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Soft Transition from Probabilistic to

Possibilistic Fuzzy Clustering
Francesco Masulli and Stefano Rovetta

Abstract

In the fuzzy clustering literature, two main types of membership are usually considered: a relative

type, termedprobabilistic, and an absolute orpossibilistictype, indicating the strength of the attribution

to any cluster independent from the rest. There are works addressing the unification of the two schemes.

Here we focus on providing a model for the transition from oneschema to the other, to exploit the dual

information given by the two schemes, and to add flexibility for the interpretation of results. We apply

an uncertainty model based on interval values to memberships in the clustering framework, obtaining a

framework that we termgraded possibility. We outline a basic example of graded possibilistic clustering

algorithm and add some practical remarks about its implementation. The experimental demonstrations

presented highlight the different properties attainable through appropriate implementation of a suitable

graded possibilistic model. An interesting application isfound in automated segmentation of diagnostic

medical images, where the model provides an interactive visualization tool for this task.

Index Terms

Possibilistic clustering, Clustering methods, Fuzzy clustering, Fuzzy statistics and data analysis.

I. I

The problem of clustering [1], [2] is usually stated in the context of exploratory data analysis, where

it is used as an aid to understand the structure of a given phenomenon represented by a collection of

experimental data. In this framework, it is important that the clustering results are given in a form that

helps understanding the properties of the phenomenon.
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One of the most prominent clustering paradigms (as witnessed by the number of existing variations) is

the principle adopted in thec-Means [3], [4] algorithm, also termed “central clustering”. This paradigm

implies partitioning a set of data vectors or patternsX = {xk}, k ∈ {1, . . . ,n}, xk ∈ �
n by attributing each

data pointxk to a subset (cluster)ω j ⊂ X, j ∈ {1, . . . , c}, defined by itscentroidy j ∈ �
n. This attribution

is made on the basis of a given distanced(·, ·). The partition thus obtained is then generalizable to the

whole data space by means of an implicit Voronoi tessellation Ω = {ω1, . . . , ωc} with the centroids as its

Voronoi sites.

Membershipu jk of a data pointxk to a given clusterω j is often modeled as a fuzzy value [5], [6], [7],

with crisp clustering becoming a marginal special case [8] which can always be obtained by a winner-

take-all operation. It is interesting to note that, although crisp or “hard”c-Means is very popular because

of its speed, the fuzzy approach is both less prone to local minima and more informative as a technique

for data analysis. The set of all centroidsy j and the set of all memberships to clusters for any given

point constitute the description of the data under the structure suggested by our clustering algorithm.

In the literature two main types of membership are usually considered [9]: a relative type of member-

ship, sometimes termedprobabilistic, which for a given point indicates to what proportion it should be

attributed to each cluster; and an absolute orpossibilistic type, indicating the strength of the attribution

to any cluster independent from the rest. There are works addressing the unification of the two schemes

or exploitation of both schemes in a single method [10], [11], [12], [13], [14], especially in a robust

clustering framework. Here instead we focus on providing a model for thetransition from one schema

to the other. Our main aim is to exploit the dual information given by the two schemes, and to add a

degree of flexibility for the interpretation of results in anexploratory data analysis task. However, the

proposed method features also some interesting propertiesfrom the robustness standpoint.

This paper is organized as follows: first we briefly review the“Maximum Entropy” and “Possibilistic”

approaches to clustering (Section II), then we introduce the concept of graded possibility and its applica-

tion to clustering (Section III). A possible implementation is discussed in Section IV, along with suggested

variations. Section V proposes some applications in standard clustering problems, whereas Section VI

introduces an application to interactive post-processingin diagnostic image segmentation. Conclusions

are drawn in Section VII.

II. T “M  E”  “P” 

The central clustering paradigm is implemented in several,diverse algorithms. Often these algorithms

are based on objective function minimization [15], [14]. This helps in understanding the behavior and
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features of each technique. However, there are also many examples of algorithms for which no objective

function is defined (e.g. Alternating Cluster Estimation [16] or the Self Organizing Map [17]). In this

section we will discuss two interesting algorithms, the Maximum Entropy clustering method by Rose et

al. [18], [19], and the Possibilistic approach by Krishnapuram and Keller [20], [21], [22].

Both methods are based on the following definition of clustercentroidsY:

y j =

∑n
k=1 u jkxk
∑n

k=1 u jk
, (1)

which is the same as in thec-Means methods, and is obtained independently on the definition of distance.

However, since the membershipsu jk are computed in different ways, the resulting centroids are not the

same.

In the Maximum Entropy approach, points and centroids are regarded as a formal physical system,

and memberships of points are interpreted as probabilitiesof belonging to a given cluster. The centroids

are found by fixing the energy of the system, and then minimizing the negative entropy of the partition

Ω = {ω1, . . . , ωc}, constrained by the energy, so that it represents the most general (less imbalanced)

partition.

Using Lagrange multipliers, the objective function is therefore expressed asJ′ME =
∑c

j=1
∑n

k=1 u jk logu jk+

β
∑c

j=1
∑n

k=1 u jkd jk, where we use the shorthand notationd jk = d(y j, xk). We can divide byβ and add the

normality constraint
∑c

j=1 u jk = 1 ∀k, which is needed by the interpretation ofu jk as probabilities (see

also [5]). The objective function can thus be rewritten as

JME =

c
∑

j=1

n
∑

k=1

u jkd jk +
1
β

c
∑

j=1

n
∑

k=1

u jk logu jk +

n
∑

k=1

λk

















1−
c
∑

j=1

u jk

















(2)

and therefore interpreted as “minimize the energy for a fixedentropy level”, as proposed in [23]. The terms

containing coefficientsβ andλk are constraints and the coefficients themselves are Lagrange multipliers.

Energy is simply the distortion term found in many central clustering algorithms, so this formulation is

closer to the familiar clustering formulation in which distortion is minimized under additional constraints.

Memberships are computed as:

u jk =
eu jk/β

Zk
, (3)

whereZk is called the partition function and is computed as

Zk =

c
∑

l=1

eulk/β, (4)

as a result of having enforced the normality constraint. It is worth stressing that the ME approach is

related to the Fuzzyc-Means algorithm by a simple change of variables [15].
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The Possibilistic approach is based on removing any equality constraint on the sum of memberships.

This is replaced by a set of loose requirements, expressed for instance as follows:

u jk ∈ [0,1] ∀ j ∀k (5)

0 <
n
∑

k=1

u jk < n ∀ j (6)

∀k ∃ j : u jk > 0 (7)

Roughly speaking, these requirements simply imply that no cluster be empty and each pattern be assigned

to at least one cluster. This turns a standard fuzzy clustering procedure into a mode seeking algorithm

[20]. If the interpretation of memberships in the probabilistic model is that of probability of one ofc

mutually exclusive events, then in the possibilistic approach memberships can be viewed as the probability

of any of c independent events (or “typicality”). For an introduction, important references, and another

interpretation of the Possibilistic Approach (in the framework of robust clustering), we address the reader

to the on-line tutorial indicated in Reference [24].

The first formulation of the Possibilistic Clustering algorithm [20] includes a penalty term to avoid

trivial solutions. This term simply discourages low membership values, introducing a bias to 1 for all

memberships. In the second formulation [22], the penalty term considers the entropy of clusters as well

as their overall membership values:
∑c

j=1
1
β j

∑n
k=1

(

u jk logu jk − u jk

)

, so that the objective function has the

following form:

JPC =

c
∑

j=1

n
∑

k=1

u jkd jk +

c
∑

j=1

1
β j

n
∑

k=1

(

u jk logu jk − u jk

)

(8)

We will refer to this version of the algorithm, which we will indicate as PCM-II. Note that this approach

is equivalent to a set ofc independent estimation problems [8]. The parametersβ j , “temperature” in the

entropic analogy, here can be termed “scale” to emphasize the fact that each cluster is an independent

M-estimator, and can be individually set for each cluster, rather than being a global property of the whole

system.

Under this model, the memberships are computed as:

u jk = e−u jk/β j . (9)

If we keep the entropic analogy of the ME approach, and consider the scale parameter as a global

property, we can set a single valueβ for all the β j. In this case the only difference with Equation (3) is

that Zk = 1.
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This establishes a connection with the ME approach which waspointed out in [15] and also considered

in [14]. In the case of equalβ j ’s, the partition function is generalizable to a normalization term which

takes on different values according to the constraints which are placed on the sum of memberships.

By comparison of the two above expressions (3) and (9), we cangeneralize the membership function

as follows:

u jk =
v jk

Zk
, (10)

where v jk = e−u jk/β j for both algorithms discussed. This is a term that is used forcomputing the

membership functionprior to applying the partition function. Since the partition function is used to

enforce constraints, we refer to the termv jk as free membership.

III. T G P 

A. The concept of graded possibility

As we already noted, the classic membership model (either hard or fuzzy) implements the concept of

partitioning a set into disjoint subsets through the probabilistic constraint
∑c

j=1 u jk = 1. Each membership

is therefore formally equivalent to the probability that anexperimental outcome coincides with one ofc

mutually exclusive events. In the possibilistic approach instead each membership is formally equivalent

to the probability that an experimental outcome coincides with one ofc mutually independentevents.

However, it is possible (and in practice it is frequent) thatpairs of events are not mutually independent,

but are not completely mutually exclusive either. Instead,events can providepartial information about

other events. For instance, there may be a statistical correlation between two events, rather than a causal

relation; or the probability of an event can be used to bound,but not to exactly compute, the probability

of other events [25]. Of course, this is a problem-dependentsituation and accounting for it may or may

not be appropriate. Interval and ellipsoidal models of uncertainty represent an implementation of this

principle [26].

These parametric uncertainty models are common in control and optimization, where they are used

for bounding the region of possible values for the variablesof interest. We apply the same technique

to membership values in the clustering framework. What we obtain is a model that we termgraded

possibility, and since we model uncertainty of memberships, the technique is related to Type-2 fuzzy sets

[27][28]. In particular, Interval Type-2 fuzzy sets [29] are based on the same type of modeling, whereby

the representation of uncertainty is simplified through theuse of intervals. Note that it is also possible to

define centroids as uncertain quantities, as done for instance in Interval Vector Quantization [30]. This

is an entirely different model, related to Type-1 fuzzy sets.
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We will base our explanations on the following geometrical concept. The ordered set of memberships

to each of the clusters{u1, . . . ,uc} spans a (c-dimensional) space. Within this space sets of specific

membership values are represented as points, and we will term feasible regionthe locus of all points that

satisfy the constraints we impose. We remark that in generalthe feasible region will be inside the unit

(hyper)cube [0,1]c. We will draw diagrams illustrating feasible regions forc = 2.

The standard possibilistic approach to clustering impliesthat all membership values are independent:

the feasible region for memberships is the whole unit cube. In probabilistic approaches, there is no

uncertainty: the feasible region is the plane
∑c

j=1 u jk = 1 (more precisely, its segment bounded by the unit

cube). In contrast, the graded possibilistic model assumesthat, when one of thec membership values is

fixed, the otherc− 1 values are constrained into a region which is smaller than the unit cube, but larger

than the above plane segment.

Clearly, this situation includes the possibilistic model,and also encompasses the standard (“probabilis-

tic”) approach.

B. Modeling graded possibility

We propose to use the following uncertainty model for memberships. Let [ξ] be an interval variable

with upper and lower values indicated by [ξ, ξ ]. The memberships should be subject to the following

constraint:
c
∑

j=1

u[ξ]
jk = 1, (11)

This interval equality should be interpreted as follows: the equality is satisfied for any point (set of

membership values) such that there exist a scalar numberξ∗ ∈ [ ξ, ξ ] for which the equality

c
∑

j=1

uξ
∗

jk = 1, (12)

is satisfied.

This constraint enforces both the normality condition and the required probabilistic or possibilistic

constraints; in addition, for nontrivial finite intervals [ξ], it implements the required graded possibilistic

condition, as we will show in the following.

Equation 11, containing an interval, is equivalent to a set of two inequalities:
c
∑

j=1

u jk
ξ
≥ 1

c
∑

j=1

u jk
ξ ≤ 1.

This formulation includes as the two extreme cases:
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• The “probabilistic” assumption:

[ξ] = [1,1] = 1
c
∑

j=1

u jk = 1

• The “possibilistic” assumption:

[ξ] = (0,∞)
c
∑

j=1

u
ξ→0

jk > 1
c
∑

j=1

u ξ→∞jk < 1

In the latter case considerations are done in the limit rather than in a punctual fashion. This ensures

that the membership valuesu jk = 0 ∀ j ∀k are avoided, as required also in the original possibilistic

formulation [20]. In the limit, the two inequalities are satisfied for any choice ofu jk ∈ [0,1], since in

this caseu jk
ξ
→ 1 andu jk

ξ → 0.

The constraint presented above can be implemented in various ways, according to the values we choose

to adopt forξ andξ. A particular implementation, with the minimum possible number of parameters, is

as follows:

ξ = α ξ =
1
α

(13)

whereα is a single parameter such thatα ∈ (0,1], controlling the amount of uncertainty or “possibility

level”.

The remarks above, with this specific implementation, are illustrated by means of Figure 1. This type

of diagram is drawn assumingc = 2, and shows the boundaries of the feasible region for memberships.

The axes represent membership values to clusters for any possible pointx.

In this case, we plot a family of feasible regions for the graded possibilistic case. The regions are

therefore parameterized byα, which decreases from 1 to 0 in the direction of the arrows. The feasible

regions are those inside the eye-shaped contours. The eye opens asα shrinks, until it fills the whole

square whenα vanishes.

[Figure 1 about here.]

Another implementation of the interval constraint is used in the outlier rejection application as explained

in Subsection V-B. In this case the upper extremum of [ξ] is fixed to 1 and the lower extremum isα, so

that
[

ξ
]

= [α,1] . (14)

December 7, 2005 DRAFT



8

C. A graded possibilistic approach to clustering

Unfortunately, solving the clustering problem with the objective function approach is hard under

the graded possibilistic model. However it is possible to exploit the generalized membership function

formulation (10) to find suitable sets of membership values complying with the graded possibilistic

constraint (11) for any value ofα. In this way, we obtain an iterative procedure whose updating step

is not directly related to the optimization of a cost function. This approach was previously followed in

many works, the two previously cited [16][17] being only an example.

We first select the free membership function as:

v jk = e−d jk/β j , (15)

so that it is equivalent to the ME and PCM-II algorithms.

We observe then that, as we have already seen, in the possibilistic case,vi j coincides withui j (point

A in Figure 2), whereas in the probabilistic case it is necessary to project point A on the feasible region
∑c

j=1 u jk = 1 along the straight line through the origin and A, obtainingpoint C. This is actually the

effect of the normalization obtained by defining the generalized partition function in the standard way,

as in (4).

In intermediate cases, we need to distinguish whether the point falls within the eye-shaped feasible

region, or it falls outside. In the first case constraint (10)is already satisfied, while in the second case it

is necessary again to project point A onto the border of the feasible region, obtaining point B.

To implement this variable behavior, an appropriate definition of the generalized partition function is

required. Therefore we defineZk as follows:

Zk =
(

∑c
j=1 v1/α

jk

)α
if

∑c
j=1 v1/α

jk > 1

Zk =
(

∑c
j=1 vαjk

)1/α
if

∑c
j=1 vαjk < 1

Zk = 1 else.

(16)

These definitions ensure that, forα = 1, the representation properties of the method reduce to those of

ME, whereas in the limit case forα = 0, the representation properties are equivalent to those ofPCM-II.

Note that the three conditions are mutually exclusive forα ∈ (0,1). A sketch of proof is as follows:

we want to prove that, given a set ofc quantitiesu j , j ∈ {1, . . . , c} such thatu j ∈ (0,1) ∀ j, the following

implications:
c
∑

j=1

uαj < 1⇒
c
∑

j=1

u1/α
j > 1, (17)
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c
∑

j=1

u1/α
j > 1⇒

c
∑

j=1

uαj < 1, (18)

and
c
∑

j=1

u1/α
j = 1⇒

c
∑

j=1

uαj = 1, (19)

are all false.

Suppose for the sake of simplicity thatα ∈ (0,1). This implies thatuαj > u1/α
j ∀ j.

Now, suppose that
∑c

j=1 uαj < 1. From the above relation it is also
∑c

j=1 uαj >
∑c

j=1 u1/α
j , therefore

∑c
j=1 a1/α

j > 1 cannot be true, so (17) is proved false.

By a similar argument also (18) can be proved false, while (19) is not true in general, but only for

α = 1/α, i.e.,α = 1.

D. A note on parameter selection

The proposed method depends on one parameter,α, which is to be selected according to some criterion.

At this point we should note that this parameter allows the user to introduce his/her own bias into the

representation of cluster, by permitting the “soft transition” between the probabilistic and possibilistic

paradigms.

As far as the other parameters involved in the formulae, theyare the same as in more standard

techniques, so that usual center and radius estimation techniques apply. This is especially true for the

number of clusters, for which many methods are available. Since it is not the aim of this study to focus

on this point, in the experiments presented below we have either used a number of clusters known from

previous work, or (in the last example, Section VI) adopted anaive reduction approach, by starting from

an overspecified number of clusters, performing a number of runs, and reducing clusters until a reasonable

stability was achieved (centroids were found approximately in the same positions for most runs).

The idea of starting from an overspecified number of clustersand then progressively reducing it has

been thoroughly studied elsewhere. It can be incorporated in a clustering algorithm [31] and also combined

with a preliminary “inflation” or growth phase [32]. The process is of course driven by appropriate criteria,

which may be local to clusters or may apply to the global partition, and which characterize the individual

techniques.

[Figure 2 about here.]
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IV. B G P 

In this section we outline a basic example of graded possibilistic clustering algorithm. This is an

application of the ideas in the previous section. However, it is possible to apply many variations to this

algorithm, so that appropriate properties can be obtained.Some of these variations will be presented and

demonstrated in the experimental section.

Although we are mainly interested in describing the knowledge representation properties of the pre-

sented model, we will also add some practical remarks about its implementation.

Algorithm BGPC: Basic Graded Possibilistic Clustering

select c

select niter ∈ �

select α ∈ [0, 1]

initialize y j

for iter = 1 to niter begin

β = β(iter)

compute v jk using (15)

compute Zk using (16)

compute u jk using (10)

if stopping criterion satisfied then stop

else compute y j using (1)

end

This basic algorithm can be modified in a number of standard ways. For our experiments we usually

apply a multi-trial version in which new initializations are performedntrials times, a selection criterion

is applied, and the result of the best trial is kept. The selection criterion can be designed according to

the application; usually it is a cluster validity estimate [33], [34], [35], [36]. In classification tasks, where

cluster centroids are labeled at the end of training, such labeling can be used to perform the evaluation

on the training set or a test set, actually turning the BGPC algorithm into a supervised one.

The value forβ can be assessed from previous experiments, possibly in an independent way for each

cluster (as done in PCM-II – formulas must then useβ j instead ofβ), estimated from data with appropriate

scale estimation techniques [37], or gradually lowered in an iterated application of the algorithm (as done

in the deterministic annealing approach to ME). In our experiments we used an initial value forβ, to
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be decreased according to an exponential decay schedule [38] of type β = βi (βf/βi)
iter/niter (starts at

β = βi and stops atβ = βf ). In this formulation, the number of iterations also influences the actual

“annealing” schedule, since variations ofβ from one iteration to the next are smaller if the number of

allowed iterations (niter) is larger.

If α is fixed, convergence relies on the size of the variation ofβ. If β is changed abruptly from one

iteration to the other, the error surface is modified and in the next iteration the error may rise. However,

since each iteration is a batch update, random fluctuations in the empirical error landscape do not occur

as in stochastic optimization algorithms [39], [32]. It is also possible to implement a full deterministic

annealing procedure by substituting the single update stepfor each value ofβ with a sequence of updates

until convergence as in the original ME formulation [18], [19], where deterministic annealing was used.

However this may not be advisable whenα is low, since there is reduced or no competition among

prototypes, so that centroids which are coincident are not pulled apart in further iterations and “phase

transitions” [19] can not occur. Stochastic (“on-line”) optimization could be used for very large datasets,

where a full scan of the training set at each iteration could be expensive.

An interesting variation to the simple scheme outlined in the BGPC algorithm is obtained by the

modification ofα across the iterations. Ifα starts atαi = 1 and decays to a lower valueαf ∈ [0,1), the

procedure is similar to initializing the algorithm with a few probabilistic iterations (withα close to 1).

The best results have been experimentally obtained with a decay rate which is linear, or steepest at the

last iterations (e.g.(αi − αf )
(

1+ eiter−niter
)

+ αf ).

V. D  

The experimental demonstrations presented here aim at highlighting the different properties attainable

through appropriate implementation of a suitable graded possibilistic model. These include experimental

study of the concept of graded possibility in a trivial toy problem, use of a-priori knowledge, outlier

rejection.

A. Demonstration of the Graded Possibilistic approach

To show the properties of graded possibilistic clustering we use the toy training set shown in Figure

3. It is a simple, two-dimensional data set composed of 2 Gaussian-distributed clusters (50 points each),

with centers indicated by the larger, black squares. Centers are located at (.7,.7) for cluster 1 and (.3,.3)

for cluster 2. All data lie in the unit square.

[Figure 3 about here.]
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We run the BGPC algorithm 10 times, withξ = 1/α andξ = α as in the sample algorithm of Section

IV, and different values ofα ∈ [0,1]. We analyze the resulting memberships for varyingα.

We focus on memberships of three representative points. Point #9 in the data set is located at (.3,.3),

i.e., it coincides with one cluster center. Point #10 is at (.53,.51), half-way from each center. Point #67

is at (.84,.34), quite far from both centers.

Figure 4 shows the membership of each of these three data points in cluster 1 (solid line) and in cluster

2 (dashed line) for various values ofα ranging from 1 to 0.

[Figure 4 about here.]

Point #9 is clearly attributed to cluster 2. Its distance is so small that its membership are “stuck” at 0

(for cluster 1) and 1 (for cluster 2), respectively.

Point #10 should be attributed to both clusters with approximately the same membership value.

However, since it is on the separating boundary, actually itis far from any cluster, so that, whenα

decreases and the model becomes more possibilistic, the memberships also decrease from .6 and .4 to

.25 and .15 (respectively for clusters 1 and 2).

Point #67 is clearly an outlier. However, whenα is close to 1, it is classified as belonging in cluster 1

with high degree (almost 1). Whenα is lowered, with the transition to the possibilistic model,the values

are reduced to about 0 and .07, respectively.

Figure 5 shows membership values to each cluster for points along the diagonal of the data plane, for

the valuesα = 1, α = .5, andα = 0. The different shape of the memberships, especially for points far

from the separating line, is apparent.

[Figure 5 about here.]

A similar analysis is presented in Figure 6. This experimentis performed on the usual Iris dataset

[40] obtained from the UCI Machine Learning Repository [41]. (The Iris problem is a 4-dimensional,

150-pattern data set with 3 classes represented by 50 patterns each.)

Here the profiles of memberships are plotted for 2 of the 3 clusters and for 2 of the 4 input dimensions,

so that two-dimensional analysis is again possible. The figure shows membership profiles forα = 1.0,

α = 0.5, andα = 0.0. It is possible to tune the desired trade-off between the possibilistic clustering and

the partitioning behavior, by deciding to what extent the algorithm should be forced to make a decision

on data points on the decision border or on the exterior part of the data distribution.
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[Figure 6 about here.]

B. Outlier rejection

Outlier management is very problem-dependent, as pointed out in [42], to the point that in some

problems it could be more useful to reject good clusters and to retain only outliers [43]. Here however

we assume that we are interested in finding Gaussian clustersin data, and all points outside these clusters

are considered to be noise. This is a standard formulation ofthe problem [44], but it is not the only

possible one [45].

To implement the outlier rejection functionality, the feasible region should be made asymmetric:
c
∑

j=1

u jk ≤ 1 and
c
∑

j=1

u jk
α ≥ 1. (20)

This ensures that the clustering model is as follows. When there is competition among the clusters,

i.e., many memberships tend to be close to 1, the membership values are normalized to sum to 1 (first

constraint). When memberships are all low, there is no clearattribution to any cluster, so they are free

to take on low values (second constraint).

This is an effective form of soft rejection similar to that of robust estimation methods based on weighting

[37], [46], [12]. Hard rejection can be implemented by thresholding (reject on value of membership) or

by counting (reject on number of points) [47], [48].

The experiments involve a set of three Gaussian clusters, plus a very wide background data distribution

(see Figure 7). Data are in the unit square; there are 600 datapoints of which 10% are clustered in 3

Gaussian clusters, while the rest are spread in the background.

[Figure 7 about here.]

[Figure 8 about here.]

It is possible to compare the behavior of the graded possibilistic model with the behavior of standard

“probabilistic” clustering. Centers found with the proposed model are clearly much closer to true cluster

centers than those found with the “probabilistic” model. Byinspection of the membership values, we have

verified that this is not a true possibilistic case: no two memberships ever approach 1 simultaneously.

Therefore, either a pattern is rejected, or it is uniquely labeled.

This result was obtained withβ scheduled to decay linearly from 0.1 to 0.005 over 2000 iterations

in 10 different trials. In the asymmetric-possibilistic case the result illustrated was obtained 10 times.
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For the probabilistic case, with the parameters indicated,we obtained 10 times a trivial solution with

coincident centroids, all located at the global average of data; the illustrated result is the best one and

was possible only by lowering the initialβ to 0.01, and was obtained 6 times out of 10 trials.

C. An application: characterization of leukemia

As a sample application to an interesting problem, we applied the BGPC algorithm to clustering of

data from a set of DNA microarray experiments, as described in [49]; data are available at the following

web address:http://www-genome.wi.mit.edu/mpr/data_set_ALL_AML.html.

Acute leukemia is a family of diseases including two different forms, acute lymphoblastic leukemia

(ALL) and acute myeloid leukemia (AML). The DNA microarray technique allows a detailed profiling

of the expression level of thousands of genes. In the work cited, Golub and collaborators analyzed a

set of 7129 genes for correlation with each form of leukemia,and discovered that a set of 50 “best”

genes (the number was arbitrarily chosen) can produce good classification results. They also found that a

Self-Organizing Map can discover clusters which correspond well to the actual distinction between ALL

and AML, and moreover it can find a further distinction between two types of the lymphoblastic form,

T-lineage ALL and B-lineage ALL. This task was termed “classdiscovery” by the authors.

We tried to verify these results using the BGPC algorithm. First, we selected the 50 most informative

genes pointed out by Golubet al. Then we performed clustering using 2 and 3 centroids on the training

set, composed of 38 examples. However, we used the separate test set of 27 examples (as provided by

the authors) to verify the results, and performed repeated training (50 times) to reduce the influence of

initialization.

The results are reported in Table I. They were obtained with the asymmetric option described in V-B.

As in the original work, after training we performed majority labeling of centroids (or “calibration”), and

used them for classifying patterns. However the evaluation, as noted, was performed on the test set. The

table contains the numberc of centers used, the average error as computed on the test set, the frequency

of results with 0 errors and the frequency of results with 1 error over the total 50 trials. These results

show that 2 centers can approximate very well the basic distinction among ALL and AML, and that

using 3 centers it is possible to reach errorless performance on the test set, albeit infrequently over the

repeated trials.

[Table 1 about here.]

We do not draw conclusions in comparison with the technique used in the original work. They did
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not obtain errorless clusters even on the training set; on the other hand, they used all genes, not only the

most informative subset as we did. However our results can confirm the validity of their selection, since

the performance with the 50 best genes is much better than theone reported with the whole set of genes.

VI. T G P     - 

[Figure 9 about here.]

An interesting application of the proposed model is found inautomated segmentation of diagnostic

images in medicine. This is an important application area for data clustering. Here we analyze slices

from magnetic resonance imaging (MRI) volumes.

MRI is a widely used diagnostic imaging technique. Its success is mainly due to its low invasivity and

its ability to detect contrast from different physical parameters, predominantly the spin-lattice relaxation

time (T1), spin-spin relaxation time (T2), and proton spin density (PD) of the tissues being imaged. The

output is usually obtained in the form of a three-dimensional, multi-modal image. We can analyze the

volume or individual slices (two-dimensional images extracted from volumetric acquisition), as done in

the present study. Figure 9 shows an example slice. Three-dimensional data sets are then obtained by

recording the T1, T2, and PD values for each voxel or pixel.

Magnetic resonance imaging is very well suited for analyzing tissues within the brain and head, and

is widely applied to detection of tumors or other pathologictissues or trauma. Image segmentation in

this context aims at separating homogeneous regions and subsequently at labeling them with tissue

descriptions. Clustering is one of the methods used for the first task, whereas supervised methods

(possibly including human inspection) are required for thesecond task. Diagnostic image segmentation

with clustering has been the subject of previous work by one of the authors [50].

First, we perform clustering with varyingα. The results forα = 0, α = 0.7, andα = 1 are presented

in figure 10. These are plots of data points in the three-dimensional space of features. Black squares

represent centroids. The user can select the result that best fits the distribution of points. This is possible

because three-dimensional problems can still be represented visually.

[Figure 10 about here.]

Then, once a suitable set of centroids has been selected, we apply the following interactive visualization

method. The centroids obtained from training are retained.The membership values are instead recomputed

according to values ofα andβ interactively set by the user. Images corresponding to the centroids are
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therefore visualized as grey-level profiles, which can be adjusted for maximum clarity and interpreted by

the operator.

Each centroid represents a homogeneous region (set of mutually close points in the space of MRI

features), corresponding to a given “segment” or anatomically significant area. In the MRI slice, a segment

need not appear as a concentrated area, but may have an arbitrary shape. One of the centroids will represent

the region of interest for our analysis, the one which most plausibly characterizes the affected area. This

area can be represented as a gray level image, as shown in Figure 11.

[Figure 11 about here.]

In the figure, several values ofα (horizontally) andβ (vertically) are shown. Depending on theα-β

combination, the interesting area can be clearly outlined,or its background can be made more visible,

if the user wants to see the area within its anatomical context. In this technique, background points are

those points whose membership to the interesting cluster has an intermediate value. Their brightness is

therefore most sensitive to variations in the parametersα andβ.

The cluster centroids here play the role of templates to point out possible segments within the image;

α andβ can be varied by the user as a sort of “brightness/contrast” control acting on template similarity

rather than intensity levels.

This interactive visualization procedure seems very promising and features sufficient generality to be

applied to other multimodal diagnostic imaging techniquesas well.

VII. C

The present study demonstrates possible novel applications of the possibilistic clustering approach

by introducing a method to obtain a soft transition from the possibilistic to the probabilistic models.

This graded possibilistic approach is amenable to the same applications as the two previous models. In

addition, the experiments suggest that there are cases in which the clustering performance can benefit of

the added degree of flexibility. The discussion about the possible implementations also points out possible

issues to be kept in mind while applying the technique.

However, the focus of the proposed method is on the representation capabilities. The experiment with

the synthetic, bi-dimensional data set in Figure 3 is used toillustrate the behavior of the graded possibilistic

membership as a function of the degree of possibilityα and of the data position with respect to cluster

centers. The problem of characterizing leukemia from DNA microarray data confirms the effectiveness

of the proposed approach as a clustering method, by comparison with published results. Interactive post
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processing in the segmentation of MRI images is another real-world application where the model is

used to gain insight into the problem in a unique way. The adjustable representation capabilities can be

exploited in this and other tasks (e.g., in outlier analysis) to obtain an additional perspective to cluster

analysis. It is worth mentioning that other applications are currently being studied, such as the problem

of variable selection in linear clustering [51].
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Fig. 1. Bounds of the feasible region for memberships in the casec = 2, for a generic pointx, with α decreasing from 1 to 0
along the direction of the arrows.
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Fig. 2. How to compute the value of memberships for a pointx (c = 2). Point A: unconstrained membership (equivalent to
PCM-II). Point B: membership constrained on the graded possibilistic feasible region boundary. Point C: membership constrained
on the standard feasible region (equivalent to ME).
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Fig. 3. Toy problem to evaluate the behavior of the algorithm.
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Fig. 4. Memberships of points #9, #10, and #67 in each cluster.
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Fig. 5. Plot of memberships along the diagonal of the square area. Above:α = 1; middle:α = 0.5; below:α = 0.
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Fig. 6. Two-dimensional plot of memberships forα = 1.0 (above), forα = 0.5 (middle), and forα = 0.0 (below) for the Iris
dataset (same analysis as in Figure 5).
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Fig. 7. Dataset for the outlier rejection demonstration.
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Fig. 8. Results for the outlier rejection demonstration. Black circles: true cluster centers; triangles: centers found with α = 0
(maximum rejection); squares: centers found withα = 1 (no rejection). (Note that some triangles are hidden by true cluster
centers since they are almost coincident.)
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Fig. 9. A MRI slice. From left to right: T1-weighted, T2-weighted, proton density channels. The nature of tissues can be inferred
by their combined response to the three stimulations (channels), so that by comparing the three images different anatomical
entities can be outlined.
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Fig. 10. Training results for the dataset in Figure 9 forα = 1 (above),α = 0.7 (middle),α = 0 (below).
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FIGURES 31

Fig. 11. Using the proposed model as an interactive visualization tool for image segmentation.
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TABLES 33

TABLE I

R     

c Avg. error Freq. 0 errors Freq. 1 error

2 3.70% 0/50 50/50
3 3.48% 3/50 47/50
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