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Abstract. Fuzzy clustering is a useful tool for capturing intrinsic struc-
ture of data sets. This paper proposes several formulations for soft tran-
sition of fuzzy memberships from probabilistic partition to possibilistic
one. In the proposed techniques, the free memberships are given by in-
troducing additional penalty term used in Possibilistic c-Means. The new
features of the proposed techniques are demonstrated in several numeri-
cal experiments.

1 Introduction

Fuzzy c-Means (FCM) [1] is a well known fuzzy clustering algorithm whose goal
is to partition objects (data points, individuals) into several clusters by esti-
mating fuzzy memberships of objects to each cluster. In the FCM clustering, an
additional weighting parameter called “fuzzifier” is introduced into the objec-
tive function of (hard) k-Means clustering [2] in order to fuzzify the degree of
memberships, i.e., the constraints on the membership parameters are general-
ized so that they can take arbitrary values from the interval of [0, 1] instead of
{0, 1}. Because the sum of memberships of objects with respect to clusters are
constrained to be 1, the fuzzy memberships are often said to be “probabilistic”.

Recently, several other techniques for fuzzifying membership assignment have
been proposed based on regularization approaches. Miyamoto and Mukaidono [3]
considered the singularity in the hard clustering which implies the case where
proper partition is not obtained by the Lagrangian multiplier method, and intro-
duced an entropy term as the regularization term with a positive parameter into
the objective function of k-Means clustering. Because the fuzzification technique
derives the similar algorithm to that of entropy-constrained fuzzy clustering
by Deterministic Annealing (DA) [4], the clustering model is often compared
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with probabilistic mixture models [5]. Then, Ichihashi et al. [6] proposed a clus-
tering algorithm, which is similar to the EM algorithm for Gaussian Mixture
Models (GMMs), by using the regularization technique with Kullback-Leibler
divergences (K-L information).

In spite of its usefulness, the “probabilistic” partition has a problem of noise
sensitivity because the probabilistic constraint forces noise samples to belong
to one or several clusters with some degree. Then, Krishnapuram and Keller
proposed Possibilistic c-Means (PCM) [7] by giving up the constraint of sum to
1. This mode seeking algorithm is useful for outlier rejection in fuzzy member-
ship assignment, and the memberships can be regarded as the probability that
an experimental outcome coincides with one of mutually independent events.
However, it is possible that sets of events are neither mutually independent nor
completely mutually exclusive. Then, Masulli and Rovetta [8, 9] proposed the
graded possibilistic approach to the FCM clustering with regularization by en-
tropy. In the approach, soft transition from probabilistic to possibilistic partition
is performed by using the graded possibilistic constraint.

This paper proposes two other formulations for soft transition of fuzzy mem-
berships from probabilistic partition to possibilistic one. One is a modified ver-
sion of the original FCM algorithm, in which the updating rule for memberships
is a hybrid of FCM and PCM. The other is an enhanced version of the FCM
algorithm with regularization by K-L information. In the proposed techniques,
the free memberships drawn from the interval of [0, 1] are given by introduc-
ing an additional penalty term used in PCM. The new features of the proposed
techniques are demonstrated in several numerical experiments.

2 Fuzzy c-Means and Possibilistic c-Means

2.1 Fuzzy c-Means and Several Fuzzification Techniques

Fuzzy c-Means (FCM) [1] is an unsupervised classification technique that is
a fuzzified version of k-Means clustering [2]. In the k-Means (hard c-Means)
clustering, objects to be classified are assigned to one of C clusters where each
cluster has its prototypical mean vector. The membership assignment is based on
minimization of within-group-sum-of-errors, i.e., nearest prototype classification.
Then, the two step iterative algorithm is composed of calculation of mean vectors
and assignment of objects.

The FCM algorithm proposed by Bezdek et al. [1] uses the objective function
of generalized within-group-sum-of-errors

Ls
fcm =

C∑
c=1

n∑
i=1

uθ
cid

2
ci. (1)

d2
ci is the clustering criterion of the distance between the ith object xi and

the cth prototypical mean vector (cluster center) bc, and uci ∈ [0, 1] represents
the membership of the ith object to the cth cluster. θ is an additional weighting
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exponent. If θ = 1, the clustering model is reduced to the (hard) k-Means model.
The larger the θ, the fuzzier the memberships. So, the weighting exponent is
usually set to be θ > 1 and is called the “fuzzifier”. The memberships are often
calculated under the constraint of

C∑
c=1

uci = 1, i = 1, · · · , n. (2)

Because the memberships are obtained by a formula similar to the updating
rule for posterior probabilities in the EM algorithm with probabilistic mixture
models, the constraint is called the “probabilistic constraint” [10].

In the original FCM algorithm, called the “standard FCM algorithm”, the
updating rules for parameters are given as

bc =
∑n

i=1 uθ
cixi∑n

i=1 uθ
ci

, (3)

uci =

[
C∑

l=1

(
d2

ci

d2
li

) 1
θ−1
]−1

. (4)

Another approach to fuzzification of the hard c-Means clustering is the reg-
ularization of the objective function. Miyamoto and Mukaidono [3] introduced
a regularization term with a positive parameter λ into the objective function.
Using the entropy term, the objective function of the FCM clustering based on
the regularization technique is defined as

Le
fcm =

C∑
c=1

n∑
i=1

ucid
2
ci + λ

C∑
c=1

n∑
i=1

uci log uci, (5)

where the entropy term works like the weighting exponent in the standard FCM
algorithm, and transforms the linear programming problem into the nonlinear
optimization problem with respect to memberships uci. The parameter λ plays a
role for tuning the degree of fuzziness of membership values. The larger the λ, the
fuzzier the memberships. This fuzzification technique is called the “regularization
by entropy.” The updating rules for memberships and cluster centers are derived
as follows:

uci =
exp(− 1

λd2
ci)∑c

l=1 exp(− 1
λd2

li)
, (6)

bc =
∑n

i=1 ucixi∑n
i=1 uci

. (7)

The regularization approach can also be performed by using other regular-
ization terms. Ichihashi et al. [6] generalized the regularized objective function
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replacing the entropy term with K-L information term and proposed an FCM-
type counterpart of the GMMs with full unknown parameters. The clustering
technique is called the FCM clustering with regularization by K-L information
(KLFCM) and the objective function is defined as follows:

Lklfcm =
C∑

c=1

n∑
i=1

ucid
2
ci + λ

C∑
c=1

n∑
i=1

uci log
uci

πc
+

C∑
c=1

n∑
i=1

uci log |Σc|, (8)

where d2
ci is the (squared) Mahalanobis distance d2

ci = (xi−bc)�Σ−1
c (xi−bc),and

all the elements of Σc are also decision variables. Eq.(8) is minimized under the
condition that both the sum of uci and the sum of πc with respect to c equal
1, respectively. If uci � πc for all i and c, the K-L information term becomes 0
and the membership assignment is very fuzzy; but when λ is 0 the solution uci’s
are obtained at the extremal point (0 or 1). Fuzziness of the partition can be
controlled by λ. From the necessary conditions, the updating rules for uci, πc, Σc

are given as follows:

uci =
πc exp

(− 1
λdci

)|Σc|− 1
λ∑C

l=1 πl exp
(− 1

λdli

)|Σl|− 1
λ

, (9)

πc =
1
n

n∑
i=1

uci, (10)

Σc =
∑n

i=1 uci(xi − bc)(xi − bc)�∑n
i=1 uci

, (11)

and the cluster center bc is given by Eq.(7). Because πc represents the proportion
of objects belonging to the cth cluster, it is regarded as the capacity of the
cluster. The algorithm is equivalent to the EM algorithm with GMMs if and
only if the fuzzification coefficient λ = 2. When λ �= 2, there is no corresponding
mixture density. In the KLFCM clustering, K-L information term is used for
both optimization of cluster capacities and fuzzification of memberships while
Hathaway [5] interpreted the clustering criterion as the sum of K-L information
for updating memberships [11].

2.2 Possibilistic c-Means

Krishnapuram and Keller [7] proposed the possibilistic clustering by giving up
the probabilistic constraint. The objective function is formulated as

Ls
pcm =

C∑
c=1

n∑
i=1

uθ
cid

2
ci +

C∑
c=1

ηc

n∑
i=1

(1 − uci)θ. (12)

where ηc, c = 1, · · · , C are suitable positive numbers. The first term demands
that the distances from the objects to the prototypes be as low as possible,
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whereas the second term forces the uci to be as large as possible avoiding the
trivial solution. Then, the updating rule for memberships is given as

uci =
1

1 +
(

d2
ci

ηc

) 1
θ−1

. (13)

The value of ηc controls the bandwidth of the possibility (membership) distri-
bution for each cluster and determines the distance at which the membership
value of an object in a cluster becomes 0.5. In [7], ηc was calculated by using the
fuzzy intra-cluster distance as

ηc = K

∑n
i=1 uθ

cid
2
ci∑n

i=1 uθ
ci

, (14)

and K is typically chosen to be 1.
Another formulation for Possibilistic c-Means can be derived by modifying

the FCM clustering with regularization by entropy [12, 13],

Le
pcm =

C∑
c=1

n∑
i=1

ucid
2
ci + λ

C∑
c=1

n∑
i=1

(uci log uci − uci) (15)

The updating rule for memberships is given as uci = exp(− 1
λd2

ci).

3 Soft Transition to Possibilistic Partition

3.1 DA-Based Soft Transition

Masulli and Rovetta [8, 9] proposed the graded possibilistic approach to clus-
tering, in which soft transition from probabilistic to possibilistic constraint is
performed by using the graded possibilistic constraint. Assume that a class of
constraints is expressed by a unified formulation: Ψ =

∑C
c=1 u

[ξ]
ci − 1,where [ξ] is

an interval variable representing an arbitrary real number included in the range
[ξ, ξ], i.e., there must exist a scalar exponent ξ∗ ∈ [ξ, ξ] such that the equality
Ψ = 0 holds. The constraint can be implemented by using a running parameter
α. The extrema of the interval are written as a function of α, where ξ = α, ξ = 1

α
and α ∈ [0, 1]. Then, the constraint with an interval is represented as a set of
two inequalities:

∑C
c=1 uα

ci ≥ 1 and
∑C

i=1 u
1
α

ci ≤ 1.
For implementation of the graded possibilistic clustering, the following algo-

rithm can be used. When we use the entropy regularization (or DA approach),
the memberships are updated as

uci =
φci

κi
, (16)

where φci is a free membership of xi to the cth cluster drawn from the interval
of [0, 1] and is given as

φci = exp
{−d2

ci

λ

}
. (17)
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κi takes one of the following three values.

κi =

(
C∑

l=1

φ
1
α

li

)α

if
C∑

l=1

φ
1
α

li > 1, (18)

κi =

(
C∑

l=1

φα
li

) 1
α

if
C∑

l=1

φα
li < 1, (19)

κi = 1 else. (20)

Eq.(18) transforms memberships that are above the upper boundary onto the

boundary (
∑C

l=1 u
1
α

li = 1) while Eq.(19) transforms memberships under the lower
boundary onto the boundary (

∑C
l=1 uα

li = 1). When α = 1, Eqs.(18) and (19)
derive κi =

∑C
l=1 φli, and memberships uci’s are reduced to the probabilistic ones

(
∑C

c=1 uci = 1). On the other hand, α = 0 provides the possibilistic membership
assignment because all of κi’s are given by Eq.(20). Then, the value of α should
be gradually decreased from 1 to 0.

3.2 Soft Transition with Standard Fuzzifiation Technique

The key in generalizing the graded possibilistic approach to other fuzzification
techniques is how to define the free memberships of Eq.(17). In this subsection,
a free membership drawn from the interval of [0, 1] is formulated in the frame of
the standard fuzzification technique. In order to generalize the updating rule for
memberships, the additional penalty term used in PCM is introduced into the
objective function of FCM as follows:

Lgs
fcm =

C∑
c=1

n∑
i=1

uθ
cid

2
ci +

C∑
c=1

ηc

n∑
i=1

(1 − uci)θ. (21)

Then, the free membership φci is given as

φci =
1

1 +
(

d2
ci

ηc

) 1
θ−1

, (22)

where ηc is a predefined constant. We can see that d2
ci = 0 derives φci = 1, and

φci moves toward 0 as d2
ci → ∞.

Here, it is obvious that the free membership of Eq.(22) derives the possibilistic
partition of PCM when α = 0. Then, the parameter ηc plays a similar role
with that of PCM and can be given in the same way with PCM. On the other
hand, when α = 1, the updating rule has some connection with that of FCM.
Substituting Eq.(22), Eq. (16) with α = 1 is written as

uci =
φci∑C
l=1 φli

=

(d2
ci)

− 1
θ−1

(d2
ci

)
− 1

θ−1 +(ηc)
− 1

θ−1∑C
l=1

(d2
li

)
− 1

θ−1

(d2
li

)
− 1

θ−1 +(ηc)
− 1

θ−1

. (23)
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By the way, the updating rule of Eq.(4) can be written as

uci =
(d2

ci)
− 1

θ−1∑C
l=1(d

2
li)

− 1
θ−1

=

(d2
ci)

− 1
θ−1∑C

l=1
(d2

li
)
− 1

θ−1

∑C
l=1

(d2
li

)
− 1

θ−1∑
C

k=1
(d2

ki
)
− 1

θ−1

. (24)

Then, the proposed model is equivalent to the standard FCM if (ηc)−
1

θ−1 =∑C
l=1(d

2
li)

− 1
θ−1 − (d2

ci)
− 1

θ−1 for all i.
Assume that ηc is fixed for all i in each cluster. When ηc is large, all uci’s

tend to take the same value of 1/C, i.e., the membership assignment becomes
very fuzzy. On the other hand, when ηc is enough close to 0, the value of Eq.(23)
becomes similar to that of Eq.(24) because

(d2
ci)

− 1
θ−1

(d2
ci)

− 1
θ−1 + (ηc)−

1
θ−1

� (d2
ci)

− 1
θ−1

(ηc)−
1

θ−1
, (25)

and

C∑
l=1

(d2
li)

− 1
θ−1

(d2
li)

− 1
θ−1 + (ηc)−

1
θ−1

� 1

(ηc)−
1

θ−1

C∑
l=1

(d2
li)

− 1
θ−1 . (26)

Therefore, the value of ηc should be gradually increased from a positive small
value to Eq.(14).

3.3 Soft Transition with Regularization by K-L Information

In the same manner, the graded possibilistic approach to the FCM clustering
with regularization by K-L information can be formulated as follows:

Lg
klfcm =

C∑
c=1

n∑
i=1

ucid
2
ci + λ

C∑
c=1

n∑
i=1

uci log
uci

πc
+

C∑
c=1

n∑
i=1

uci log |Σc|

+
C∑

c=1

λ log ηc

n∑
i=1

(1 − uci) + λ
C∑

c=1

n∑
i=1

(1 − uci) log(1 − uci), (27)

where d2
ci is the (squared) Mahalanobis distance. Then, the free membership φci

is given as

φci =
πc exp

(− 1
λdci

)|Σc|− 1
λ

πc exp
(− 1

λdci

)|Σc|− 1
λ + 1

ηc

, (28)

where ηc is a predefined constant.
Here, the free membership of Eq.(28) derives a possibilistic partition when

α = 0, and the parameter ηc plays a similar role with that of PCM. Considering



8 Katsuhiro Honda et al.

the similarity between KLFCM and GMMs, it is a natural choice that 1
ηc

=

Kπc exp
(− 1

λ

)|Σc|− 1
λ because the within-group variance is 1 in the Mahalanobis

distance. Then K can be chosen to be 1. On the other hand, when α = 1, the
updating rule becomes more similar to that of KLFCM as ηc moves toward 0.
Therefore, the value of ηc should be gradually increased from a positive small

value to
[
Kπc exp

(− 1
λ

)|Σc|− 1
λ

]−1

in the graded possibilistic clustering.
By the way, other parameters can be updated in the same manner with

KLFCM so long as we use the same constraint except for the probabilistic con-
straint of Eq.(2).

4 Numerical Experiments

This section shows the results of numerical experiments that were performed by
using an artificial data set consisting of 100 samples with 2-D observations. The
data set was partitioned into 2 clusters using the proposed formulations.

First, the standard FCM and its generalized model were applied to the data
set. The derived fuzzy classification functions are shown in Figs. 1 and 2, in
which the objects to be classified are represented by ”◦” and the gray scale
shows the maximum membership value, i.e., the membership degree belonging
to the nearest cluster center. In the graded possibilistic approach, ηc was given as

ηc = 0.0001α+(1−α)
∑n

i=1
uθ

cid
2
ci∑n

i=1
uθ

ci

. The figures show that the possibilistic partition

is a good property of the mode seeking algorithm and the graded possibilistic
approach performs the soft transition well. Furthermore, the intermediate model
(α = 0.5) reflects the features of both of probabilistic and possibilistic partition.

Next, the graded possibilistic approach is performed using the regularization
by KL information. Here, it has been shown that the KLFCM algorithm is
sensitive to initial partition and often falls into local minima where we have
a very large cluster (global cluster) and several very small clusters with a few
objects. In this experiment, the initial partition was given by the standard FCM
algorithm and the upper limit of variance (covariance) was set as 0.02 in order
to avoid a global cluster. The derived fuzzy classification functions are shown in

Figs. 3 and 4. ηc was given as ηc = 0.0001α+(1−α)
[
πc exp

(− 1
λ

)|Σc|− 1
λ

]−1

. The
figures show that the KLFCM-based model could capture not only the cluster
centers but also the capacities and the shapes of clusters.

In this way, the proposed approach is useful for performing the soft transition
from probabilistic to possibilistic partition.

5 Conclusion

This paper proposed several formulations for graded possibilistic approach in the
FCM clustering. In the proposed techniques, the free memberships drawn from
the interval of [0, 1] are given by introducing an additional penalty term used in
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Fig. 1. Fuzzy classification function by standard FCM with θ = 2.0

(a) α = 0.5 (b) α = 0.0

Fig. 2. Fuzzy classification function by graded possibilistic approach with standard
fuzzification with θ = 2.0

PCM. The probabilistic partition of the conventional clustering algorithm can be
derived by using a small penalty weight while the weight plays a role for tuning
the bandwidth of the possibility (membership) distribution for each cluster in
the possibilistic partition. Application to real world data sets is remained in
future work.
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