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Abstract

In several applications of data mining to high-dimensional data, clustering techniques de-
veloped for low-to-moderate sized problems obtain unsatisfactory results.This is an aspect
of thecurse of dimensionalityissue. A traditional approach is based on representing the data
in a suitable similarity space instead of the original high-dimensional attribute space. In this
paper, we propose a solution to this problem using the projection of data ontoa so-called
Membership Embedding Space obtained by using the memberships of data pointson fuzzy
sets centered on some prototypes. This approach can increase the efficiency of the popular
Fuzzy C-Means method in the presence of high-dimensional data sets, as we show in an
experimental comparisons. We also present a constructive method for prototypes selection
based on simulated annealing that is viable for semi-supervised clustering problems.

Key words: High Dimensional Data Sets; Unsupervised Clustering; Supervised
Clustering; Fuzzy Sets; Embedding Spaces; Fuzzy C-Means; Simulated Annealing.

1 Introduction

Clustering methods are useful tools for data mining. They canbe employed both in
anunsupervisedway, when available data are unlabeled (or available labelsare un-
reliable, or when the data labeling task is too expensive), and in asemi-supervised
way when a small amount of knowledge is available concerningeither pairwise
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(must-link or cannot-link) constraints between data itemsor class labels for some
items.

Unfortunately, in several problems of data mining, data liein a very high dimen-
sional space (thousands of dimensions). In these situations, the direct application of
clustering algorithms developed for low-dimensional spaces (e.g., K-means [Stein-
haus (1956), Lloyd (1982)], BIRCH [Zhang et al. (1996)], CURE [Guha et al.
(1998)], CLARANS [Ng & Han (2002)], etc.) often leads to poor results. Even
after feature selection, one may be left with hundreds of dimensions (and further re-
ductions will significantly degrade the results). Even techniques designed for large
quantities of data, such as DBScan [Ester et al. (1996)], onlyfocus on the problem
of large-cardinality datasets, thus effectively making the assumption of (relatively)
small dimensionality. This is an aspect of the well-knowncurse of dimensionality
issue [Bellman (1961)].

Many clustering algorithms suffer from being applied in high-dimensional spaces,
as clustering algorithms often seek for areas where data aredense. Sometimes the
cardinality of the data sets available is even less than the number of variables, as
in the case of the analysis of many bioinformatics data sets or in web mining prob-
lems. This means that data span only a subspace within the data space. In these
conditions, it is not easy to define the concept of volumetricdensity.

Moreover, when space dimensionality is high or even moderate (as low as 10-15),
the distance of a point to its farthest neighbor and to its nearest neighbor tend to
become equal [Beyer et al. (1999), Aggarwal & Yu (2002)]. Therefore the evalua-
tion of distances, and the concept ofnearest neighboritself, become less and less
meaningful with growing dimensions. Defining clusters on the basis of distance
measures requires that distances can be estimated. For instance, one of the most
commonly used methods, K-means clustering [Steinhaus (1956), Lloyd (1982)], is
based on iteratively computing distances and cluster averages. Increasing the data
space dimensionality may introduce a large number of suboptimal solutions (local
minima), and the nearest-neighbor criterion which is the basis of the method may
even become useless. This problem is not avoided even when K-means is modi-
fied in the direction of incorporating fuzzy concepts, e.g. as for the FCM (Fuzzy
C-Means) algorithm [Dunn (1973), Bezdek (1981)].

A possible approach alleviating these problems is based on representing the data in
a suitable similarity space instead of the original high-dimensional attribute space
(see e.g. Strehl & Ghosh (2003), Filippone et al. (2008), andFilippone (2009)).

In this paper, we propose a solution to the highlighted problems using the projection
of data onto a so-called Membership Embedding Space (MES). Such projection is
obtained by using the memberships of data points on fuzzy sets centered on some
prototypes selected among data points themselves. We will demonstrate that this
approach can increase clustering efficiency of the popular Fuzzy C-Means (FCM)
[Bezdek (1981)] algorithm in the presence of high-dimensional data sets. To this
aim, we will experimentally compare the performances of FCM in the original data
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space, with those in the Distance Embedding Space (following the approach pro-
posed by Pȩkalska and Duin [Pekalska et al. (2001)]) and Membership Embedding
Space, using different prototypes-data ratios. Moreover, we will present a construc-
tive method for prototypes selection based on simulated annealing that is viable for
semi-supervised clustering problems as well.

In Section 2 a fuzzy embedding for high dimensional data sets, is presented; in
Section 3 we recall the main aspects of Fuzzy C-Means clustering algorithm, and
in Section 4 we present a constructive approach for selecting an optimal set of pro-
totypes in the fuzzy embedding. The experimental results are reported in Section 5.
The conclusions are given in Section 6.

2 Membership Embedding Space

A notable complexity reduction of data mining problems in the presence of large-
dimensional data sets can be provided by representations ina similarity space or
embedding space based on an assigned pairwise similarity (or dissimilarity) trans-
formation (see e.g. Strehl & Ghosh (2003), Filippone et al. (2008), and Filippone
(2009)).

Given a data setX of cardinalityn, X = {x1, x2, . . . , xn} in a d dimensional space,
the (dis-)similarity transformationv(xi , x j) maps then×d data matrix into a more
dense symmetricn×n matrix of similaritiesv, with vik = v(xi , xk) ∀i,k.

Mutual distances or other pairwise pattern evaluation methods such as kernels
[Shawe-Taylor & Cristianini (2004)] may be used as (dis-)similarity transforma-
tions. If the cardinality of the data set is small compared tothe input space dimen-
sionality, data sets can be represented in the embedding space in a very compact
way.

Applications of projection onto (dis-)similarity embedding spaces to clustering are
reported, e.g. in Fred & Leitão (2003), and Rovetta & Masulli (2006). Pekalska
et al. (2001) developed a set of methods based on representing each pattern accord-
ing to a set of similarity measurements with respect to otherpatterns in the data set.
As they pointed out, the (dis-)similarity measure should bea metric, since metrics
preserve thereverse of the compactness hypothesis[Pekalska et al. (2001)]: "ob-
jects that are similar in their representation are also similar in reality and belong,
thereby, to the same class".

Often non-metric distances are used as well. Moreover, sometime the (dis-)similarity
matrix can be reduced from a square matrixn×n to a smaller rectangular matrix
n× s, by selectings≤ n reference points (calledprototypes) and computing the (dis-
)similarities of the data with them. If the embedding dimension s is small compared
with d (i.e. s/d≪ 1), some points could have an ambiguous representation,
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In order to avoid the previously highlighted problems, in this paper we study an em-
bedding based on the space of memberships to fuzzy sets [Zadeh (1965)] centered
on selected prototypes.

The memberships to fuzzy sets centered on the prototypes aremodeled using the
following normalized function:

vik =
exp

[

−βd2
i,k

]

∑

l exp
[

−βd2
l,k

] β ∈ ℜ+, (1)

where the parameterβ regulates the spread of the membership function. The de-
nominator normalizes the sum of the memberships to the prototypes to sum up to
one. The matrixV = [vik] is the similarity matrix. Note that theV is rectangular,
since we select a number of prototypess≤ n.

In this way, in the Membership Embedding Space (MES) a data point xi is repre-
sented as a row ofv, i.e., xi = (vi1,vi2, . . . ,vin). Due to the localized definition of
fuzzy sets, this vector of memberships contains only few non-null elements, in cor-
respondence of the nearest prototypes in the original data space. If the spread of
membership is large (i.e., largeβ) many of these elements are non-null, otherwise
for β going to zero, only the data points corresponding to the selected prototypes
have at least one non-null element.

The results of a clustering method will be affected by the number and the positions
of the prototypes as well as by the value of spread parameterβ. Placing the pro-
totypes is a combinatorial search problem which will be tackled by a Simulated
Annealing approach.

3 Fuzzy C-Means Algorithm

In the experiments reported in this paper, we have used the Fuzzy C-Means (FCM)
algorithm [Bezdek (1981)] as the clustering algorithm. Other clustering techniques
can be applied, but we focus on a single choice for the sake of clarity.

The FCM algorithm performs the minimization of the followingfunctional:

Jm(U,Y) ≡
n

∑

i=1

c
∑

k=1

(uik)mdik (2)

where:X = {x1, x2, . . . , xn} is a data set containingn unlabeled sample points;Y =
{y1,y2, . . . ,yc} is the set of the centers of clusters;U = [uik] is the c× n fuzzy c-
partition matrix, containing the membership values of all samples to all prototypes;
m∈ (1,∞) is the fuzziness control parameter;dik is a dissimilarity measure between
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data pointxi and the centeryk of a specific clusterk. In the rest of this paper we will
use the Euclidean squared distancedik ≡ ‖xi −yk‖

2 as the dissimilarity measure.

The clustering problem can be formulated as the minimization of Jm with respect
to Y, under the normalization constraint

∑c
k=1uik = 1.

The necessary conditions for minimizingJm are then:

yk =

∑n
i=1(uik)mxi

∑n
i=1(uik)m for all k, (3)

uik =



















c
∑

j=1

(

dik

d jk

)
1

m−1



















−1

for all i,k. (4)

The Fuzzy C-Means algorithm usually starts with a random initialization of the
fuzzy c-partition matrixU or of the centroidsyk. Then, it iterates Eq.s 3 and 4 until
convergence. Usually, the convergence is checked by comparing the change in the
position of the centroids or in the cost function with some fixed thresholds.

Note that in the limit form→ 1 the fuzzy C-Means FunctionalJm (Eq. (2)) tends to
the expectation of the K-Means global error< E >≡

∑n
i=1

∑c
k=1uikdik, and the FCM

behaves as the classic K-means (or Hard C-means) algorithm [Steinhaus (1956),
Lloyd (1982), Duda & Hart (1973)].

4 Simulated Annealing Prototype Selection Algorithm

As already noted, the selection of the optimal set of prototypes for constructing the
Membership Embedding Space is a combinatorial search problem. A constructive
heuristic algorithm able to select the set of prototypes leading to (sub-)optimal
clustering in the MES can be based on Simulated Annealing (SA) [Kirkpatrick
et al. (1983),Černý (1985)] that is a global search probabilistic technique inspired
to annealing in metallurgy,

“Physical” annealing as used in metallurgy involves heating a material, and then
cooling it slowly and in a controlled fashion. The aim of thisprocess is to allow the
crystal lattice to reorganize so as to reduce the defects andto reach a more stable,
and therefore stronger, inner structure. Heating allows atoms to detach from their
initial positions (corresponding to a local minimum of the internal energy) and to
float randomly through states of higher energy; slow coolingallows them more
chances to find configurations with internal energy lower than the initial one.

SA is an adaptation of the Metropolis-Hastings algorithm [Metropolis et al. (1953)]
aimed to simulate the behavior and small fluctuations of a system of atoms start-
ing from an initial configuration, by the generation of a sequence of iterations. In
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the Metropolis algorithm each iteration comprises a randomperturbation (modifi-
cation) of the actual configuration (state vector) and the computation of the cor-
responding energy variation (∆E). If ∆E < 0 the transition is unconditionally ac-
cepted, otherwise the transition is accepted with probability given by the Boltzmann
distribution:

P(∆E) = exp

(

−∆E
KT

)

(5)

where K is the Boltzmann constant and T the temperature.

In SA this approach is generalized to the solution of generaloptimization problems
[Kirkpatrick et al. (1983)], by using anad hocselected cost function (generalized
energy), instead of the physical energy; therefore, it can also be employed when
the search space is discrete, as in combinatorial search problems. SA works as a
probabilistic hill-climbing procedure searching for the global optimum of the cost
function [Romeo (1986)].K is usually set to 1, while the temperatureT controls
the size of the search area, and is gradually lowered until nofurther improvements
of the cost function are noticed. SA can work in very high-dimensional searches,
given enough computational resources. In applications, itis important to trade-off
the quality of the solution and the computational cost; a slower decreasing of the
temperature allows the system to reach better solutions butmore time is required to
explore the state space.

In Tab. 1 the proposedSimulated Annealing Prototypes Selection(SA-PS) algo-
rithm is shown. In our approach the state of the system is represented by a binary
maskg = (g1,g2, . . . ,gn), where each bitgi (with i = 1, . . . ,n) corresponds to the se-
lection (gi = 1) / deselection (gi = 0) of a prototype. The initialization of the vector
maskg (Step 2) is done by generatings0 integer numbers with uniform distribution
in the interval [1,n] and setting the corresponding bits ofg to 1 and the remaining
ones to 0. At each step onlys prototypes are selected from the original set ofn
patterns. A perturbation or move is done in the following way: (1) chose randomly
w ∈ [wmin,wmax] andv ∈ [vmin,vmax]; (2) w bits of g set to 1 are switched to 0; (3)v
bits of g set to 0 are switched to 1.

The valueswmin,wmax,vmin,vmax can be used to reduce or to increase the variability
of each perturbation.

Once a set of prototypes is selected, it is possible to represent each pattern in the
Membership Embedding Space (MES) and perform clustering.

The generalized energyE is computed as a linear combination between an assigned
clustering quality measureε and the number of selected prototypess:

E = ε+λs (6)

The clustering quality measureε can be a function of either the cost function as-
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Table 1
Simulated Annealing Prototype Selection (SA-PS) Algorithm.

(1) Initialize parameters (see list in Tab. 3);

(2) Initialize the binary maskg at random;

(3) Perform clustering and evaluate the generalized system energyE;

(4) do

(5) Initialize f = 0 (number of iterations),h=0 (number of successes);

(a) do
(b) Increment number of iterationsf ;
(c) Perturb maskg;
(d) Perform clustering and evaluate the generalized system energyE;
(e) Generate a random numberrnd in the interval [0,1];
(f) if rnd < P(∆E) then

(i) Accept the newg mask;
(ii) Increment the number of successesh;

(g) endif
(h) loop until h≤ hmin and f ≤ fmax;

(6) updateT = αT;

(7) loop until h> 0;

(8) end.

sociated to the clustering algorithm, a clustering validation index, or, in the case of
semi-supervisedclustering (where we have a partially labeled data set), theRepre-
sentation Error(RE). RE is the number of data points in each cluster disagreeing
with the majority label in that cluster, summed over all clusters and expressed as a
percentage.

Note that the introduction of the number of selected prototypess in the computa-
tion of E penalizes situations in which the number of selected prototypes is high,
effectively resulting as a complexity penalty term. This choice of E leads to the
minimization of the cardinality of the set of prototypes able to achieve a good clus-
tering quality measure. The balance between these two termsis controlled byλ
(penalization coefficient).

The cooling strategy is implemented in step (6) of Tab. 1. It should be noted that
this strategy is only one of the many possible choices. The application of different
strategies, and in fact, the value ofα itself, can significantly influence the quality of
results and the computing time. The decay law and the parameter value used have
proven to be reasonable in our experiments, but they may haveto be evaluated on
the specific application.
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5 Experimental results

5.1 Data set

In order to test our approach, we have used a high-dimensional bioinformatics data
set, the publicly available Leukemia data by Golub et al. (1999). The Leukemia
problem consists in characterizing two forms of acute leukemia, Acute Lymphoblas-
tic Leukemia (ALL) and Acute Myeloid Leukemia (AML). The original work pro-
posed both a supervised classification task (“class prediction”) and an unsupervised
characterization task (“class discovery”). Here we obviously focus on the latter, but
we exploit the diagnostic information on the type of leukemia to assess the good-
ness of the clustering obtained.

The data set contains 38 samples for which the expression level of 7129 genes has
been measured with the DNA microarray technique (the interesting human genes
are 6817, and the other are controls required by the technique). These expression
levels have been scaled by a factor of 100. Of these samples, 27 are cases of ALL
and 11 are cases of AML. Moreover, it is known that the ALL class is in fact
composed by two different diseases, since they are originated from different cell
lineages (either T-lineage or B-lineage).

5.2 Performance Comparison

We have compared the following approaches:

(1) FCM on the raw data set (RD);
(2) FCM in the Distance Embedding Space (DES) with different prototypes/data

ratios;
(3) FCM in the Membership Embedding Space (MES) with different prototypes/data

ratios.

Each experiment corresponds to 1000 independent trials, each of them using a dif-
ferent random initialization of memberships in the FCM algorithm. In all trials, the
number of clusters was set to 3, and the fuzziness parameterm of FCM was set to
2.

Fig. 1 shows the representation error versus the prototypes/data ratio averaged over
1000 independent trials.

The first approach (standard FCM on original data) obtains a representation error
of 17.2%.
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Fig. 1. Representation Error for the tested methods: FCM on row data (RD), FCM on the
Distance Embedding Space (DES), FCM on the Membership Embedding Space(MES)
with usingβ = 10−6,5 ·10−7,10−7, and 10−8.

Table 2
Comparison of the best representation error for the tested methods: FCM on row data (RD),
FCM on the Distance Embedding Space (DES), FCM on the Membership Embedding
Space (MES).

Method β Representation Error prototypes/data ratio

RD - 17.2 /

DES - 24.9 0.1

MES 10−6 11.1 0.4

MES 5 ·10−7 10.9 0.5

MES 10−7 9.5 0.7

MES 10−8 9.1 0.8

The projection onto the distance embedding space (second approach) leads to worse
results compared to the first approach: as we can see for Fig. 1, in this case, the
representation error is greater than 25.0% for all prototypes/data ratios in the range
[.1,1.0].

The last approach, projecting the data set onto the membership embedding space
(MES), leads to better results. In Fig. 1 we show the results with β starting from
10−6 (that is the about the reciprocal of the mean distance between data points) and
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Fig. 2. The behavior of the best error rate (achieved withβ = 10−8, prototypes/data ratio
= 0.8) vs the fuzziness parameterm.

with decreasing values of this parameter until 10−8 that gives the optimal represen-
tation error.

A comparison of the best representation error for the testedmethods is reported in
Tab. 2. For each value ofβ we can notice an optimal prototype/data ratio.

Finally we performed a “model selection” to find an appropriate value of the fuzzi-
nessm, by computing the representation error over 1000 trials. This set of exper-
iments gives also indications about the role of the fuzziness parameter of Fuzzy
C-Means when applied in a MES. We obtained the MES using usingβ = 10−8 and
prototypes/data ratio= 0.8. As shown in Fig. 2, the best value form is m= 1.8 that
allows to obtain a representation error equal to 8.8% (even if this is slight better
than the results obtained bym= 2). Form> 2 we notice a rapid increasing in the
representation error. On the other hand, for low values ofm, FCM tends to behave
like the K-Means algorithm that performs worse than FCM.

5.3 Experiments on the Constructive Approach

We show here the application of the Simulated Annealing Prototype Selection (SA-
PS) algorithm to the Leukemia data by Golub et al. (1999) simulating a semi-
supervised clustering setting.

We ran the SA-PS algorithm in the MES using the FCM [Bezdek (1981)] algorithm
to cluster data. As a clustering quality measure we used theRepresentation Error
(RE) evaluated as the best value obtained onr = 10 independent trials of FCM.
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Table 3
SA-SP algorithm - Choice of parameters.

Meaning S ymbol Value

Number of random perturbations ofg used to p 10000

estimate the initial value ofT

Number of prototypes to be initially selecteds0 3

Cooling parameter α 0.9

Membership width parameter β 10−6

Maximum number of iteration at each T fmax 2000

Minimum number of successes for each T hmin 200

Penalization coefficient λ 10−2

Minimum number of bits to be switched wmin, vmin 1,1

Maximum number of bits to be switched wmax, vmax s, 5

Number of clusters c 3

FCM fuzziness parameter m 2

FCM trials r 10

The parameterλ controls the tradeoff between the RE and the number of selected
probes (that is a measure of complexity). In our case, the penalization score for
each probe corresponds to an RE of 1% (λ = 10−2). The parameters controlling the
annealing areα, fmax, andhmin; we selectedα = 0.9 to allow a slow cooling of the
system andfmax= 2000 andhmin = 200 in order to have the chance to explore a
lot of states for a specific value ofT. The number of bits to be switched in each
move (wmin, vmin, wmax, vmax) where selected in order to give the system enough
variability to perform small as well as long jumps between states.

Tab. 3 shows the list of parameters of our algorithm and the values we have used in
the experiments here reported.

Each independent run of the SA-PS algorithm finds a different small subset of pro-
totypes leading to a clustering Representation Error equal to zero. In Fig. 3, the
Representation Error and the number of selected bits ofg are plotted versus the
iteration number during a run of the SA-PS algorithm, where each iteration corre-
sponds to a different value of temperatureT. In this case, at iterations 31, 33, 34
and 35 we obtained 4 different sets of 3 prototypes giving clustering RE equal to
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Fig. 3. Representation ErrorRE and number of prototypes selected during a run of the
SA-PS algorithm.

zero.

6 Conclusions

Clustering methods can achieve poor results when applied to small cardinality and
high dimensionality data sets.

In this paper, we proposed a method to face those clustering problems using an em-
bedding space where each data point is represented by a vector containing mem-
berships to fuzzy sets centered on a sub-set of prototypes selected from the data
base. On the Leukemia data by Golub et al. (1999) the proposedapproach leads to
significant improvements with respect the application of clustering algorithms in
the original space and in the distance embedding space.

The method can exploit supervised information (class labels) even when these are
not available for all data points. This is because they are not used in the optimiza-
tion step, but only in the centroid evaluation step, which isconfigured as a model
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selection over centroid position (a “fitting” criterion) and number (a “complexity”
criterion). This makes the proposed approach a viable solution in all cases where
supervised information is available, even if only for a subset of data points.

Obtaining (good quality) supervised information has always been an expensive step
in setting up an application, but recently this has become aneven more serious
issue, given the enormous quantities of data that can be produced at a fast pace
by sources such as, for instance, enterprise data warehouses, the web, or high-
throughput biomolecular analysis techniques. Being able toexploit unsupervised
data is important, but perhaps even more important is to be able to exploit even
incomplete –but precious– supervised information.
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