, all instances of the first class were
assigned into the first cluster while the second cluster included
the third class. The instances of the second class were shared
by the two clusters. Then, the first (second) cluster reveals the
relationship between the first and second classes (the second
and third classes), i.e., the data set can be summarized by
two linear structures, and the second class is located in the
intersection of the two lines. Table V shows the cluster centers
and the fuzzy factor loadings (FFL) of the component scores.
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TABLE II

MEMBERSHIPS OF VARIABLES AND LOCAL PRINCIPAL COMPONENT VECTORS WITH STANDARD FUZZIFICATION (ARTIFICIAL DATA SET)

probabilistic constraint possibilistic constraint
variable vcj �c vcj �c

c = 1 c = 2 c = 1 c = 2 c = 1 c = 2 c = 1 c = 2
x1 0.318 0.018 1.083 0.036 0.833 0.055 1.083 0.036
x2 0.318 0.316 1.083 0.539 0.833 0.833 1.083 0.539
x3 0.318 0.316 0.541 -0.539 0.833 0.833 0.541 -0.539
x4 0.020 0.316 -0.236 -1.079 0.059 0.833 -0.236 -1.079
x5 0.026 0.035 0.007 -0.291 0.076 0.099 0.007 -0.291

TABLE III

MEMBERSHIPS OF VARIABLES AND LOCAL PRINCIPAL COMPONENT VECTORS WITH ENTROPY REGULARIZATION (ARTIFICIAL DATA SET)

probabilistic constraint possibilistic constraint
variable vcj �c vcj �c

c = 1 c = 2 c = 1 c = 2 c = 1 c = 2 c = 1 c = 2
x1 0.283 0.056 1.103 0.044 0.955 0.192 1.103 0.044
x2 0.287 0.280 1.073 0.540 0.968 0.966 1.073 0.540
x3 0.279 0.272 0.522 -0.505 0.941 0.937 0.522 -0.505
x4 0.069 0.283 -0.242 -1.104 0.233 0.976 -0.242 -1.104
x5 0.082 0.109 -0.001 -0.289 0.278 0.376 -0.001 -0.289

FFL is the correlation coefficient between the component score
and the original attribute [6] and can be used for selecting
meaningful attributes whose FFL values are shown in bold.
For example, variables x4 and x5 are meaningful only in the
first cluster while x2, x3, x11 and x12 are selected in second
cluster. However, it is not so easy to evaluate the responsibility
of each variable for local model estimation, and the local
principal components might be influenced by meaningless
variables, i.e., we cannot evaluate the amount of information
kept in the local models using only the fuzzy factor loadings
from the view point of prediction. Furthermore, in order to
keep in meaningful information as well as possible, the local
models should be estimated by eliminating the influences of
insignificant variables.

Second, the proposed method was applied in order to
partition the data set into two clusters selecting variables
in each cluster. The model parameters were set as λu =
0.05, λv = 50.0, p = 1 and Δα = 0.1. As the result, the
variances of Eqs.(45) and (44) were given as (σ2

u1, σ
2
u2) =

(0.40, 0.33) and (σ2
v1, σ

2
v2) = (41.66, 45.05), respectively.

Then, the parameter setting is very crisp for sample partition
and slightly strict for variable partition compared with gaussian
distribution. The right side of Table IV shows the average
of memberships in each cluster. In the sense of maximum
membership, the membership assignments are similar to that
of the FCV clustering. Tables VI shows the cluster centers,
the memberships of variables and the fuzzy factor loadings
of the component scores derived with possibilistic constraint.
The variables indicated by bold symbols were assigned large
memberships. Here, the tables show the following two notable
features. (i) the variables whose FFL values had large mag-
nitude in Table V were assigned large memberships, i.e., the
variables that has high correlation with the local latent variable
are regarded as important. So, we can select variables that are
mutually dependent, e.g., x1, x6, x7, x10 and x13 can be used
for constructing association rules in the first cluster. (ii) the
variables corresponding to the coordinate with wide gaps in

cluster centers, such as x2 and x12 in the first cluster and
x13 in the second cluster, were assigned large memberships,
i.e., the variables that are mainly used for data partitioning
are regarded as important. The first cluster consists of the
samples whose x2 (x12) is small (large), while the second
cluster is characterized by samples whose x13 is small. So,
we can also select variables that are useful for understanding
the cluster structure. Furthermore, from the view point of
prediction, the derived local linear models have a different
feature from that of FCV because the models are biased
by the additional membership so that the models keep in
meaningful information as well as possible. Table VII shows
the comparison of the membership-weighted mean squared
error (MSE) of each variable. The variables having large mem-
berships are shown in bold. Because the large memberships
try to minimize the errors for the meaningful (i.e., predictable)
variables, the corresponding MSE became smaller than the
original model given by FCV in most cases. Then, it can
be said that the local linear models derived by the proposed
method are more useful for revealing the mutual structure
of the predictable variables by giving up representation of
unpredictable variables. In this way, the proposed method
emphasizes the effects of meaningful variables in local linear
modeling, and the memberships of variables are used for
selecting meaningful variables.

Third, the automatic adjustment mechanism was applied in
order to compare the results derived with several parameter
sets. In this experiment, the memberships of samples uci’s
were fixed as the previous result and only vcj’s were updated
in the soft transition process. Changing the value of Λv,
the memberships of variables were given as Table VIII. The
table shows that the classification result becomes clear as Λv

becomes small, i.e., the deviations between the memberships
of meaningful and insignificant variables gradually grow as
Λv becomes small while Λv → ∞ corresponds to the standard
FCV clustering where vcj’s are all 1. However, in the result
of Λv = 0.5, some memberships became unusually larger
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TABLE IV

AVERAGE OF MEMBERSHIPS IN EACH CLUSTER (WINE DATA)

class FCV Proposed method
label c = 1 c = 2 c = 1 c = 2

1 0.978 0.022 0.973 0.027
2 0.446 0.554 0.559 0.441
3 0.034 0.966 0.021 0.979

TABLE V

CLUSTER CENTERS AND FUZZY FACTOR LOADINGS OF COMPONENT

SCORES DERIVED BY FCV ALGORITHM (WINE DATA)

�c FFL
variable c = 1 c = 2 c = 1 c = 2

x1 0.241 -0.252 0.871 0.619
x2 -0.298 0.312 -0.048 0.698
x3 0.275 -0.288 -0.049 0.590
x4 -0.239 0.250 -0.698 0.451
x5 0.178 -0.187 0.514 0.163
x6 0.512 -0.536 0.785 -0.667
x7 0.608 -0.637 0.768 -0.817
x8 -0.224 0.234 -0.661 0.603
x9 0.410 -0.430 0.442 -0.484
x10 -0.149 0.156 0.755 0.776
x11 0.410 -0.429 0.019 -0.835
x12 0.547 -0.573 0.414 -0.855
x13 0.496 -0.519 0.872 0.334

than those with Λv = 1.0. So, we can see that the result of
Λv = 0.5 corresponds to one of inappropriate local solutions
and Λv = 1.0 should be used for clear classification while
Λv = 2.0 gives a general result from the view point of
probabilistic classification. In this sense, the previous result
where the degree of fuzziness is nearly equal to Λv = 1.0 is a
fair solution for clear classification. In this way, the automatic
adjustment mechanism is useful for evaluating the degree of
fuzziness.

V. CONCLUSION

This paper proposed a new approach to linear fuzzy clus-
tering that selects variables considering the responsibility of
variables. The responsibility of each variable for local model
estimation is represented by the additional memberships,
which are estimated by the graded possibilistic approach to
clustering. The additional memberships are used not only
for evaluating the mutual dependencies of variables but also
for interpreting cluster structure, and are calculated using the
reconstruction errors in the lower rank estimation. So, the new
measure is also responsible for estimating the prediction ability
in reduced-rank prediction, and the proposed algorithm tries to
keep the information of meaningful (i.e., predictable) variables
as well as possible. Then, the proposed method can be applied
to missing value estimation problems, such as collaborative
filtering [10], [12], in order to improve the prediction abilities
for meaningful variables.

The close relationship with the robust M-estimation in-
dicates that the memberships of variables also play a role
of the responsibility weights that approximately achieves the
optimization of robust ρ-function, in which the weighted sum
of squared errors with respect to the variables are used as a
measure of fit.

TABLE VI

CLUSTER CENTERS, MEMBERSHIPS OF VARIABLES AND FUZZY FACTOR

LOADINGS OF COMPONENT SCORES DERIVED BY PROPOSED METHOD

USING GRADED POSSIBILISTIC APPROACH (WINE DATA)

�c FFL vcj

variable c = 1 c = 2 c = 1 c = 2 c = 1 c = 2
x1 0.199 -0.245 0.896 0.683 0.633 0.575
x2 -0.474 0.583 0.213 0.377 0.572 0.184
x3 -0.010 0.012 0.285 0.165 0.111 0.326
x4 -0.346 0.425 -0.469 0.101 0.209 0.367
x5 0.120 -0.147 0.433 0.095 0.174 0.270
x6 0.387 -0.475 0.875 -0.857 0.716 0.678
x7 0.513 -0.630 0.867 -0.919 0.770 0.813
x8 -0.283 0.348 -0.490 0.476 0.350 0.247
x9 0.295 -0.363 0.534 -0.668 0.333 0.407
x10 -0.183 0.225 0.811 0.727 0.665 0.354
x11 0.561 -0.689 -0.179 -0.713 0.439 0.524
x12 0.511 -0.628 0.454 -0.921 0.510 0.791
x13 0.428 -0.526 0.873 0.357 0.572 0.716

TABLE VII

COMPARISON OF MEAN SQUARED ERRORS (WINE DATA)

FCV proposed method
variable MSE MSE vcj

c = 1 c = 2 c = 1 c = 2 c = 1 c = 2
x1 0.291 0.398 0.233 0.346 0.634 0.575
x2 0.548 0.650 0.285 1.058 0.572 0.184
x3 0.763 0.697 1.119 0.700 0.112 0.326
x4 0.593 0.560 0.797 0.627 0.210 0.367
x5 0.736 0.895 0.893 0.819 0.174 0.269
x6 0.248 0.444 0.170 0.245 0.717 0.676
x7 0.199 0.245 0.133 0.129 0.771 0.813
x8 0.434 0.714 0.533 0.877 0.352 0.246
x9 0.603 0.681 0.560 0.563 0.334 0.406
x10 0.272 0.528 0.208 0.649 0.666 0.354
x11 0.534 0.337 0.418 0.404 0.441 0.524
x12 0.370 0.250 0.343 0.147 0.511 0.791
x13 0.289 0.221 0.285 0.209 0.572 0.715

The flexibility of the model, however, forces the analysts
to determine the additional parameters such as the degree
of fuzziness and the step of running parameter. Usually, the
measure for model selection depends on applications and there
exists no general measure for clustering. In this paper, the
degree of fuzziness was evaluated considering the connection
between the entropy regularization method and the gaussian
mixture models [21]. While we have several criteria for
evaluating the FCM partition, most of them can not be applied
to linear fuzzy clustering without modification because they do
not consider the model complexity, i.e., the dimensionality of
local subspaces. It is expected to establish a general measure
for both of the model complexity and the degree of fuzziness.

Another possible future work is to develop the graded possi-
bilistic mechanisms using other fuzzification techniques [21],
[31], [32]. In this paper, two types of free membership func-
tions were proposed, and the entropy regularization approach
made it possible to enhance the probabilistic partition to
the possibilistic one directly while the standard fuzzification
method needed to redefine the free membership function. We
can also define other graded possibilistic models by using
other fuzzification method, and it is possible to apply different
fuzzification method to the two memberships. However, we
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TABLE VIII

COMPARISON OF MEMBERSHIPS OF VARIABLES DERIVED WITH SEVERAL PARAMETER SETS (WINE DATA)

Λv = 0.5 Λv = 1.0 Λv = 2.0 Λv = 3.0 Λv = 5.0 Λv = 100.0
variable c = 1 c = 2 c = 1 c = 2 c = 1 c = 2 c = 1 c = 2 c = 1 c = 2 c = 1 c = 2

x1 0.234 0.213 0.604 0.509 0.769 0.725 0.835 0.809 0.895 0.882 0.994 0.994
x2 0.299 0.046 0.538 0.130 0.733 0.368 0.813 0.518 0.883 0.678 0.994 0.981
x3 0.009 0.809 0.088 0.261 0.294 0.512 0.442 0.641 0.614 0.767 0.976 0.987
x4 0.028 0.662 0.176 0.301 0.424 0.548 0.566 0.670 0.711 0.787 0.983 0.988
x5 0.020 0.121 0.142 0.209 0.389 0.452 0.539 0.588 0.696 0.726 0.983 0.984
x6 0.681 0.088 0.696 0.643 0.821 0.767 0.873 0.830 0.920 0.890 0.996 0.994
x7 0.706 0.110 0.752 0.795 0.858 0.865 0.900 0.901 0.938 0.936 0.997 0.996
x8 0.097 0.053 0.312 0.185 0.563 0.436 0.683 0.579 0.795 0.724 0.989 0.984
x9 0.098 0.066 0.295 0.346 0.547 0.571 0.671 0.684 0.788 0.794 0.988 0.988
x10 0.405 0.042 0.639 0.273 0.790 0.562 0.852 0.688 0.907 0.802 0.995 0.989
x11 0.171 0.132 0.403 0.452 0.633 0.688 0.737 0.782 0.832 0.863 0.991 0.993
x12 0.245 0.080 0.475 0.764 0.687 0.851 0.778 0.890 0.860 0.928 0.992 0.996
x13 0.178 0.531 0.535 0.671 0.737 0.816 0.815 0.873 0.884 0.921 0.994 0.996

cannot always define the free membership function for every
fuzzification method. The comparative study would be helpful
for users in selection of the clustering models.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees for
their valuable comments.

REFERENCES

[1] N. Kambhatla and T. K. Leen, “Dimension reduction by local principal
component analysis,” Neural Computation, vol. 9, no. 7, pp. 1493-1516,
1997.

[2] G. E. Hinton, P. Dayan, and M. Revow, “Modeling the manifolds of
images of handwritten digits,” IEEE Trans. on Neural Networks, vol. 8
no. 1, pp. 65-74, 1997.

[3] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algo-
rithms, Plenum Press, 1981.

[4] J. C. Bezdek, C. Coray, R. Gunderson, and J. Watson, “Detection and
characterization of cluster substructure 2. Fuzzy c-Varieties and convex
combinations thereof,” SIAM J. Appl. Math., vol.40, no.2, pp.358-372,
1981.
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