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Summary. — We have previously presented a data-oriented approach to the study of
microRNA-gene interactions, a hot topic of research in molecular biology, building heav-
ily on methods from the document analysis field. This paper evaluates the performances of
the method by means of a cross-validation approach. Latent information can be effectively
exploited to suggest directions for laboratory experiments, an important topic in microRNA
research, since these experiments are costly in both resources and time.

1. – Introduction

A current topic of very active research [?, ?] is the study of microRNA, which acts on ex-
pressed genes by regulating their transcription in various ways. While modulation of gene ex-
pression at the transcriptional level is traditionally deemed responsible for the cell’s operation,
post-transcriptional modulation is increasingly acknowledged to play a number of important
roles. It is now known that microRNAs are differentially found in many instances of major
normal (e.g., neurogenesis) and pathological (e.g., many forms of cancer) events, which explains
the great interest of this research area. In this contribution, we first present an overview of the
method presented in [?], and then test it with an approach inspired from leave-one-out cross-
validation.

2. – MicroRNA target prediction and validation

2.1. MicroRNA. – MicroRNAs (miRNAs) are short, non-coding RNAs, typically 22 nt long,
that regulate gene expression by suppressing translation and destabilizing messenger RNAs (mR-
NAs) with specific target sequences. The action mechanism of each individual miRNAs is not
always understood; however, regulation by miRNAs is peculiar in that it guarantees rapid and
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reversible changes in protein synthesis without altering transcription, and it is clear that collec-
tively miRNAs play a central role in controlling both physiological and pathological processes
[?].

As an example, several miRNAs have been found to have a significant involvement in the
development of some types of cancer, for instance prostate cancer [?]. Decreased expression
of some specific miRNAs has been consistently observed. As another example, hundreds of
miRNAs are expressed in mammalian brain, and many of them are specifically expressed or
enriched in brain tissues, such as let-7a, miR-218, and miR-125. Recent studies [?] suggest
a possible role of miRNAs in neurogenesis. It has also been shown that synaptic plasticity is
critically dependent upon regulation of specific protein synthesis near or within the pre- and/or
post-synaptic sites, and numerous components of the microRNA machinery, including dicer,
are expressed within dendrites and mature miRNAs and their precursors are detected in nerve
terminals. A single miRNA may target hundreds of gene transcripts, including global regulators
of translation, and the hypothesis of a combinatorial action of sets of miRNAs has been proposed,
for instance in the case of so-called “microRNA clusters” [?]; so it is possible that miRNAs play
an even more profound role than what is currently known.

2.2. Computational target prediction. – Although the mechanisms for miRNA expression and
maturation are quite well known, the post-transcriptional action mechanisms are not completely
understood [?]. A miRNA does not require perfect complementary match to its target mRNA
to perform its control action. In fact, imperfect complementarity and the resulting secondary
conformation of the miRNA-target complex may explain some of the action mechanisms, which
are probably varied. This situation makes it difficult to analyze miRNA-mRNA interactions in a
purely computational way (target prediction), and this difficulty accounts for the relatively high
number of computational prediction methods currently available, many of them disagreeing with
others. Agreement is typically good only among methods based on similar hypotheses.

Most currently available prediction tools [?, ?, ?] are based on a given set of predefined
hypotheses. These hypotheses often stem from either empirical observation, or statistical analysis
of nucleotide sequence patterns (frequency of observation, enrichment analysis, phylogenetic
conservation analysis). They are tested on a miRNA-mRNA site pair; partial scores are given to
specific features measured on the pair, and if the overall score passes a threshold, then the mRNA
site is predicted to be a target for the given miRNA. For instance, TargetScan [?] analyzes seed
complementarity and phylogenetic conservation; RNAhybrid [?] finds sites with minimum free
energy. PicTar [?] and miRanda [?] are somewhat more comprehensive tools. For instance,
miRanda takes into account several effects, such as seed complementarity, non-complementarity
of the bases following the seed region, overall complementarity, free energy, and conservation
analysis. However, even miRanda does not provide perfectly consistent results with respect to
available knowledge (targets which have been validated in lab experiments).

3. – Context analysis from a Rosetta Stone

3.1. The data. – A large quantity of data about miRNAs and their targets has been mined from
several repositories, at the moment mainly from miRBase(1), Argonaute(2), and TarBase(3),

(1) http://www.mirbase.org/
(2) http://www.ma.uni-heidelberg.de/apps/zmf/mirwalk/
(3) http://diana.cslab.ece.ntua.gr/tarbase/
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Fig. 1. – A visual representation of the data matrix.

accessed using the Biomart(4) R [?, ?] interface and ad-hoc software. The result is a binary
(0/1) data matrix indicating the very basic information of the simple presence/absence of one or
more target sites on a given gene transcript for a given microRNA, which make up the rows and
columns, respectively, of the matrix, as visually represented in Figure 1.

The accessed data sets contain different information. MiRBase and Argonaute report a large
number of predicted gene-miRNA interaction targets, while TarBase is much less substantial
numerically, but contains miRNA-gene pairs which have actually been validated. The number
of miRNA sequences collected in our predicted database is 677. All sequences have actually
been found to correspond to existing miRNAs. For these collected sequences, 23683 transcript
sequences have been listed, with match (presence of at least one target site) for at least one, but
typically more, of the collected miRNAs. This makes up a total of 16033391 matrix entries, of
which 487409 (about 3%) are of value 1. These indicate that, for the given combinations of gene
transcript and a miRNA, a software prediction with sufficient confidence has been obtained.

The number of sequence in the validated database is 70, with 907 transcript sequences. This
makes up a set of 63490 matrix entries, of which 1060 (about 1.7%) are of value 1. These indicate
that, for the given combination, an experiment has been performed and the presence of at least
one match has been actually validated, not simply predicted by software. In this work only the
predicted data will be used, to ensure a sufficient number of cases.

3.2. A Rosetta stone. – The data set contains values which refer to the interaction of mRNA
and miRNA, formally similar to a term-document matrix in document analysis. This suggests the
application of techniques from that field to extract knowledge from data, like the use of cosine
distance and a vector space model[?].

In particular, the main goal of the overall activity is to improve detection of target sites on
genes, mainly with a more accurate prediction program. To provide additional hints for the

(4) http://www.biomart.org/
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research, the same data can be used to suggest possible target genes for a given miRNA that have
not yet been validated, so they appear as 0 in the data matrix. These suggestions can then be
then submitted to the prediction program. Combining information from context (the data set)
and local analysis (the prediction program), lab experiments for validation can be designed with
increased confidence, which will lower their cost in both time and money.

As already stated, by construction the dataset contains asymmetric information. Validated
targets are highly reliable, since they have been obtained by thorough laboratory experimentation.
On the other hand, cells of the matrix with value 0 may represent either miRNAs for which a
given mRNA does not actually have any target site; or untested miRNA-mRNA combinations.

This suggests an approach to target identification which is based on exploring the context to
decide whether a given 0 cell might actually represent a true target, although not yet validated.
The procedure is similar to the use of parallel texts to infer the meaning of an unknown word in a
dead language. This can be described as a Rosetta stone approach. Some methods based on this
approach will be outlined, although many more can be devised.

4. – The method and its experimental evaluation

4.1. Goals and procedure. – In this study, we tested the method by examining some experi-
mental hypotheses, and checking whether the method correctly answered them. The approach is
of the leave-one-out type: we incorrectly delete one recorded interaction, and check whether the
proposed criterion can infer it from context. Please refer to [?] for an example application of the
method.

Two experiments are reported. The first experiment consists in checking whether a gene, once
deleted from the list of matches with a given miRNA, can be recovered by the "Rosetta Stone"
approach.

The second experiment consists in analyzing pairs of miRNAs and to check whether deletion
of a gene from the list of matches for the first (query) miRNA could be compensated for by
analyzing the second (reference).

The starting point for the procedure is a given miRNA, a “query” miRNA, for which we want
to find new, possible interactions.

One or more reference miRNAs are then selected for comparison. These should be known to
be involved in a given biological process of interest, e.g. the development or the suppression of
a tumor.

A set of genes which are targeted by this reference set of miRNAs is then selected. By “gene”
we are really indicating the sequence of one specific transcript, among the several possible, for
the terminal –3′ UTR– region of a gene of average length 2 kbases.

The resulting set is then split into two subsets: one contains all genes which are known to be
targets to the query miRNA. This subset, which we call the MATCH set, can be expected not to
be empty if the miRNA is involved in similar biological processes as the reference set, which is
the case by hypothesis.

The second subset (the NON_MATCH set) contains all selected genes which are not known
to be targets to the query miRNA. Among these, we are searching candidates for lab validation.

Each subset is composed of vectors whose length equals the number of available miRNAs
(rows of the original data matrix). A rectangular affinity matrix is then built by selecting a
similarity measure between vectors, and using it to compare all genes in the NON-MATCH set
with all genes in the MATCH set.

Taking inspiration by document analysis, we can interpret this description of a miRNA as
the “vector space model” of a text. The terms composing this text are all genes which interact
with that miRNA, according to some rules (the “grammar” of an underlying language). As in
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the vector space model, the representation does not take grammatical structure into account, and
only retains the used terms, in some arbitrary dictionary order.

Affinity is then naturally expressed by cosine similarity:

d(u, v) = u · v(1)

chosen over the normalized version d(u, v) = u·v
|u||v| which does not take into account the number

of matches.
To perform the leave-one-out experiments, we need to rank a given gene by similarity with

the remaining ones. Therefore, we define a cumulative similarity between gene u and the set of
genes V as the root mean square cosine similarity between u and all other genes in V :

cs(u, V ) =
∑
v∈V

√
d(u, v)(2)

The advantage of this similarity definition is that, like mean similarity, it rewards larger num-
bers of similar items; however, unlike the mean, it can distinguish between many moderately
similar items and fewer strongly similar ones, giving a larger reward to the former case.

5. – Experimental results

Software to perform the above operations was written in R and C [?, ?] using the GNU
Scientific Library [?] and the MPI parallel environment [?].

5.1. Experiment 1: Recovering matching genes from their own context. – In this experimental
setup, individual miRNAs are considered. The aim is to verify the hypothesis that the set of
matching genes for a given miRNA can be used to infer a possible new matching gene.

To this purpose, one gene is deleted from the MATCH set of a miRNA. This is done for
all matching genes in turn. For each gene, the similarity with respect to the remaining set is
computed using the cs() similarity.

The genes are then sorted by similarity. We consider a gene to be “recovered” if its value of
cs is sufficiently high, according to some threshold.

The results, computed for all the available 677 miRNAs, indicate that all genes have cs > 0.
Not all genes feature a high degree of similarity. A worst-case statistic over the genes with

the minimum cs for each miRNA (therefore 677 genes) reveals that few of them (5 of 677) are
evaluated to a very low similarity (cs ≤ 10, where the range of all others is cs ∈ [369, 1561])

Note that the source of many of the collected data is Miranda, which is known to have a
higher false positive rate than other prediction tools [?]. Therefore, if used as exemplified in this
experiment, our method can be used to point out possible false positives from the list of matches
for a given miRNA, to be submitted to the lab or to other prediction methods for further inquiry.

5.2. Experiment 2: Inferring matching genes from external context. – In the second exper-
iment, miRNAs are evaluated in pairs. The number of pairs is 677 × 676 = 457652, so a
data-parallel version of the software has been prepared and run on a multicore machine running
the MPI middleware.

The aim of this experiment is to check whether the genes matching a given reference miRNA
can be used as a context to infer new targets for a query miRNA.

The procedure described in [?] has been followed, by using the matching genes of a single
miRNA as the reference set. The set of matching genes for the reference was split into a matching
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Fig. 2. – Experiment 1: Cumulative similarity cs of the worst gene for each miRNA w.r.t. all the remaining
ones, as a measure of its likelihood to be recognized as match – sorted in decreasing order along the
horizontal axis.

subset (genes which also match the query miRNA) and a nonmatching subset (genes which do
not match the query miRNA).

The method from [?] can now be used to evaluate the nonmatching subset, to check whether
some gene appears to be indicated as a possible match even if it comes from the nonmatching
subset. However, the procedure was applied by removing one gene from the matching subset and
putting it in the nonmatching subset – and this was repeated for each gene in the matching subset
(and then for all possible pairs of miRNAs).

The results indicate that in general most genes are indicated quite clearly as matches. To
make this evaluation, for each removed gene we check its rank in the nonmatching subset sorted
by likelihood to be a match (this likelihood is evaluated according to [?]). The removed genes
often appear among the top 20% in the list.

Two examples, among the 457 652 results available, are shown in Figg. ?? and ??. The first
shows the ranks for hsa-miR-15a and hsa-miR-16. There are two data series because one has the
first used as a query and the second as a reference, and the other has swapped roles.

It is possible to see that for both data series at least (roughly) 70% of genes come up among
the 20% most likely to be matches (remember that they actually are matches). We also note that
both series have a similar shape. This is probably due to the fact that these two miRNAs belong
to the same miRNA cluster (they are transcribed from the same gene) and they are therefore
related.

This is in contrast with Fig. ??, which presents the result of the same procedure applied to



VALIDATION OF A CONTEXT ANALYSIS METHOD FOR MICRORNA DATA 7

Fig. 3. – Experiment 2: hsa-miR-15a and hsa-miR-16 (see text for explanation).

hsa-miR-15a and hsa-miR-185. Here we can see that, firstly, the genes are a much lower number
(40, versus 501 of the previous case), indicating that the sets of matching genes for the two are
much less overlapping; in addition, while in one data series 90% of the genes are under the 20%
threshold, in the other only 60% are under threshold. This asymmetry is another indicator of
unrelatedness between the two selected miRNAs.

6. – Conclusion

The adopted testing methodology, inspired by “leave-one-out” cross-validation, seems to
show how the proposed method is indeed sensitive to meaningful relationships in data. This
implies that the context (defined as the set of interactions for a given miRNA or gene) contains
information that can be exploited to complement (where available) or supplement detailed infor-
mation.

It would be interesting to exploit the Rosetta stone method to perform not only point-to-point
similarity evaluations, but also group evaluations. Matrix-based clustering on a set of miRNAs
can thus be performed, and the obtained clusters can be checked against known experimental
relationships.
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Fig. 4. – Experiment 2: hsa-miR-15a and hsa-miR-185 (see text for explanation).
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