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Abstract Genomic data, and more generally biomedical data, are often characterized by
high dimensionality. An input selection procedure can attain the two objectives of highlight-
ing the relevant variables (genes) and possibly improving classification results. In this paper,
we propose a wrapper approach to gene selection in classification of gene expression data
using Simulated Annealing along with supervised classification. The proposed approach can
perform global combinatorial searches through the space of all possible input subsets, can
handle cases with numerical, categorical or mixed inputs, and is able to find (sub-)optimal
subsets of inputs giving low classification errors. The method has been tested on publicly
available bioinformatics data sets using Support Vector Machines, and on a mixed type data
set using Classification Trees. We also propose some heuristics able to speed up the conver-
gence. The experimental results highlight the ability of the method to select minimal sets of
relevant features.
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1 Introduction

Genomic data are often characterized by small cardinality and high dimensionality, and can
include some inputs that are not relevant for class discrimination. This is the case, e.g.,
of gene expression data obtained from DNA microarrays where each dimension or input
corresponds to a gene expression data. Usually, some (or most) genes are not relevant to
discriminate among classes and subsets of genes are mutually redundant. This is inherent
in the experiment design: several candidate genes are probed in a microarray experiment,
and those related to the phenomenon under study must be identified. For those data, a gene
selection procedure could highlight the relevant genes and improve the classification results
at the same time.

Gene selection is a specific instance of one of the main problems in pattern recognition,
which is very general and variously termed input, attribute, or variable selection [18]. This
problem concerns the search for small relevant subsets of inputs in high dimensional data
sets.

Input selection procedures [18] can improve the knowledge on the problem, e.g., find-
ing the most relevant genes expresses in relation to a pathology in DNA microarrays data
sets, or finding the most relevant keywords from sets of text documents. Therefore, we are
not interested in methods for feature extraction, as they can reduce the dimensionality by
transforming input variables into a smaller set of derivative variables, thus not allowing to
have a direct interpretation of the role played by the raw inputs.

An useful by-product of input selection procedures is also the possibility of alleviating
the curse of dimensionality problem [8] arising in the usual situation of data sets charac-
terized by high dimensionality and low cardinality. In fact, after input selection, learning
machines can usually improve their generalization ability.

Input selection algorithms can be broadly divided into two categories [9,25]: filters and
wrappers. Filters evaluate the relevance of input subsets using the data set alone, while
wrappers invoke a learning algorithm in order to do that. Both approaches, usually involve
combinatorial searches (often only local) through the space of possible input subsets. Wrap-
pers are usually more computationally demanding, but they can be superior in accuracy
when compared to filters.

The strategy for variable selection, and the underlying assumptions about the input vari-
ables themselves, is also a design choice. Variables can be selected as a subset with aggregate
discriminative power [39,33], or ranked by their individual relevance [46,17,30]. In the for-
mer case, it is assumed that all possible input interaction patterns can occur, thus forcing
a more complex search of the configuration space. In the latter case, instead, variables are
assumed to be weakly correlated, so that their individual importance can be unambiguously
assessed. We notice, however, that in the former case ranks can be used as a guideline to
evaluate a subset selection process, in an in-between approach.

A class of powerful variable selection wrapper methods is based on global search strate-
gies, such as Evolutionary Computation [38,28,20,6,29,5], Swarm Intelligence [19,1], and
Simulated Annealing [22,41,42,21].

The definition of relevance itself can be subject to different interpretations [25], and the
goal of the procedure can also be different, with some approaches aiming at comprehensive
set (find all significant variables [23,27,33]) and others at explanatory sets (this is generally
the case with all gene selection tasks, where one wants to identify the most important genes
only, as, e.g., in [16]). Again, an in-between approach is possible [46] when an explicit cost
function includes both a measure of complexity and performances. In this case, a continuum
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of possible balances is provided by the relative weights given to these two terms. A direct
measure of complexity, for instance, can be given by the number of selected inputs.

A problem that may arise in the incorrect use of wrapper approaches is the so called
selection bias. It occurs when the learning machine is tested on the same data set used in the
first place by the learning machine to select the inputs, or when the cross-validation is inter-
nal to the selection process. Ambroise and McLachlan in [4] pointed out this problem and
recommended using M-fold external cross-validation or bootstrap for wrapper approaches
to input selection.

In M -fold cross-validation [40], the training set is divided into M non overlapping sub-
sets of equal size. A learner is trained on the union of M − 1 of these subsets and then
applied to the remaining subset to obtain an estimate of the prediction error. This process
is repeated in turn for each of the M subsets, and the cross-validation error is given by the
average of the M estimates of the prediction error thus obtained.

The application of M -fold cross-validation to a wrapper input selection method entails
that the same input-selection method must be used in training the learner on the M − 1

subsets combined at each stage of an (external) cross-validation of learner for the selected
subset of variables (genes). In this way, for each fold, we might select a different subset of
variables. Therefore, the subsets of relevant variables have to be aggregated with appropriate
heuristics.

To summarize, the gene selection problem is stated here as the problem of selecting
small subsets of input variables achieving high discriminating power and with good gener-
alization capabilities.

These hypotheses form the basis of the method we are presenting in this paper, which
is based on optimizing a combination of performance and complexity costs. We propose a
wrapper approach to gene selection in classification of gene expression data. The combi-
natorial search is performed using the Simulated Annealing (SA) method [24] which is a
global search method technique derived from Statistical Mechanics, while the learning al-
gorithms employed in the paper are the Support Vector Machine [12] and the Classification
Tree [10].

In the next section, we present the Simulated Annealing technique and describe how we
applied it to the input selection problem. In Sect. 3, some measures of the input relevance
are illustrated. The experimental validation of the proposed input selection method and some
heuristics for speeding it up are shown in Sect.s 4 and 5. In Sect. 6 we draw the conclusions.

2 Simulated Annealing for Input Selection algorithm

The method for input selection we propose makes use of Simulated Annealing (SA) [24]
that is a global search technique derived from Statistical Mechanics. SA is based on the
Metropolis algorithm [31] proposed to simulate the behavior of a system of atoms starting
from an initial configuration, by the generation of a sequence of iterations. In the Metropolis
algorithm, each iteration is composed by a random perturbation of the current configuration
and the computation of the corresponding energy variation ∆E. If ∆E < 0 the transition is
unconditionally accepted, otherwise the transition is accepted with probability given by the
Boltzmann distribution:

P (∆E) = e−∆E/KT (1)

where K is the Boltzmann constant and T the temperature.
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In SA, this idea is generalized to solve general optimization problems [24,34] by using
ad hoc selected cost functions (also known as generalized energy functions) instead of the
physical energy. SA works as a probabilistic hill-climbing procedure searching for the global
optimum of the cost function [37]. K is usually set to 1, while the temperature T plays the
role of a control parameter of the search area, and is gradually lowered until no further im-
provements of the cost function are noticed. SA can be employed in very high-dimensional
search spaces, given enough computational resources.

In this paper, we apply SA to the input selection problem with the aim of aggregating
an ideally minimal subset of inputs with strong discriminative power. The approach we
adopted is to constrain the search space to subsets of variables, and to evaluate a compound
cost function combining performance and complexity scores, as previously indicated. The
method, named Simulated Annealing Input Selection (SAIS), is described in the following
of this section with reference to a step-by-step outline shown in Algorithm 1.

Algorithm 1 (SAIS - Simulated Annealing for Input Selection)

1. Initialize the parameters;
2. Initialize the binary string g and the temperature T ;
3. Train and test the classifier and evaluate the generalized system energy E;
4. do
5. Initialize f = 0 (f is the number of iterations), h=0 (h is the number of successes);

(a) do
(b) Increment the number of iterations f ;
(c) Perturb the binary string g;
(d) Train and test the classifier and evaluate the generalized system energy E;
(e) Generate a random number rnd in the interval [0,1];
(f) if rnd < P (∆E) then

i. Accept the new binary string g;
ii. Increment the number of success h;

(g) endif
(h) loop while h ≤ h∗ and f ≤ fmax;

6. update T = αT ;
7. loop while h > 0;
8. end.

Let d be the dimensionality of the input space and g = (g1, g2, . . . , gd) be a binary
string representing the system state (or configuration), where each bit gi (with i = 1, . . . , d)
corresponds to either selection (gi = 1) or deselection (gi = 0) of an input. The number of
bits of g set to 1 is denoted by s (i.e., s ≡ |g| =

∑d
i=1 gi) . At Steps 1, 3, and 5, the classifier

is trained in the sub-space of selected inputs as defined by the string g.
The generalized energy E is defined as a linear combination of the Classification Error

ε (i.e., the empirical risk) and of the number of selected inputs s:

E = ε+ λ s (2)

Note that the term λs penalizes situations in which the number of selected inputs is high.
The trade-off between size of input space and accuracy is controlled by the parameter λ
(penalization coefficient). If λ = 0, solutions with low classification error ε are favored,
regardless of the dimensionality of the input space. For high values of λ, instead, few input
variables would be selected at the expense of some accuracy.
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Due to possible redundancies of groups of input variables [26] and to the curse of di-
mensionality problem [8], often a good tuning of the penalization coefficient can allow to
find a small set of inputs achieving a low classification error.

The string g (Step 2) is initialized by randomly setting s0 bits to 1 and the remaining
d− s0 to 0.

As suggested in [34], at Step 2 the initial temperature T is obtained as the mean variation
of generalized energy (∆E) over an assigned number p of random initializations of g.

A perturbation or move (Step 5c) is obtained in the following way: w bits of g set to 1

are switched to 0, and v bits of g set to 0 are switched to 1, where the values of w and v
are extracted with uniform distributions, respectively in the (integer) intervals [wmin, wmax]

and [vmin, vmax].
In the algorithm there are two nested cycles. The inner one (Steps 5(a)-5(h)) runs with

constant temperature value T , and terminates at most after fmax iterations, or when we
obtain h∗ successes; the external cycle (Steps 4-7) updates the temperature value T and
terminates when the inner cycle ends after fmax iterations and without any success, i.e.,
with h = 0.

As already pointed out, the SAIS algorithm seeks a small subset of variables, with high
discriminant capability, by exploiting the redundancy of subsets of variables and penalizing
solutions with high input dimensionality. To this aim, s0 should be selected of the order of
the estimated input dimensionality, while intervals [wmin, wmax] and [vmin, vmax] regulate
the variability of perturbation.

The ability of the method to explore the space of input configurations is controlled by
parameters wmin, wmax, vmin, and vmax. The upper extremes, wmax and vmax, control the
extent of the variation, since they control the maximum number of flips to 1 and to 0, while
the lower extremes, wmin and vmin, when different from zero, impose a minimum number
of mandatory flips, ensuring diversity in the explored configurations. Note that in any case
the distribution of the dimensionality of the explored configurations is concentrated around
the suggested value, although, if better performing configurations are found, they will be
accepted by the optimization procedure.

These parameters can be used to tune the available moves at each iteration, and may be
varied during the search. For instance, we may require a high diversity in the first phases
of optimization, where several alternative configurations are searched, and reduce it in the
subsequent iterations.

In order to avoid the selection bias problem, we have used the SAIS algorithm with M-
fold external cross-validation, as suggested by Ambroise and McLachlan in [4]. With this
approach we obtain a different subset of selected input variables for each fold. This is due to
both the different data subsets used for training the learner for each fold, and to the intrinsic
randomness of the SAIS method. To aggregate these subsets of relevant variables we define
some ad-hoc voting techniques.

Definition 1 Hard-Voted Relevance (HVR). The hard voted relevance of an input is the
count of its occurrences in the results obtained on the M folds.

Definition 2 Vector of Hard-Voted Relevance (G). The vector G ≡
∑
j g

j ( j = 1, 2, ...,M ),
with gj being the string obtained by SAIS on the j-th fold, contains the HVR of all input
variables.

Definition 3 Vector of Aged Relevances (R). The vector R = (r1, r2, . . . , rd) is defined as
follows:
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– at Step 1 of the SAIS algorithm, we set ri = 0 ∀i;
– every time a perturbation is accepted according to the Boltzmann distribution (Step 5.f),

we update R:
R = γR+ g, with γ ∈ [0, 1] (3)

At the end of the SAIS the vector R measures how often each input has been selected in the
last few successful moves of the algorithm and contains the Aged Relevances of inputs (γ is
called aging parameter).

Definition 4 Soft-Voted Relevance (SVR). The soft-voted relevance of an input l is the sum
of values of rl, the end of SAIS in the M different folds.

Definition 5 Vector of Soft-Voted Relevances (S). The vector of soft-voted relevances is the
sum of vectors of aged relevances Rj obtained by SAIS on the j-th fold, namely S ≡

∑
j R

j

(with j = 1, 2, ...,M ).

Note that measures based on similar aged indexes are used also in other contexts, such
as the implementation of policies in computer operating systems [43], sensor networks [15],
and chaotic systems dynamics [7]. It is worth noting that in this paper the indexes of rele-
vance are only used for evaluating and integrating the results of the SAIS algorithm.

In Table 2, the list of the parameters to be initialized at Step 1 is presented together with
the values selected for the experiments that we will describe in Sect. 3. Namely, s0 and p
are used at Step 2 for the initialization of g and T ; [wmin, wmax] and [vmin, vmax] constrain
the size of move (Step 5c); λ is used for computing the Generalized Energy E (Steps 3 and
5d); fmax, h∗, α are used for annealing schedule (Steps 5 and 6); and γ is used to estimate
the input relevances.

SAIS is a computationally intensive algorithm, but as we shall see in Sect. 4 it is faster
than other wrapper methods, and it can be accelerated using some heuristics that we will
present in Sect. 4.

It is worth noting that global search strategies for input selection such as SAIS and
others already cited based, e.g., on Genetic Algorithms, Particle Swarm Optimization, and
Simulated Annealing, can work with both numerical and categorical inputs. We note also
that, due to the dependence of these techniques on random decisions, for each independent
run on the same training set they can find a new subset of s inputs from the original d.

3 Experimental validation of SAIS

The SAIS algorithm has been implemented in the R language and statistical environment [36].
The experimental validation consisted of four experiments using a synthetic data set for eval-
uating the method in Experiment A , and using publicly available data sets (Experiments B,
C and D). Experiments B and C apply the method to two popular Bionformatics data sets,
while Experiment D employs a medical data sets with numerical and categorial inputs with
the aim to test SAIS with data sets with mixed input.

In the first three experiments, we used the popular Support Vector Machine (SVM) [44]
as a classifier, as implemented in Chang and Lin’s LIBSVM [11]. We chose to work with
linear kernels and with a cost parameter fixed to C = 1 in the SVM functional in order
to avoid model selection on an additional parameter. Moreover, to avoid selection bias in
the evaluation of classification performances of the SVM trained on the input selected, we
implemented an external 10-fold cross validation. We chose also to have one unique run
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Table 1 Data sets used in the experiments.

Experiment A B C D
Data set Synth Leukemia Colon Cleve
Number of numerical inputs 1000 7129 2000 6
Number of categorical inputs 0 0 0 7
Number of instances 50 38 62 303

Table 2 Parameters of SAIS-US algorithm and their values selected for the four experiments.

Experiment
Parameter/Technique Symbol A B C D
Number of inputs initially selected s0 10 20 20 5
Number of initializations of g for p 10000 10000 10000 10000
estimating the initial value of T
Interval for w [wmin, wmax] [1, s] [1, s] [1, s] [1, s]
Interval for v [vmin, vmax] [1, 10] [1, 10] [1, 10] [1, d− s]
Regularization coefficient λ 2 · 10−2 10−2 2 · 10−3 10−4

Maximum number of iterations fmax 1000 10000 2000 100
for each T
Minimum number of successes h∗ 100 200 100 30
for each T
Cooling parameter α 0.9 0.9 0.9 0.9
Aging constant γ 0.98 0.98 0.98 0.98
Learning machine Linear SVM Linear SVM Linear SVM RPART
Cross-validation 10-fold LOO 10-fold 10-fold

of SAIS for each fold. In experiment D we used Decision Trees as classifiers, due to the
presence of categorical inputs.

In the experiments described in this section, in Step 5c of SAIS, we used a uniform
probability distribution in the interval [1, s] to select the number w of bits of g to be switched
from 1 to 0, i.e.,

pi =
1

s
(4)

and, similarly, a uniform probability distribution in the interval [1, vmax], to select the num-
ber v of bits of g to be switched from 0 to 1, i.e.,

pi =
1

1− vmax
(5)

We call this this basic approach to system state perturbation SAIS with Uniform Selection
(SAIS-US). In Sect. 4 we will show some modifications to SAIS-US, aimed to accelerate its
convergence.

Table 1 lists the main properties of the data sets used in each experiment. The initializa-
tion of the parameters of SAIS and the techniques used in the four experiments are shown
in Table 2, while an overall view of the results obtained is presented in Table 12. We shall
now present a detailed analysis of the four experiments.
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Table 3 SAIS-US on Synth data set: Inputs selected in the 10 runs of the external 10-fold validation proce-
dure. For each fold we show the inputs selected, ranked according to their aged relevance index.

Rank Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 1 3 4 2 4 3 3 4 4 1
2 2 2 610 1 3 2 4 1 1 2
3 241 – – – – 266 – – – –
4 – – – – – 975 – – – –

Table 4 Synth data set: Ranking of the first 10 inputs obtained after the external 10-fold validation procedure
using the Hard Voted Relevance (HVR) and Soft Voted Relevance (SVR).

Rank HVR SVR
1 1, 2, 4 4
2 – 3
3 – 2
4 3 1
5 241 343

3.1 Experiment A

The first experiment has been conducted on a synthetic data set (Synth) of 50 instances
and in a space of 1000 features, composed by two balanced classes (see Table 1). The first
2 inputs are able to linearly separate the two classes. The third and fourth inputs are the
opposites respectively of the first and second inputs (this models problems with redundant
inputs), while the remaining 996 were randomly generated with a uniform distribution.

As shown in Table 2, we used a Linear SVM as the learning machine and an external 10-
fold validation technique. The best results have been obtained using a penalization parameter
λ = 2 · 10−2 for the generalized energy: we found one misclassified pattern (2.0%) and a
number of selected inputs s ranging between 2 and 4 as shown in Table 3.

With the exception of Run 3, in all runs the selected inputs are one of the following pairs
of inputs (1, 2), (1, 4), (2, 3), (3, 4), and sometimes include also some random inputs (Run
1, Run 6). We note that in Run 3 SAIS-US selects only two inputs, 4 and 610, the latter
being one of the randomly generated inputs.

The evaluation of the Hard Voted Relevance (HVR) and Soft Voted Relevance (SVR)
helps us to filter the most relevant inputs. Table 4 shows the first 5 selected inputs and the
value of these two indexes.

The two graphs on the top of Fig. 1 show the trend of the classification error ε and
of the number of selected inputs versus the iteration number of the algorithm in a run of
SAIS-US. Each iteration corresponds to a different value of temperature T (i.e. Step 5 and
Step 6 of Algorithm 1). These graphs illustrate the ability of SAIS-US to minimize both the
Classification Error ε and the number of relevant inputs s. Fig. 1 also shows that the same
happens for the other experiments reported in this paper.

3.2 Experiment B

The first real data set we considered is the Leukemia data set1 first presented by Golub et
al. [16] (see Table 1). The Leukemia problem consists in characterizing two forms of acute

1 http://www.broad.mit.edu/cancer/software/genepattern/datasets/.
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Fig. 1 Classification error ε and number of selected inputs s versus the number of iterations for: Run 1 of
Experiment A on Synth data set; Run 6 of Experiment B on the Leukemia data set; Run 1 of Experiment C
on the Colon data set; Run 6 of Experiment D on the Cleve data set. Each iteration corresponds to a different
value of temperature T in Algorithm 1 (the plotted values are just before Step 6).
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Table 5 SAIS-US on Leukemia data set: Inputs selected in 10 runs of the external LOO validation procedure.
For each fold we show the inputs selected, according to the aged relevance index. The genes selected in Golub
et al. [16] are underlined.

Rank Run 1 Run 2 Run 3 Run 4 Run 5
Gene 1 X95735 at M27891 at X95735 at X95735 at J04615 at
Gene 2 U51166 at X59812 at X69819 at M21812 at L38928 at

Rank Run 6 Run 7 Run 8 Run 9 Run 10
Gene 1 X95735 at M55150 at X95735 at M16038 at X95735 at
Gene 2 L76703 at HG2171-HT2241 at X78136 at L16991 at X87344 cds10 r at

Table 6 Leukemia data set: Ranking of the first 10 inputs obtained after the external the LOO validation
procedure using the Soft Voted Relevance. Genes which have also been found in [16] are underlined, and
names are indicated.

Rank Soft Voted Relevance Name
1 X95735 at Zyxin
2 M27891 at Cystatin
3 M55150 at Fumarylacetoacetate
4 J04615 at SNRPN
5 M63138 at Cathepsin
6 X66365 at CDK6
7 X71490 at ATP6E
8 U72936 s at X-linked helicase II
9 S81003 at L-UBC

10 M96326 rna1 at Azurocidin

leukemia, Acute Lymphoblastic Leukemia (ALL) and Acute Myeloid Leukemia (AML).
The original work proposed both a supervised classification task (class prediction) and an
unsupervised characterization task (class discovery). The data set contains 38 instances for
which the expression level of 7129 genes has been measured with the DNA microarray
technique (the interesting human genes are 6817, and the others are controls required by the
technique). Of these instances, 27 are cases of ALL and 11 are cases of AML. Moreover, it
is known that the ALL class is composed of two different diseases, since they are originated
from different cell lineages (either T-lineage or B-lineage). In the data set, ALL cases are the
first 27 objects and AML cases are the last 11. Therefore, in the presented results, the object
identifier can also indicate the class (ALL if id ≤ 27, AML if larger). Using those data (with
dimensionality d = 7129) Golub et al. [16] selected a set of 50 most relevant genes.

Given the scarcity of instances in the sample, for the estimation of the Classification
Error εwe applied the SAIS-US algorithm using a leave-one-out (LOO) validation technique
and the assumptions and techniques shown in Table 2.

In the 38 runs of the LOO validation we obtained a total of two misclassifications, thus
the LOO estimate of the classification error is 5.3%. For each run of LOO we started SAIS-
US with a string g with 20 bits set to 1. The algorithm always ended with a set of two genes.
Table 5 shows the genes selected by 10 runs of the LOO validation technique.

Table 6 shows the ranking obtained using Soft Voted Relevance. In the first three po-
sitions we found the genes X95735 at, M23197 at and M55150 at, that are also in the
set selected by Golub et al. [16]. Hard Voted Relevance put in the first position the gene
X95735 at, and in the second place the other 9 genes listed in Table 5. The most rele-
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Table 7 SAIS-US on Colon data set: Inputs selected in runs 1, 2, 3, 4, 5 of the external 10-fold validation
procedure. For each fold we show the inputs selected, ranked according to their aged relevance index. The
gene U14971 (underlined in the table) has been also highlighted in [3].

Rank Run 1 Run 2 Run 3 Run 4 Run 5
1 H20709 T63484 R84411 J00231 T51023
2 J03077 H20709 X12369 H20709 D31885
3 T47377 H43887 U14971 R72300 M64110
4 U37012 H88360 D63874 T57780 Z18538
5 M28214 T64878 R74349 T61602 U14973
6 R39465 H81068 X12466 X15183 M69043
7 – – H75955 T61446 T94350
8 – – M26383 T53412 J03210
9 – – U09413 U29656 –
10 – – R43914 Y00097 –
11 – – T95046 R56401 –
12 – – – T48612 –
13 – – – R73606 –
14 – – – R43976 –
15 – – – M87434 –

Table 8 SAIS-US on Colon data set: Inputs selected in runs 6, 7, 8, 9, 10 of the external 10-fold validation
procedure. For each fold we show the input selected, ranked according to their aged relevance index. The
genes T63484 and T51560 (underlined in the table) have been also highlighted in [3].

Rank Run 6 Run 7 Run 8 Run 9 Run 10
1 U37012 H20709 M22382 J02854 J02854
2 H64489 J03077 L09604 T51560 T51023
3 H46994 U37012 R44052 R87126 M11799
4 J00231 T47377 R06601 R07007 D14520
5 X70326 Z14978 M36634 X55362 T57686
6 H02465 K03474 U27337 T49941 T61661
7 U19796 R52000 H46994 X14830 H65355
8 – M94630 T57882 H82741 H73943
9 – – M55683 D43949 M98343
10 – – T74556 T55871 D13641
11 – – L20688 T74257 H14607
12 – – D13630 – R56207
13 – – T63484 – –
14 – – U04241 – –
15 – – M57710 – –
16 – – R56443 – –
17 – – D30655 – –
18 – – R98842 – –
19 – – T66960 – –
20 – – R62459 – –
21 – – L11369 – –

vant gene given by both indexes (i.e., X95735 at, Zyxin) has been highlighted by Guyon et
al. [17] as well. Both computational and biological evidence of involvement of this protein
in processes related to leukemia has also been discussed in [45].
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Table 9 Colon data set: Ranking of the first 10 inputs obtained after the external the 10-fold validation
procedure using the Hard Voted Relevance and Soft Voted Relevance. The gene T63484 (underlined) has
been also highlighted in [3].

Rank Hard-Voted Relevance Soft-Voted Relevance
1 H20709 H20709
2 U37012 T51023
3 T63484 J02854
4 J03077 U37012
5 T51023 J03077
6 J00231 T47377
7 H46994 J00231
8 T47377 T92451
9 J02854 H64489
10 R39465 T63484

3.3 Experiment C

The second real data set on which we performed input selection is the Colon data set by Alon
et al. [3]. This is an oligonucleotide microarray analysis of gene expression in 40 tumor and
22 normal colon tissue instances, used to characterize the role and behavior of more than
6500 human genes in colon adenocarcinoma. The normal instances were obtained from a
subset of the same patients who provided the tumor instances, so that positive instances
are well paired to the corresponding negative instances. The actual data set used in the
experiments2 contains only the 2000 genes most clearly expressed in the experiments, those
with the lowest minimal intensity across the 62 tissue instances (see Table 1).

As shown in Table 2, we used a penalization parameter λ = 10−3, a linear SVM as the
learning machine, and an external 10-fold cross-validation technique. For each run of the 10-
fold validation, we obtained a different set of inputs ranging from 6 to 21 genes (Tables 7,8),
that are listed ranked according to their aged relevance degree. In the 10 runs of the 10-
fold validation we obtained a total of twelve misclassifications, and, therefore, the 10-fold
estimate of the classification error is ε = 19.4%. Higher values of λ lead to the selection of
a smaller input space at the cost of higher classification errors.

Table 9 reports the genes’ ranking using Hard-Voted Relevance and Soft-Voted Rele-
vance. We can note that genes U14971, T63484 and T51560 reported in Fig.s 7,8 have been
also highlighted in [3], but only gene T63484 appears in the lists of Table 9.

3.4 Experiment D

The fourth experiment has been performed on the Cleve mixed data set which is modified
from the Detrano’s heart disease data set which contains 76 clinic attributes for each patient.
The Cleve data set contains 303 instances (patients) with six categorical and eight numerical
inputs (see Table 1). The data set contains 5 missing values in numerical attributes3 that can
be handled by Decision Trees. We focus on the problem of finding a set of inputs able to
distinguish between health and disease.

As we have mixed inputs (numerical and categorical variables) we used a RPART clas-
sification tree [10,35] as a classifier and external 10-fold validation technique (Table 2).

2 http://microarray.princeton.edu/oncology/affydata/index.html.
3 http://http://mlearn.ics.uci.edu/databases/heart-disease/cleve.mod.
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Table 10 SAIS-US on Cleve data set: Inputs selected in the 10 runs of the external 10-fold validation proce-
dure, using as penalization parameter λ = 10−4 in the generalized energy. For each fold we show the inputs
selected, ranked according to their aged relevance index.

Rank Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
1 chol chol chol chol chol maxbps chol chol chol chol
2 maxbps age age bps oldpeak oldpeak maxbps bps age oldpeak
3 age oldpeak oldpeak maxbps sex bps age thal maxbps age
4 induced bps thal chest age chol oldpeak oldpeak bps sex
5 – ecg fbs – – ecg induced – sex –

Table 11 Cleve data set: Ranking of the first four inputs selected with SAIS-US using the external 10-fold
validation procedure.

Rank HVR HVR
1 sex ncol
2 induced chest
3 ncol induced
4 ecg thal

Table 12 Summary of the results obtained in the four experiments.

Experiment A B C D
Data set Synth Leukemia Colon Cleve
λ 10−2 10−2 2 · 10−3 10−4

Classification error 2.0% 5.3% 19.4% 23.8%
Inputs selected [2–4] 2 [6–21] [4–5]

RPART can work with mixed data sets and is is able to handle missing attribute values. In
Table 10, we report the results obtained by setting the penalization coefficient λ = 10−4.
The inputs selected are ranked according to their aged relevance. In Table 11, we show the
inputs ranked using hard voted relevance and soft voted relevance after the external 10-fold
validation procedure.

4 Speeding up SAIS

Optimization techniques are evaluated both on the precision in finding the solutions to the
problem, and on their converging speed. The SAIS algorithm shows a time cost sometimes
comparable with other wrapper methods, even if Simulated Annealing itself is computation-
ally intensive.

Let us consider, e.g., the method by Guyon et al. [17] which performs input selection by
Recursive Feature Elimination (RFE). At each iteration a new linear SVM is trained and the
inputs with the smallest weight is eliminated. In order to rank the entire set of thousand of
inputs it must run an SVM for each dimension of the input space, starting from thousands
down to one. In SAIS, instead, when we work with numerical inputs only and use SVMs,
we have many more (hundreds of thousand) SVMs to train, but each learning procedure is
fast, as it performs classification in a space of small dimension (only some tens of inputs).
This is an advantage over feature elimination procedures.
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Table 13 Time duration in hours of input selection methods on Leukemia database obtained on a Pentium IV
1900 MHz personal computer. Running times for SAIS variants are averaged on 10 runs and reported along
with their standard deviations. As RFE is deterministic, its standard deviation is 0.

Method time standard deviation
RFE [17] 2.47 0
SAIS US 1.62 0.68
SAIS SPS (ϕ = 0) 1.25 0.39
SAIS SPS (ϕ = 0.25) 1.52 0.44
SAIS SPS (ϕ = 0.50) 1.49 0.75
SAIS SRS (α = 2) 1.04 0.24
SAIS SRS (α = 3) 0.60 0.18
SAIS SRS (α = 4) 0.65 0.21
SAIS STS (c = 2) 0.68 0.41
SAIS STS (c = 5) 0.52 0.13
SAIS STS (c = 8) 0.47 0.13

In Table 13 we present a comparison of convergence times obtained using RFE [17],
SAIS with Uniform Selection (US), already illustrated in the previous sections, and some
heuristics we have implemented to speed-up SAIS and we shall show in this section. The
results are obtained on Leukemia data by Golub et al. [16] on a Pentium IV 1900 MHz
personal computer and averaged on 10 runs of each algorithm.

SAIS implements a combinatorial search on the all possible input subspaces on the
basis of the penalized classification error, which is more robust than direct evaluation of
sensitivity, with respect to both noise and sample variability. However, in case of numerical
inputs and linear discriminant classifiers, it is also possible to embed a direct input sensitivity
evaluation step in the algorithm.

The heuristic we propose to this end applies to the case of numerical inputs and learning
methods based on linear discriminant f = w · x (where x is the vector of inputs and w is
the vector of parameters or weights), such as linear SVM.

In this case, the sensitivity of the discriminant function to the input xi, can be evaluated
as:

∂f(x)

∂xi
=
∂(wixi)

∂xi
= wi (Absolute input sensitivity), (6)

or, better, as:

w2
i∑
j w

2
j

(Normalized input sensitivity). (7)

Inputs sensitivity is often exploited by “embedded” wrapper methods for input selection
as notion of input relevance [46,17,30]. As noted in Sect. 1, this implies that variables are
assumed to be weakly correlated, so that their individual importance can be unambiguously
assessed, and no input redundancy of subsets of inputs is taken into account.

This kind of advice from input sensitivity can be useful in the perturbation step of SAIS
(Step 5c). For example, we can make use of normalized input sensitivity for selecting the w
bits of g in the interval [1, s] to be flipped from 1 to 0 in Step 5c of SAIS, instead of using
Uniform Selection as indicated in Sect. 3. We have implemented the following selection
techniques borrowed from Genetic Algorithms literature (see, e.g., [32]):
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1. Sensitivity Proportioned Selection (SPS). A bit of the string g set to 1 is select to be
switched to 0 with probability

pi =
ϕ

s
+

1− ϕ
s− 1

(
1− w2

i∑s
j=1 w

2
j

)
, with 0 ≤ ϕ ≤ 1. (8)

2. Sensitivity Ranked Selection (SRS). A vector of ranks of inputs ρ = (ρ1, ρ2, ..., ρd) is
obtained by sorting on the basis of their normalized relevance. Then each bit of string g

set to 1 is select to be switched to 0 with probability

pi =
αρi∑s
j=1 α

ρj
, with α ≥ 0. (9)

3. Sensitivity Tournament Selection (STS). To select a bit of string g set to 1 to be switched
to 0, c bits (competitors) are sampled from those set to 1 using an uniform probability
distribution. Then, only the bit corresponding to the input with the highest normalized
sensitivity is selected and switched to 0.

In SPS if ϕ = 1 we have the basic perturbation with Uniform Selection used in Sect. 3,
while if ϕ = 0 we have the pure roulette-wheel algorithm used in Genetic Algorithms. When
0 < ϕ < 1, the selection is done in an intermediate way. Nevertheless, as shown in Table
13, the best speed-up has been obtained for the pure roulette-wheel algorithm (i.e., ϕ = 0).

We can note that using SPS, the values of normalized input sensitivity after few iterations
tend to become very similar for all inputs, independently on the value assigned to ϕ. In the
Genetic Algorithms literature, this phenomenon is called the problem of stagnation, and is
known to slow down convergence, as best solutions are favored only slightly with respect to
the worst ones. Remedies to stagnation proposed in the literature are ranked selection and
tournament selection.

Using STS, stagnation is avoided at the cost of a reordering overhead, as it happens in
Genetic Algorithms. From Table 13, we notice a significant speed-up with respect to SPS,
especially with α = 3 or 4. Note that when α = 1, STS becomes the basic perturbation with
Uniform Selection used in Sect. 3.

STR can be thought of as a noisy version of rank selection. Even in this case we can can
avoid stagnation, but no global reordering is required. STR allows to obtain the fastest runs
of SAIS, as shown in Table 13, especially with a large number of competitors (c).

We point out that when we apply these heuristics to Step 5c of SAIS, we make use of
a generic knowledge on the solutions of the combinatorial search problem. If the advice
is correct, we obtain a speed-up of SAIS, otherwise the move will be rejected at Step 5f.
However, the results obtained with these heuristics are comparable with those obtained with
SAIS US and illustrated in Table 5.

5 Conclusions

We have presented a global search method for gene selection, based on Simulated Anneal-
ing. The method implements heuristics for a comprehensive, yet efficient search of the con-
figuration space. Its properties are verified by means of extensive experiments, which yield
results in good agreement with published outcomes of alternative methods, as well as with
biological evidence.
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These same experiments have shown that, even though the core of the method is a ran-
dom search procedure, the specific implementation and the ad-hoc heuristics used to guide
and to speed up the method itself give rise to a relatively efficient algorithm. Once we have
shown that efficiency is not an issue, then it becomes more attractive to use a global search
method rather than other methods based on local search heuristics with comparable (or even
higher) computational cost.

Even more efficient implementations can also be devised, based on the parallel comput-
ing architectures provided by commodity hardware, like multi-core CPUs with simultaneous
multi-threading, or highly parallel GPUs with general-purpose programming frameworks,
which are currently ubiquitous and used for increasingly complex scientific computing ap-
plications.
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